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Abstract: We discuss the robust estimation of a linear trend if theenois
follows an autoregressive process of first order. We find tbaary repeated
median to perform well except for negative correlationghia case it can be
improved by a Prais-Winsten transformation using a robusicorrelation
estimator.

Zusammenfassung: Wir behandeln die robuste Safzung eines linearen
Trends bei autoregressiven Fehlern erster Ordnung. DiedRapdedian

Regression zeigt ein gutes Verhalten bei positiven Koiimglah. Bei nega-
tiven Korrelationen ist eine Verbesserung durch eine Rfarsten Transfor-

mation mittels eines robusten Korrelationssizers ndglich.

Keywords: Robust Regression, Autocorrelations, Detrending, Coch@uoett
Estimator, Prais-Winsten Estimator.

1 Introduction

We discuss the robust estimation of a linear trend from aynoise seriesys, ..., Y, of
moderate size in the presence of autoregressive disturbances of first,oh1), and
irrelevant measurement artifacts (outliers). The modsmsiise

Yi=p+pt—-m—-1)+¢, t=1,...,n=2m+ 1, Q)
€ = Qer_1 + 0y, (2)

whered, are innovations from a white noise process with zero mearvanances? > 0.
We center time to interpret as the central level and assume stationary erftofs; 1.

The estimation of linear trends in the presence of AR(1) srhas received consid-
erable attention in econometrics. A number of papers coesptine efficiencies of the
ordinary least squares (OLS), the generalized least sgy&ieS), the first differences
(FD), the Cochrane-Orcutt (CO) and the Prais-Winsten (PWinestirs among others
for estimation of the slopg, often under the idealized assumption thas known (see
Kramer, 1980, 1982, Steman and Trenkler, 2000, and the refsaited therein). How-
ever, methods based on least squares are highly vulnembtstamination by outliers.
This makes simple robust alternatives interesting.

Robust fitting of linear trends to data within a moving time dow of moderate length
n has been investigated recently by Davies, Fried and Ga20@4{. In this context, the
central levelu is of primary interest. Based on a comparison of robust regregech-
nigues, they find Siegel’'s (1982) repeated median (RM) to besugtable for the estima-
tion of trends because of its robustness, stability and coatipnal tractability. However,
application of the ordinary repeated median means tredieglata as independent, al-
though autocorrelations can cause monotonic data pageniar to time-varying trends.



We investigate here whether the repeated median can be\vetpio the presence
of AR(1) noise. One possibility is simultaneous estimatibthe autoregressive and the
trend parameters by robust regression. Robust regressiomdeles for fitting AR models
to data with a constant level have been suggested by Rousseeleroy (1987) and
Meintanis and Donatos (1999). Another approach is prelmyiestimation o, followed
by trend estimation from transformed data.

We compare here repeated median approaches for robusagstirof linear trends.
Section 2 reviews least squares techniques and transérstthrepeated median regres-
sion. Section 3 presents a comparison for small samplesioBdayives some concluding
remarks.

2 Methodsfor linear trend estimation
We first review transformations for including in the estimation ofx and 5. Setting
Y = (Y3,...,Y,) ande = (e, . .., ¢,), the model equations (1) and (2) can be expressed

in vector form as

Y=pl+pl+e¢

2
e~N(0-—".%
1—¢

1 ¢ ... ¢*m
s=| ¢t
o1
wherel = (1,...,1)" is a vector of ones andl = (—m,...,m) are the centered time

points. The inverse correlation matrix3 ' = P'P/(1 — ¢?),

P = 0

The PW estimator oft and5 corresponds to OLS applied to the whitened data
PY = uP1+ PJ+ Pe. (3)

The CO estimator does not make use of the first linePgfi.e. it uses onlyY, —
oY1, ..., Y, — ¢Y,_1, conditioning onY;. The difference between the two estimators
can be supposed to be negligible for largebut it can be relevant for smalil. If we do
not know¢ we first estimate it and use a two-stage procedure gliking substituted by
the preliminary estimate in a second step.



Simultaneous estimation pf 5 and¢ is possible by substituting in equation (1) by
its expression (2), and_; in turn by (1). This results in

Yi= (=) + B[l +(t—m—2)(1 = @) + Vi1 61, t=2,....n.

Settingr = u(1 — ¢) + fanda = (1 — ¢) we get a linear regression model with
autoregressive term conditioning &h

Yi=v4+alt—-m—-2)+¢Y, 1+, t=2,...,n. 4)

The original parameters afe = «/(1 — ¢) andu = (v — 5)/(1 — ¢), i.e. there is a
one-to-one correspondence if we resteidb (—1, 1).

The FD estimator is based on the common idea to remove ntarstaties by taking
differences. For the model described in (1) and (2), the difi¢rencesZ;, = Y, — Y;_;
follow a non invertible ARMA(1,1) process

Zt:a_‘_(bztfl_'—(st_étfl; t:2,...,n.

Estimation ofa and¢ using Z,, ..., Z,, allows to clean the data from the trend and the
autocorrelations. The mean of the differences is ratherieffi for estimatingy if ¢ is
large andh is small (Kiamer, 1982). However, the robust analogue, the median difshe
differences, can be improved substantially by the repeawtedian applied td7,...,Y,
(Fried, 2004). We therefore neglect estimators based drdffferences.

2.1 Regression estimators of ¢

The multiple linear regression model (4) can be fitted to gata . , y,, for simultaneous
estimation ofu, 5 and¢, conditioning ony;. Conditional least squares (CLS) minimizes

n

Z(yt —v—alt—m—2)— dy_1)*.

t=2

Solving the normal equations we get simultaneous CLS estsBr(&CLS)

UscrLs = Un — $scrs - Ui + Gscrns/2
n

Z(t —m = 2) (Y — U — Gscrs(Yi-1 — 1))

ascLs = p )

> (t—m—2)(t—m—15)

t=2




wherey, andy, are the arithmetic mean of, . . ., y,, andy,, ..., y,_1, respectively. The
estimate ofp reads

n

Z(t —m—=2)(yt — Yy,)

Zyjfl Ui = — (j —m —1.5)
j=2 > (t—m—=2)(t—m—15)
dscrs = = )
n Z(t—m—Q)(yt_l —71)
Zyj—l Vi1 =Y — = (j —m—15)
j=2 > (t—m—2)(t—m—15)
t=2

where the second terms in the numerator and the denomin&dhea separately OLS
detrended observationg, . ..,y, andy,...,y,_1, respectively. This trend correction
would be missing if we restricted to be zero. We note that the resulting estimates; s
andSscrs correspond to the CO approach basedsgn;.s. This suggests a construction
of PW type estimatorﬁpW_SCLs andBpW_gCLg USinggZBSCLS.

A related approach is the joint initial detrendingaf . . ., y, by OLS, followed by
the estimation ofp from the residuals and the construction of OLS estimates filoe
transformed data (3). We denote the resulting estimato@DLS and PW-DLS.

To derive formulae for simultaneous RM estimators/pfr and¢ we note that each
triple (4, vi—1,vi), (J,¥j-1,95), (k,yk—1,yk), @ # j # k # i, corresponds to a unique
solution (v, vijk, ¢ijk) Of (4) with

k—1
yk_yi_j_l.<yj Yi)
Gijk = e
7
Yk—1 — Yi—1 — T (yj_1 - yi—l)

whenever the data are in general position. General posigoa means that no triple of
observations lies on a straight line. This condition avael® denominators, and is almost
surely fulfilled if the data come from a continuous distribat We can drop all triples
for which it is not fulfilled from the calculations otherwiségain, the second terms in
the numerator and the denominator mean a trend correctmvanld be missing if the
slope was set to zero. Siegel’s (1982) repeated median isitoation now reads

k—1

X yk_yi_j_i<yj_yi)
Osprym = medi—y . ymedjzimedy; - 5)
Yk—1 — Yi—1 — i= i(yj—l - yz‘—1)
dspar = medi_s, . nmed#i Yi —Yj — QSS‘RM(.yi—l - yj—l)
t—]



A drawback of the simultaneous RM is thkn?) computation time needed by a straight-
forward implementation even if a routine for calculationtioé median in linear time is
used.

Since SRM in fact estimatesusing a trend correction first, it is near at hand to detrend
all observations applying the ordinary RM, and then to edtmarom the residuals;,
i=1,...,n,using

OprM = medi—y .., nmedj;éi

Thereafter we can insez&DRM into the equations (5) instead égRM to calculate esti-
matesipras andBDRM. This reduces the computation time®gn?) or less when using
the algorithm by Matousek, Mount and Netanyahu (1998).

We note that estimators based on (5) are of CO type. We canraohBW analogues
includingy; in the estimation of: and 3 setting(i*, y*) to (i — (i — 1), y; — ¢yi_,) for

ie{2,....,n},andtoy/1 — ¢2(1,y,) fori = 1:

Bpw = med;—,., nmedj;éi

y, .
e (6)
fipw = medi=1,_n(y; — BPW -i%),

wheres can be either chosen asga; OF dpra.

A difficulty of regression methods is thatmay be estimated to be larger than one,
corresponding to an explosive behavior. This causes fuptablems in the subsequent
estimation ofx andj. The estimate ap needs thus to be restricted artificially by an upper
and lower bound to prevent non-stationary estimates.

2.2 Correlation estimatorsof ¢

A possible remedy to overcome non-stationary estimatesisfto use the fact that =
v(1)/~(0) is the lag-one autocorrelation coefficient in the AR(1) modlerey(h) is the
lag-h autocovariance. Correlation estimates are usually gusgdrtb be at most one in
absolute value. We may then correct the observations fodé¢pendencies and estimate
w andg from the transformed data using the CO or the PW approach.

The traditional Yule-Walker (YW) estimator gfis the lag-one sample autocorrelation
based on a constant level. The difference to the CLS estimdkai the overall meamn
is generally used for centering and that the variabilityha tienominator is estimated
from all observations. This causes an increased bias tonexalin small samples. To
cope with the trend in the data we can again detrend the dafd_Bybefore calculating a
Yule-Walker estimate from the residuals . . ., r,,.



Instead oEZBDYW we can use the ordinary sample correlationferrs), ..., (r,_1,7,)

n

D (i =T (re =)

QASDSC = =2
n n
Z(thl —71)? Z(Tt —Tp)?
t=2 t=2

This estimate neglects the fact thais the same for,...,r,_; andry, ..., r,. It stan-
dardizes by two estimates of the variability based on thedmmd the last: — 1 residuals
and also guarante¢épgc| < 1 because of the Cauchy-Schwarz inequality.

A highly robust estimation method for the autocovarianass @utocorrelations has
been proposed by Ma and Genton (2000). Their SSD method uses

1) = L Var(¥i + Yioy) ~ Var(Yi - %) @)

and estimates these variances ®y of Rousseeuw and Croux (1993). Thk-scale
estimate is based on an order statistic of all pairwise idiffees,

Qn($17-~,$n):Cn'{|$z'—90j|31§’i<j§n}(z),fz<

Ln/zzj + 1) ‘

(), has a high asymptotic efficiency of 82% and can be computed(inlogn) time.
The finite sample correctiof), cancels out in the estimation of We found it superior
to scaleyssp(1) using the sum of the variances in (7) instead/@f,(0). This was also
suggested by Ma and Genton (2000). For robust detrendingoply the ordinary RM
and estimat® from the residuals. The resulting estimate

é . Qr _y(ro4r1, ..o o+ 1rn1) — Qo _(ro— 11, Ty — Tat)
DSSD =
72171(7“2 + 7, T 1) + Qifl(’f’z — Ty Ty — Tho1)

is guaranteed to lie withif1, 1]. If less than 25% of the observations in general position
are replaced by outliers, the terms in the numerator and ¢merdinator will neither
become zero nor infinity, guaranteeing an asymptotic breakdooint of 25%. Using
gz@ pssp We can obtain CO and PW type estimateg.@nd via (5) and (6), respectively.

3 Simulations

In the following we perform Monte Carlo experiments to congptie methods introduced
above for a small sample size It is straightforward to check that the estimators are-well
behaved w.r.t. changes of location, scale, or a constamd tiee. they possess desirable
equivariance and invariance properties due to the inig&deshding in the estimation of.
Hence we restrict the analysis w.l.o.g.to= 3 = 0 ando? = 1. To prevent problems
because of non-stationary estimates we set the estimate®f-0.99 whenever these
bounds are exceeded. We concentrate on the PW type estinsatoe we found them to
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Figure 1: Bias (left) and finite sample efficiency (right) irelative to SCLS (solid):
DCLS (wide-dashed), DYW (narrow—dashed), DSC (dotted), SBdid(solid), DRM
(bold dashed), DSSD (bold dotted).

be superior to the CO versions, in particular fon case of large positive. This verifies
the postulation of Beach and MacKinnon (1978) also for thehowt based on the RM.
The least squares (LS) methods are included just for cosyari

3.1 Gaussian innovations

We compare the finite sample efficiencies of the methods meddy the mean square
errors for the estimators ¢f, 5 and¢ in the case of Gaussian innovations. We consider
time series of moderate length= 31 and approximate the MSEs as a functiorpdfom
10000 time series for eache {—0.9, —0.8,...,0.9}, see Figures 1 and 2.

Figure 1 compares the biases and relative efficiencies egtimators ofs. All
methods are biased towards zero, and the biases are imgé&ash|. DYW is the most
biased, followed by the DSSD. For positigethe SRM is similarly biased as the DYW.
For ¢ close to zero, DYW is the most efficient method, while SCLS a@l.b are more
efficient for|¢| > 0.5. DSC is the best for negative Among the robust methods, DSSD
Is the most efficient, while SRM and DRM are close to each other.

For 1w and 3, all methods are unbiased because of the underlying symmEtere-
fore we only compare the efficiencies relative to the opti@lab estimator knowing in
Figure 2. The PW type LS estimators perform about equally fwehegative and mod-
erately large positivep. For high positivep, the DSC is the most efficient one, followed
by the DCLS. OLS is more efficient than the CO type estimators,thet it is less effi-
cient than the PW methods for largd. See Maeshiro (1976), Chipman (1979)akrer
(1980, 1982) or Steman and Trenkler (2000) for more informmatAs opposed to this,
the ordinary RM is more efficient than the RM based PW type estirador positivep
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Figure 2: Finite sample efficiency for (left) and 3 (right) relative to GLS: OLS (dash-
dot), SCLS (solid), DCLS (wide-dashed), DYW (narrow-dash&3C (dotted), SRM
(bold solid), DRM (bold dashed), DSSD (bold dotted) and RM dladsh-dot).

throughout. For negative, the adjusted RM based estimators of both PW and CO type
perform about equally well, but for large positigethe SRM and the DRM deteriorate.
This is even more so for the CO versions, and then also happerise SCLS and, to

a smaller extent, the DCLS. These problems are due to a femaiss of¢ which are
very close to one, resulting in very large errors in the estiom of x and3. See Park and
Mitchell (1980) for a discussion of this phenomenon.

Such problems diminish with increasing sample size. Irsinggn to 101 e.g., we
found the CO-DRM to offer more than 60% efficiency foif ¢ = 0.8. Nevertheless, the
ordinary RM stays considerably more efficient than the otherdpidroaches in case of
positive¢ also for a larger..

3.2 Heavy tailed innovations

We compare the performance of the methods in case of hedsywdiich may gener-
ate so called innovative outliers. We repeat the previoadyais but now generate the
innovations from Student’s t-distribution with 3 degreé¢$reedom.

Figure 3 compares the biases and the efficiencies for theasiis ofp. W.r.t. bias,
the main difference to the case of Gaussian innovationatsibw DSSD is generally the
least biased. The relative performances of the LS methaalayut the same as before
as was to be expected, while the robust methods gain somieedfic The DRM and the
SRM do so over the whole range of while for the DSSD this is true only for large|.
The traditional methods perform well in this respect. Thisresponds to the fact that
innovative outliers can result in super-efficient estimaif ¢, but not of . and .

This becomes clear when looking at the efficiencies for edtins of;, and 3 com-
pared to the GLS in Figure 4. Here, the robust approachesugezisr, except for very
large positivep. The relative performances of the linear methods are agaiisame as
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Figure 3: Bias (top) and finite sample efficiency (bottom)daelative to SCLS (solid)
in case ofts-innovations: DCLS (wide-dashed), DYW (narrow-dashed)CO#8otted),
SRM (bold solid), DRM (bold dashed), DSSD (bold dotted).

in the Gaussian case. While the OLS is inferior to the PW estim&ased on LS for
large |¢|, the ordinary RM performs best among the robust methods ia cbs > 0.
The corrections for autocorrelations improve its perfang®in case o < 0, but these
methods deteriorate in case of high positiveThe DSSD is somewhat better in this re-
spect. Again, these problems are larger for the CO type estig)and they also occur
for the SCLS and to a smaller extent for the DCLS then.

3.3 Patchesof additive outlier s and shifts

Additive outliers (AOs) and patches of subsequent AOs cause severe difficulties in
the estimation of time series parameters than innovatitleea! A related phenomenon
in the extraction of a time-varying trend is the occurrenica level shift. A level shift can
be considered as a long patch of additive outliers intrudirgsequently into the moving
window. To analyze the effects of a long patch of additivdierg generated e.g. by a
level shift, we generate 10000 time series o= 0.5 and each number, 2, ..., 10 of
subsequent additive outliers of same size 20 at the end cktties.

Figure 5 compares the biases and the root of the mean square @MSES). In the
estimation ofp, the bias toward zero of the traditional methods caused bygtesAO be-
comes obvious. In case of two or more subsequent AOs thes®dsebecome strongly
positively biased, in particular the regression basednegtirs. The robust methods re-
sist a few outliers well. However, they also slowly deteaierif the number of outliers
increases. In case of eight outliers they typically estamato be close to one, which
resembles the breakdown point stated above. DSSD is thestaidé method, but for
two or more AOs DYW mostly shows a smaller RMSE here due to illemvariability.

W.r.t. ;4 andg, the classical methods show a strongly increasing bias an8Rdr
an increasing number of outliers. The modified LS methodfpareven worse than
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Figure 4: Finite sample efficiency relative to GLS with knogvim case oft;-innovations
for p (left) and 5 (right): OLS (dash-dot), SCLS (solid), DCLS (wide-dashedY,ViD
(narrow-dashed), DSC (dotted), SRM (bold solid), DRM (boldtdzd), DSSD (bold dot-
ted), RM (bold dash-dot).

OLS. For the RM methods, the PW approach seems superior, asoviees expected.
AO patches increase the risk of estimates close to norestatty, in particular for the
regression methods. The SRM and even more the DRM deteriotatda the level if
there are at least five or two subsequent AOs, respectively DISSD performs better but
it is clearly outperformed by the ordinary RM. This is in agremt with the increased
sensitivity of robust functionals in case of the use of latygersions of the time series as
regressors noted by Rousseeuw and Leroy (1987) and Meistadi®onatos (1999).

In the same analysis far = —0.5, we found the PW transformed RM methods using
a robust estimator ap to be slightly superior to the ordinary RM w.r.t. both bias and
variability up to about seven AOs, with the SRM being best.dtght or more subsequent
AOs, however, the ordinary RM is again best, according toptswal breakdown point.

4 Conclusions

While ordinary least squares regression can be improveddsmably by a Prais-Winsten
transformation if the errors have strong AR(1) autocorietet, for the repeated median
this is apparently true only for negative correlations. positive AR-parameter it seems
better not to adjust for the autocorrelations.

Regression based approaches for estimationlatve difficulties with positive corre-
lations in samples of moderate size since the estimate ntnealmost equal to or even
larger than one. Using the Cochrane-Orcutt transformatioreases further the subse-
guent problems in the estimation of the trend parametersadie loss of the information
about the first observation. A correlation based method®ffee advantage of stationary
estimates and is easier to calculate than a simultaneoustr@gression approach.
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