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Abstract:

Pareto-Optimality and the Desirability Index are methods for multicriteria optimization in qua-

lity management. In this paper the pareto-optimality of the optimal influence factor settings of

a process resulting from maximizing the DI is analyzed and is shown to be valid in most cases.

1 Introduction

The Concept of Desirability, introduced by Harrington (1965), is a method for multicriteria

optimization (MCO) in industrial quality management (Fig. 1). Via Desirability Functions

(DFs), which allow for comparing different scales of process quality criteria (QCs) by mapping

them to [0, 1], and the Desirability Index (DI) the multivariate optimization problem is converted

into a univariate one. Based on design of experiment methods optimal levels of process influen-

cing factors can be determined that optimize all often competing QCs simultaneously.

Besides the DI several other MCO methods exist. One of them is an approach originally in-

troduced in the context of microeconomics for determining pareto-optimal factor settings. As

both concepts are competing it is therefore interesting to put the optimization results into one

framework. This is done in section 4 by analyzing the pareto-optimality of the optimum factor

settings resulting from MCO by means of the DI. Section 2 provides details regarding different

types of DFs and DIs, and the Pareto Concept is outlined in section 3. A summary is given in

section 5.

2 Desirability Functions and the Desirability Index

Harrington (1965) introduced two types of DFs which transform the QCs onto (0, 1] (see Fig. 2).

One aims at maximization of the QC (one-sided specification) whereas the other one reflects a

target value problem (two-sided specification). Concerning the latter the transformation requires

two specification limits (LSL, USL) for a QC Y symmetrically around the target value T , which
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Quality Optimization of a Process Using the Desirability Index:

1. Influence factors: X1, . . . , Xn

2. Quality Criteria: Y1, . . . , Yk with Yi = fi(X1, . . . , Xn, εi)

3. Which levels of the quality criteria are desired?

di(Yi)(i = 1, . . . , k), d : R → [0, 1] bzw. (0, 1] Desirability Function

4. Combination into a univariate quality measure:

D := f(d1, . . . , dk), D : [0, 1]k/(0, 1]k → [0, 1]/(0, 1) Desirability Index

5. Determination of optimum factor settings Xopt by maximizing D̂:

max
X1,...,Xn

D̂(X1, . . . , Xn) = k

√

√

√

√

k
∏

i=1

di(fi(X1, ..., Xn, 0))

Figure 1: The Desirability Index in Multicriteria Optimization

are associated with a desirability of 1/e. Then the DF d is defined as

d(Y ′) = e−|Y ′|n with Y ′ =
2Y − (USL + LSL)

USL − LSL
. (1)

The parameter n > 0 is to be chosen so that the resulting kurtosis of the function adequately

meets the expert’s preferences. The one-sided DF uses a special form of the Gompertz-Curve,

where the kurtosis of the function is determined by the solution (b0, b1) of a system of two linear

equations that require two values of Y and related values of d:

d(Y ′) = e−e−Y
′

with Y ′ = −[ln(− ln d)] = b0 + b1Y. (2)

The DI combines k individual desirability functions di into one overall quality value by

D := (
k

∏

i=1

di)
1/k. (3)

In the course of time modifications of Harrington’s concept came up either in terms of different

combination types of the DFs, e.g.

D := min
i=1,...,k

di (Kim and Lin (2000)), (4)

or in terms of more flexible DFs. The approach introduced by Derringer and Suich (1980)

became the most important one and is currently most frequently used in practice. In this case
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Figure 2: Harrington’s one- and two-sided Desirability Functions

also asymmetric specifications become possible (see Fig. 3). In the two-sided case the DF is

determined using

di(Yi) =



























0, Yi < LSLi

(Yi−LSLi

Ti−LSLi
)li , LSLi ≤ Yi ≤ Ti

(Yi−USLi

Ti−USLi
)ri , Ti < Yi ≤ USLi

0, Yi > USLi

, i = 1, . . . , k. (5)

Thus values outside the specification limits result in an unacceptable process quality, i.e. the DF

equals zero. The parameters li and ri determine the shape of the DF. The one-sided specification

is exemplary given for maximizing a QC, i.e.

di(Yi) =















0, Yi ≤ LSLi

(Yi−LSLi

Ti−LSLi
)li , LSLi < Yi < Ti

1, Yi ≥ Ti

, i = 1, . . . , k. (6)

In case the QC exceeds its target value no additional benefit is realized, therefore a value of 1

is constantly assigned. For minimizing a QC the part of the two sided DF exceeding Ti is used

values falling below Ti are associated with a value of 1.

3 Pareto-Optimality

The concept of pareto-optimality was primarily introduced by Vilfredo Pareto (1896). He argued

that an individual’s preferences form the basis of economic analysis and developed the notion

of a pareto optimal outcome in which no member of the society can be made better off without

hurting, or decreasing the payoffs of someone else.

This approach can be transferred to multicriteria optimization problems in a straightforward

manner. A realization of quality criteria (QC) Y = (Y1, . . . , Yk)
′ is said to be pareto-optimal if
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Figure 3: One- and two-sided Desirability Functions of Derringer-Suich type

there is no other realization that keeps up the process quality regarding all criteria and improves

at least one criterion. Thus a pareto-optimal situation cannot be improved upon without deteri-

orating the process with respect to at least one quality criterion. A corresponding factor setting

X = (X1, . . . , Xn)′ then is pareto-optimal in factor space if the corresponding criteria vector Y

is pareto-optimal in criteria space.

4 Pareto Optimality of optimal factor settings

In Steuer (1999) pareto-optimality is introduced using the concept of domination. A vector

Y = (Y1, . . . , Yk)
′ is defined as pareto-optimal if there exists no other realization Y ∗ which

dominates Y , i.e. Y ∗ contains at least one value that exceeds the corresponding value of Y and

simultaneously keeps up all the remaining ones. An improvement of a QC thus in this approach

is only reflected by an increase of Y . Differing from this in the following an improvement of a

QC is reflected by an increased value of the corresponding desirability function, which allows

for including more specific requirements and preferences.

Theorem 1 Let a process characterized by quality criteria Yi (i = 1, ..., k) and influence factors

Xj (j = 1, ..., n) be given. Optimal influence factor levels Xopt = (Xopt
1 , . . . , Xopt

n )′ are assumed

to have been determined based on DFs di (i = 1, ..., k) and the DI (3) D := (
∏k

i=1 di)
1/k. Then

it holds that Xopt is pareto-optimal.

Proof:

Assumption: Xopt is not pareto-optimal

⇒ ∃X∗ : ds(Ys|X
∗) > ds(Ys|X

opt) for s ∈ {1, . . . , k} (7)

and dj(Yj |X
∗) ≥ dj(Yj |X

opt) for j = 1, . . . , k; j 6= i. (8)
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⇒ D∗ = (
k

∏

i=1

di(Yi|X
∗))1/k > Dopt = (

k
∏

i=1

di(Yi|X
opt))1/k.

That however is contradictory to the assumption of Xopt maximizing the DI. Thus Xopt must

be pareto-optimal. �

If the minimum of the DFs (4) is used as a DI the pareto-optimality of Xopt is not guaranteed.

Theorem 2 Let a process be characterized by quality criteria Yi (i = 1, ..., k) and influence

factors Xj (j = 1, ..., n). Optimal influence factor levels Xopt = (Xopt
1 , . . . , Xopt

n )′ are assumed

to have been determined based on DFs di (i = 1, ..., k) and the DI (4) D := min(d1, . . . , dk). Let

furthermore Yp (p ∈ {1, . . . , k}) be the criterion that takes the minimum value of the DI based

on Xopt. Recalling conditions (7) and (8) for Xopt not being pareto-optimal it holds that:

1. dp = ds ⇒ Xopt is pareto-optimal.

2. dp 6= ds, (dp|X
∗) 6= (dp|X

opt) ⇒ Xopt is pareto-optimal.

Special cases:

2a. dp 6= ds, (Yp|X
∗) 6= (Yp|X

opt) and the DF dp is strictly monotonic ⇒ Xopt is pareto-

optimal.

2b. dp 6= ds, (Yp|X
∗) 6= (Yp|X

opt) and the DF dp is not strictly monotonic, but of one-sided

Derringer-Suich-type (6) ⇒ Xopt is pareto- optimal.

3. dp 6= ds and (Yp|X
∗) = (Yp|X

opt)⇒ Xopt is not pareto-optimal in general.

Proof:

For cases 1) and 2) Xopt is assumed to be not pareto-optimal. Thus conditions (7) and (8) must

be fulfilled.

Referring to 1):

The criterion the process is improved upon is the one that yields the minimum value of the DFs:

dp = ds ⇒ dp(Yp|X
∗) > dp(Yp|X

opt)

⇒ D∗ = min
i=1,...,k

di(Yi|X
∗) > Dopt = min

i=1,...,k
di(Yi|X

opt).

This would imply that Xopt does not maximize the DI (Contradiction!). Therefore Xopt must

be pareto-optimal.

Referring to 2-3):

The criterion the process is improved upon is not the one that yields the minimum value of the
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DFs. For further analysis a distinction has to be made regarding the type of the desirability

function dp. The pareto-optimality of Xopt furthermore depends on the behaviour of (Yp|X
opt)

in case another criterion is improved by an altered X-vector X∗.

2:) (dp|X
∗) 6= (dp|X

opt)
(7)
⇒ dp(Yp|X

∗) > dp(Yp|X
opt)

⇒ D∗ > Dopt (Contradiction!)

⇒ Xopt is pareto-optimal.

2a:) (Yp|X
∗) 6= (Yp|X

opt) ⇒ dp(Yp|X
∗) 6= dp(Yp|X

opt) as dp is strictly monotonic.

⇒ Xopt is pareto-optimal as shown in 2.).

2b:) A one-sided DF of Derringer-Suich-type only is not strictly monotonic outside the spe-

cification limits LSL and USL. Then it equals either 0 or 1. A value dp = 0 does not make

sense for optimal process quality. The situation dp = 1 is also not possible as in this case

dp(Yp|X
opt)] = ds(Ys|X

opt) and an improvement of Ys is not possible any more. Therefore these

situations do not have to be taken into account and Xopt is pareto-optimal due to 2).

3:) If Xopt is pareto-optimal conditions (7) and (8) must not be fulfilled for any X∗. But for

(Yp|X
∗) = (Yp|X

opt) an improvement of the quality criterion Ys (or addtionally even other

quality criteria) would not change Dopt. Therefore in such situations Xopt is not pareto-optimal.

�

5 Summary and Conclusions

When using pareto-optimality as a means for multicriteria optimization the general problem

is that the resulting factor settings are not unique. Usually the set of pareto-optimal factor

settings (”Pareto-Set”) on the one hand is not easy to determine and on the other hand there

is no general guideline for selecting the appropriate solution. By showing that Xopt determined

by maximizing the DI (3) is pareto-optimal the DI can be understood as a method for selecting

a pareto-optimal solution from the Pareto-Set.

It may be argued that in praxis the whole Pareto-Set is of interest and that a single factor setting

afterwards can be selected by expert knowledge. Following this approach therefore a compromise

between often conflicting quality criteria has to be found a posteriori, i.e. after having provided

the pareto-optimal solutions. An expert then has to cope with the responsibility of weighing

different solutions which is a very complex task in general.

By using the desirability approach this step however is done a priori by specifiying DFs which

reflect the preferences and requirements regarding the quality criteria. After the optimization
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of the DI a pareto-optimal solution is determined which automatically finds the ”best” com-

promise. In addition in praxis one may also vary the DFs in order to get an idea how slight

variations effect the optimal factor settings. The design of experiments step by which models

Yi = fi(X1, . . . , Xn, εi) are determined (see Figure 1) does not have to be repeated. Thus only

the optimization step of the DI has to be rerun which is only a computational task. The desirabi-

lity approach therefore facilitates the selection of a pareto-optimal solution out of the Pareto-Set.

In case the minimum of the DFs is applied as a DI situations may occur in which Xopt is not

pareto-optimal. But it has to be kept in mind that the applying experts are chosing Dmin being

aware of this ”non-pareto-optimality”. In these cases only the minimum value of the quality

criteria is of interest - the level of the remaining ones can be neglected. Therefore the ”non-

pareto-optimality” should not be viewed as a disadvantage as in those cases pareto-optimality

of the optimal factor settings is not claimed on any account.
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