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Abstract

Deep hole drilling methods are used for producing holes with a high length-

to-diameter ratio, good surface finish and straightness. The process is subject to

dynamic disturbances usually classified as either chatter vibration or spiralling. In

this work, we propose to monitor the BTA drilling process using control charts to

detect chatter as early as possible and to secure production with high quality. These

control charts use the residuals obtained from a model which describes the variation

in the amplitude of the relevant frequencies of the process. The results showed that

chatter is detected and some alarm signals are related to changing physical conditions

of the process.

1 Introduction

Deep hole drilling methods are used for producing holes with a high length-to-diameter ratio, good

surface finish and straightness. For drilling holes with a diameter of 20 mm and above, the BTA

(Boring and Trepanning Association) deep hole machining principle is usually employed. Deep hole

drilling means that l/D ≥ 3, where l is the length and D is the diameter of the hole to be machined.

The machining of bore holes with high length-to-diameter ratio implies the use of slender tool-

boring assembles featuring low static and dynamic stiffness properties. This in turn leads to the

process being susceptible to dynamic disturbances usually classified as either chatter vibration

1



or spiralling. Chatter is a form of self excited, mainly torsional vibration of the tool-boring bar

assembly. The effect of chatter on the workpiece is usually restricted to radial chatter marks at

the bottom of the bore hole, see Figure (1)a. In extreme cases it damages the boring wall by

causing marks, called chatter marks, on the cylindrical surface of the bore hole, see Figure (1)b.

The effect of chatter on the tool are more severe. It leads to excessive wear of the cutting edges

(a) (b)

Figure 1: Radial chatter marks

and guiding pads of the tool which has an undesirable effect on the tool life. Spiralling damages

the workpiece severely. It leads to a multi lobe-shaped deviation of the cross section of the hole

from absolute roundness, see Figure (2).

The effect of chatter and spiralling are highly undesirable because the defect of form and surface

quality constitute a significant impairment of the workpiece. As the deep hole drilling process is

often used during the last production phases of expensive workpieces, it is necessary that a process

monitoring system be devised to detect these disturbances during the process operation. The

purpose of this work is to develop such a real time monitoring strategy by using statistical process

control techniques. This strategy is used to detect the transition from stable operation to chatter.

Figure 2: Effect of spiralling on the bore hole wall
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In section 2, models that describes the process are reviewed. In section 3, residual control charts

are briefly introduced. The proposed monitoring strategy is discussed in section 4 and applied to

real data in section 5.

2 Process models

Several drilling experiments are conducted in order to study the dynamics of the process. During

these experiments several on-line measurements were sampled, see Weinert et al. (2001). Chatter is

easily recognized in the on-line measurements by a fast increase of the dynamic part of the torque,

force and acceleration signals. However, the drilling torque measurements yield the earliest and

most reliable information about the transition from stable operation to chatter. For a complete

discussion, see Weinert et al. (2002).

The spectrograms of the drilling torque, in different experiments, showed clearly that single

frequencies play a key role in the discrimination between these states. Theis (2004) determined all

the relevant frequencies of the process. He described the development of the amplitudes of these

frequencies with respect to the cited states. In his work, the main features of the variation of the

amplitudes of the amplitudes of the relevant frequencies are described, using a logistic function.

He showed that his approximation is directly connected to the van der Pol equation proposed by

Weinert et al. (2002). This equation is capable of describing the transition from stable operation

to chatter in one frequency

d2M(t)
dt2

+ h(t)
(
b2 −M(t)2

) dM(t)
dt

+ w2M(t) = W (t), (1)

where t ∈ [0,∞), M(t) is the drilling torque, b ∈ R, the frequency w ∈ [200,2500], h(t) : R → R

is an integrable function and W (t) is a white noise process. Theis (2004) considered M(t) as a

harmonic process

M(t) = R(t)cos(w + φ),

where φ is the corresponding phase. He showed that

2
dR(t)
dt

+ h(t)R(t)
(
b2 − R(t)2

2

)
=

W (t)
w

(2)

is the amplitude-equation for the differential equation in (1) if there is only one frequency present

in the process. He proved that if his proposed logistic function is the right form for R(t), there is

a function h(t) so that equation (2) has a solution. From equation (2), the observed variation in

amplitude of the relevant frequencies may be described by

Rt = β + (1 + at)Rt−1 − atbtR
3
t−1 + εt, (3)
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where at and bt are time varying parameters and εt is normally distributed with mean 0 and

variance σ2
ε .

3 The monitoring procedures: Residual control charts

Residual control charts are SPC procedures dealing with autocorrelated data in the SPC environ-

ment and have been suggested by several authors. For example, see Alwan and Roberts (1988),

Montgomery and Mastrangelo (1991), among others. This procedure requires a model of the au-

tocorrelative structure of the data which can be achieved by fitting an appropriate time series

model to the observations. The typical time series model employed is the autoregressive integrated

moving average (ARIMA) models

Φp(B)∇dRt = Θq(B)εt, (4)

where Φ(B) = (1− φ1B − φ2B
2 − · · · − φpB

p) is an autoregressive polynomial of order p, Θ(B) =

(1 − θ1B − θ2B
2 − · · · − θqB

q) is a moving average polynomial of order q, ∇ is the backward

difference operator, B is the backshift operator, and εt is a sequence of normally and independently

distributed random “shocks” with mean zero and constant variance σ2
ε . If the time series model

fits the data well, the residuals will be approximately uncorrelated. Then, traditional SPC charts

to individual observations, such as Shewhart individual, CUSUM and EWMA can be applied to

the residuals. For example, for an AR(1) process the residual AR(1) control chart is based on

charting residuals

et ≡ Rt − R̂t|t−1,t−2,...

where R̂t|t−1,t−2,..., = E(Rt|Rt−1, Rt−2, . . . , ) = µ + φ(Rt−1 − µ). In practice, µ and φ have to be

estimated from the data set that was obtained in a period where only common causes of variation

were affecting the process. As long as the process is in control, observations are assumed to be

generated by model ( 4). The quantity et that will be plotted in the residuals control chart satisfy

et = Rt − R̂t|t−1,t−2,... ≈ εt for all t.

In this paper, three control charts are used. Residual Shewhart and residual exponentially weighted

moving average (EWMA) control charts are used to monitor the mean of the residuals. EWMA

dispersion is used to monitor the variance of the residuals.

3.1 Residual Shewhart control charts

The residual Shewhart control chart operates by plotting residuals et given by equation (2). It

signals that the process is out of control when et is outside UCL and LCL, that are defined to be
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equal LCL = µe − kσε and UCL = µe + kσε, where µe and σe are, respectively, the mean and

standard deviation of et when the process is in control and k is a constant.

3.2 Residual EWMA control charts (REWMA)

It is widely known that Shewhart charts are not sensitive to small and moderate changes in

process parameters. The EWMA chart is considered in this work for improved detection of small

and moderate parameter changes. The EWMA utilizes all previous observations, but the weight

attached to observations is exponentially declining in the past. The EWMA of residuals at time t

is denoted by We,t and is computed as follows

We,t = λret + (1− λr)We,t−1,

for t ≥ 2, We,1 = µe = 0 and 0 < λr ≤ 1. Control limits for the EWMA residuals chart are of the

form

LCLt = µe − cσWe,t

UCLt = µe + cσWe,t

where σWe,t =
√
λr/(2− λr)σε is the asymptotic standard deviation of We,t under the assumption

that the observations are independent and c is constant.

3.3 EWMA dispersion control charts (DEWMA)

EWMA dispersion charts for subgroups of size one plot the control statistic, for t ≥ 2,

S2
t = (1 − λd)S2

t−1 + λd(et − µ)2,

where 0 < λd < 1 and S2
1 = σ2

0 , where σ0 represents the established value for the process standard

deviation. The asymptotic control limits of this chart are

UCL = σ2
ε

[
1 + ku

√
2λd

2− λd

]

LCL = max

{
0, σ2

ε

[
1− kl

√
2λd

2− λd

]}
,

for constants ku and kl. For more details, see Acosta-Mej́ıa and Pignatiello (2000).
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4 Monitoring the variation in amplitude of relevant frequen-

cies

As mentioned, single frequencies, mostly related to the eigenfrequencies of the boring bar, dominate

the process when chatter vibrations are present. Therefore, we propose to monitor the variation in

amplitude of the relevant frequencies of the process to detect chatter as early as possible. For the

monitoring procedure, the model given by equation (3) is approximated by its linear autoregressive

(AR) part

Rt = (1 + at)Rt−1 + εt,

and this AR(1) model is used to calculate the residuals. In fact, it is known that the nonlinear

term −atbtR
3
t−1 only becomes important when there is chatter. The empirical evidence of this

approximation is studied in the next section using real data. As noted, parameters of equation

(3) are not constant. However, residual control charts are generally designed for processes where

stationarity in the steady state is assumed, which means that a unique model parameters for the

whole process is used. For this reason, a moving window of length T , defined in the time domain,

is used to estimate the AR(1) parameters. Moving window techniques are useful to estimate model

parameters which are time varying assuming stationarity only locally. The window moves in each

period covering T observations Rt−T+1, Rt−T+2, . . . , Rt. In each window , parameters a, β and

σε of the linear regression model

Rt = β + (1 + a)Rt−1 + εt. (5)

are estimated and used to calculate the residuals, given by

et = Rt − (1 + ât−1)Rt−1 − β̂t−1, (6)

where ât−1 and β̂t−1 are estimates of the regression parameters a and β at time t− 1. Note that β

is included because there is a general shift in the amplitudes after depth 35 mm due to a change

in the physical conditions of the process, see section 5.1. The estimated standard deviation of the

process σ̂ε,t−1 at time t − 1 is used to set the control limits of the three control charts at time t.

These choices are motivated by the fact that using the estimated parameters at time t to calculate

the residuals and to set the control limits may rather serve to mask changes than to detect them,

see section 5.4.
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5 Application

The three control charts are applied to real data of the change in amplitude for the frequency 703

Hz, which is among the eigenfrequencies of the boring bar, in an experiment with feed f = 0.185

mm, cutting speed vc = 90 m/min and amount of oil V̇oil = 300L/min. For more details see

Weinert et al. (2002). This frequency dominates chatter vibration in this experiment.

5.1 Transition from stable state to chatter

In order to investigate the ability of the different control charts to detect chatter, it is important

to identify the transition from stable operation to chatter, which is expected to occur before depth

300 mm. Indeed, by eye inspection, the effect of chatter in this experiment is apparent on the bore

hole wall after depth 300 mm.

The mean and variances of the amplitude of frequency 703 Hz are studied. Figure (3) shows the

mean and variance, using the most recent 100 observations of the amplitudes of the frequency. It is

clear that for depth ≥ 32 mm there is an increase in the process mean and process variance. In fact,

it is known that approximately at this depth the guiding pads of the BTA tool leave the starting

bush. From previous experiments, the process has been observed to either stay stable or start with

chatter vibration; see Weinert et al. (2002). Also there is an increase in the mean and variance

of the two frequencies at depth 110 mm and it is known that depth 110 mm is approximately

the position where the tool enters the bore hole completely. Figure (3)a and (3)b show clearly

that there are changes in the mean and variance of the amplitude of frequency 703 Hz at depth

252.91 mm. This conclusion is very important because we know that in this experiment chatter

is observed with frequency 703 Hz, which makes depth 252.91 mm a candidate for the transition

from stable operation to chatter.

Further investigation by studying the autocorrelation function, see next section, and the sign of

the parameter at showed that the process changes at depth 252.91 mm. This change may indicate

the presence of chatter or that chatter will start in few seconds.

5.2 Independence and normality assumptions of the residuals

In the previous section it is indicated that the variation in amplitude of the relevant frequencies,

given by equation (1), is approximated by an AR(1) model within each time window. If this

AR(1) model fits the data well, the residuals will be “approximately” uncorrelated and normally
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Figure 3: (a) Mean and (b) variance of the amplitude of frequency 703 Hz on 0-300 mm hole depth

distributed. Then standard control charts can be applied to the residuals. In order to check these

two assumptions (important SPC assumptions) the quantiles of standard normal and sample au-

tocorrelation function of the residuals over different time windows with length 150 are plotted in

Figures (4) and (5), respectively. Figure (4) shows that at least for 270.64 ≤ depth ≤ 315.39

mm the normality assumption of the residuals cannot be assumed. Also, for 0.30 ≤ depth ≤ 45.06

mm the last points show a departure from the reference line. This departure may be explained by

the sudden change in the model after depth 35 mm, see section 5.1. Figure (5) shows that the

residuals are uncorrelated before the transition to chatter.

In conclusion, we assume that the variation in amplitude of the relevant frequencies can be ap-

proximated by the AR(1) model when the process is stable and that the nonlinear term −atbtR
3
t−1

is not important before chatter, which is expected.

5.3 Choice of the control charts parameters

The performance of a control chart is usually evaluated on its run length or on the expectation of

its run length, the average run length (ARL). The run length is defined as the number of obser-

vations that are needed to exceed the control limit for the first time. The ARL should be large
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when the process is statistically in-control (in-control ARL) and small when a shift has occurred

(out-of-control ARL).

The parameters of the different control charts are choosen so that they have the same in-control

average run length (ARL) equal to 500. This choice should not give a lot of signals because the

control charts are applied to 1600 observations. For the residual Shewhart a value of 3.09 is chosen

for k and for the REWMA values of 0.2, 0.4, and 0.75 are chosen for λr with the corresponding

values of 2.962, 3.054, and 3.087, respectively, chosen for c. For the DEWMA, we used λd = 0.1,

ku = 4.01 and kl = 1.885. The pair of values (ku, kl) produces an ARL-unbiased DEWMA chart.

This concept is defined by Pignatiello et al. (1995). A control chart is said to be ARL-unbiased if

its ARL curve achieves its maximum when the process parameter is equal to its in-control value.

If the maximum occurs when the process parameter is equal to some other value, the control chart

is said to be ARL-biased. Acosta-Mej́ıa and Pignatiello (2000) described a search procedure to

find the pair of values (ku, kl) that produces the ARL-unbiased DEWMA chart. A markov chain

is used to approximate the in-control ARL of the DEWMA chart; see Appendix A.

It is important to note that when the control charts produce an out of control signal, we can

conclude that there is a deviation from the stable process, which might implies that chatter is

present. In fact, the residuals are calculated using an AR(1) model, which is an approximation of

the variation in amplitude of the relevant frequencies when the process is stable.

5.4 Results

Table 1 shows the out of control signals for depth ≤ 270 mm . Table 1 shows that all control charts

signal at depth 32.74 mm. As mentioned the guiding pads leave the starting bush approximately

at depth 32 mm, which induce an increase in the process mean and variance for the amplitude of

the two frequencies. This increase explains that all control charts have picked up these changes

very quickly. All control charts signal at depth 119.84 and it is known that depth 110 mm is ap-

proximately the position where the tool enters the bore hole completely. Theis (2004) noted that

this might lead to changes in the dynamic process because the boring bar is slightly thinner than

the tool and therefore the pressures in the hole may change. The important out of control signal is

found at depth 252.91 mm. As discussed, it is showed that the transition from stable operation to

chatter may have occurred at this depth. This out of control signal means that a change occurred

in the process. Thus, in this experiment chatter may be avoided if corrective actions are taken

after this signal.
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Table 1: Out of control signals of the different control charts applied to the amplitude of frequency

703 Hz using window length T = 60 (depth ≤ 270 mm)

Residual REWMA DEWMA observations
Shewhart number

λr = 0.2 λr = 0.4 λr = 0.75 λd = 0.1

32.74 32.74 32.74 32.74 32.74 109
33.04 110
33.34 111
33.64 112

33.94 33.94 33.94 33.94 113
34.24 114
34.54 115
34.84 116

35.14 35.15 117
35.44 118
35.74 119

36.34 36.34 121
36.64 122

36.94 36.94 123
37.25 124
37.55 125

39.04 39.04 39.04 39.04 39.04 130
39.34 39.34 39.34 39.34 131
39.64 132

40.55 135
42.05 42.05 42.05 140

42.35 141
53.76 53.76 179
74.19 74.19 247
119.84 119.84 119.84 119.84 119.84 399
153.19 153.19 153.19 510
156.49 156.49 156.49 521
191.33 637
200.05 200.05 200.05 200.05 200.05 666
215.67 215.67 718

224.97 224.97 750
225.28 225.28 750

252.91 252.91 252.91 252.91 252.91 842
253.21 253.21 253.21 843
253.51 253.51 253.51 844
253.81 253.81 845
254.11 254.11 846

254.41 847
254.72 848
255.02 849
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Figures (6)a and b show the residual Shewhart control chart. It is clear from the two Figures

that there are large out of control signals at depth 32.74 and 252.91 mm. The monitoring procedure

started at observation t = 61 (depth=18.32 mm), that is after 60 observations are collected.

The adaptive structure of the control limits allows for a detection of a change in the variance

of the residuals. For example, Figure (6)b shows a sudden increase in the adaptive control

limits (standard deviation of the residuals) at depth 252.91 mm caused by a sudden increase in

the variance of the amplitude of frequency 703 Hz, see Figure (3)b. Knowing that there is a

change in the process after depth 252.91 mm, the residual Shewhart control chart should produce

many out-of-control signals after that depth. However, no out-of-control signals are produced for

252.91< depth ≤270 mm. The reason is that the change is transferred to the adaptive estimated

parameters. In fact, one limitation of the use of adaptive estimates to calculate the residuals is the

“masking”or parameter adaptation problem. If an early process change is not quickly detected,

then the parameter estimates may be adversely affected by the change, thus masking the shift from

future detection. Finally some out of control signals are observed at 270≤ depth ≤ 300 mm but

are not considered in Table 1 because the normality and independence assumptions are not valid

after the transition to chatter, see section 5.2.

6 Discussion and future work

In this work the results showed that chatter can be detected only by monitoring the amplitude

of frequency 703 Hz. This conclusion is expected because this frequency is the relevant frequency

in this experiment. However, in practice there are more relevant frequencies and chatter may be

observed at the beginning of the drilling process immediately after the guiding pads have left the

starting bush, with high and low frequencies, see Weinert et al. (2001). Thus, an SPC procedure

that monitors all the relevant frequencies is necessary. One solution is to classify all the relevant

frequencies in different groups and to calculate a weighted mean of their amplitudes. The proposed

univariate procedure can be used to monitor the variation of the weighted means of the different

groups, separately. The resulting monitoring strategy signals an out-of-control condition when any

univariate control chart produces an out-of-control signal. This strategy may lead to many out of

control signals and it is difficult to interpret multiple control charts. Another solution is to use a

multivariate approach, which is investigated by Messaoud et al. (2004).

In this work, it is supposed that the autocorrelation structure of the change in amplitude is an
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inherent feature of the BTA process which cannot feasibly be removed. Many authors argued that

the autocorrelation may itself indicate the presence of some variability which should be removed,

rather than modelled. For the BTA drilling process the intrinsic autocorrelation can provide the

basis for active process control as a tool for minimizing short term variability.

7 Conclusion

This work has focused on the application of statistical control procedures to monitor the BTA

drilling process to detect chatter as early as possible. The different SPC procedures are based

on residuals. This work showed that an approximated autoregressive model of the amplitude of

relevant eigenfrequencies of the boring bar can be used to calculate the residuals. The results

showed that the different SPC procedures can detect chatter and some alarm signals are related

to changing physical conditions of the process (i. e. guiding pads leave the starting bush, the tool

is completely in the hole). Based on the practical results, the different control charts have similar

performances. However, we recommend the residual Shewhart because it is extremely simple to

use compared to the others.

A Appendix: Markov Chain Approximation

For the in-control case, the ARLs of the DEWMA charts are approximated by a discrete Markov

chain. To approximate the DEWMA statistic, the interval between the upper and lower control

limits is partitioned into 2m+1 transient states, each of width g = (UCL−LCL)/(2m+1). The

control statistic, St, is said to be in state j at time t if

LCL+ (j − 0.5)g < St ≤ LCL+ (j + 0.5)g,

for j = 1, 2, . . . , 2m + 1. The control statistic St is in the absorbing state a if it falls outside the

control limits (St < LCL or St > UCL). The process is assumed to be in-control whenever St is in

a transient state and is assumed to be out of control whenever the St is in the absorbing state.

The run-length distribution of the DEWMA is completely determined by its initial probability

vector and the transition probability matrix. Let pi,j represent the probability that the control

statistic St goes from state i to state j in one step, i, j = 1, 2, . . . , 2m + 1. To approximate this

probability, it is assumed that the control statistic is equal to cj whenever it is in state j, where
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cj represents the midpoint of the jth interval. This yields

pi,j = P [LCL+ (j − 0.5)g < St ≤ LCL+ (j + 0.5)g |St−1 = ci]

= P

[
LCL+(j−0.5)g−(1−λd)ci

λdσ2
0

<
(

et−µe

σ2
0

)2

≤ LCL+(j+0.5)g−(1−λd)ci

λdσ2
0

]
,

where
(

et−µe

σ2
0

)2

∼ χ2(1).

Let R equal to the (2m+ 1)× (2m+ 1) transition probability matrix. The ARL is computed by

ARL = pT (I − R)−11,

where 1 is a vector of ones and p is 2m+ 1 vector with a one in the component that corresponds

to the starting state and zero elsewhere. In this work it is assumed that the DEWMA is equal σ2
0

at the onset of monitoring.
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