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Abstract

We consider maximin and Bayesian D-optimal designs for nonlinear regression models.
The maximin criterion requires the specification of a region for the nonlinear parameters
in the model, while the Bayesian optimality criterion assumes that a prior distribution for
these parameters is available. It was observed empirically by many authors that an increase of
uncertainty in the prior information (i.e. a larger range for the parameter space in the maximin
criterion or a larger variance of the prior distribution in the Bayesian criterion) yields a larger
number of support points of the corresponding optimal designs. In this paper we present
a rigorous proof of this phenomenon and show that in many nonlinear regression models the
number of support points of Bayesian- and maximin D-optimal designs can become arbitrarily
large if less prior information is available. Our results also explain why maximin D-optimal
designs are usually supported at more different points than Bayesian D-optimal designs.

AMS Subject Classification: 62K05
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1 Optimal designs for nonlinear regression models

Consider the common nonlinear regression model

E[Y | x] = η(x, θ),(1.1)

where θ ∈ R
m is the unknown parameter, x denotes the explanatory variable, which varies in

a compact space, say X , and η is a known regression function. We assume that observations
at different experimental conditions are independent with constant variance, say σ2 > 0. Under
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the additional assumption of normally distributed errors the Fisher information matrix for the
parameter θ at the point x is given by

I(x, θ) =
1

σ2

(∂η

∂θ
(x, θ)

)(∂η

∂θ
(x, θ)

)T

∈ R
m×m.(1.2)

Here we assume that for each x ∈ X the regression function is continuously differentiable with
respect to θ.

An approximate design ξ for this model is a probability measure on the design space X with finite
support x1, . . . , xn and weights w1, . . . , wn representing the relative proportions of total observations
taken at the corresponding design points [see e.g. Kiefer (1974)]. The information matrix of a design
ξ is defined by

M(ξ, θ) =
1

σ2

∫

X

I(x, θ)dξ(x),(1.3)

and its inverse divided by the sample size is an approximation of the covariance matrix of the least
squares estimate for the parameter θ. A local optimal design maximizes an appropriate function
of the information matrix [see Silvey (1980) or Pukelsheim (1993)]. There are numerous optimality
criteria which can be used to discriminate among competing designs, and we restrict ourselves to
the famous D-optimality criterion

log |M(ξ, θ)| .(1.4)

A local D-optimal design, i.e. a design maximizing the function (1.4) for fixed θ, minimizes the
volume of the confidence ellipsoid for the unknown parameter θ ∈ R

m [see Pukelsheim (1993)]
and it does not depend on the variance σ2. Therefore, without loss of generality we assume that
σ2 = 1 in the following discussion. In general, a local D-optimal design depends on the unknown
parameter θ. As a consequence local optimality criteria have been criticized by numerous authors
because the resulting optimal designs can be highly inefficient within the true model setting if the
unknown parameters are misspecified. A more robust approach to this problem is, in some sense, to
quantify the uncertainty in those parameters and to incorporate this additional information into the
formulation of suitable optimality criteria. This has been achieved in practice by the introduction
of the concepts of Bayesian and maximin optimality.

Mathematically preliminary knowledge of the experimenter can be modeled as follows. Assume that
θ ∈ Θ where Θ ⊂ R

m denotes a set with induced Borel field, and let π denote a prior distribution on
Θ. A design is called Bayesian D-optimal (with respect to the prior π) if it maximizes the function

∫

Θ

log |M(ξ, θ)|π(dθ).(1.5)

Here and throughout this paper we assume that the corresponding integrals exist. Bayesian D-
optimal designs have been studied by several authors [see e.g. Chaloner and Larntz (1989), Pronzato
and Walter (1985), Mukhopadhyay and Haines (1995), Dette and Neugebauer (1996, 1997) among
many others].

In some circumstances it may be difficult for the experimenter to specify a prior distribution on the
parameter space Θ. Therefore many authors propose standardized maximin D-optimal designs for
the construction of efficient and robust designs, i.e. designs which maximize

min
{ |M(ξ, θ)|

|M(ξ[θ], θ)|
| θ ∈ Θ

}

(1.6)
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in the class of all approximate designs. Here ξ[θ] denotes the local D-optimal design maximizing
the criterion (1.4) for fixed θ [see e.g. Müller (1995), Dette (1997), Imhof (2001) or Dette and
Biedermann (2003)]. The criterion (1.6) does not compare the quantities |M(ξ, θ)| directly but
with respect to the values, which could be obtained if θ and as a consequence the local D-optimal
design would be known. The main reason for considering efficiencies instead of the non-standardized
quantities is that the values |M(ξ, θ)| are usually of rather different size and for this reason often
not comparable; see Dette (1997).

Bayesian- and standardized maximin D-optimal designs can only be given explicitly in rare cir-
cumstances. Usually the optimization of the function (1.5) or (1.6) is performed in the class of
all minimally supported designs (i.e. in the class of all designs with m support points) and their
optimality within the class of all designs is checked by an application of equivalence theorems [see
e.g. Chaloner (1993), Mukhopadhyay and Haines (1995), Dette and Neugebauer (1996, 1997) for
some results on Bayesian D-optimal designs and Haines (1995), Imhof (2001), Dette and Bieder-
mann (2003) for results on standardized maximin D-optimal designs]. In these examples minimally
supported designs are only optimal with respect to the chosen criterion if the minimum in the
maximin criterion is taken over a sufficiently “narrow parameter space” Θ or the prior in Bayesian
criterion puts “most of its mass at a small” subset of Θ; cf. the literature cited above. On the other
hand, if less information about the unknown parameter is available, it was observed empirically
that the number of support points of Bayesian or standardized maximin optimal designs exceeds
the number of parameters in the nonlinear regression model. Usually the number increases if less
knowledge about θ is incorporated in the optimality criteria [see Chaloner and Larntz (1989), Dette
and Biedermann (2003) among others].

In the present paper we will verify that for a broad class of nonlinear regression models the number of
support points of the Bayesian- and standardized maximin D-optimal design can become arbitrarily
large if less prior information regarding the unknown parameters is available. More precisely, we
establish sufficient conditions on the regression models such that an increasing uncertainty about
the nonlinear parameters leads to an arbitrary large number of support points of Bayesian and
standardized maximin D-optimal designs. We also demonstrate by several examples that these
conditions are satisfied in commonly used models; in fact, we did not find any example, where this
is not the case. While the idea gives rise to a general tool, specific details and technical difficulties
have to be dealt with for the specific models involved. For the sake of a transparent presentation we
therefore consider in Section 2 and 3 nonlinear regression models with one or two parameters, where
only one parameter enters nonlinearly in the model. In this case the main idea of the construction
of optimal designs with a large number of support points becomes most transparent, but it can be
easily transferred to models with more parameters as indicated in Section 4 and 5. Finally, some
conclusions are given in Section 5, while all technical details are deferred to an appendix.

This paper provides a rigorous proof of some phenomena, which were observed a long time empiri-
cally in the literature. Our results yield a better understanding of the structure of optimal designs
with respect to Bayesian and maximin optimality criteria and also explain why maximin D-optimal
designs are usually supported at more different points than Bayesian D-optimal designs.
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2 Standardized maximin D-optimal designs

2.1 The general principle

Throughout the paper we assume that the local D-optimal design depends only on one component
of the parameter θ ∈ R

m. The general situation can be obtained by a reduction to this case, which
is briefly indicated in Section 5. We denote this component by β and the corresponding design
by ξ[β]. Consequently, we reflect only this dependence in our notation (1.2) and (1.3), and the
optimality criteria in (1.5) and (1.6) are represented by the functions

Ψ(ξ) =

∫

B

log |M(ξ, β)|π(dβ),(2.1)

Φ(ξ) = min
{ |M(ξ, β)|

|M(ξ[β], β)|
| β ∈ B

}

,(2.2)

respectively. Here M(ξ, β) is the information matrix (1.3) in the nonlinear regression model (with
σ2 = 1), B = [βmin, βmax] represents our prior knowledge about the location of the unknown param-
eter and π denotes a prior distribution on B. [If the local D-optimal design does not depend on the
parameter β, it is also standardized maximin and Bayesian D-optimal, and therefore this case is of
no interest in the following discussion.]

Moreover, if the underlying regression model is of size m × m, we assume that the local optimal
design ξ[β] (depending only on the parameter β by the previous assumption) is minimally supported,
i.e. # supp ξ[β] = m. In this case the local D-optimal design has equal masses at its support points
[see Silvey (1980)]. This situation is very typical for nonlinear regression models involving only one
nonlinear parameter [see e.g. Rasch (1990), He, Studden and Sun (1996), Dette and Neugebauer
(1996, 1997)], and several examples will be given below. Let ξ denote a design on X with masses
wk at support points xk (k = 1, . . . , n), then the information matrix of ξ is given by

M(ξ, β) =
n

∑

k=1

wkI(xk, β).

Throughout this paper,

Q(β, β̃) =
|M(ξ[β̃], β)|

|M(ξ[β], β)|
(2.3)

quantifies the loss of information if β is the “true” unknown parameter, but the experimenter uses
the local D-optimal design for a (wrong) guess of the unknown parameter, say β̃.

We will derive sufficient conditions such that the number of support points of the optimal designs
with respect to the optimality criteria (2.1) and (2.2) exceeds any given number if the amount of
prior information in the optimality criterion is decreased. In order to cover a very broad class of
regression models, we write these assumptions in a very general form, but we will immediately add
a more transparent one that is sufficient for many commonly used models. Our first Definition
quantifies the loss of efficiency caused by an application of a local D-optimal design based on a
misspecified parameter.
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Definition 2.1 Let ` : B → R be a continuously differentiable function with `′(β) > 0 for all β ∈ B.
The function Q defined in (2.3) is called uniformly decreasing with respect to ` if the following two
conditions hold

(i) For all β, β̃ ∈ B the inequality

Q(β, β̃) ≤ ϕ(`(β) − `(β̃))(2.4)

is satisfied, where ϕ is a real-valued function whose decay (i.e. ϕ(z) → 0) for z → ∞ will be
sufficiently fast as specified later for each case under consideration.

(ii) There is a positive constant λ > 0 such that

Q(β, β̃) ≥
1

2
whenever |`(β) − `(β̃)| ≤ λ.(2.5)

In many models of actual interest, the transformation ` is either the identity or the logarithm. In
the latter case we avoid formulas with the transformation. We say that Q is uniformly decreasing
on a logarithmic scale if

Q(β, β̃) ≤ ψ(
β

β̃
) = ϕ(log

β

β̃
),(2.6)

for some function ψ, where the functions ψ and ϕ in both definitions are related by ψ(ez) = ϕ(z).
In this context, condition (ii) is rewritten as

Q(β, β̃) ≥
1

2
whenever e−λ ≤

β

β̃
≤ eλ.(2.7)

We now discuss the one- and two-dimensional case separately.

2.2 The case m = 1

The following result shows for regression models with one parameter that the number of support
points of the standardized maximin D-optimal design can become arbitrarily large under general
assumptions. We will demonstrate below that many commonly used models have this property.

In order to derive results of this type a final assumption is required. This property guarantees that
points in the design space X which are not in the support of any local D-optimal design ξ[β] can be
disregarded for the construction of the standardized maximin D-optimal design; cf. the discussion
of the first example. In the case m = 1 it reads

for any x ∈ X there exists a local D-optimal design ξ[β̃], β̃ ∈ B, such that(2.8)

|I(x, β)| ≤ |M(ξ[β̃], β)| ∀ β ∈ B.

Theorem 2.2 Let m = 1. Assume that Q is uniformly decreasing with respect to ` in the sense of
Definition 2.1, where

ϕ(z) ≤ c1|z|
−γ with c1 > 0, γ > 1,(2.9)

and that (2.8) is satisfied. Assume that N ∈ N is given. If `(βmax) − `(βmin) is sufficiently large,
then the standardized maximin D-optimal design with respect to the interval B = [βmin, βmax] is
supported at more than N points.
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Corollary 2.3 Let m = 1. Assume that Q is uniformly decreasing on a logarithmic scale, where

ψ(z) ≤ c1| log z|−γ holds with c1 > 0, γ > 1,(2.10)

and that (2.8), (2.7) are satisfied. Assume that N ∈ N is given. If βmax/βmin is sufficiently large,
then the standardized maximin D-optimal design with respect to the interval B = [βmin, βmax] is
supported at more than N points.

Example 2.4 Consider the one-dimensional exponential growth model

η(x, β) = e−βx, β ∈ [1, B], x ∈ [0, 1](2.11)

with Fisher information of the parameter β

I(x, β) = x2e−2βx.(2.12)

The local D-optimal design is a one-point design supported at the point x[β] = 1/β, and from

M(ξ[β], β) = I(x[β], β) = (eβ)−2(2.13)

it is easy to see that the function Q in (2.3) is given by

Q(β, β̃) =

(

β

β̃
e1−β/β̃

)2

.

Thus, we have Q(β, β̃) = ψ(β

β̃
), where

ψ(z) = (ze1−z)2 ≤

{

e2z2 if z ≤ 1,
3 z−2 if z > 1.

Thus (2.6) holds and ψ(z) ≤ e2e−2| log z| decays much faster than required in (2.10). Moreover
ψ(z) ≥ 1

2
if 1

2
≤ z ≤ 2, which proves property (ii) in Definition 2.1 with `(β) = log β. Finally,

we verify property (2.8). Consider a point, say x0. If 1 ≥ x0 ≥ 1/B, we have δx0
= ξ[1/x0] for

the Dirac measure at the point x0, and there is in fact equality in (2.8) with β̃ = 1/x0. On the
other hand if x0 < 1/B, then the Dirac measure δx0

is not local D-optimal for any β ∈ [1, B] and
x0β <

β
B
≤ 1 for all β ∈ [1, B]. Since the function z 7→ z2e−2z is increasing on the interval [0, 1], it

follows that

β2I(x0, β) = β2M(δx0
, β) ≤ β2M(δ1/B , β) = β2M(ξ[B], β) for all β ∈ [1, B],

which shows (2.8). Similarly, if x0 > 1 we obtain from the fact that the function z → z2e−2βz is
decreasing for z ≥ 1 (note that β ≥ 1)

I(x0, β) = x2
0e

−2βx0 ≤ e−2β = I(1, β) = M(ξ[1], β)

for all β ∈ [1, B]. Therefore the assumptions of Corollary 2.3 are satisfied, and the number of support
points of the standardized maximin D-optimal design for the regression model (2.11) becomes
arbitrarily large with increasing parameter B → ∞.
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B standardized maximin D-optimal design

7 0.185 0.906
0.567 0.433

10 0.142 0.771
0.553 0.447

20 0.066 0.298 0.919
0.441 0.259 0.300

30 0.047 0.233 0.836
0.426 0.266 0.309

40 0.037 0.193 0.772
0.414 0.272 0.314

50 0.028 0.131 0.374 0.972
0.379 0.221 0.170 0.230

70 0.020 0.099 0.309 0.913
0.363 0.220 0.181 0.237

100 0.014 0.064 0.156 0.287 0.838
0.336 0.193 0.093 0.137 0.241

200 0.007 0.034 0.101 0.250 0.326 0.856
0.306 0.182 0.147 0.089 0.066 0.210

Table 2.1: Standardized maximin D-optimal designs for the exponential regression model (2.11) on
the interval [0, 1] with respect to various parameter spaces [1, B]. First row: support points; second
row: weights.

In Table 2.1 we show some numerical results illustrating this fact. We have calculated standardized
maximin D-optimal designs for the regression model (2.11) using Matlab for various parameter
spaces B = [1, B]. The optimality of the calculated designs was checked by the the equivalence
theorem of Wong (1992). By this result a design ξ∗ is standardized maximin D-optimal for the
one-dimensional exponential growth model (2.11) if and only if there exists a distribution π∗ such
that the inequality

∫

B

x2e−2βx

M(ξ[β], β)
π∗(dβ) ≤ 1(2.14)

holds for all x ∈ [0, 1]. The distribution π∗ is called least favorable distribution or duality measure
and depicted in Table 2.2 for the cases considered in Table 2.1. We observe that the number of
support points of the standardized maximin D-optimal design increases with the length of the
interval [1, B].

Example 2.5 As a further example we consider a simplification of the Bleasdale-Nelder model for
describing the dependence of plant yield Y on plant density x [see Ratkowsky (1983), p. 60], that
is

E[Y | x] = (1 + βx)−1,(2.15)

where the explanatory variable varies again in the interval [0, 1] and β ∈ [1, βmax], i.e. B = βmax.
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B least favourable distribution

7 1 2.9 7
0.504 0.105 0.391

10 1 3.5 10
0.454 0.227 0.319

20 1 4.1 20
0.396 0.265 0.339

30 1 3.8 9.3 30
0.355 0.209 0.167 0.269

40 1 3.9 12.0 40
0.337 0.214 0.215 0.234

50 1 4.3 14.5 50
0.330 0.227 0.216 0.227

70 1 3.9 7.7 21 70
0.310 0.154 0.131 0.192 0.213

100 1 4 11.0 29.8 100
0.289 0.183 0.152 0.172 0.204

200 1 4.1 10.2 24 59.3 200
0.261 0.159 0.120 0.126 0.141 0.193

Table 2.2: Least favourable distributions π∗ in the equivalence theorem (2.14) corresponding to
the standardized maximin D-optimal designs in Table 2.1. First row: support points, second row:
weights

The Fisher information of the parameter β at the point x is given by

I(x, β) =
x2

(1 + βx)4
.

The local D-optimal design is again a one-point design concentrating its mass at the point x[β] =
1/β with M(ξ[β], β) = (β22)−2. A straightforward calculation shows that

Q(β, β̃) = ψ
(β

β̃

)

, where ψ(z) =
24z2

(1 + z)4
.

Therefore, Q is uniformly decreasing in the logarithmic scale, where the function ψ satisfies (2.10),
and ψ(z) ≥ 1/2 if 1/3 ≤ z ≤ 3. Finally, the remaining property (2.8) can be shown exactly in
the same way as in Example 2.4. It follows that the number of support points of the standardized
maximin D-optimal design for the regression model (2.15) becomes arbitrarily large with increasing
B = βmax.

Remark 2.6 On a first glance the results of Theorem 2.2, Corollary 2.3 and the examples above
are surprising because it was never observed in numerical studies that the number of support points
of the standardized maximin D-optimal design exceeds the number of parameters substantially; to
our knowledge the numerical results of Example 2.4 are the first ones in this direction. On the
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other hand, it follows from the proof of Theorem 2.2 in the Appendix that the construction of a
design with more than N support points outperforming a given design requires a large parameter
space in the maximin D-optimality criterion. Thus in practice standardized maximin D-optimal
designs in a one-parametric nonlinear regression model with a large number of support points will
only be observed if a large parameter space is involved [cf. Example 2.4].

Example 2.7 Our last one-dimensional example

E[Y | x] =
1

1 + ex+β
, x ∈ [0, B], β ∈ [−B, 0],(2.16)

arises from the logistic regression model and does not refer to the logarithmic scale. The Fisher
information of the parameter β at the point x is given by

I(x, β) =
ex+β

(1 + ex+β)2
.

The local D-optimal design is a one-point design concentrating its mass at the point x[β] = −β
with M(ξ[β], β) = 1/4. Hence,

Q(β, β̃) =
4 eβ−β̃

(1 + eβ−β̃)2
= ϕ(β − β̃),

where the function ϕ is defined by

ϕ(z) =
4 ez

(1 + ez)2
≤ 4e−|z|.

Moreover, Q(β, β̃) ≥ 1
2

if |β − β̃| ≤ 1. Therefore we observe a uniform decay on the natural
scale [that is `(β) = β in Definition 2.1], the remaining condition (2.8) can be checked by similar
arguments as given in the previous examples and Theorem 2.2 applies. If B is sufficiently large the
number of support points of the standardized maximin D-optimal design for the regression model
(2.16) exceeds any given bound N ∈ N.

2.3 Two-dimensional cases

In this section we deal with models with two parameters θ = (α, β)T , where only one of them, say
β, appears in the local D-optimal design. As a consequence, the Fisher information is of dimension
2 × 2 and can be represented as

I(x, β) = f(x, β)fT (x, β),(2.17)

where f(x, β) = (f1(x, β), f2(x, β))T ∈ R
2 denotes the gradient of the response function with respect

to the parameter θ. Again, the second parameter α is assumed to be 1 without loss of generality
since it has no influence on the solution of the D-optimal design problem. Let ξ denote a design
with masses wk at the points xk (k = 1, . . . , n). By the Cauchy-Binet formula the determinant of
the information matrix of the design ξ can be represented as
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|M(ξ, β)| =
∑

i<j

wiwj I2(xi, xj, β),(2.18)

where

I2(xi, xj, β) =

∣

∣

∣

∣

f1(xi, β) f1(xj, β)
f2(xi, β) f2(xj, β)

∣

∣

∣

∣

2

.(2.19)

Note that the function I2 is symmetric, i.e. I2(x1, x2, β) = I2(x2, x1, β). We will show in the
following that the properties of the function I2 determine the behaviour of the standardized maximin
D-optimal design.

For a motivation of the following definition assume for a moment that X ⊂ R. We call the function
I2 increasing (with respect to the second argument) if the inequality

I2(x1, x2, β) < I2(x1, y2, β)(2.20)

holds for all x1 < x2 < y2 in the experimental domain X . In a nonlinear regression model with
increasing function I2 on the design space X = [xmin, xmax] the right boundary point, say x̄ = xmax,
is always a support point of the local D-optimal design. Specifically, the inequality

I2(x1, x2, β) ≤ I2(x1, x̄, β) ≤ I2(x1, x̄, β) + I2(x2, x̄, β)(2.21)

holds for all x1 < x2. Similarly, the function I2 is called decreasing (with respect to the first
argument) if the opposite inequality is satisfied in the first argument. In this case x̄ = xmin belongs
always to the support of the local D-optimal design and an analogous inequality holds. In fact,
there are regression models like in Example 2.12 below which do not satisfy (2.20) or (2.21), but
nevertheless there exists a common support point of all local D-optimal designs and a generalization
of the inequality (2.21) is found.

Definition 2.8 A nonlinear regression model with m = 2 parameters is called reducible if there
exists a common support point, say x̄, of all local D-optimal designs and a positive constant c such
that

I2(x1, x2, β) ≤ c[I2(x̄, x1, β) + I2(x̄, x2, β)](2.22)

holds for all x1, x2 ∈ X .

Note that Definition 2.8 does not require the design space X to be one-dimensional (although we
used this assumption for its motivation). Finally, the two dimensional analogue of assumption (2.8)
is given by

for any x ∈ X there exists a local D-optimal design ξ[β̃], β̃ ∈ B, such that(2.23)

|I2(x, x̄, β)| ≤ 4|M(ξ[β̃], β)| ∀ β ∈ B .

Theorem 2.9 Let m = 2. Assume that the nonlinear regression model is reducible, that (2.23) is
satisfied and that Q is uniformly decreasing with respect to ` in the sense of Definition 2.1, where
the function ϕ satisfies (2.9). Assume that N ∈ N is given. If `(βmax) − `(βmin) is sufficiently
large, then the standardized maximin D-optimal design with respect to the interval B = [βmin, βmax]
is supported at more than N points.
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The specialization to the logarithmic scale is clear from Corollary 2.3 and therefore omitted. The
crucial point in the proof of Theorem 2.9 is that in a reducible nonlinear regression model the double
sums (2.18) for the evaluation of the determinant of the information matrix can be estimated by a
simple sum, that is

|M(ξ, β)| =
∑

i<j

wiwj I2(xi, xj, β) =
1

2

∑

i,j

wiwj I2(xi, xj, β)

≤
c

2

∑

i,j

wiwj[I2(x̄, xi, β) + I2(x̄, xj, β)]

= c
∑

k

wkI2(x̄, xk, β).(2.24)

Thus the proof of Theorem 2.9 will be obtained by some modifications of the proof of Theorem 2.2.
The details are given in the Appendix.

Example 2.10 Consider the Michaelis-Menten model

E(Y |x) =
αx

β + x
, x ∈ [0, 1] , β > 0,(2.25)

which is widely used to describe numerous physical and biological phenomena [see e. g. Cressie
and Keightley (1979) or Cornish-Browden (1979)]. Here the Fisher information for the parameter
θ = (α, β) is given by

I(x, β) =
x2

(β + x)2

(

1 − α
β+x

− α
β+x

α2

(β+x)2

)

.(2.26)

The quotients |M(ξ, β)|/|M(ξ[β], β)| and consequently the local D-optimal design do not depend
on the parameter α. Therefore we assume without loss of generality α = 1, which justifies the use
of the notation I(x, β) in (2.26). A straightforward calculation yields

I2(x1, x2, β) =
x2

1

(x1 + β)4

x2
2

(x2 + β)4
(x1 − x2)

2,(2.27)

Obviously I2 is increasing with respect to its second argument, and Theorem 2.9 is applicable. The
local D-optimal designs are well known to have equal masses at the points

x1 = x[β] =
β

2β + 1
, x2 = x̄ = 1(2.28)

[see e.g. Rasch (1990)], and

|M(ξ[β], β)| =
1

64β2(β + 1)6
(2.29)

[see Dette and Biedermann (2003)]. We now consider the standardized maximin D-optimal design
problem for the parameter space B = [βmin, 1] = [B−1, 1] and derive an estimate for the function
Q(β, β̃). Since x̄ = 1, we can restrict ourselves to

I2(x, 1, β) =
x2(1 − x)2

(x + β)4(1 + β)4
.(2.30)

11



A straightforward calculation yields

I2(x[β̃], 1, β) =
[

4(β + 1)
β β̃

2β̃+1

( β̃

2β̃+1
+ β)2

(1 −
β̃

2β̃ + 1
)
]2

4 |M(ξ[β], β)|

=
[

2
{

(β + 1)(β̃ + 1)
(β + β̃)2

(β + β̃ + 2ββ̃)2

} 2β/β̃

(1 + β/β̃)2

]2

4 |M(ξ[β], β)|.(2.31)

The expression within the braces does not exceed 1 + max{β, β̃}. Hence,

I2(x[β̃], 1, β) ≤ 16
[ 4β/β̃

(1 + β/β̃)2

]2

|M(ξ[β], β)| = 4ψ
(β

β̃

)

|M(ξ[β], β)|,

where the function ψ is defined by

ψ(z) :=

[

8z

(1 + z)2

]2

.(2.32)

We have for any design with support in the interval [B−1(2B−1 + 1), 1/3]

|M(ξ, β)| =
∑

i<j

wiwjI2(xi, xj, β) ≤

n
∑

i=1

wiI2(xi, 1, β).

This implies for the design ξ[β̃]

Q(β, β̃) =
|M(ξ[β̃], β)|

|M(ξ[β], β)|
≤ 4ψ

(β

β̃

)

,

and consequently Q decreases in the logarithmic scale, where the function

ψ(z) ≤

{

4z2 if z ≤ 1
4z−2 if z > 1

decays faster than required in condition (2.10). For estimating Q from below we note that the
expression within the braces of (2.31) is not smaller than 4/5 if 2/3 ≤ β

β̃
≤ 3/2, and it follows that

Q(β, β̃) ≥
1

2
whenever

2

3
≤
β

β̃
≤

3

2
.

Assumption (2.23) is obviously satisfied, if x ∈ [B−1/(2B−1 + 1), 1/3]. In this case x belongs to the
support of the local D-optimal design ξ[β̃] with β̃ = x/(1 − 2x). If x ≥ 1

3
or x ≤ B−1/(2B−1 + 1),

the inequality (2.23) is satisfied for the local D-optimal design ξ[1] and ξ[B−1], respectively. Now
by Theorem 2.9 the number of support points of the standardized maximin D-optimal design for
the Michaelis-Menten model becomes arbitrarily large, if the minimum in the optimality criterion
(2.2) is taken over the range B = [B−1, 1] with B → ∞.
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Example 2.11 Consider the exponential regression model

E(Y |x) = αe−βx, x ∈ [0, 1], β ∈ [1, βmax],(2.33)

which has applications in pharmacokinetics [see e.g. Landaw and DiStefano (1984)]. By the same
argument as in the previous example we may assume α = 1 and obtain for the information matrix
of the parameter θ = (α, β)

I(x, β) =

(

e−2βx −xe−2βx

−xe−2βx x2e−2βx

)

= e−2βx

(

1 −x
−x x2

)

.

The local D-optimal design can be found in Dette and Neugebauer (1997) and has equal masses at
the points

x1 = x̄ = 0, x2 =
1

β
,

with corresponding determinant

|M(ξ[β], β)| =
1

4 (eβ)2
.

The function I2 is given by

I2(x1, x2, β) = (x1 − x2)
2e−2β(x1+x2),

which is obviously decreasing with respect to its first argument. Because of

I2(0, 1/β̃, β) = β̃−2e−2β/β̃

we obtain Q(β, β̃) = 4ψ(β/β̃), where ψ is the same function as in Examples 2.4 and 2.10. The
assumptions of Theorem 2.9 can be established by the same arguments as given in Example 2.4.
Consequently, the number of support points of the standardized maximin D-optimal design in the
exponential growth model (2.33) becomes arbitrarily large if the parameter space B = [1, βmax] is
increased (that is βmax → ∞).

Example 2.12 Consider the exponential growth model

E(Y |x) = α + e−βx, x ∈ [0, 1], β ∈ [1, βmax],(2.34)

which is used for analyzing the growth of crops [see Liebig (1988) or Krug and Liebig (1988)]. In
this model the Fisher information for the parameter θ = (α, β) is given by

I(x, β) =

(

1 −xe−βx

−xe−βx x2e−2βx

)

,

and the function I2 defined in (2.19) is obtained as

I2(x1, x2, β) = (x1e
−βx1 − x2e

−βx2)2.

This function is not monotone with respect to the first or second argument. However, it is easy
to see that I2(x1, x2, β) can always be increased by using x1 = 0 and it follows from Dette and
Neugebauer (1997) that the local D-optimal design puts equal masses at the points

x1 = x̄ = 0, x2 =
1

β

13



with corresponding determinant

|M(ξ[β], β)| =
1

4 (eβ)2

[see also Han and Chaloner (2003)]. From I2(0, 1/β̃, β) = β̃−2e−2β/β̃ we obtain Q(β, β̃) = ψ(β/β̃),
where the function ψ(z) = z2e2(1−z) was introduced in Example 2.4. This shows that (2.6) and
(2.10) are fullfilled. Obviously,

I2(x1, x2, β) ≤ (x1e
−x1)2 + (x2e

−x2)2 ≤ I2(0, x1, β) + I2(0, x2, β),

i.e., the model is reducible. We conclude as in the previous examples that the last assumption
(2.23) of Theorem 2.9 is also satisfied. Therefore, the number of support points of the standardized
maximin D-optimal design in the exponential growth model (2.34) becomes arbitrarily large if the
parameter space B = [1, βmax] is increased (βmax → ∞).

3 Bayesian D-optimal designs

In the present section we consider similar problems for the Bayesian D-optimality criterion defined
in (2.1). When Bayesian D-optimal designs are considered, it does not make a difference whether
the information matrix or its standardized analogue is considered. The difference between the
criterion

Ψst(ξ) =

∫

B

log
|M(ξ, β)|

|M(ξ[β], β)|
π(dβ),(3.1)

and the function defined in (2.1) is a constant that does not depend on the design ξ. We begin our
investigations with the one-dimensional case corresponding to the situation considered in Section
2.2.

Theorem 3.1 Let m = 1, assume that (2.8) holds and that Q is uniformly decreasing with respect
to ` in the sense of Definition 2.1, where the function ϕ satisfies

ϕ(z) ≤ c1e
−|z|γ(3.2)

for some positive constants c1, γ, and the prior distribution and the function ` in Definition 2.1
satisfy for all Borel set B ⊂ B = [βmin, βmax]

∫

B

c3
`(B)

`(dβ) ≤

∫

B

π(dβ)(3.3)

for some positive constant c3. Assume that N ∈ N is given. If `(βmax)− `(βmin) is sufficiently large,
then the Bayesian D-optimal design with respect to the prior π on the interval B is supported at
more than N points.

Note that increasing the interval B in the optimality criterion (2.1) such that condition (3.3) is
satisfied also changes the prior π on B. A typical example is the uniform distribution on the set
B, which obviously changes with B. For this prior the assumption (3.3) is obviously satisfied if

14



`(β) = β or `(β) = log β. It can easily be shown that the functions ϕ or ψ, resp., in Examples 2.4,
2.5 and 2.7 also satisfy the stronger assumptions in Theorem 3.1. As a consequence it follows that
the number of support points of Bayesian D-optimal designs in these examples is also unbounded if
the support of the prior distribution is increased such that (3.3) holds. This includes the important
case of the non-informative uniform prior in the Bayesian optimality criterion.

Example 3.2 Consider the exponential regression model (2.11) of Example 2.4. It follows by the
preceding discussion that the number of support points of the Bayesian D-optimal design with
respect to a uniform prior on the interval [1, B] becomes arbitrarily large with increasing B → ∞.
In Table 3.1 we show the Bayesian D-optimal designs corresponding to the situation considered in
Table 2.1. We observe that the standardized maximin D-optimal designs have remarkably more
support points than the Bayesian D-optimal designs with respect to the uniform prior. The stan-
dardized maximin D-optimal design for the parameter space B = [1, 30] has three support points
[see the third row in Table 2.1], while the corresponding Bayesian D-optimal design has only one
support point. The other cases are similar, where in the extreme case B = 200 the standardized
maximin D-optimal design has 6 support points while the Bayesian D-optimal design has only two
points concentrating most of it mass at the smaller support point [see the last rows in Table 2.1
and 3.1].

B Bayesian D-optimal design

7 0.250
1.000

10 0.182
1.000

20 0.095
1.000

30 0.065
1.000

40 0.048 0.354
0.981 0.019

50 0.038 0.318
0.973 0.027

70 0.027 0.266
0.966 0.034

100 0.019 0.215
0.962 0.038

200 0.010 0.134
0.959 0.041

Table 3.1. Bayesian D-optimal designs with respect to a uniform distribution on the interval [1, B]
in the exponential regression model (2.11). First row: support points; second row: weights.

Now we turn to the two-dimensional models.
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Theorem 3.3 Let m = 2, assume that the nonlinear regression model is reducible, that (2.23)
holds and that the function Q is uniformly decreasing with respect to ` in the sense of Definition
2.1, where the function ϕ satisfies

ϕ(z) ≤ c1e
−|z|γ with c1, γ > 0,(3.4)

and the prior π and the function ` in Definition 2.1 satisfy (3.3). Assume that N ∈ N is given. If
`(βmax) − `(βmin) is sufficiently large, then the Bayesian D-optimal design with respect to the prior
π on the interval B = [βmin, βmax] is supported at more than N points.

Remark 3.4. Note that Theorem 3.1 and 3.3 require a stronger decay of the function ϕ than
Theorem 2.2 and 2.9. As a consequence it follows from the proofs of these results in the Appendix
that the number of support points of Bayesian D-optimal designs usually increases more slowly
with the length of the parameter space compared to the maximin case. We have illustrated this
fact in Example 3.2, where we compare the standardized maximin and the Bayesian D-optimal
design with respect to the uniform distribtion in model (2.11).

When we analyzed the two-dimensional examples in Section 2.3, we established already the faster
decay of Q that is required for the Bayesian setting. Consequently, in all models considered in
Section 2.3 the Bayesian D-optimal designs with respect to priors satisfying (3.3) are supported at
an arbitrarily large number of support points if the difference `(βmax)− `(βmin) is sufficiently large.
This includes the important case of a uniform prior in the Bayesian optimality criterion.

4 A remark on models with more than two parameters

Although our main results are stated for models with one or two parameters (i.e. m = 1, 2), the
arguments given in the preceding sections can be extended to models with m ≥ 3 parameters.
However, the technical difficulties increase substantially. The approach presented in Section 2 and
3 is a general one, but specific details and technical difficulties have to be dealt with for the specific
models involved. To indicate how this can be done, we consider as an additional example the
exponential growth model with 3 parameters

E(Y |x) = α1 + α2e
−βx, x ∈ [0, 1], β ∈ [1, βmax].(4.1)

Let ξ denote a design with masses wk at the points xk (k = 1, . . . , n); then by the Cauchy Binet
formula the determinant of the information matrix of the design ξ can be represented as

|M(ξ, β)| =
∑

i<j<`

wiwjw` I3(xi, xj, x`, β),(4.2)

where

I3(xi, xj, x`, β), =

∣

∣

∣

∣

∣

∣

f1(xi, θ) f1(xj, θ) f1(x`, θ)
f2(xi, θ) f2(xj, θ) f2(x`, θ)
f3(xi, θ) f3(xj, θ) f3(x`, θ)

∣

∣

∣

∣

∣

∣

2

(4.3)
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is the analogue of the function I2 introduced in (2.19) and (f1(x, θ), f2(x, θ), f3(x, θ))
T denotes the

gradient of the response function with respect to the parameter θ = (α1, α2, β)T . In particular, we
obtain for the model (4.1)

I3(x1, x2, x3, β) = [x1e
−βx1(e−βx3 − e−βx2) + x2e

−βx2(e−βx1 − e−βx3) + x3e
−βx3(e−βx2 − e−βx1)]2

= H2(x1, x2, x3),

where the last line defines the function H(x1, x2, x3). Han and Chaloner (2003) showed that local
D-optimal designs for the exponential regression model (4.1) have three support points and that
x̄ = 0 and x̂ = 1 are in fact support points. An alternative derivation of the lastnamed fact will be
given below. For the points x̄ = 0 and x̂ = 1 this expression reduces to

I3(0, x, 1, β) = [xe−βx(1 − e−β) − e−β(1 − e−βx)]2 = H2(0, x, 1, β).(4.4)

Note that sums of cyclic products as a(b− c) + b(c− a) + c(a− b) vanish. Therefore we obtain the
very useful representation

H(x1, x2, x3, β) =
e−βx3 − e−βx2

1 − e−β

[

x1e
−βx1(1 − e−β) − e−β(1 − e−βx1)

]

+
e−βx1 − e−βx3

1 − e−β

[

x2e
−βx2(1 − e−β) − e−β(1 − e−βx2)

]

+
e−βx2 − e−βx1

1 − e−β

[

x3e
−βx3(1 − e−β) − e−β(1 − e−βx3)

]

=

3
∑

k=1

akH(0, xk, 1, β)(4.5)

with coefficients ak satisfying |ak| ≤ 1. If the support points are ordered, i.e.

0 ≤ x1 < x2 < x3 ≤ 1,(4.6)

then a1, a3 < 0 and a2 > 0. The estimation of the quantity I3 heavily depends on the knowledge
of the signs of the function H. Obviously, H(0, x, 1, β) vanishes at x = 0 and x = 1. Moreover,
the derivative at x = 0 is positive. Since exponential sums of the form a1 + (a2 + a3x)e

−βx have at
most two real zeros [see Karlin and Studden (1996)], it follows that H(0, x, 1, β) > 0 for 0 < x < 1.
For the same reason, the function x 7→ H(x, x2, x3, β) vanishes only at x = x2 and x = x3. Hence,
signH(x1, x2, x3, β) = signH(0, x2, x3, β) if the ordering (4.6) holds. Similarly, it follows that
signH(0, x2, x3, β) = signH(0, x2, 1, β) = +1. Recalling the statement on the coefficients a1, a2

and a3 in (4.5) we see that the summands with k = 1 and k = 3 diminish the sum, and it follows
that

I3(x1, x2, x3, β) ≤ I3(0, x2, 1, β).

This does not only yield the cited result regarding the location of the smallest and largest support
point of local D-optimal designs, but additionally provides the bound

I3(x1, x2, x3, β) ≤
3

∑

k=1

I3(0, xk, 1, β)
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which holds for support points x1, x2, x3 in any order. Therefore the exponential regression model
(4.1) is reducible in an obvious way.

The model can now be treated exactly in the same way as the reducible two-dimensional models
although the technical details are more involved. For large β we get from (4.4)

I3(0, x, 1, β) ≤
2

3
x2e−2βx, |M(ξ[β], β)| =

1

33
sup

x
I3(0, x, 1, β) ≥

1

27

1

3e2β2
.

Although there is no simple representation for |M(ξ[β], β)|, the estimates above are comparable
to the corresponding equations (2.12) and (2.13) for the one-dimensional exponential model. The
estimates differ only by constants. Thus by some changes of the arguments we also conclude that
the number of support points of the standardized maximin D-optimal design in the model (4.1) is
unbounded for sufficiently large βmax.

5 Conclusions

A common tool for the construction of efficient designs in nonlinear regression models are Bayesian
or maximin criteria. Both optimality criteria require prior information regarding the parameters
which enter in the model nonlinearly. It was observed numerically by many authors that the num-
ber of support points of Bayesian and maximin D-optimal designs is increasing with the amount
of uncertainty about the location of the nonlinear parameters. In this paper we have established
sufficient conditions for the nonlinear regression models under which the number of support points
of Bayesian and maximin D-optimal designs can become arbitrarily large if the prior information
regarding the unknown nonlinear parameters in the optimality criterion is diminished. These con-
ditions apply to many of the commonly used regression models (in fact we did not find any model,
where these conditions were not satisfied).

For the sake of brevity we restricted our investigations to one- and two parametric regression
models, where at most one parameter appears nonlinearly in the model. However, our approach is
a general one and can also be applied to regression models with more nonlinear parameters, where
some of technicalities have to be adapted to the specific model under consideration. For example,
consider a nonlinear regression model with two parameters, say θ = (θ1, θ2), such that the local
D-optimal design depends on both components of θ. Assume that the minimum in the optimality
criterion (1.6) is taken over a rectangular parameter space, say Θ = [a, b] × [c, d]. If one of these
intervals degenerates to a point and the length of the other interval is increased (with respect to
an appropriate scaling function `), the results of Section 2 show that the number of the support
points of the standardized maximin D-optimal design becomes arbitrarily large provided that the
sufficient conditions in Theorem 2.9 are satisfied. A similar result is also available for the Bayesian
D-optimality criterion by combining this argument with the results of Section 3.

Similarly, models with more than two parameters can be treated, but the technical difficulties
increase substantially. We have indicated in Section 4, how this can be done for a model with three
parameters, where one parameter appears nonlinearly in the regression model. The extension to
models with a larger number of parameters follows essentially the arguments presented in this paper
with an additional amount of notation and specific details have to be dealt with for the specific
model under consideration. We did not present results in this direction here because the technical
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details usually depend on the specific model and become too difficult to be presented in a concise
paper [see our example in Section 4].

Nevertheless, our results make a general statement on the structure of optimal designs with respect
to the standardized maximin and Bayesian D-optimality criterion, which is important for a better
understanding of these sophisticated optimality criteria. In all examples that we have investigated
we were able to prove that the number of support points of the standardized maximin and Bayesian
D-optimal designs exceeds any given bound if the knowledge about the underlying parameter space,
which is incorporated in the optimality criteria, is diminished. This gives a rigorous proof of a
phenomenon which was conjectured in many nonlinear regression models for a long time in the
literature.

A Proofs

Proof of Theorem 2.2. The proof consists of two steps. Set B = `(βmax)− `(βmin). At first we show
that for an arbitrary design, say ξN , with N support points it follows that

Φ(ξN) = min
{ |M(ξN , β)|

|M(ξ[β], β)|
| β ∈ [βmin, βmax]

}

≤ d1(N + 1)B−γ,(A.1)

where d1 is a positive constant not depending on B. Secondly, we show that there exists a design
ξn on X such that

Φ(ξn) ≥
d2

B
(A.2)

for some positive constant d2 not depending on B. Since γ > 1, given N , we have

d1(N + 1)B−γ <
d2

B

if B is sufficiently large, and the optimal design is supported at more than N points in this case.

To verify the estimate (A.1) let ξN =
∑N

k=1 wkδxk
denote any design with mass wk at the point

xk (k = 1, . . . , N). Here δxk
denotes the Dirac measure at the point xk. Then

M(ξN , β) =

N
∑

k=1

wkM(δxk
, β)

(here we use the condition m = 1). By assumption (2.8) there exist real numbers βmin ≤ β1 < . . . <
βN ≤ βmax such that the inequality

M(ξN , β) ≤
N

∑

k=1

wkM(ξ[βk], β) = M(ξ[β], β)
N

∑

k=1

wk Q(β, βk)(A.3)

holds for all β ∈ B. For convenience, we put β0 = βmin, βN+1 = βmax . Now at least one gap
between the numbers `(βk) must be large. Specifically, there exists an index j ∈ {0, . . . , N} such
that

`(βj+1) − `(βj) ≥
`(βN+1) − `(β0)

N + 1
=

B

N + 1
.(A.4)
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We consider the inequality at the point β̄ defined by `(β̄) = 1
2
[`(βj)+`(βj+1)] and derive from (A.4)

|`(β̄) − `(βk)| ≥
1

2
(`(βj+1) − `(βj)) ≥

B

2(N + 1)
∀ k ∈ {0, 1, 2, . . . , N + 1}.(A.5)

We now use the inequality (A.3), the definition of Q in (2.3) and obtain from assumption (2.4),
(2.9) and (A.5)

M(ξN , β̄) ≤

N
∑

k=1

wkQ(β̄, βk)M(ξ[β̄], β̄) ≤

N
∑

k=1

wk ϕ(`(β̄) − `(βk))M(ξ[β̄], β̄)

≤ c1

(

B

2(N + 1)

)−γ

M(ξ[β̄], β̄) =
c1(2N + 2)γ

Bγ
M(ξ[β̄], β̄)

for some positive constant c1. We define the constant d1 = c1(2N + 2)γ, and the proof of the upper
bound (A.1) is complete.

For a proof of the lower bound (A.2) we choose n = b 1
2
B/λc, where λ is the constant defined in

Definition 2.1 (ii), and set βk such that

`(βk) = `(βmin) + (2k − 1)λ, (k = 1, . . . , n).(A.6)

Note that these points are contained in the interval [βmin, βmax]. Let δxk
denote the local D-optimal

design for the parameter βk with corresponding support point xk, k = 1, . . . , n, (note that these
are one-point designs by assumption) and define ξn =

∑n
k=1

1
n
δxk

as the uniform distribution on the
points x1, . . . , xn, then

M(ξn, β) =
1

n

n
∑

k=1

I(xk, β) =
1

n

n
∑

k=1

M(ξ[βk], β).(A.7)

Obviously, given β ∈ [βmin, βmax], there exists an index j = jβ such that

|`(β) − `(βj)| ≤ λ .

By construction M(ξ[βj], β) = Q(β, βj)M(ξ[β], β) ≥ 1
2
M(ξ[β], β). Since all terms in the sum (A.7)

are nonnegative, it follows that for all β ∈ B

M(ξn, β) ≥
1

n
M(ξ[βj], β) ≥

1

2n
M(ξ[β], β) ≥

λ

B
M(ξ[β], β).

Recalling the definition of the standardized maximin criterion in (2.2) we conclude that

Φ(ξn) ≥ λ/B.

With the choice d2 = λ the proof of the lower bound (A.2) is complete. 2

Proof of Theorem 2.9. Let ξN denote a design with masses wk at the points xk (k = 1, . . . , N)
and let ξ[βk] denote the design corresponding to the point xk by the inequality (2.23). Assumption
(2.22) admits the reduction (2.24), and we obtain

|M(ξN , β)| ≤ c
∑

k

wkI2(x̄, xk, β) ≤ 4c
∑

k

wk|M(ξ[βk], β)|

= 4c |M(ξ[β], β)|
∑

k

wkQ(β, βk),(A.8)
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where we used the definition of Q in (2.3). Note that this inequality corresponds to (A.3) in the
proof of Theorem 2.2. By the same arguments as in the proof of Theorem 2.2 it follows that

Φ(ξN) ≤ d1B
−γ

with d1 = 4c c1(2N + 2)γ and γ > 1.

In order to prove the corresponding lower bound we adapt the construction in the proof of Theorem
2.2 to the two-dimensional setting. Let n = b 1

2
B/λc again and define βk by (A.6). Denote xk = x[βk]

as the corresponding non-trivial design point of the local D-optimal design ξ[βk], and set

ξn =
1

2
δx̄ +

1

2n

n
∑

k=1

δxk
=

n
∑

k=0

wkδxk
,

where the last identity defines the weights wk (k = 0, . . . , n), and we put x0 = x̄. Note that all
terms in the sum (2.18) are nonnegative. We omitt the terms in which no argument is x̄, to obtain

|M(ξn, β)| =
1

2

n
∑

i,k=0

wiwkI2(xi, xk, β)

≥

n
∑

k=1

1

2

1

2n
I2(xk, x̄, β) =

1

n

n
∑

k=1

|M(ξ[βk], β)|

=
1

n
|M(ξ[β], β)|

n
∑

k=1

Q(β, βk).

The same argument as presented in the first part of the proof of Theorem 2.2 shows the lower bound

Φ(ξn) ≥
λ

B
,

and the assertion of Theorem 2.9 follows by the same arguments as given in the first part of the
proof of Theorem 2.2. 2

Proof of Theorem 3.1. For convenience, in a first step we assume that the given transformation ` is
the identity and define B = `(B) = βmax − βmin. For a given design ξN with N support points, we
know that inequality (A.3) holds. With assumption (3.3) and the notation β0 = βmin, βN+1 = βmax

and ∆j = 1
2
(βj+1 − βj) we estimate the contribution of the interval [βj, βj + ∆j] to the Bayesian

D-optimality criterion as follows
∫ βj+∆j

βj

log
|M(ξN , β)|

|M(ξ[β], β)|
π(dβ), ≤

c3
B

∫ βj+∆j

βj

log
N

∑

k=1

wk
|M(ξ[βk], t)|

|M(ξ[t], t)|
dt

≤
c3
B

∫ βj+∆j

βj

log

N
∑

k=1

wkϕ(t− βk) dt

≤
c3
B

∫ βj+∆j

βj

log
(

c1 exp(−|t− βj|
γ)

)

dt

=
c3
B

∫ ∆j

0

[log c1 − zγ ] dz

=
c3
B

[

∆j log c1 −
1

1 + γ
∆1+γ

j

]

.
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The same bound is derived for the interval [βj + ∆j, βj+1]. Summing over all intervals of this form
we conclude that

Ψst(ξN) ≤
2c3
B

N
∑

j=0

[∆j log c1 −
1

1 + γ
∆1+γ

j ].

Since
∑N

j=0 ∆j = B
2

and the function z1+γ is strictly convex, the right hand side attains its maximum
if all ∆j’s are equal and we obtain the upper bound

Ψst(ξN) ≤ c4

[

log c1 −
Bγ

(1 + γ)

]

(A.9)

for some positive constant c4. Note that the right hand side of this inequality is dominated by the
term with Bγ when B → ∞.

The construction of a better design with respect to the Bayesian optimality criterion follows the
arguments given in the proof of Theorem 2.2. Let λ > 0 be defined by

Q(β, β̃) ≥
1

2
, whenever |β − β̃| ≤ λ .

Set n = b B
2λ
c and βj = βmin + (2j − 1)λ for k = 1, 2, . . . , n. We choose a design ξ with n support

points such that

M(ξ, β) =
1

n

n
∑

k=1

M(ξ[βk], β)

[see the identity in (A.7)]. For any given β ∈ [βmin, βmax], there exists a βj with |β − βj| ≤ λ
satisfying (2.5). Therefore it follows for all β ∈ B that

M(ξ, β) ≥
1

n
M(ξ[βj], β) =

1

n
Q(β, βj)M(ξ[β], β) ≥

1

2n
M(ξ[β], β) .

Hence,

Ψst(ξn) ≥

∫

B

log
1

2n
π(dβ) = log

1

2n
≥ − logB + log λ.

This value is larger than the upper bound (A.9) if B is sufficiently large. Therefore, a design with
N support points cannot be optimal if B is sufficiently large.

We have restricted ourselves to the case `(β) = β for the sake of simplicity. The general case
proceeds exactly in the same way. For instance, we have to choose dt = `(dβ)/`(B) = `′(β)dβ/`(B)
in the first integral of the proof, and the boundaries of the intervals have to be adapted. The details
are left to the reader. 2

Proof of Theorem 3.3. The proof proceeds as in the proof of Theorem 2.9. In essence, (A.8) reduces
the two-dimensional problem to the one-dimensional expression and the arguments for Theorem 3.1
can be used. 2
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