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Abstract

In this paper we compare the price of an option with one year ma-

turity of the German stock index DAX for several volatility models

including long memory and leverage effects. We compute the price

by applying a present value scheme as well as the Black-Scholes and

Hull-White formulas which includes stochastic volatility. We find

that long memory as well as asymmetry affect the Black-Scholes

price significantly whereas the Hull-White price is hardly affected

by long memory but still by including asymmetries.
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1 Introduction

The evaluation of options is a problem of interest in econometrics in recent

years. Beginning with the celebrated Black - Scholes formula (see Black and

Scholes(1973) and Merton(1973)) the problem of evaluating options has been of

more and more importance for researchers as well as practitioners. The Black -

Scholes formula showed that the fair price of an option depends strongly on the

volatility of the price process of the underlying financial asset. However, Black

and Scholes assumed the volatility to be constant over time. Stock returns

on the other hand have volatility clusters which show that the conditional

volatilities are time dependent. Since the introduction of ARCH - models by

Engle (1981) the application of models with stochastic conditional volatility to

option pricing became important. Hull and White (1987) extended the Black

- Scholes formula by allowing for stochastic volatilities. Unfortunately, the

resulting formula cannot be given in an explicit form. For this reason the

Black - Scholes formula is still very popular in practice.

In addition to stochastic volatility financial data show evidence of long memory

in volatilities of returns. Long - range dependence allow for a better predictabil-

ity of the volatilities and therefore affect the price of an option. However, the

influence of different volatility models including long memory and asymmetries

to option prices is hardly discovered so far. Also the differences in the several

pricing formulas have hardly been considered. Bollerslev and Mikkelsen(1996)

show that the option price is significantly different when standard models are

applied as compared to models allowing for long memory. They examine op-

tion prices for the S&P500 stock index by considering three different pricing

formulas, namely the Present Value, the Black - Scholes and the Hull - White

formula. They consider GARCH - models as well as EGARCH, FIEGARCH

and IEGARCH and show that the price of an option increases with the degree

of integration meaning that GARCH - models give the lowest price whereas

the highest option price is obtained for the IGARCH - model.

This paper extends the work of Bollerslev and Mikkelsen(1996) by firstly using

data of the German stock index DAX and by secondly extending the class
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of volatility models considered. The results are somewhat similar to those of

Bollerslev and Mikkelsen meaning that we observe also an increasing price with

an increasing degree of integration. Asymmetry does not have a large influence

to the option price.

The rest of the paper is organized as follows. In the next section we introduce

the Black - Scholes and the Hull - White option pricing formulas, section 3

describes the considered volatility models. Section 4 shows our results and

section 5 concludes.

2 Pricing formulas

This paper considers a European call option with time to maturity T and

exercise price K. We do not allow for arbitrage.

Let At be the price of the underlying stock at time t, let r denote a fixed

interest rate and σ the volatility of the stock which is for the moment assumed

to be constant over the time.

The Black - Scholes formula for the rational price of a European call option is

given by

cBS(At, t, K) = AtΦ


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Here, Φ(·) denotes the distribution function of the standard normal distribu-

tion. As it can be seen from (1) the option price depends on the volatility of

the stock but not on the returns themselves.

The volatility σ is usually computed by using the market price of an option

with time of maturity t and exercise price K which can be observed empirically.
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However, the Black - Scholes formula assumes the volatility to be constant over

time.

Therefore, Hull and White (1987) introduced an alternative model allowing for

time varying volatilities. They also assume that the volatilities are independent

of the price process. Unfortunately, the Hull - White formula has no closed

representation. It can be interpreted as a Black - Scholes formula with an

averaged variance. The Black - Scholes price of an option is above the Hull -

White price for options at the money whereas the Hull - White price is higher

for options out of the money or in the money.

3 Volatility models

Stock returns exhibit quite a lot of empirically observed stylized facts such as

time dependent volatilities, long memory in volatilities and asymmetries. To

take these into account as much as possible we consider a large variety of possi-

ble models, such as GARCH-, IGARCH, FIGARCH- and HYGARCH-models

as well as a class of GARCH models introduced by Glosten, Jagannathan and

Runkle (1993) which also allow for asymmetry.

For all models introduced in this section we assume that the demeaned returns

εt follow the parametrization

εt = ztσt,

where the zt are iid (0, 1) random variables. The demeaned returns yt are

defined by εt = yt − E(yt). ARCH-models do now model the volatilities σt in

the above equation.

The GARCH(p,q)-model was introduced by Bollerslev (1986). It is defined by

σ2
t = ω + α(B)ε2

t + β(B)σ2
t . (2)

Here B denotes the lag operator and α(B) and β(B) denote the AR- and MA-

polynomials respectively. We assume that all roots of these polynomials are
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outside of the unit circle. Therefore, GARCH-models assume the volatilities

to depend on past volatilities as well as on past innovations. Due to their

similarity to ARMA-models GARCH-models are symmetric and have short

memory.

IGARCH(p,q)-models are a kind of ARIMA-models for the volatilities. They

are defined by

φ(B)(1−B)ε2
t = ω + [1− β(B)]νt, (3)

where φ(B) = (1−α(B)−β(B))(1−B)−1. Here νt is an iid noise process with

mean zero and finite variance. IGARCH-models imply that shocks to the series

affect all future horizons. Although the assumption of short memory such as

in GARCH-models is usually not fulfilled the implications of IGARCH-models

are too strong compared to empirical findings. Sibbertsen(2004) among others

shows that there is evidence for long memory in volatilities of stock returns.

Therefore, we consider fractionally integrated models. The first long-memory

GARCH-model was the FIGARCH(p,d,q)-model introduced by Baillie et al.

(1996). The FIGARCH-model is a generalization of the IGARCH-model (3) by

replacing the operator (1−B) by (1−B)d, where d is the memory parameter.

Thus, equation (3) becomes

φ(B)(1−B)dε2
t = ω + [1− β(B)]νt, (4)

where the polynomial φ(B) is as given above. FIGARCH-models exhibit long

memory. They nest GARCH-models (for d = 0) as well as IGARCH-models

(for d = 1). In contrast to ARFIMA-models where the memory parameter

d is between zero and a half d is here between zero and one. Unfortunately,

FIGARCH-processes are non-stationary like IGARCH-processes. This shows

that the concept of unit roots can hardly be generalized from linear to non-

linear processes. Furthermore, the interpretation of the memory parameter d

is difficult in the FIGARCH set up.

For this reason Davidson(2004) extended the class of FIGARCH-models

to HYGARCH(p,α,d,q)-models which stands for hyperbolic GARCH.
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HYGARCH-models replace the operator (1−B)d in (4) by [(1−α)+α(1−B)d].

The parametrization of HYGARCH-models is given by

σ2
t = ω(1−β(B))−1+

[
1− (φ(B)(1 + α[(1−B)d − 1]))(1− β(B))−1

]
ε2

t .(5)

The parameters α and d are assumed to be non-negative. HYGARCH-models

nest GARCH-models (for α = 0), FIGARCH-processes (for α = 1) and

IGARCH-models (for α = d = 1).

All models introduced so far are symmetric. The most famous model allowing

for asymmetry is the EGARCH-model by Nelson(1991). However, we want to

consider a more flexible class of models introduced by Glosten, Jagannathan

and Runkle(1993) and therefore referred to as GJR-GARCH-models. Denoting

by 1A the indicator function of the set A they have the form

σ2
t = ω +

q∑

i=1

(αiε
2
t−i + γiε

2
t−i1]−∞,0](εt−i)) +

p∑

j=1

βjσ
2
t−j. (6)

Here, αi and βj are the coefficients of the polynomials α(B) and β(B) respec-

tively and γi are parameters describing the asymmetry of the model called

leverage parameters because they model the leverage effect of the returns.

In the simulation study below we consider also combinations of the GJR-

GARCH and the symmetric models above to allow for asymmetry as well as

for long memory.

We estimate all models for the German stock index DAX by Maximum-

Likelihood. Our data contains daily observations from 4. 1. 1960 to 28. 12.

2001. To the return process itself we fitted an AR(3) process as it was done

in Bollerslev and Mikkelsen(1996). The GARCH-order used for all volatility

models was p = 1 and q = 1. We used the following parametrization which is

given below for the AR(3) − GJR − HY GARCH(1, α, d, 1)-model as this is

the model having the most parameters. The equation for the returns is

yt = µ0 + µ1yt−1 + µ2yt−2 + µ3yt−3 + εt.
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For the volatilities we have the parametrization

σ2
t =

ω

1− β
+

[
1− 1

1− βB
(1− φB)(γ1]−∞,0](εt)B)(1 + α[(1−B)d − 1])

]
ε2

t .

Here, the parameter ω is the mean of the volatilities, β and φ describe the

GARCH-properties. γ is the asymmetry parameter and d is the memory pa-

rameter. In the tables below only those parameters are given which are included

in the model meaning that the space for a parameter which is not included

in the specific model is left empty in the table. The models are given in the

columns, the parameters are in the rows.

The results are given in table I and II below. The numbers in brackets are

the standard deviations. To compare the fit of the models we give the Akaike

information criterion as well as the Schwarz information criterion. The model

which maximizes these criteria has the best fit.
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Table I Parameter estimation for symmetric GARCH-models.

AR AR-

GARCH

AR-

IGARCH

AR-

FIGARCH

AR-

HYIGARCH

AR-

HYGARCH

µ0 0.00023

(0.0001)

0.00028

(0.0001)

0.00027

(0.0001)

0.0003

(0.0000)

0.00028

(0.0001)

0.0003

(0.0000)

µ1 0.0617

(0.0183)

0.12697

(0.0129)

0.12767

(0.0127)

0.12685

(0.0124)

0.12635

(0.0127)

0.12684

(0.0124)

µ2 -0.05134

(0.0176)

-0.06072

(0.0133)

-0.06132

(0.0132)

-0.05985

(0.0126)

-0.06014

(0.0131)

-0.05985

(0.0127)

µ3 -0.00491

(0.017)

-0.00013

(0.0121)

0.00045

(0.0121)

-0.00585

(0.0111)

-0.00073

(0.0120)

-0.00585

(0.011)

ω 0.00441

(0.0003)

0.00383

(0.0003)

0.00276

(0.0002)

0.00446

(0.0003)

0.00274

(0.0004)

β 0.83944

(0.0195)

0.83186

(0.0269)

0.3164

(0.0745)

0.82556

(0.0269)

0.31487

(0.0906)

φ 0.98127

(0.0067)

-0.02883

(0.0381)

0.03092

(0.0582)

-0.02924

(0.0337)

0.03038

(0.0602)

d d = 1

fixed

0.4128

(0.062)

d = 1 fixed 0.41135

(0.0782)

α 0.97995

(0.0074)

1.00203

(0.0404)

AIC 32355.4 33879.7 33871.1 33941.8 33881.2 33941.8

SIC 32352.0 33876.1 33867.9 33938.2 33877.6 33942.8
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Table II Parameter estimation for asymmetric GARCH-models.

AR-GJR-

GARCH

AR-GJR-

IGARCH

AR-GJR-

FIGARCH

AR-GJR-

HYIGARCH

AR-GJR-

HYGARCH

µ0 0.00011

(0.0001)

0.00025

(0.0001)

0.00021

(0.0000)

0.00011

(0.0001)

0.00009

(0.0001)

µ1 0.12889

(0.0125)

0.122793

(0.0128)

0.12654

(0.0118)

0.12844

(0.0124)

0.13103

(0.0123)

µ2 -0.05587

(0.0125)

-0.06068

(0.0132)

-0.05826

(0.012)

-0.05566

(0.013)

-0.05416

(0.0123)

µ3 0.00592

(0.0122)

0.00127

(0.0120)

-0.00491

(0.0106)

0.00563

(0.0122)

0.00029

(0.0109)

ω 0.00458

(0.00049)

0.00369

(0.004)

0.000

(0.000)

0.0046

(0.0004)

0.00181

(80.001)

β 0.84618

(0.0206)

0.83504

(0.0265)

0.12733

(0.1081)

0.83849

(0.0029)

0.83247

(0.0357)

φ 0.093886

(0.0122)

-0.02731

(0.0384)

-0.00741

(0.0705)

0.93731

(0.0132)

0.88235

(0.0333)

γ 0.86839

(0.02476)

0.03802

(0.086)

0.3088

(0.0846)

0.84156

(0.2563)

1.35538

(0.34959)

d d = 1

fixed

0.31491

(0.0706)

d = 1 fixed 0.02444

(0.0495)

α -0.01076

(0.0259)

2.24096

(4.0591)

AIC 33819.7 33781.8 33879.2 33820.1 33887.4

SIC 33816.1 33778.1 33875.6 33816.5 33883.8

As we can see from tables I and II for the DAX the symmetric models seem

to give the better fit than the asymmetric models as they have the higher SIC

in all cases. Comparing the SIC for all models the two long memory models

are the chosen models. The SIC prefers the AR-HYGARCH-model to the AR-

FIGARCH-model. The SIC for these two models is almost equal whereas it

is much smaller for all the other models. The estimated memory parameter is
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dHY GARCH = dFIGARCH = 0.41 and thus clearly positive and similar for both

models.

4 Results

In this section we consider prices for European call options on the German

stock index DAX. The options have a period of validity of τ = 260 days which

is one year. The options are sold on the 28th of December 2001 which is the last

point of our data. At this day the DAX was at A0 = 5160.1 points. To estimate

the underlying price process of the DAX we use daily data from 4th January

1960 to 28th December 2001. Therefore, we have 10516 observations at hand

to estimate the models. The estimation results are as given in tables I and

II in the previous section. The simulations for the price process are based on

N = 1000 replications. The risk free interest rate r is assumed to be r = 0.07.

This is the rate used by Bollerslev and Mikkelsen(1996). We adopt the rate

in this paper to obtain comparability of our results to those of Bollerslev and

Mikkelsen.

In order to compute the option price we have at first to simulate the price

process because we need the price at the time t. The logarithms of the returns

yt are therefore simulated by using the volatility models described in section

3. All simulations are carried out with the Ox package TSMod 4.03. The price

process At is computed from the simulated returns

At = A0 exp

(
t∑

i=1

yi

)
.

Denote with An,t the n-th repetition of the simulated price process at time t.

In order to compute the Black - Scholes price of the option also in the presence

of GARCH effects we have to replace the volatility by an average volatility

during the period of validity of the option. It is obtained by

σBS(τ)2 =
1

τA2
0

1

N − 1

N∑

n=1

(
An,τ − 1

N

N∑

i=1

Ai,τ

)
. (7)
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This volatility estimator is the empirical variance of the marginal distribution

of the price process at time τ weighted with the period of validity τ and the

squared price A2
0.

By substituting the volatility estimator (7) into the Black - Scholes formula

(1) we obtain the Black - Scholes price for our option by

CBS(τ,K) = cBS(σBS(τ), τ, K, A0, r).

In order to compute the Hull - White price of the option we have the problem

that the Hull - White pricing formula has no closed representation. However, as

mentioned in section 2 the Hull - White price can be obtained as the expected

Black - Scholes price integrated over the average variance during the period of

validity of the option if the volatilities are independent of the price process.

The volatilities for the Hull - White model are estimated by

σHW (τ)2
n =

1

A2
0

1

τ − 1

τ∑

t=1

(
∆An,t − 1

τ
[An,t − A0]

)2

. (8)

Here, ∆An,t = An,t − An,t−1. The Hull - White price is now obtained by sub-

stituting (8) into the Black - Scholes formula:

CHW (τ,K) =
1

N
cBS(σHW (τ)n, τ, K, A0, r).

This formula is a discrete version of the Hull and White(1987) formula.

As a third pricing scheme we apply the present value scheme based on an idea

by Engle and Mustafa (1992). It considers the mean of the possible profits

of the option based on the simulated price process. As these profits have to

compete with a risk free bond it is weighted with the interest rate r. The

present value scheme is given by

CPV (τ, K) = exp(−rτ)
1

N

N∑

n=1

max(0, An,τ −K).
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We now consider the following situations. The period of validity for our option

is one year which is τ = 260. We consider options which are at the money

(K = A0), out of the money (K = 1.05A0) and deep out of the money (K =

1.1A0). For all these situations we compute the option price for all the models

described in section 3. Similar to Bollerslev and Mikkelsen (1996) we model

the returns with an AR(3)- process. Table III gives the results for the option

at the money and tables IV and V has the other two scenarios respectively.

Table III Price of the option at the money (K = A0).

Model Present Value Black - Scholes Hull - White

AR 307.71 354.1 350.61

AR - GARCH 373.65 542.77 513.07

AR - IGARCH 352.68 571.89 513.07

AR-FIGARCH 392.76 554.87 513.29

AR - HY - IGARCH 371.95 572.24 509.89

AR - HYGARCH 392.82 561.21 513.38

AR - GJR - GARCH 162.95 506.35 512.58

AR - GJR - IGARCH 331.62 553.8 517.16

AR - GJR - FIGARCH 296.19 550.27 510.74

AR - GJR - HY - IGARCH 161.91 698.37 510.6

AR - GJR - HYGARCH 143.98 600 518.33
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Table IV Price of the option out of the money (K = 1.05A0).

Model Present Value Black - Scholes Hull - White

AR 73.35 162.9 152.8

AR - GARCH 140.89 387.71 355.32

AR - IGARCH 125.13 417.99 358.85

AR-FIGARCH 158.64 400.33 355.67

AR - HY - IGARCH 141.41 418.34 351.94

AR - HYGARCH 159.02 406.92 355.65

AR - GJR - GARCH 17.05 349.31 354.8

AR - GJR - IGARCH 107.35 399.22 359.68

AR - GJR - FIGARCH 82.82 395.54 352.85

AR - GJR - HY - IGARCH 17.16 347.26 352.72

AR - GJR - HYGARCH 13.66 406.92 360.96

Table V Price of the option deep out of the money (K = 1.1A0).

Model Present Value Black - Scholes Hull - White

AR 0.15 55.11 46.2

AR - GARCH 13.64 270.38 239.07

AR - IGARCH 11.36 299.78 242.49

AR-FIGARCH 18.64 282.63 239.4

AR - HY - IGARCH 15.31 300.12 235.79

AR - HYGARCH 18.74 289.02 239.39

AR - GJR - GARCH 0.13 233.13 238.56

AR - GJR - IGARCH 8.42 281.55 243.29

AR - GJR - FIGARCH 3.81 277.97 236.67

AR - GJR - HY - IGARCH 0.17 231.15 236.55

AR - GJR - HYGARCH 0.14 289.02 244.52

As we can see from the tables the differences between the prices are enormous.

Especially the difference between neglecting stochastic volatilities by just mod-

elling the returns with an AR(3)-process and the models including stochastic
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volatilities is huge. The price can be more than five times lower with a constant

volatility as it is for example for the Black - Scholes price of the option deep

out of the money in table V. Obviously, the present value scheme takes the

least account of stochastic volatility with the smallest price changes whereas

the difference is biggest for the Black-Scholes price. For some reason includ-

ing asymmetry collapses the present value price. However, the present value

scheme does not seem to be a suitable way for pricing options.

For the Black-Scholes and Hull-White scheme we observe what we would ex-

pect. In the class of stochastic volatility models the price is the lowest for

the GARCH-model and highest for the integrated IGARCH-model. The price

of the long-memory alternatives is somewhere in between. The price for the

HYGARCH-model is slightly higher than the FIGARCH-price although both

of them are at the same range. Including long memory into the model can

change the prices for about 7% as it can be seen for the price of the option

deep out of the money in table V. We can see that the difference becomes

larger if the exercise price increases. Therefore, for options being deep out of

the money it becomes more and more important to specify the model correctly.

Including long memory seriously affects the price of an option.

Furthermore, the differences are bigger for the Black-Scholes price than for

the Hull-White price. The Hull-White price is less affected by using different

models and including long memory. Long memory changes the prices only by

about 0.1%.

Including asymmetries also drops the Black-Scholes price by quite a bit. All

the other findings are similar to those described above. Again the Hull-White

price is affected the least by introducing asymmetry. It seems to be most robust

against model changes as long as stochastic volatility is taken into account.

The price differences found in our paper are of a similar magnitude as those in

Bollerslev and Mikkelsen (1996). They also find that the Hull-White scheme

is the most robust to model changes.
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5 Conclusion

In this paper we simulate the fair price of a European call option for the DAX

starting December 2001 with a period of validity of one year. We consider op-

tions which are at the money, out of the money and deep out of the money. The

present value price, Black-Scholes price and Hull-White price are computed. It

can be seen that the present value scheme is not suitable for pricing options.

Neglecting stochastic volatility results in a by far too low price. Including ef-

fects such as long memory and asymmetry changes the price significantly and

has to be taken into account when pricing options. The effect increases for

options deep out of the money. The Black-Scholes price is more affected than

the Hull-White price which seems to be quite robust against changes of the

model. Asymmetry affects the Hull-White price more than long memory.

The superior model for the DAX was a symmetric long memory GARCH

model. Having the above results in mind long memory should therefore be

taken into account when pricing DAX options.
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