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Abstract

In simulation studies Latent Factor Prediction Pursuit outperformed

classical reduced rank regression methods. The algorithm described so

far for Latent Factor Prediction Pursuit had two shortcomings: It was

only implemented for situations where the explanatory variables were of

full colum rank. Also instead of the projection matrix only the regression

matrix was calculated. These problems are addressed by a new algorithm

which finds the prediction optimal projection.
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1 Introduction

It is known that predictions in a multiple, multivariate linear regression are
rather poor when the explanatory variables are collinear or the number of obser-
vations is not much larger than the number of parameters to estimate (Helland
and Almøy, 1994). This may, for example, be caused by overfitting or unstable
estimates. To tackle these problems, a reduced rank regression (RRR) method
can be used (Reinsel and Velu, 1998). In a reduced rank regression the explana-
tory variables are projected on (few) so-called latent factors which are used as
regressors for the response variables. There exist different RRR methods to find
this projection, but it is not clear which method to use for data at hand.

In Luebke and Weihs (2004a, 2003) a new method which finds the projection
on latent factors which is optimal for prediction was proposed. The Latent
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Factor Prediction Pursuit (LaFaPP) method is based on computer intensive
direct minimization of the mean squared error of prediction (MSEP) (Weihs
and Hothorn, 2002). The optimization is carried out by simulated annealing
(Bohachevsky et al., 1986; Salamon et al., 2002). With a search algorithm the
optimum is found without using any distributional assumptions on the error
structure, so it is ready for general application. The algorithm described in
(Luebke and Weihs, 2004a) has two shortcomings: First, it only works with
explanatory variables which are of full colum rank. Second, only the regression
matrix instead of the projection matrix is calculated. Both problems are solved
by the new algorithm described in this paper.

In order to compare the new method with ‘classical’ methods a simulation
study is carried out. The simulation study is based on Breiman and Friedman
(1997).

This paper is organized as follows: In Section 2 we introduce the latent
factor model. The prediction criterion is investigated in Section 3. In Section 4
the new latent factor prediction pursuit algorithm is explained. The simulation
study and the results thereof are shown in Sections 5 and 6.

2 Latent Factor model

The basic multiple, multivariate linear model looks as follows:

Y = 1nµ + XM + E (1)

with
Y ∈ IRn×q data of q response variables,
µ ∈ IRq mean column vector of responses,
X ∈ IRn×p data of p explanatory variables (X is mean centered),
M ∈ IRp×q unknown regression coefficient matrix,
E ∈ IRn×q matrix of errors.

Instead of the original explanatory variables X in this work a projection of
these (possible) high dimensional variables on (few) variables Z is used. This
may be important because of numerical reasons (collinearity / singularity or
overfitting) or because of some model assumptions, e.g. that the response vari-
ables Y depend on some underlying latent factors. So in a latent factor model in-
stead of the variables X in model (1) latent variables Z under the side-condition
Z ′Z = Ir (r ≤ k) with Z = XG are used. The model with latent factors is:

Y = 1nµ + XM + E = 1nµ + (XG)B + E (2)

with the side condition
(XG)′(XG) = Ir. (3)

Is is shown in Luebke and Weihs (2004b) that concerning a prediction op-
timal solution for G it is only necessary to look for G ∈ IRp×r with r ≤
min(rank(X), rank(Y )).
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Given the estimates Ĝ of G, fulfilling the side-condition (XĜ)′(XĜ) = Ir,
and µ̂ of µ it is assumed that in the latent factor model the estimate of B is the
usual least square estimate of Y on Z = XG.

B̂ = [(XĜ)′(XĜ)]−1(XĜ)′(Y − 1nµ̂) = (XĜ)′(Y − 1nµ̂).

The ordinary least squares estimator for B is used by reduced rank regression
techniques like Canonical Correlation Analysis (CCA), Principal Component
Regression (PCR) or Partial Least Squares (PLS). Thus, the only difference
between these methods is their way of estimation of G. So the estimate of M

in a latent factor model is

M̂ = ĜB̂ = Ĝ(XĜ)′(Y − 1nµ̂).

3 Prediction criteria

Suppose that the mean µ and the regression matrix M are estimated on a
training set and that it is crucial how this estimator will perform on n0 future
values X0, Y0. The point prediction of the future response values is:

Ŷ0 = 1n0
µ̂Y + X0M̂X,Y .

M and µ are estimated on the training set X, Y . With a known test set X0, Y0

the loss in n0 (new) observations can be measured by

L =
1

n0

‖(Y0 − Ŷ0)Γ
− 1

2 ‖2, (4)

where Γ is a fixed q × q weight matrix. One possible choice is the diagonal
matrix of the variances of the response variables (Schmidli, 1995, p. 22). This
was used here as the loss in Y and Y0 is measured relative to the variance of
the responses.

The loss (4) is closely linked to the mean R2 of the response variables
(Schmidli, 1995, p. 23) where the R2 is measured on the future values Y0

and the mean is taken over all q response variables:

R2

mean = 1 −
L

q
. (5)

Usually one is not only interested in the performance of the estimator for some
observations but also in the ‘general’ or average performance. The corresponding
mean loss (mean squared error of prediction) is defined as (Schmidli, 1995, p.
24):

MSEP =
1

n0

EY |XEY0|X0
‖(Y0 − Ŷ0)Γ

− 1

2 ‖2

=
1

n0

EY |XEY0|X0
‖(Y0 − (1n0

µ̂ + X0M̂Y,X))Γ− 1

2 ‖2 (6)

=
1

n0

EY |XEY0|X0
‖(Y0 − (1n0

µ̂ + X0(ĜX,Y Ĝ′
X,Y X ′(Y − 1nµ̂))))Γ− 1

2 ‖2
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Equation (6) shows that the MSEP can be seen as a function of the projection
matrix G. So by using different G – and taking care of the side-condition –
different MSEP can be achieved. Estimation of MSEP can be done by bootstrap
methods.

4 Latent factor prediction pursuit

The latent factor prediction pursuit method (LaFaPP) tries to minimize the
MSEP given in equation (6) within the possible solution space of the side-
condition (see equation (3)). So its basic idea is to look at the MSEP as a
function of G and minimize it directly by means of simulated annealing on G.
The conditional expectations E·|· in (6) are estimated by bootstrap. This means
that the given data are randomly split into two parts, namely X, Y and X0, Y0,
respectively.

The computer intensive minimization is done by means of simulated anneal-
ing on the basis of a Nelder-Mead (NM) algorithm (Press et al., 1992, p. 451).
The Nelder-Mead (or downhill simplex) algorithm is an optimization method
that does not need any gradients. It transforms a simplex of m + 1 points for
an m dimensional problem. The functional values are calculated and the worst
point is reflected through the opposite face of the simplex. If this trial point is
best, the new simplex is expanded further out. If the function value is worse
than the second worst point, the simplex is contracted. If no improvement at
all is found, the simplex is shrunk towards the best point. This procedure ter-
minates when the differences in the function values between the best and worst
points are neglectable.

In contrast to the pure downhill simplex method of the Nelder-Mead algo-
rithm the simulated annealing method accepts a trial point with a probability
proportional to a parameter t (called temperature) even if it is worse than the
points in the simplex (a better point is always accepted). Because of this it
is hoped that local minima can be overcome as the algorithm sometimes goes
‘uphill’. By reducing the temperature slowly the algorithm will at last converge
to the next minimum. The basic simulated annealing algorithm is labeled in
Algorithm 1.

In LaFaPP the simulated annealing is applied to the vectorized projection
matrices G. The stochastic search by means of simulated annealing is done
within the solution space of the side condition.

• The first problem in the calculation of G in Luebke and Weihs (2004a)
is, that it only works for X which are of full column rank. In the new
algorithm this is solved by a QR decomposition of XG (XG of full column
rank), see for example (Harville, 1997, 66). (In a QR decomposition a
matrix A is decomposed into A = QR with Q being orthonormal and R

a triangle matrix.) As with the QR decomposition the image space of
A is unchanged and just an orthonormal basis (Q) is constructed, it is
a suitable tool for the given problem of orthonormalizing XG: A trial
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matrix Gtrial is transformed to G = GtrialR
−1 with R calculated by the

QR decomposition of Z = XG. By this the side-condition (3) is fulfilled:

(XG)′(XG) = (XGtrialR
−1)′(XGtrialR

−1)

= (QRR−1)′(QRR−1)

= Q′Q

= Ir

With some feasible Gtrial the condition that Z is of full column rank can
be fulfilled if r ≤ rank(X).

• The second problem in Luebke and Weihs (2004a) is that it was only
possible to calculate the overall M and not the overall G for the whole
data. One of the reasons is, that there are equivalent projection matrices
G which lead to the same estimator M̂ . Let D be an orthonormal matrix
and G, B some estimators. Then

G̃ = GD

⇒ B̃ = (XG̃)′Y = (XGD)′Y = D′B

⇒ M̃ = G̃B̃ = GDD′B = GB = M.

One idea to tackle this problem of combining the G’s that lead to or-
thonormal latent factors in the individual bootstrap sample was to use
some kind of procrustes rotation (Sibson, 1978). This turned out to be
unsuccessful. A reason could be that the fit of the single transformed G

of the bootstrap samples on the overall G could be very bad. So with a
generalized procrustes analysis the goodness of LaFaPP decreases signifi-
cantly compared to the method described in Luebke and Weihs (2004a).
Therefore the side-condition (3) was only used the the whole (training
and test) data and not for the individual bootstrap samples. So in the
bootstrap samples the training data is projected by G and the regression
estimate M̂ for the sample is calculated by an ordinary regression of the
response values of the sample of the projected data. By this the ’latent
factors’ of the individual bootstrap samples are not orthonormal in general
and so for calculating the regression matrix some matrix inversion has do
be done but for the whole data the latent factors are orthonormal.

Hence an estimator for the MSEP and the objective function of G is:

M̂SEP (G) =
1

nboot

nboot
∑

i=1

1

q
‖(Y i

0 − X i
0G(G′(X i)′(X i)G)−1(X i)′Y i)Γ− 1

2 ‖2, (7)

with X i, Y i, X i
0
, Y i

0
are the i-th bootstrap sample (mean centered by the mean

of the training sample) and nboot is the number of the bootstrap samples.
In our implementation G is constructed columnwise. After the first column

is found the following columns are constructed so that they fulfill the side con-
dition. Because of this stepwise construction it is also possible to choose the

rank (r ≤ min(rank(X), rank(Y ))) of G so that M̂SEP is minimized.
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One way of describing the LaFaPP method is given in Algorithm 1 (p is the
number of columns of X).

Algorithm 1 Minimization of MSEP by LaFaPP
1: Initialize t0, cs, niter and ntemp

2: Initialize number of bootstrap replications nboot

3: for i = 1 to nboot do

4: Generate bootstrap samples
5: Gold := ∅

6: for Rank r = 1 to min(rank(X), rank(Y )) do

7: —Begin Simulated Annealing—

8: Set t := t0
9: Build random start simplex S (p + 1 vertices) as candidates for the rth column of

Gnew

10: Gw
new = [Gold, Sw,·], w = 1, . . . , p + 1. Sw,· is the wth point in the simplex

11: Adapt each Gw
new to side-condition (3)

12: Calculate objective function f(Gw
new), w = 1, . . . , k + 1, (cf. eq. (7))

13: for i = 1 to ntemp do

14: for j = 1 to niter do

15: Set ftemp(F w
new) = f(F w

new) + t|log(u)|, w = 1, . . . , k + 1, u ∈ U(0, 1)
16: According to NM transition function generate trial point
17: Adapt each Gtrial to side-condition (3))
18: Calculate ftemp(Gtrial) = f(Gtrial) − t|log(u)|
19: if ftemp(Gtrial) < max(G(F ·

new)) then

20: Replace according to NM worst point in simplex with trial point
21: else

22: Contract (old) simplex according to NM
23: end if

24: end for

25: Reduce temperature t = cs t

26: end for

27: —End Simulated Annealing—

28: Attach columnwise to Gold the best point in the final simplex
29: end for

30: end for

The parameters for the Simulated Annealing are shown in Table 1.
We implemented the algorithm in C++ with help of the matrix library New-

mat (Eddelbüttel, 1996). For the data generation and the other reduced rank
regression methods compared in the simulation study we used the statistical
program R (R Development Core Team, 2003).

5 Design Simulation Study

In order to compare LaFaPP with several previously proposed methods for pre-
dicting multivariate responses, a simulation study was carried out. As men-
tioned earlier the design of the study is taken from Breiman and Friedman
(1997). In this study data was generated according to a multivariate linear
model (1). To obtain general results, some features of the data, the goodness of
a prediction method largely depends on, were varied, namely:

• The number of observations n
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Table 1: Parameter of the implemented Simulated Annealing Algorithm.

Name Abbreviation Value

Start temperature t0 1
Linear cooling parameter cs 0.8
Number of iterations at each temperature niter 100
Number of iterations of temperature ntemp 50
Number of bootstrap replications nboot 100

• The number of response variables q

• The number of the predictor variables p

• The correlation structure of the predictor variables

• The signal to noise ratio

• The correlation structure of the response variables

• The covariance structure among the errors

For each observation of each situation the predictor variables were generated
as a random sample from a p-dimensional normal distribution with zero mean
and covariance matrix V ,

x ∼ N(0, V ).

As indicated above the covariance structure of the predictor variables was varied.
This was done by creating V in the following manner

Vij = s|i−j|, i, j = 1, . . . , p.

In the simulation study two levels of s were considered: 0 (independence of the
predictor variables) and 0.99 (ensures a high degree of collinearity among the
predictor variables).
The matrix of (true) coefficients M was generated as a product of two matrices
T ∈ IRp×10 and U ∈ IR10×q which contain random components,

M = TU. (8)

The coefficients of T are calculated as follows

Tjk = hk(T ∗
jk)2,

where
T ∗

jk = max{lk − |j − jk|, 0}.

The quantities lk and jk are random integers sampled from a uniform distri-
bution in the ranges [1, p] and [1, 6] respectively. hk is a scaling factor which
ensures

∑p

j=1
Tjk = 1:

hk =
1

∑p

j=1
T ∗

jk

, k = 1, . . . , 10.
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By this every row of T contains only a few non-zero elements which form a
triangle centered at jk, so in the regression (M = TU) only some variables are
important. This is illustrated in Figure 1. The matrix U row-wise contains 10

0 10 20 30 40 50

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

j

T(
j,k

)

Figure 1: Tjk for p = 50 and 5 different k

independent random samples from a q−dimensional normal distribution with
zero mean and covariance matrix Γ,

Γij = ρ|i−j|, i, j = 1, . . . , q.

The value of ρ represents the average correlation among the response functions
fi(x) =

∑p

j=1
mijxj and therefore controls the correlation structure among the

response variables. In our simulation study we considered two values of ρ: 0
(low degree of correlation among the response variables) and 0.7 (high degree
of correlation among the response variables). By the matrix product (8) the
coefficients in M for each response are different random superpositions of the
same 10 ’bumps’ or triangles. Finally, all coefficients of M were normalized by
the same scaling factor so that the average (signal) variance is equal to one.
By the whole (random) construction of M the coefficients in each column have
sometimes roughly the same absolute values, whereas sometimes they are very
different (Breiman and Friedman, 1997).
The matrix of errors E consists of n random samples from a q-dimensional
normal distribution with zero mean and covariance matrix Σ. Two covariance
structures among the errors were considered:

Σ = σIq (Homoscedasticity) (9)

Σ = σ diag
(

{i2}q
1

)

(Heteroscedasticity). (10)
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For each of the two covariance structures two values of σ were studied. They
were chosen to produce the average signal-to-noise ratios e = 1.0 and e = 3.0

σ =
q

trace(Σ)e
.

For each factor listed above two levels were considered. The chosen values
are shown in Table 2. The seven-factor-interaction was confounded so that a

Table 2: Design of experiment of simulation study

Factor Realization -1 Realization +1

n 250 25
q 5 10
p 50 100
s 0 0.99
e 3 1
ρ 0 0.7

covariance structure of error homoscedasticity heteroscedasticity

27−1 fractional factorial design with 64 runs was performed to generate the data.
The whole design was repeated 10 times so 640 different runs are used in the
simulation study.

6 Result of Simulation Study

Latent Factor Prediction Pursuit was compared to Partial Least Squares (PLS,
see for example Weihs and Jessenberger (1999, p. 170)). PLS is a heuristically
motivated reduced rank regression technique that turned out to be work very
well concerning prediction in many situations (see e.g. Almøy (1996), Luebke
and Weihs (2004a)). Note that in Breiman and Friedman (1997) the perfor-
mance measures are based on some divergence of M and M̂ . As the prime
interest here is prediction the maximum of the average prediction prediction R2

(5) and 0 on 1000 validation examples is used as the performance measure:

R̃2 = max(R2

mean, 0)

As the R2 is evaluated on validation data it could be less than zero (this hap-
pened especially in situations when n = 25) but to make it comparable to the
standard R2 which takes values from 0 to 1 we adjusted it to the same interval.

The new LaFaPP outperformed PLS 283 times whereas PLS was better in
134 runs. The R̃2 of LaFaPP is 0.287 – remember that R̃2 is based on future
(validation) data not used to estimate the M . The R̃2 of PLS is 0.256. So
concerning prediction power LaFaPP is roughly 10% better than PLS. This is
also shown in Figure 2 where the boxplot of the performance of both methods
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Figure 2: Comparison of LaFaPP and PLS concerning R̃2

is shown. It can be seen that both methods differ in the median but not in the
other quartiles.

Moreover let us comment on the results for the different factors of the simula-
tion study. The Figures for the results are given in the Appendix (page 14) and
it can be seen that LaFaPP outperforms PLS in all settings of the simulation
study.

• Figure 4 shows that both methods are improved by correlation in the
predictor variables but LaFaPP more than PLS.

• With a lower signal-to-noise ratio both methods are getting worse – which
could be expected (see Figure 5).

• With a higher correlation in the response variables (ERR, covariance struc-
ture) the methods improve slightly (Figure 6).

• In Figure 7 and 8 it can be seen that ρ and q seem to have no influence
on the performance of LaFaPP and PLS.

• PLS is getting worse with more predictor variables. LaFaPP is rather
stable. Remember that no method of finding the correct rank (number of
latent factors) is used (compare Figure 9).

• The Deterioration with less training samples which is about the same for
both methods is shown in Figure 10.
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So it can be claimed that LaFaPP is more stable than PLS and is performing
better in general in our simulation study.

In the simulation study above the training- and test data were split in two
equal halves for estimating (7). In order to check whether this is optimal we
repeated the experiment where all factors set on −1 with a training fraction
ranging form 0.1 to 0.9 with 3 random samples obtained in this setting of simu-
lation study. As it can be seen in Figure 3 the number of observations used for
training in the bootstrap samples in (7) is not important.
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70
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Figure 3: Comparison of different training fraction in LaFaPP concerning R̃2

7 Conclusion

Concerning predictive power, the new LaFaPP method turns out to outperform
the classical reduced rank methods Partial Least Squares in all situations tested
in the simulation study. It has several advantages like small MSEP and the
fact that it does not make any assumptions on the data. As it is a computer
intensive method it demands more computational time. A further advantage of
LaFaPP is that it projects on no more than necessary latent factors. (Luebke
and Weihs, 2004b).
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Dirk Eddelbüttel. Object-oriented econometrics: Matrix programming in c++
using gcc and newmat. Journal of Applied Econometrics, 11(2):299–314, 1996.

David A. Harville. Matrix Algebra From a Statisticians’s Perspective. Springer,
1997.

Inge S. Helland and Trygve Almøy. Comparison of prediction methods when
only a few components are relevant. Journal of the American Statistical As-

sociation, 89(426):583–591, 1994.

Karsten Luebke and Claus Weihs. Prediction optimal data analysis by means
of stochastic search. In Martin Schader, Wolfgang Gaul, and Maurizio Vichi,
editors, Between Data Science and Applied Data Analysis, pages 305–312.
Springer, 2003.

Karsten Luebke and Claus Weihs. Generation of prediction optimal projection
on latent factors by a stochastic search algorithm. Computational Statistics

& Data Analysis, 47(2):297–310, 2004a.

Karsten Luebke and Claus Weihs. A note on the dimension of the projection
space in a latent factor regression model with application to business cycle
classification. Technical Report 29, Sonderforschungsbereich 475, Universität
Dortmund, 2004b.

W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. Numerical

Recipes in C. Cambridge University Press, second edition, 1992.

R Development Core Team. R: A language and environment for statistical

computing. R Foundation for Statistical Computing, Vienna, Austria, 2003.

Gregory C. Reinsel and Raja P. Velu. Multivariate Reduced-Rank Regression,

Theory and Applications. Springer, 1998.

Peter Salamon, Paolo Sibani, and Richard Frost. Facts, Conjectures and Im-

provement for Simulated Annealing. Monographs on Mathematical Modeling
and Computation. SIAM, 2002.

12



Heinz Schmidli. Reduced Rank Regression. Physica Verlag, 1995.

Robin Sibson. Studies in the robustness of multidimensional scaling: Procrustes
statistics. Journal of the Royal Statistical Society B, 40(2):234–238, 1978.

Claus Weihs and Torsten Hothorn. Determination of optimal prediction oriented
multivariate latent factor models using loss functions. Technical Report 15,
Sonderforschungsbereich 475, Universität Dortmund, 2002.

Claus Weihs and Jutta Jessenberger. Statistische Methoden zur

Qualit”atssicherung und -optimierung in der Industrie. Wiley VCH,
1999.

13



Appendix

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

s

m
ea

n 
R~

2

PLS
LaFaPP

Figure 4: Comparison of LaFaPP and PLS concerning R̃2 for the factor s
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Figure 5: Comparison of LaFaPP and PLS concerning R̃2for the factor e
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Figure 6: Comparison of LaFaPP and PLS concerning R̃2 for the factor ’covari-
ance structure’
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Figure 7: Comparison of LaFaPP and PLS concerning R̃2 for the factor ρ
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Figure 8: Comparison of LaFaPP and PLS concerning R̃2 for the factor q
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Figure 9: Comparison of LaFaPP and PLS concerning R̃2 for the factor p
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Figure 10: Comparison of LaFaPP and PLS concerning R̃2 for the factor n
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