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Abstract. In this work we introduce a method for classification and visualization.
In contrast to simultaneous methods like e.g. Kohonen SOM this new approach,
called KMC/EDAM, runs through two stages. In the first stage the data is clustered
by classical methods like K-means clustering. In the second stage the centroids of the
obtained clusters are visualized in a fixed target space which is directly comparable
to that of SOM.

1 Introduction

In many applications a classification of the examined objects in both inter-
heterogeneous and intra-homogeneous groups (clusters) is desired. Many meth-
ods have been developed to solve this problem and are subsumed under the
term classification-methods as well as clustering-methods.

In the context of clustered objects another problem often occurs. This
problem consists of the graphical representation - called visualization - of the
objects resp. classes which are often represented by high-dimensional data
vectors in a space of lower dimension. The requirement for such representa-
tions is topology preservation, i.e. objects which are comparatively close in
the original space should also be close together in the representation space
and, corresponding by, pairs of distant objects should have high distances in
the visualization.

One method, which can be interpreted both as a visualization and a clas-
sification method, is the so called Kohonen Self-Organizing-Map (SOM) (Ko-
honen, 1990). SOM performs classification and visualization simultaneously.
Many alternatives to SOM have been proposed in the past. One example
is another simultaneous method suggested by Bock (1997). Bezdek and Pal
(1995) compare the methods principal component analysis (PCA) and the
Sammon algorithm to SOM concerning topology preservation. They try to
avoid the problem of different solution spaces - with SOM in contrast to the
latter methods only a subset of the objects is visualized - by assigning to
each object an image in the neighborhood of the nearest visualized object.

* This work has been supported by the Deutsche Forschungsgemeinschaft, Sonder-
forschungsbereich 475.
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Since this is done by randomly jittering it is questionable if the corresponding
results can still be seen as the results generated by SOM. Hence the results
of Bezdek and Pal — PCA and Sammon are superior to SOM — are to be
interpreted cautiously.

Being aware of the aforementioned comparability-problems we introduce
a new approach of carrying out classification and visualization one after
the other. This approach consists of a combination of classical classification
methods (mainly K-Means-Clustering, KMC) and a new approach for the
visualization of the corresponding centroids. This approach is called Eight-
Directions-Arranged-Map (EDAM) and has a fixed representation space. This
solution space can be chosen in SOM as well. Under these conditions crite-
ria for classification and topology preservation can be defined and compared
between the two methods.

This paper starts with a description of the methods in section 2. Then
section 3 gives a view on a few examples. The paper concludes in a summary
given in section 4.

2 Methods

2.1 Preliminaries

All following methods refer to a data matrix X € R™F Ttsrows z1., ..., Tn. €
IR* represent the data vectors of n corresponding objects and its columns
ZT.q,..,2.) € IR™ represent the measurement vectors of k corresponding
variables. Distances between two data vectors x;. and x;. are denoted by
d(z;.,x;.). We use the ordinary euclidean distance in this paper.

A classification of X is a set of ¢ clusters, where each object belongs to
exactly one cluster. A classification is denoted by a vector x € {1,...,c}",
where the ith element x; of k gives the cluster-number of the ith object. A
common representative of cluster i is the so called centroid j; € IRF, which
is defined as:

pri = (pit, ooy i)’ With  pin = 2= 30 @, h=1,..k,
j:K,j:i (1)
n;=#{jk; =14}, i=1..c

All centroids are compiled in the centroid matrix M = () 1<i<e .
1552k

A visualization of X is a function f: {z1.,..2p.} — Z C R"™ ™, m < k,

which assigns an image 2° = (2%,..,21) = f(z:.) to each row of X. Z is
called the image-space.
With Z = (2%) 1<i<n the visualization f may be written as f(X) = Z. In

J 1<j<m
the following we only consider the case of m = 2.



KMC/EDAM 3

2.2 Basic Idea

Our approach to visualize high-dimensional data in a plane is based on the
idea of considering the plane as a topographical map. When the images are
visualized as the vertices of a rectangular grid, each object has eight direct
neighbors, one in each direction of the compass (by taking NE, SE; SW and
NW into account, compare figure 1). We try to obtain topology preservation
by re-ordering the objects on each of these eight directions corresponding to
the distances of their data vectors in the original space IR*. Considering the
example of the vector pointing from 220 to west in figure 1 this means, that
with z;. = f~1(z%) after re-ordering, i.e. interchanging the values of x2;. to
T24., the relation d(xgo.,l‘gy) < d(xgo.,l‘gg) < d(l‘204,$23.) < d(l‘204,$24.)
holds.

The method EDAM visualizes by repeating this ”star-shaped” re-ordering
step successively for all objects up to either convergence or to another stop-
ping criterion. The following subsection gives a formal definition of the method.

2.3 KMC/EDAM

The classification of X into a set of ¢ < n clusters, ¢ given, by the method
KMC/EDAM is performed by a combination of a K-Means-algorithm and
a hierarchical method. First g > ¢ clusters are constructed by applying the
K-Means-algorithm suggested by Forgy (see Anderberg 1973). Then the ag-
glomerative hierarchical Centroid-method (see Kaufmann and Pape 1996) is
applied to these clusters. After (g — ¢) steps of this method the final classifi-
cation k of the n objects into ¢ clusters is obtained.

In the next stage of KMC/EDAM the centroids {1, ..., pic} of k are visu-
alized. Therefore first the image space is fixed to the points of intersections of
b1 vertical and by horizontal lines of a two-dimensional, equally spaced grid,
with ¢ = by -b2. By labelling the images by their integer Euclidean coordinates
and enumerating them from the lower left corner by rows the image-space
can be written as:

Z:{zl’..-,zc} with zl:<j>=<z_ ﬁjb1> (2)
2 b1

The problem of visualizing the centroids in Z by a visualization f is to find
a permutation 7 of {1,...,¢}, such that f(br@y) = 24,4 = 1,...,c, preserves
topology as well as possible (concerning to a predefined criterion).

The main idea of our method is to consider' each centroid fir, ,(;) as
a "reference point” for the centroids whose images are lying on the vectors
pointing from z° to each direction D € {N,NE,..., NW}, where mp is a

! The consideration of one centroid defines one step denoted by index ¢; the index 4
defining the actual centroid computes to i =t — Ltzlj - ¢, i.e. each time ¢ exceeds
a multiple of ¢, 7 is switched back to 1.
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Fig. 1. Z as topographical map

randomly chosen initial permutation. First, for each direction D, the indices
jf ,q =1,....,np of these images are determined. Table 1 gives an overview
of how these indices are calculated for all directions.

Table 1. Calculation of indices

D] i | np || D 37 np

N i+ gbi|b2 — 25|| NE |i + gb1 + q¢|min(nn,nE)
E|i+4q |bi — 21| SE |i — ¢b1 + q| min(ns,ng)
S|t —gbi|z5 — 1||SW |i — gb1 — q|min(ns, nw)
Wli—gq |21 — 1| NW|i+ qbi — glmin(ny,nw)

Let now ¢p be the permutation of {m;_1(jT), ..., m—1(j1,)} so that

A, 1 ()2 Mg p w1 (5P))) S Aty 1 (3)s Hipplme— (P)))
< S (i) Hopme (55,))
for each direction D. Now, set m; := m_1. Next, the following substeps are
repeated for all directions D:

1. 7P i=m
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2. {xPGP), 7P GED)Y = {en(mP GP), - on (7P (GE,)1}
3. m = {ﬂ-tD , if  S(rfP) < S(m) .

m , else

The function S is a predefined criterion for visualizations with lower values
indicating better visualizations. Repeating the described procedure for all
centroids — i.e. a set of ¢ steps — builds one iteration. In our investigations we
choose S as the STRESS known from MDS (see Hamerle and Pape, 1996, p.
769).

Each time, when no more improvement can be obtained after a com-
plete iteration (or alternatively if a given maximum number of iterations is
reached), the area, in which re-ordering is possible is decreased by changing
the values of np in table 1 to min(np,max|by, bs] — r), where r runs succes-
sively from 1 to max[bi, ba] — 2. A set of iterations with the same value of r
is called iteration cycle.

The final visualization result f(pir@;)) = 24 i=1,..,c, of KMC/EDAM is
obtained by setting 7 := m; where t is the number of the last step.

3 Examples
First the introduced method is applied to the synthetic Chainlink data, which

consist of two three-dimensional interlocking ring-shaped classes as seen in
figure 2. In our example each class contains 1000 data points.

Fig. 2. The Chainlink data and its MDS visualization

On the right side of figure 2 the two-dimensional result of the method
MDS for this example is depicted. The STRESS of this result is 0.246. Note
that in the original space the two classes have exactly the same relation to
each other, i.e. they have the same shape, the rings have the same radius
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and the center of each ring lies on the other one. But looking at the MDS
visualization one gets the impression that there are differences between the
shapes of the classes.

For the computation of KMC/EDAM for the Chainlink data the following
settings were used: g=750, ¢=500,b; = 20, by = 25, maximum number of
iterations per cycle: 10. The result is shown in U-Matrix-representation on
the left side of figure 3. The U-matrix is a well-known tool developed for the
representation of Self-Organizing Maps (compare Ultsch, 2003). Since the
image space of KMC/EDAM is restricted to a rectangular grid the U-Matrix
can easily be applied to the results of this method as well. For comparison
purposes the right side of figure 3 shows the U-matrix of a SOM of the same
size applied to the same data. For the computation of the SOM the package
som available for the statistical software R (R Development Core Team, 2004)
with its default settings was used. The size of the symbols in both pictures
corresponds to the number of objects assigned to each cluster.
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Fig. 3. KMC/EDAM and SOM visualization of the Chainlink data

The STRESS of the KMC/EDAM solution is 0.209, that of SOM is 0.252,
so KMC/EDAM seems to be better. Beyond this superiority of KMC/EDAM
to the MDS and SOM the result of KMC/EDAM gives an evidently better
mirror of the fact, that the Chainlink classes are equally placed relatively to
each other. This is not the case for SOM, since the class depicted by circles
seems to surround parts of the classes depicted by triangles. At first glance
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the separation of the classes seems better for MDS resp. SOM, since the lat-
ter leave gaps between the classes. But in the U-Matrix of the KMC/EDAM
result a dark line is visible which corresponds to relatively high distances
between objects along the line. This line runs between the two classes like
a boundary. The brightness of the rest of the map is well-adjusted, which
suggests that the topology within the classes is well preserved. Another ad-
vantage of the KMC/EDAM result compared to that of SOM is, that it main-
tains the connection of the classes, i.e. there are now exclaves. In the SOM
result there are apparently a few objects of the “triangle class” separated
from the rest by the “circle class”.

The next example we consider is the well-known iris data set introduced
by Fisher (1936), which contain setal and petal lengths and widths of three
species of iris for 150 flowers. Figure 4 shows a plot of the MDS result and the
U-matrices of KMC/EDAM and SOM results for this example. The settings
of KMC/EDAM were: g=50, ¢=35,b; = 5, b = 7, maximum number of
iterations per cycle: 10.

Fig. 4. MDS, KMC/EDAM and SOM visualizations of the iris data

The STRESS of KMC/EDAM is 0.351 in this case, while that of SOM
is 0.252. MDS performs even better with a STRESS of 0.04. Similarly to
the previous example SOM leaves a gap between the well-separated classes
versicolor and setosa. Again this separation is visible as a dark line in the
U-matrix of the KMC/EDAM result. The separation of the classes virginica
and versicolor seems slightly better in the SOM result, since one can notice
the darkest squares between these classes than at other regions of the map.
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4 Conclusion

With KMC/EDAM a method is introduced which allows to visualize the
results of classical clustering methods. Because of its specially chosen target
space the results of this method are directly comparable to those of SOM.
The method is applied to two popular examples, the artificial Chainlink data
and Fisher’s iris data. In the critical Chainlink example KMC/EDAM leads
to better results than MDS and SOM.

In the iris example KMC/EDAM has the highest STRESS. But the rel-
ative positions of classes are the same with KMC/EDAM. Furthermore the
lacking separation — which is probably the reason for the higher STRESS —
becomes visible as well by representing the result in an U-matrix.

Modifications for the improvement of EDAM are conceivable. Such modi-
fications may concern the optimization of the initial ordering of the centroids.
On the other hand a method like Simulated Annealing could be integrated
into the algorithm to avoid local optima. First attempts in this direction led
to promising results.
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