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Abstract

For the design of most multivariate control charts, it is assumed that the

observations follow a multivariate normal distribution. In practice, this assumption is

rarely satisfied. In this work, a distribution-free EWMA control chart for multivariate

processes is proposed. This chart is based on sequential rank of data depth measures.

1 Introduction

Reducing variation in manufacturing is desirable to reduce product cost and improve product per-

formance and quality. To achieve this objective statistical process control (SPC) is used. SPC is

a set of techniques for monitoring a production process to determine if it is stable over time and

capable of producing high quality products. One purpose of control charting, the featured tool of

SPC, is to distinguish between two sources, common and assignable causes, of process variation.

Common or chance causes of variation cannot be economically identified and corrected and consid-

ered to be due to the inherent nature of the process. assignable or special causes of variation are

unusual shocks or other disruptions to the process, the causes of which can and should be removed.

A process is said to be in a state of statistical control if it operates under common causes.

Typically control charts apply to systems or processes in which only one quality characteristic

is measured and tested. However, the rapid growth of data acquisition technology and the use

of online computers for process monitoring have led to an increased interest in the simultaneous
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surveillance of several related quality characteristics on process variables. These techniques are

often referred to as multivariate statistical control procedures.

For most of these procedures, it is assumed that the underlying distribution of the process is

multivariate normal. Thus, the statistical properties of commonly employed control charts are

exact only if this assumption is satisfied. In practice, it is well known that this assumption rarely

holds. Therefore, distribution-free or nonparametric control charts for multivariate processes are

nedded. In this paper, we propose a nonparametric EWMA control chart for multivariate processes

based on sequential ranks of data depth measures. In section 2, the data depth notion is introduced.

2 A nonparametric EWMA for multivariate processes

2.1 Data depth

Data depth measures how deep (or central) a given point X ∈ R
d is with respect to (w. r. t.)

a probability distribution F or w. r. t. a given data cloud {Y1, . . ., Ym}. There are several

measurements for the depth of the observations, such as Mahalanobis depth, the simplicial depth,

half-space depth, and the majority depth of Singh, see Liu et al. (1999). In this work, the

Mahalanobis depth and simplicial depth are considered.

1. The Mahalanobis depth (MDF ) of a given point X ∈ R
d w. r. t. F is defined to be

MDF (X) =
1

1 + (X − µF )′Σ−1
F (X − µF )

,

where µF and ΣF are the mean vector and dispersion matrix of F , respectively. The sam-

ple version of MDF is obtained by replacing µF and ΣF with their sample estimates. In

fact, how deep X is w. r. t. F is measured by how small its quadratic distance is to the mean.

2. The simplicial depth (SDF ) (Liu, 1990) of a given point X ∈ R
d w. r. t. F is defined to be

SDF (X) = PF {X ∈ s[Y1, . . . ,Yd+1]},

where s[Y1, . . . ,Yd+1] is a d-dimensional simplex whose vertices are the random observations

{Y1,. . ., Yd+1} from F . The sample simplicial depth SDFm(X) is defined to be

SDFm(X) =


 m

d+ 1




−1 ∑
1≤i1<...<id+1≤m

I
(
X ∈ s[Yi1 , . . . ,Yid+1 ]

)
,
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where {Y1,. . ., Ym} is a random sample from F , Fm denotes the empirical distribution of

{Y1,. . ., Ym} and I(.) is the indicator function. For example, the bivariate SDFm(X) relative

to {Y1,. . ., Ym} is equal to the proportion of closed triangles with vertices Yi, Yj , Yk that

contain X, 1 ≤ i < j < k ≤ m. Liu (1990) showed that if F is absolutely continuous, then as

m −→ ∞, SDFm converges uniformly and strongly to SDF (X) and that SDF (X) is affine

invariant.

A data depth SDF (X) induces a center-outward ordering of the sample points if depth values of

all points are computed and compared. If all SDF (X)’s are arranged in an ascending order and

X[j] is used to denote the sample point associated with the jth smallest depth value, then X[1],

. . . , X[m] are the order statistics of Xi’s with X[m] being the most central point. The smaller the

rank of a point, the more outlying the point w. r. t. the underlying distribution F (.).

2.2 Sequential ranks

In this section, order statistics that are used in this work are quickly reviewed. Let Xt, t = 1,

2, . . ., be a sequence of independent random variables from a continuous distribution F (x). The

sequential rank R∗
t is the rank of Xt among the most recent m (m > 1) observations taken from

the process Xt, Xt−1, . . ., Xt−m+1. That is,

R∗
t = 1 +

t∑
i=t−m+1

I(Xt > Xi), (1)

where I(.) is the indicator function. The standardized sequential rank R
(m)
t is defined as

R
(m)
t =

2
m

(
R∗

t − m+ 1
2

)
. (2)

For all t, R(m)
t is uniformly distributed on the g points

{
1
m

− 1,
3
m

− 1, . . . , 1− 1
m

}

with mean µ
R

(m)
t

= 0 and variance σ
R

(m)
t

= m2−1
3m2 . For more details, see Hackl and Ledolter (1992).

2.3 A control chart based on sequential rank of data depth measures

Liu (1995) was the first who used the concept of data depth to construct a nonparametric control

chart for monitoring multivariate processes. In this work, we consider an EWMA chart based on

sequential ranks of data depth measures to monitor multivariate processes. The proposed chart is

a generalization on the nonparametric EWMA for individual observations proposed by Hackl and
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Ledoltser (1992).

It is assumed that p × 1 random vectors Xt, t = 1, 2, . . ., are observed and monitored over

time. Each vector Xt = (Xt1, Xt2, . . ., Xtp)′ contains p quality characteristic measurements made

on a part from a multivariate process. The value Xtj , j = 1, . . . , p, represents an observation on

the jth quality characteristic at time t.

For this chart, a reference sample is considered as the m most recent observations taken from

the process Xt−m+1, Xt−m+2, . . ., Xt. This sample is be used to decide whether or not the process

is still in-control at time t. The depth of Xt is calculated w. r. t. this reference sample and the

sequential rank (R∗
t ) of Dm(Xt) among Dm(Xt−m), . . ., Dm(Xt−1) is computed using equation (1)

The standardized sequential rank, defined by equation (2), are monitored using the exponentially

weighted moving average (EWMA) recursion. That is,

Tt = min{B, (1− λ)Tt−1 + λR
(m)
t }, (3)

t = 1, 2, . . ., where 0 < λ ≤ 1 is a smoothing parameter, B is a reflecting boundary and T0 = u.

The process is considered in-control as long as Tt > h, where h < 0 is a lower control limit

(h ≤ u ≤ B). Note that, the lower-sided EWMA is considered because the statistic Rm
t is higher

“the better”.

A reflecting boundary is included to prevent the EWMA from drifting to one side indefinitely.

It is known that EWMA schemes can suffer from an “inertia problem” when there is a process

change some time after beginning of monitoring. That is, an EWMA can have wandered away

from a center line in a direction opposite to that of a shift that occurs some time after the start of

monitoring. In this unhappy circumstance, an EWMA scheme can take long time to signal.

Hackl and Ledolter (1992) considered a continuous quality criteria. This continuity assumption

assures that ties are impossible. However, in practice when measurements or other numerical

observations are taken, it is often that two or more observations are tied. For example, ties may be

due to the nature of the phenomenon modelled or rounding of continuous variables (temperature,

blood pressure, . . . ). In this work, the simplicial depth is a discrete measure and ties may occur.

Especially, there always exist at least (d + 1) extreme points that share the minimum simplicial

depth of (d + 1)/m, see Stoumbos and Reynolds (2001). The most common approach to this

problem is to assign to each observation in a tied set the midrank, that is, the average of the ranks
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reserved for the observations in the tied set, see Gibbons and Chakraborti (1992).

3 Average run length of the in-control process

As mentioned, the parameters of the control chart are selected according to a performance of the

chart. Usually, the performance of control charts are evaluated by the average run length (ARL).

The run length is defined as the number of observations that are needed to exceed the control limit

for the first time. The ARL should be large when the process is statistically in-control (in-control

ARL) and small when a shift has occurred (out-of-control ARL).

In this work, we used the integral equation to approximate the in-control ARL, see Crowder

(1987). Let L(u) be the ARL of the lower-sided EWMA chart given that T0 = u, it can be shown

that the integral equation for L(u) is given by

L(u) = 1 + L(B)Pr
(
r ≥ B − (1− λ)u

λ

)
+

∫ B

h

L ((1− λ)u + λr) dF (r),

where F (r) is the cumulative distribution of r. We assumed that ties are not observed. Therefore,

R
(m)
t are uniformly distributed on the m points {1/m−1, 3/m−1, . . . 1−1/m}. For moderate and

large m the discrete distribution of R(m)
t is approximated by a continuous uniform distribution,

which leads to

L(u) = 1 + L(B)Pr
(
r ≥ B − (1− λ)u

λ

)
+

∫ B

h

L ((1− λ)u + λr) f(r)dr, (4)

where f(r) is the probability density of the uniform distribution. The solutions to integral equation

(4) can be obtained by replacing the equation with a system of linear equations using the colloca-

tion method and solving the system of equations. see appendix. As recommended by Calzada and

Scariano (2003), the collocation method is used because the continuous uniform distribution does

not have the entire real line as numerical support.

In the previous approximation, we ignored the slight dependence among successive ranks R(m)
t .

Therefore, the result in (4) applies only approximately, as there are small correlations among suc-

cessive ranks. For moderate and large values of m the correlations are quite small, see Hackl and

Ledolter (1992). Table 1 shows the lower one sided EWMA ARL’s for the same smoothing param-

eters λ and control limits h as in Hackl and Ledolter (1992) and assuming that the EWMA starts

at 0, that is T0 = 0. Table 1 shows a decrease in the ARL with increasing λ for fixed control limit

h. As mentioned by Hackl and Ledolter (1992), this is explained by the fact that σ2
Tt

increases
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Table 1: ARL’s of the one-sided EWMA with reflecting boundary B = −h

h λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.4 λ = 0.5

0.25 127.3 − − − −
0.30 286.4 − − − −
0.35 766.1 − − − −
0.40 2568.4 123.5 − − −
0.45 + 249.4 − − −
0.50 + 580.3 103.2 − −
0.55 + 1624.9 197.9 − −
0.60 + + 437.5 111.8 −
0.65 + + 1166.1 223.3 −
0.70 + + + 532.9 150.1
0.75 + + + 1634.2 345.3
0.80 + + + + 1059.8

“−”average run length less than 100,

“+”average run length greater than 2000.

with λ so that the probability of crossing the control limit h becomes larger.

A simulation study is carried in order to validate the ARL approximation. We generate inde-

pendent observations Xt from a bivariate normal distribution with µ= (0, 0)′ and

Σ =


 1 0

0 1




Note that due to the nonparametric nature of the monitoring strategy, the normality is not required

and any other distribution could be used. The results of the simulation showed that for m > 100

the approximation in (4) can be used to select the parameters of the nonparametric EWMA in

order to attain a desired average run length in the in-control situation.

4 Application

In this section, the proposed EWMA control chart is used to monitor a BTA (Boring and Trepan-

ning Association) deep hole drilling process. Deep hole drilling methods are used for producing

holes with a high length-to-diameter ratio, good surface finish and straightness. For drilling holes

with a diameter of 20 mm and above, the BTA (Boring and Trepanning Association) deep hole

machining principle is usually employed, for more details see Theis (2004).

The process is subject to dynamic disturbances usually classified as either chatter vibration or

spiralling. Chatter leads to excessive wear of the cutting edges of the tool and may also damage
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the boring walls. Spiralling damages the workpiece severely. The defect of form and surface quality

constitute a significant impairment of the workpiece. As the deep hole drilling process is often used

during the last production phases of expensive workpieces, process reliability is of primary impor-

tance and hence disturbances should be avoided. For this reason, process monitoring is necessary

to detect dynamic disturbances.

In this section, we will focus on chatter which is dominated by single frequencies, mostly re-

lated to the rotational eigenfrequencies of the boring bar. Therefore, we propose to monitor the

amplitude of the relevant frequencies in order to detect chatter vibration as early as possible. In

practice, it is necessary to monitor several relevant frequencies because the process is subject to

different kind of chatter (i. e., chatter at the beginning of the drilling process, high and low fre-

quency chatter). The EWMA chart based on sequential ranks of data depth measures is used to

monitor the amplitudes of frequencies 234 and 703 Hz, which are among the eigenfrequencies of

the boring bar, in an experiment with feed f=0.185 mm, cutting speed vc=90 m/min and amount

of oil V̇=300 L/min. For more details, see Weinert at al. (2002).

For the EWMA chart, we used B = −h. Typical values of λ are in the range of 0.1 < λ < 0.3,

see Hackl and Ledolter (1992). In this work, we used λ = 0.1, 0.2 and 0.3. The corresponding

values for h are respectively −0.314, −0.475 and −0.591. The simplicial depth is computed using

the FORTRAN algorithm developed by Rousseeuw and Ruts (1992).

Table 2 shows the results, for depth ≤ 270 mm. The EWMA charts based on MDF produces

more out-of-control signals than the EWMA charts based on SDF . This is due to the sensitivity

to the MDF measure to the extreme values.

Table 2 shows that all control charts signal at 32 ≤ depth ≤ 35 mm. In fact, it is known that

approximately at depth=35 mm the guiding pads of the BTA tool leave the starting bush, which

induces a change in the dynamics of the process. From previous experiments, the process has been

observed to either stay stable or start with chatter vibration. A great number of out of control

signals occur at 35 ≤ depth ≤ 45 mm. Indeed, the new physical state of the process is represented

in the reference sample after depth 45 mm.

All control charts signal at depth 110 ≤ depth ≤ 120 mm and it is known that depth 110 mm

is approximately the position where the tool enters the bore hole completely. Theis (2004) noted
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Table 2: Out of control signals of the different control charts applied to the amplitude of frequencies

234 Hz and 703 Hz (m=100)

Hole Depth Observation EWMA
(mm) number λ = 0.1 λ = 0.2 λ = 0.3

MDF SDF MDF SDF MDF SDF

≤32 ≤107 0 0 0 0 0 0
32-35 108-117 1 1 3 1 3 1
35-45 118-150 29 27 21 15 13 6
45-70 151-249 1 0 0 0 0 0
70-110 250-366 9 5 3 1 1 0
110-125 370-416 9 10 4 4 1 1
125-200 417-665 3 0 2 0 2 2
200-250 666-832 7 8 3 2 2 1
250-255 833-849 4 3 4 2 4 2
255-260 850-865 8 7 3 3 1 1
260-270 866-898 4 2 0 0 0 0

Total 75 63 43 28 27 14

that this might lead to changes in the dynamic process because the boring bar is slightly thinner

than the tool and therefore the pressures in the hole may change. The important out-of-control

signals are produced at 250 ≤ depth ≤ 255 mm. Messaoud et al. (2004) showed that a change

occurred in the process at depth=252.19 mm and they concluded that this change may indicate

the presence of chatter or that chatter will start in a few seconds. Therefore, in this experiment

chatter may be avoided if corrective actions are taken after these signals.

In this experiment, the EWMA chart with λ=0.3 is the best, and should be choosen among the

three EWMA charts considered in this work. Indeed, only 14 out-of-control signals are produced

and all changes of the physical conditions of the process are detected. In practice, a procedure to

choose the smoothing parameter λ is required.

5 Discussion

The future research should focus on the comparison of the in-control and out-of-control perfor-

mance of the proposed nonparametric EWMA to existing parametric control charts for normal and

nonnormal data. This comparison should include the robustly designed parametric multivariate

EWMA (MEWMA) chart. Stoumbos and Sullivan (2002) showed that the MEWMA behaves like

distribution-free control charts for an appropriate choice of the smoothing parameter.
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For the process adjustment, once the EWMA chart has produced a signal, a procedure to esti-

mate the shift magnitude and to identify the time point at which the shift occurred is required. For

example, in our experiment the most important shift occurred at depth 252.19 mm. The EWMA

chart, with λ = 0.3, based on MDF and SDF detect it after 2 and 4 samples respectively. In

practice, the minimum of the MDF measure over a short window, with a given length, before the

occurrence of the out-of-control signal may be used to estimate the shift magnitude. However, in

this case, one limitation of the SDF is that once the data point is outside the data cloud, the SDF

measure is equal to (d+ 1)/m. This does not give an information about the shift magnitude.

For the out-of-control interpretation, when the control chart indicates an out-of-control condi-

tion, it is important to determine which quality characteristic Xj , j = 1, . . ., j = p, or combination

of Xj ’s, of the multivariate process caused the process to go out-of-control. For example, for the

drilling process, when an out-of-control signal is produced, it is important to know which frequency

or combination of frequencies cause this signal. In fact, in practice, the identification of the type

of chatter (i.e., chatter at the beginning of the drilling process, low-high frequency chatter) will

usually make it easier for engineers to adjust the process.

6 Conclusion

In this work, we proposed to use EWMA control charts based on data depth measures to monitor

multivariate processes. These distribution-free control charts are attractive when the multivariate

normal distribution is not satisfied.

A Integral Equation Approximation

For more details on the use of the collocation method used for solving integral equation (4), see

Calzada and Scariano (2003) pp. 595-597. First, the interval [h,B] is divided into n subintervals

of length ∆ = (B − h)/n. Equation (4) can be rewritten as,

L(u) = 1 + L(B)Pr
(
r ≥ B − (1 − λ)u

λ

)
+

1
λ

∫ B

h

L(y)dF
(
y − (1 − λ)u

λ

)
, (5)

For the (constant) collocation method, L(y) is approximated by a constant, say Lj , on each subin-

terval [yj−1, yj ], yielding

L(u) = 1 + L(B)Pr
(
r ≥ B − (1− λ)u

λ

)
+

1
λ

n∑
j=1

Lj

∫ yj

yj−1

dF

(
y − (1− λ)u

λ

)
, (6)
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Choosing nodes wi in each of the subintervals [yi−1, yi] and requiring equation (6) to be exact at

these points gives the system

L(wi) = 1 + L(B)Pr
(
r ≥ B − (1 − λ)wi

λ

)
+

1
λ

n∑
j=1

Lj

∫ yj

yj−1

dF

(
y − (1 − λ)wi

λ

)
,

i = 1, . . ., n. The approximating linear system is

−1 = AL, (7)

with −1 = [−1,−1, . . . ,−1]T, L = [L(B), L1, L2, . . . , Ln]T , and A is an (n+ 1)× (n+ 1) matrix

A =




Pr[r ≥ B−(1−λ)B
λ ]− 1 1

λ

∫ y1

h
dF

(
y−(1−λ)B

λ

)
dy · · · 1

λ

∫ yi

yi−1
dF

(
y−(1−λ)B

λ

)
dy · · ·

Pr[r ≥ B−(1−λ)w1
λ ]

...

Pr[r ≥ B−(1−λ)wi

λ ]
...

A1




,

where A1 is an n× n matrix with entries aij , where

aij =




1
λ

∫ yj

yj−1
dF

(
y−(1−λ)wi

λ

)
− 1 if i = j

1
λ

∫ yj

yj−1
dF

(
y−(1−λ)wi

λ

)
if i �= j

i = 1, . . ., n, j = 1, . . ., n. The integrals aij are calculated∫ yj

yj−1

dF

(
y − (1− λ)u

λ

)
= F

(
yj − (1 − λ)wi

λ

)
− F

(
yj−1 − (1− λ)wi

λ

)

the nodes wi are chosen to be the midpoints of the subintervals. If n is chosen to be an odd integer,

then the ARL(0)=L(0) ≈ L(n+1)/2, which holds if B = −h.
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