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We investigate properties of kernel based regression (KBR) methods which are
inspired by the convex risk minimization method of support vector machines. We
first describe the relation between the used loss function of the KBR method
and the tail of the response variable Y . We then establish a consistency result
for KBR and give assumptions for the existence of the influence function. In
particular, our results allow to choose the loss function and the kernel to obtain
computational tractable and consistent KBR methods having bounded influence
functions. Furthermore, bounds for the sensitivity curve which is a finite sample
version of the influence function are developed, and some numerical experiments
are discussed.

1. Introduction

In regression problems the goal is to estimate an approximated functional relationship
Y ≈ f(X), where (X, Y ) is a pair consisting of an Rd-valued observation random variable
X and an R-valued outcome or response random variable Y . In the simplest case one assumes
that this relationship is linear plus some noise and the goal is then to estimate the linear
term having only a set of observations (xi, yi) from independent and identically distributed
(i.i.d.) random variables (Xi, Yi), 1 ≤ i ≤ n. A classical method for this problem is the
least squares estimator which is known to solve the problem for n → ∞ under parametric
assumptions. Unfortunately, this method fails if the assumption on the linear relationship
is violated and, even worse, it is well-known that the least squares estimator is non-robust
against mild model violations. However there is a vast literature of good robust estimation
methods for linear regression models and for nonlinear parametric regression models, see
e.g. Huber (1981), Hampel et al. (1986), Rousseeuw (1984), Rousseeuw and Yohai (1984),
Yohai (1987), Davies (1993), and Mendes and Tyler (1996).

It is the nature of estimation methods for parametric regression models that they require
strong assumptions on the distribution of (X,Y ). If such knowledge on (X,Y ) is not
available, one consequently has to use non-parametric methods instead. Many of these
methods rely on the least squares loss function because that a) simplifies the mathematical
treatment and b) leads to efficient algorithms, see Györfi et al. (2002). Unfortunately, using
the least squares loss function also means that one cannot expect these methods to be robust.
Alternatively, one can deploy recently developed kernel based regression (KBR) methods
like support vector machines (SVMs) which lead to efficient algorithms for a variety of loss
functions, see Vapnik (1998) or Schölkopf and Smola (2002) for an introduction. However,
almost nothing is known for these methods with respect to both consistency and robustness,
so that they lack a theoretical foundation. The aim of this paper is to provide important
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aspects of such a foundation: we first show consistency of KBR methods requiring only
mild tail conditions on the distribution of the response variable Y |X = x. Then we provide
results that describe the influence of both the kernel and the loss function on the robustness.
In particular, we establish the existence of the influence function for a broad class of KBR
methods and present conditions under which the influence function is bounded. Here it turns
out that, depending on the kernel and the loss function, some KBR methods are robust
while others are not, and consequently, our results show how to choose both quantities to
obtain consistent KBR estimators with good robustness properties. Interestingly, but in
some sense not surprising, it turns out that the robust KBR methods are exactly the ones
that require the mildest tail conditions on Y for consistency.

The rest of the paper is organized as follows: Section 2 introduces kernel based regression
methods. Then, in Section 3, we present some important notions describing the growth
behavior of loss functions. Subsequently, we consider properties of the associated risk
functionals. In particular we discuss the relation between the growth of loss functions and
the tails of Y . We then establish a stability result for infinite-sample KBR estimators which
will be used for both our consistency analysis in Section 4 and our robustness discussion in
Section 5. Besides the above mentioned results on the influence function we also give bounds
for the sensitivity curve of KBR methods in the latter section. Furthermore a connection
to M-estimation for parametric regression becomes visible. Then, some numerical examples
are presented in Section 6, and Section 7 contains a discussion. Finally, all proofs are given
in the appendix.

2. Kernel based regression

The goal of nonparametric regression is to estimate an approximated functional relation-
ship between an observation random variable X and a response random variable using n
observations (xi, yi) ∈ X × Y drawn independently from the same unknown distribution P
of the pair (X,Y ). For technical reasons we assume throughout this work that X and Y
are closed subsets of Rd and R, respectively1. Recall that in this case P can be split up into
the marginal distribution PX and the regular conditional probability P( . |x), x ∈ X, on Y .

Now let L : Y ×R→ R be a function which is convex with respect to its second argument.
Then the KBR methods considered in this work minimize the empirical regularized risk

f̂n,λ := arg min
f∈H

1
n

n∑

i=1

L(yi, f(xi)) + λ‖f‖2
H , (1)

where λ > 0 is a regularization parameter and H is a reproducing kernel Hilbert space
(RKHS) of a kernel k : X × X → R. Throughout this work we write Φ : X → H for the
canonical feature map of k which is defined by Φ(x) := k(·, x), x ∈ X. Recall that the
reproducing property gives f(x) = 〈f, k(·, x)〉 for all f ∈ H and x ∈ X.

Obviously, problem (1) can be interpreted as a stochastic approximation of the minimiza-
tion of the theoretical regularized risk

fP,λ := arg min
f∈H

EP L(Y, f(X)) + λ‖f‖2
H . (2)

1. For X it suffices to assume that it is a locally compact Polish space.
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Loss Function L(y, t) L′(y, t) L′′(y, t)

Least Squares r2 −2r 2

ε−insensitive, ε > 0 max(|r| − ε, 0) 0, if |r| < ε 0, if r /∈ {±ε}
sgn(−r), if |r| > ε

Huber, c > 0 r2/2, if |r| ≤ c −r, if |r| < c 1, if |r| < c
c|r| − c2/2, if |r| > c c sgn(−r), if |r| > c 0, if |r| > c

Logistic − log(4Λ(r)[1− Λ(r)]) 1− 2Λ(r) 2Λ(r)[1− Λ(r)]

Table 1: Some loss functions and their derivatives with respect to t. We use the shorthands
r := y − t and Λ(r) := 1/[1 + e−r].

The objective function in (2) is denoted by Rreg
L,P,λ(.) in the sequel. Note that in practice

one usually solves the dual problem of (1) numerically, since in the dual problem instead
of the RKHS itself only its kernel occur. In particular the choice of the kernel k enables
efficient estimation of linear and also of non-linear functions. Of special importance is the
Gaussian radial basis function (RBF) kernel

k(x, x′) = exp(−γ‖x− x′‖2) , γ > 0, (3)

which is a universal kernel on every compact subset of Rd, see Definition 14. This kernel
is a bounded kernel as |k(x, x′)| ≤ 1 for all x, x′ ∈ Rd. Polynomial kernels k(x, x′) =
(c + 〈x, x′〉)m, m ≥ 1, c ≥ 0, x, x′ ∈ R, are also popular in practice, but obviously they are
neither universal nor bounded.

Popular convex loss functions for regression problems depend on y, x, and f via the
residual r := y−f(x), and are based on the implicit “signal + noise” assumption yi = f(xi)+
εi. We will call such loss functions invariant, cf. Definition 1. Three important examples
are the least squares loss function, Vapnik’s ε−insensitive loss function, and Huber’s loss
function, see Table 1. Another invariant loss function is the logistic loss function (see
again Table 1) which is a compromise between the former three loss functions: it is twice
continuously differentiable with L′′ > 0 which is true for the least squares loss function and it
increases approximately linearly if |r| tends to infinity which is true for Vapnik’s and Huber’s
loss functions. These four loss functions are even symmetric, because of L(y, t) = L(t, y)
for y, t ∈ R. Asymmetric loss functions may be interesting in some applications where
extremely skewed distributions occur, e.g. in analyzing the claim sizes in insurance data
(Christmann, 2004). As an example for a smooth, invariant, and asymmetric loss function
we mention

L(y, t) =
(c2

2
− c1

)
r − c2

2
log

(
4Λ(r − c3)

(
1− Λ(r − c3)

))
+ c4 ,

where r = y − t, 0 < c1 < c2 < ∞, c3 = −Λ−1(c1/c2) and c4 = (c2/2) log(4 c1
c2

(1− c1
c2

)) . For
(c1, c2) = (1, 2) we obtain the logistic loss function. Note that L′ and L′′ are continuous
and bounded for the logistic loss function and its asymmetric modification.
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3. Loss functions, risks, and stability of infinite-sample KBR methods

In this section we first introduce some important concepts for loss functions which are
used throughout this work. Then in Subsection 3.2 we introduce their associated risks
and discuss the interplay between growth behavior of the loss functions and the tail of the
response variable. Finally, in Subsection 3.3 we establish existence and stability results for
the infinite-sample KBR methods given by (2). These results are needed to obtain both the
consistency results in Section 4 and some of the robustness results in Section 5.

3.1 Loss functions and their growth behavior

The main goal of this subsection is to describe the growth behavior of loss functions. To
this end let us begin with some basic definitions for loss functions.

Definition 1 Let Y ⊂ R be a non-empty closed subset. Then a continuous function L :
Y × R→ [0,∞) is called a loss function. Furthermore, we say that L is

i) convex if L(y, ·) : R→ R is convex for all y ∈ Y .

ii) Lipschitz continuous if there exists a constant c > 0 such that

|L(y, t)− L(y, t′)| ≤ c · |t− t′| (4)

for all y ∈ Y , t, t′ ∈ R. In this case we denote the smallest possible c in (4) by |L|1.
iii) invariant if there exists a function l : R→ [0,∞) with l(0) = 0 and L(y, t) = l(y − t)

for all y ∈ Y , t ∈ R.

Obviously, all loss functions listed in Table 1 are invariant. Moreover, an invariant loss
function L is convex if and only if the corresponding l is convex. Analogously, L is Lipschitz
continuous if and only if l is Lipschitz continuous and in this case we have |L|1 = |l|1, where
|l|1 denotes the Lipschitz constant of l. In particular, all loss functions listed in Table 1 are
convex and besides the least squares loss function they are also Lipschitz continuous.

As already mentioned the growth behavior of loss functions plays an important role in
both consistency and robustness results. Therefore we now introduce some basic concepts
which describe the growth behavior of L. We begin with

Definition 2 Let L : Y × R → [0,∞) be a loss function, a : Y → [0,∞) be a measurable
function, and p ∈ [0,∞). We say that L is a loss function of type (a, p) if there exists a
constant c > 0 such that

L(y, t) ≤ c
(
a(y) + |t|p + 1

)

for all y ∈ Y and all t ∈ R. Furthermore, we say that L is of strong type (a, p) if the first
two partial derivatives L′ := ∂2L and L := ∂22L of L with respect to the second argument
of L exist and L, L′ and L′′ are of (a, p)-type.

For invariant loss functions it turns out that there is an easy way to determine their type.
In order to describe the corresponding results we need the following definition.
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Definition 3 Let L be an invariant loss function with corresponding function l : R → R.
We say that L is of upper order p, p ≥ 0, if there exists a constant c > 0 such that for all
r ∈ R we have

‖l|[−r,r]‖∞ ≤ c
(|r|p + 1

)
.

Here, ‖ · ‖∞ denotes the supremum norm. Analogously, we say that L is of lower order p,
p ≥ 0, if there exists a constant c > 0 such that for all r ∈ R we have

‖l|[−r,r]‖∞ ≥ c
(|r|p − 1

)
.

Recalling that convex functions are locally Hölder continuous we see that for invariant loss
functions L the corresponding l is Hölder continuous on every interval [−r, r]. Consequently,

H(r) := |l|[−r,r]|1 , r ≥ 0 (5)

defines a non-decreasing function H : [0,∞) → [0,∞). We denote its symmetric extension
also by H, so that we have H(−r) = H(r) for all r ∈ R. Now we can establish the following
simple properties (see the appendix for a proof) of convex, invariant loss functions.

Lemma 4 Let L be an invariant loss function with corresponding l : R → R and p ≥ 0.
Then the following is true:

i) if L is convex and satisfies lim|r|→∞ l(r) = ∞ then it is of lower order 1.
ii) if L is Lipschitz continuous then it is of upper order 1.
iii) if L is the least squares loss then it is of lower and upper order 2.
iv) if L is convex then for all r > 0 we have

H(r) ≤ 2
r
‖l|[−2r,2r]‖∞ ≤ 4H(2r) .

v) if L is of upper order p then L is of type (a, p) with a : Y → [0,∞) defined by
a(y) := |y|p, y ∈ Y .

With the help of the above lemma it is easy to see that the least squares loss function is of
strong type (y2, 2). Furthermore, the logistic loss function is of strong type (|y|, 1) since it is
twice continuously differentiable with respect to its second variable and both derivatives are
bounded, namely: |∂2L(y, t)| ≤ 1 and |∂22L(y, t)| ≤ 1

2 , t ∈ R. The other two loss functions
of Table 1 are of upper and lower order 1 since they are convex and Lipschitz continuous,
however they are not of any strong type since they are not twice continuously differentiable.

3.2 Risks

With the help of a loss function L one can assign a risk to a measurable map f : X → R.
Namely, if P is a distribution on X ×Y then the L-risk of f with respect to P is defined by

RL,P(f) :=
∫

X×Y
L(y, f(x)) dP(x, y) =

∫

X

∫

Y
L(y, f(x)) P(dy|x) PX(dx) ,

where we recall that the regular conditional probability P(·|x) exists because Y is closed
(and thus Polish). Note that the above integral—although it may be not finite—is always
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defined since L is non-negative and continuous. In order to find a condition which ensures
RL,P(f) < ∞ we need the following definition which for later purpose is formulated in a
rather general way (see Brown and Pearcy (1977) for signed measures).

Definition 5 Let µ be a signed measure on X × Y with total variation |µ| and a : Y →
[0,∞) be a measurable function. Then we write

|µ|a :=
∫

X×Y
a(y) d|µ|(x, y) .

Furthermore, if a(y) = |y|p for some p > 0 and all y ∈ Y , we write |µ|p := |µ|a whenever
no confusion can arise.

Now we can formulate the announced sufficient condition ensuring RL,P(f) < ∞.

Proposition 6 Let L be an (a, p)-type loss function, P be a distribution on X × Y with
|P|a < ∞ and f : X → R be a function with f ∈ Lp(P). Then we have RL,P(f) < ∞.

The above proposition shows in particular that for p-integrable functions f : X → R
we have RL,P(f) < ∞ if L is an invariant loss function of upper order p and P satisfies
|P|p < ∞. The next result is somehow an inversion of this fact.

Lemma 7 Let L be an invariant loss function of lower order p, f : X → R be a measurable
function and P be a distribution X × Y with RL,P(f) < ∞. Then we have |P |p < ∞ if and
only if f ∈ Lp(P ).

Remark 8 If L is an invariant loss function of lower and upper order p and P is a distri-
bution with |P|p = ∞ the above lemma shows RL,P(f) = ∞ for all f ∈ Lp(P). This suggests
that we may even have RL,P(f) = ∞ for all measurable f : X → Y . However, this is in gen-
eral not the case. For example, let PX be a distribution on X and g : X → R be a measurable
function with g 6∈ Lp(PX). Furthermore, let P be the distribution on X ×R whose marginal
distribution on X is PX and whose conditional probability satisfies P

(
Y = g(x)|x)

= 1.
Then we have |P|p =

∫
X |g(x)|p dPX(x) = ∞ , but RL,P(g) =

∫
X l

(
g(x)− g(x)

)
dPX(x) = 0.

3.3 Stability of infinite-sample KBR methods

As already discussed we are mainly interested in the optimization problem (2). To make
any meaningful investigation of the solution fP,λ we first have to ensure its existence. This
is done in the following proposition.

Proposition 9 Let L be a convex loss function which is of (a, p)-type, P be a distribution
on X × Y with |P|a < ∞, H be an RKHS of a bounded kernel k, and λ > 0. Then there
exists a unique minimizer fP,λ ∈ H of

f 7→ Rreg
L,P,λ(f) := RL,P(f) + λ‖f‖2

H

and we have ‖fP,λ‖H ≤ √RL,P(0)/λ := δP,λ .
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Remark 10 If H is an RKHS of a bounded kernel and L is a convex and invariant loss
function of lower and upper order p then it is easy to see by Lemma 7 that exactly for the
distributions P with |P|p < ∞ the minimizer fP,λ is uniquely determined. Furthermore, if
|P|p = ∞ we have Rreg

L,P,λ(f) = ∞ for all f ∈ H. In the following we will therefore use the
definition fP,λ := 0 for such distributions.

Our next aim is to establish a representation of fP,λ. To this end we define for p ∈ [1,∞]
the conjugate p′ ∈ [1,∞] by 1/p + 1/p′ = 1. Furthermore we have to recall the notion of
subdifferentials (cf. e.g. Phelps (1986)).

Definition 11 (Subdifferential) Let H be a Hilbert space, F : H → R∪{∞} be a convex
function and w ∈ H with F (w) 6= ∞. Then the subdifferential of F at w is defined by

∂F (w) :=
{
w∗ ∈ H : 〈w∗, v − w〉 ≤ F (v)− F (w) for all v ∈ H

}
.

Furthermore, if L is a convex loss function, we denote the subdifferential of L with respect
to the second variable by ∂2L.

The robustness approach based on influence functions (see Definition 16) is based on a
special Gâteaux-derivative. Therefore, we mention that if F is Gâteaux-differentiable at w
then ∂F (w) contains only the derivative of F at w, see (Phelps, 1986, Prob. 1.8).

With the help of the subdifferential ∂2L we can now recall the following result of DeVito
et al. (2004) which is a generalization of a representation shown in Steinwart (2003).

Proposition 12 Let p ≥ 1, L be a convex loss function of type (a, p), and P be a distribu-
tion on X × Y with |P|a < ∞. Let H be the RKHS of a bounded, continuous kernel k over
X, and Φ : X → H be the canonical feature map of H. Then there exists an h ∈ Lp′(P)
such that h(x, y) ∈ ∂2L(y, fP,λ(x)) for all (x, y) ∈ X × Y and

fP,λ = − 1
2λ
EPhΦ . (6)

With the help of Proposition 12 we can now state the following stability result, see Zhang
(2001) and Steinwart (2003) for similar results for classification problems.

Theorem 13 Let p, L, P, H, Φ, and h be as in Proposition 12. Then for all distributions
Q on X × Y with |Q|a < ∞ we have h ∈ Lp′(P) ∩ L1(Q) and

‖fP,λ − fQ,λ‖H ≤ 1
λ
‖EPhΦ− EQhΦ‖H . (7)

Furthermore, if L is actually an invariant loss function of upper order p and P satisfies
|P|p < ∞ then we h ∈ Lp′(P) ∩ Lp′(Q).
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4. Consistency of kernel based regression

In this section we establish L-risk consistency of KBR methods, i.e. we show that

RL,P(f̂n,λn) → RL,P := inf
{RL,P(f)

∣∣f : X → R measurable
}

holds in probability for n →∞ for suitable chosen regularization sequences (λn). Of course,
such convergence can only hold if the used RKHS is rich enough. One way of describing
the richness of H is the following definition taken from Steinwart (2001).

Definition 14 Let X ⊂ Rd be compact and k : X × X → R be a continuous kernel with
RKHS H. We say that k is universal if H is dense in the space of continuous functions
C(X) equipped with ‖ . ‖∞.

It is well-known that many popular kernels including the Gaussian RBF kernels are
universal, cf. e.g. Steinwart (2001) for a simple proof of universality of the latter kernel.
With the above definition we can now formulate our consistency result.

Theorem 15 Let X ⊂ Rd be a compact subset, L be an invariant, convex loss function of
lower and upper order p ≥ 1, and H be a RKHS of a universal kernel on X. We write
p∗ := max{2p, p2} and fix a sequence (λn) of positive numbers with λn → 0 and λp∗

n n →∞.
Then KBR based on (1) using λn for sample sets of length n is L-risk consistent for all
distributions P with |P|p < ∞.

Note that Theorem 15 in particular shows that KBR using the least squares loss function
is weakly universally consistent in the sense of Györfi et al. (2002). Furthermore, it is
worthwhile to note that under the above assumptions on L, H, and (λn) we can even
characterize the distributions P for which KBR estimates based on (1) are L-risk consistent.
Indeed, if |P|p = ∞ then KBR is trivially L-risk consistent for P whenever RL,P = ∞.
Conversely, if |P|p = ∞ and RL,P < ∞ then KBR cannot be L-risk consistent for P since
Lemma 7 shows RL,P(f) = ∞ for all f ∈ H.

In some sense it seems natural to consider only consistency for distributions satisfying the
tail assumption |P|p < ∞ as this was done e.g. in Györfi et al. (2002) for least squares meth-
ods. In this sense Theorem 15 gives consistency for all reasonable distributions. However, it
is important to note that the above characterization shows that our KBR methods are not
robust against small violations of this tail assumption. Indeed, let P be a distribution with
|P|p < ∞, and P̃ be a distribution with |P̃|p = ∞ and RL,P̃(f∗) < ∞ for some f∗ ∈ Lp(P).
Then every mixture distribution Qε := (1 − ε)P + εP̃, ε ∈ (0, 1), satisfies both |Qε|p = ∞
and RL,Qε < ∞ and thus KBR is not consistent for any of the small perturbation Qε of P
while it is consistent for original distribution P. From a robustness point of view, this is of
course a negative result.

5. Robustness of kernel based regression

In the statistical literature different criteria have been proposed to define the notion of
robustness in a mathematical way, e.g. Huber (1964), Hampel (1974), Hampel et al. (1986),
Tukey (1977), Donoho and Huber (1983), and Rousseeuw and Hubert (1999).
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In this paper, we mainly use Hampel’s approach based on the influence function. We will
consider a map T which assigns to every distribution P on a given set Z an element T (P)
of a given Banach space E. For the case of the convex risk minimization problem given in
(2) we have E = H and T (P) = fP,λ.

Definition 16 (Influence function) The influence function of T at a point z for a dis-
tribution P is the special Gâteaux derivative (if it exists)

IF (z; T, P) = lim
ε↓0

T
(
(1− ε)P + ε∆z

)− T (P)
ε

, (8)

where ∆z is the Dirac distribution at the point z, i.e. ∆z({z}) = 1.

The influence function has the interpretation, that it measures the impact of an (infinites-
imal) small amount of contamination of the original distribution P in direction of a Dirac
distribution located in the point z on the theoretical quantity of interest T (P). Therefore,
in the robustness approach based on influence functions it is desirable that a statistical
method T (P) has a bounded influence function. We also use Tukey’s sensitivity curve which
can be interpreted as a finite sample version of the influence function. The sensitivity curve
measures the impact of a single data point z.

Definition 17 (Sensitivity curve) The sensitivity curve of an estimator Tn at a point z
given a data set z1, . . . , zn−1 is defined by

SC n(z; Tn) = n
(
Tn(z1, . . . , zn−1, z)− Tn−1(z1, . . . , zn−1)

)
.

If the estimator Tn is defined via T (Pn), where Pn denotes the empirical distribution of
the data points z1, . . . , zn, then we have for εn = 1/n:

SC n(z;Tn) =
T

(
(1− εn)Pn−1 + εn∆z

)− T (Pn−1)
εn

. (9)

In the following we give sufficient conditions for the existence of the influence function for
the kernel based regression methods based on (2). Further, we establish conditions on the
kernel k and on the loss function L ensuring that the influence function and the sensitivity
curve are bounded. To this end we need to recall some notions from Banach space calculus.
We say that a map G : E → F between Banach spaces E and F is (Fréchet)-differentiable
in x0 ∈ E if there exists a bounded linear operator A : E → F and a function ϕ : E → F
with ϕ(x)

‖x‖ → 0 for x → 0 such that

G(x0 + x)−G(x0) = Ax + ϕ(x) (10)

for all x ∈ E. Furthermore, since A is uniquely determined by (10) we write G′(x) :=
∂G
∂E (x) := A. The map G is called continuously differentiable if the map x 7→ G′(x) exists
on E and is continuous. Analogously we define continuous differentiability on open subsets
of E. For further information we refer to Akerkar (1999), Brown and Pearcy (1977), and
Yosida (1974).

The next result shows that the influence function of T (P) = fP,λ based on (2) exists, if
the loss function is convex and twice continuously differentiable and if the kernel is bounded
and continuous. The proof of this theorem as well as the proofs of the following results can
be found in the appendix.
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Theorem 18 Let H be a RKHS of a bounded continuous kernel k on X with canonical
feature map Φ : X → H, and L : Y × R→ [0,∞) be a convex loss function of some strong
type (a, p). Furthermore, let P be a distribution on X×Y with |P|a < ∞. Then the influence
function of fP,λ exists for all z := (x, y) ∈ X × Y and we have

IF (z; T, P) = S−1
(
EP(L′(Y, fP,λ(X))Φ(X))

)− L′(y, fP,λ(x))S−1Φ(x) , (11)

where S : H → H is defined by S = 2λ idH + EPL′′(Y, fP,λ(X))〈Φ(X), .〉Φ(X).

It is worth mentioning that the proof can easily be modified in order to replace point mass
contaminations ∆z by arbitrary contaminations P̃ satisfying |P̃|a < ∞. As the discussion
after Theorem 15 shows we cannot omit this tail assumption on P̃ in general.

From a robustness point of view, one is mainly interested in bounded influence func-
tions. Interestingly, for some kernel based regression methods based on (2) Theorem 18 not
only ensures the existence of the influence function but also indicates how to guarantee its
boundedness. Indeed, (11) shows that the only term of the influence function that depends
on the point mass contamination ∆z is

−L′(y, fP,λ(x))S−1Φ(x) . (12)

Now let us assume that the used kernel is a Gaussian RBF kernel. Then we have Φ(x) 6= 0
for all x ∈ X and consequently, the influence function is bounded if and only if L′(·, fP,λ(x)) :
R→ R is bounded for all x ∈ X. For invariant loss functions we hence immediately obtain
the following corollary.

Corollary 19 Let X := Rd, Y := R, and k be a Gaussian RBF kernel on X with canonical
feature map Φ : X → H. Furthermore, let L : Y × R → [0,∞) be a convex and invariant
loss function of some strong type (a, p), and P be a distribution on X × Y with |P|a < ∞.
Then the influence function of fP,λ exists for all z := (x, y) ∈ X × Y and we have

IF (z; T, P) = −S−1
(
EP(l′(Y − fP,λ(X))Φ(X))

)
+ l′(y − fP,λ(x))S−1Φ(x) , (13)

where l : R → R is the function representing L and S : H → H is defined by S =
2λ idH + EPl′′(Y, fP,λ(X))〈Φ(X), .〉Φ(X). Consequently, the influence function is bounded
in z if and only if L is Lipschitz continuous.

The above corollary shows that the least squares loss function leads to a method with
an unbounded influence function. In contrast to that, using the logistic loss function or
its asymmetric generalization provides robust methods with bounded influence functions if
used in combination with the Gaussian RBF kernel.

Unfortunately, the above results require a twice continuously differentiable loss function
and therefore they cannot be used to investigate methods based on e.g. the ε-insensitive loss
or Huber’s loss. Our next results which in particular bound the difference quotient used
in the definition of the influence function applies to all convex loss functions of some type
(a, p) and hence partially resolves the above problem for non-differentiable loss functions.

10
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Theorem 20 Let L : Y × R→ [0,∞) be a convex loss function of some type (a, p) and P,
P̃ be distributions X × Y with |P|a < ∞ and |P̃|a < ∞. Furthermore, let H be a RKHS of
a bounded, continuous kernel on X. Then for all λ > 0, ε > 0 we have

∥∥f(1−ε)P+εP̃,λ − fP,λ

∥∥
H
≤

2cε
(|P|a + |P̃ |a + 2p+1δp

P,λ ‖k‖p∞ + 2
)

√
λRL,P(0)

,

where c is the constant of the type (a, p)-inequality.

For the special case that P̃ is the Dirac distribution ∆z concentrated in z = (x, y) we
have |∆z|a = a(y) and hence we obtain bounds for the difference quotient which occurs in
the definition of the influence function if we divide the bound by ε. Unfortunately it then
turns out that we can almost never bound the difference quotient uniformly in z by the
above result. The reason for this problem is that the (a, p)-type is a rather loose concept for
describing the growth behavior of loss functions. However, if we consider only invariant loss
functions—and many loss functions used in practice are invariant—we are able to obtain
stronger results.

Theorem 21 Let L : Y × R → [0,∞) be a convex invariant loss function of upper order
p ≥ 1, and P, P̃ be distributions X × Y with |P|p < ∞ and |P̃|p < ∞. Furthermore, let H
be a RKHS of a bounded, continuous kernel on X. Then for all λ > 0, ε > 0 we have

‖f(1−ε)P+εP̃,λ − fP,λ‖H ≤ c ε ‖k‖∞
|P− P̃|p−1 + |P− P̃|0

(‖k‖p−1∞ |P|(p−1)/2
p λ−(p−1)/2 + 1

)

λ
,

where the constant c only depends on L and p.

Recall that Lipschitz continuous invariant loss functions have upper order p = 1, and thus
for such loss functions only the 0th-moments |.|0 occurs in the above theorem. Furthermore
for all finite, signed measures µ we have |µ|0 = ‖µ‖M, where ‖µ‖M denotes the norm of
total variation (see e.g. Brown and Pearcy (1977) ), and hence we immediately obtain

Corollary 22 Let L : Y ×R→ [0,∞) be a Lipschitz continuous, convex and invariant loss
function, and P, P̃ be distributions X × Y with |P|1 < ∞ and |P̃|1 < ∞. Furthermore, let
H be a RKHS of a bounded, continuous kernel on X. Then for all λ > 0, ε > 0 we have

∥∥f(1−ε)P+εP̃,λ − fP,λ

∥∥
H
≤ ε|l|1 ‖k‖∞‖P− P̃‖M

λ
,

where l : R → [0,∞) is the function associated with L. In particular considering (1), we
have

‖SC n(z; Tn)‖H ≤ 2λ−1 ‖k‖∞ |l|1
for all z ∈ X × Y .

Finally, let us compare the influence function of kernel based regression methods with
the influence function of M-estimators in linear regression models with f(xi) = x′iθ, where
θ ∈ Rd denotes the unknown parameter vector. Let us assume for reasons of simplicity that

11
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the scale parameter σ ∈ (0,∞) of the linear regression model is known. For more details
about such M-estimators see Hampel et al. (1986). The functional T (P) corresponding to
an M-estimator is the solution of

EP η
(
X, [Y −X ′T (P)]/σ

)
X = 0 , (14)

where the odd function η(x, ·) is continuous for x ∈ Rd and η(x, u) ≥ 0 for all x ∈ Rd, u ∈
[0,∞). Almost all proposals of η may be written in the form η(x, u) = ψ(v(x)·u)·w(x), where
ψ : R → R is a suitable user-defined function (often continuous, bounded and increasing),
and w : Rd → [0,∞), v : Rd → [0,∞) are weight functions. An important subclass of
M-estimators are of Mallows-type, i.e. η(x, u) = ψ(u) · w(x). The influence function of
T (P) = θ in the point z = (x, y) at a distribution P for (X, Y ) on Rd × R is given by

IF(z; T, P) = M−1(η, P) · η (
x, [y − x′T (P)]/σ

) · x , (15)

where M(η, P) := EP η′ (X, [Y −X ′T (P)]/σ)XX ′ . An important difference between kernel
based regression and M-estimation is that IF(z; T, P) ∈ Rd in (15), but IF(z; T, P) ∈ H in
(11) for point mass contamination in the point z.

A comparison of the influence function of KBR given in (11) and (13) with the influence
function of M-estimators given in (15) yields that both influence functions have nevertheless
a similar structure. The function S = S(L′′, k, P) for KBR and the matrix M(η, P) for
M-estimation do not depend on z. The terms in the influence functions depending on
z = (x, y), where the point mass contamination ∆z occurs, are a product of two factors.
The first factors are −L′(y, fP,λ(x)) for general KBR, ψ (v(x) · (y − x′θ)/σ) for general M-
estimation, l′(y− fP,λ(x)) for KBR with an invariant loss function, and ψ ((y − x′θ)/σ) for
M-estimation of Mallows-type. Hence the first factors are measuring the outlyingness in
y−direction. KBR with an invariant loss function and M-estimators of Mallows-type use
first factors which only depend on the residuals. The second factors are S−1Φ(x) for the
kernel based methods and w(x)x for M-estimation. Therefore, they do not depend on y
and measure the outlyingness in x−direction.

Concluding one can say that there is a natural connection between KBR estimation and
M-estimation in the sense of the influence function approach. The main difference between
the influence functions is of course, that the map S−1Φ(x) takes values in the RKHS H in
the case of KBR whereas w(x)x ∈ Rd for M-estimation.

6. Examples

In this section we give simple numerical examples to show that:

• KBR with the ε−insensitive loss function is indeed more robust than KBR based on
the least squares loss function if there are outliers in y-direction.

• In general there is no hope to obtain robust predictions f̂(x) with KBR if x belongs to
a subset of the design space X where no or almost no data points are in the training
data set, i.e. if x is a leverage point.

We constructed a data set with n = 101 points in the following way. There is one
explanatory variable xi with values from −5 to 5 in steps of order 0.1. The responses yi are

12
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simulated by yi = xi + ei, where ei is a random number from a normal distribution with
expectation 0 and variance 1. The ε-SVR and LS-SVR with similar hyperparameters give
almost the same fitted curves, see Figure 1(a).

Figure 1(b) shows that ε-SVR is much less influenced by outliers in y−direction (one data
point is move to (x, y) = (−2, 100)) than LS-SVR due to the different behavior of the first
derivative of the loss functions.

Now we add to the original data set sequentially three data points all equal to (x, y) =
(100, 0) which are bad leverage points with respect to a linear regression model. The number
of such data points has a large impact on KBR with a linear kernel, but the predictions of
KBR with a Gaussian RBF kernel are stable but nonlinear, see Figure 1(c).

Now we study the impact of adding to the original data set two data points z1 = (100, 100)
and z2 = (0, 100) on the predictions of KBR, see Figure 1(d). By construction z1 is a good
leverage point and z2 is a bad leverage point with respect to a linear regression model which
follows e.g. by computing the highly robust LTS estimator (Rousseeuw, 1984), whereas the
roles of these data points are switched for a quadratic model. There is no regression model
which can fit all data points well because the x−components of z1 and z2 are equal by
construction. This toy example shows that in general one can not hope to obtain robust
predictions f̂(x) for EP(Y |X = x) with KBR if x belongs to a subset of X where no or almost
no data points are in the training data set because the addition of a single data point can
have a big impact on KBR if the RKHS H is rich enough. Note that the hyperparameters ε,
γ, and C = 1/(2λ) were specified in these examples to illustrate certain aspects of KBR and
were therefore not determined by a grid search, a Nelder-Mead search or by cross-validation.

7. Discussion

In this paper properties of kernel based regression methods including support vector ma-
chines were investigated. Consistency of kernel based regression methods was derived and
results for the influence function, its difference quotient and the sensitivity curve were estab-
lished. Our theoretical results show that KBR methods using a loss function with bounded
first derivative (e.g. logistic loss) in combination with a bounded and rich enough continuous
kernel (e.g. a Gaussian RBF kernel) are not only consistent and computational tractable,
but also offer attractive robustness properties.

Most of our results have analogues in the theory of kernel based classification methods,
see e.g. Steinwart (2005), and Christmann and Steinwart (2004). However, since in the
classification scenario Y is only {−1, 1}-valued, many effects of the regression scenario
with unbounded Y do not occur in the above papers. Consequently, we had to develop a
variety of new techniques and concepts: one central issue here was to find notions for loss
functions which on the one hand are mild enough to cover a wide range of reasonable loss
functions, and on the other hand are strong enough to allow meaningful results for both
consistency and robustness under minimal conditions on Y . In our analysis it turned out
that the relation between the growth behaviour of the loss function and the tail behaviour
of Y play a central role for both types of results. Interestingly, similar tail properties of
Y are widely used for obtaining consistency of non-parametric regression estimators and
for establishing robustness properties of M-estimators in linear regression. For example,
Györfi et al. (2002) assume EPY 2 < ∞ for the least squares loss, Hampel et al. (1986,
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Figure 1: (a) Simulated data set. ε−SVR with k=RBF (solid); LS-SVR with k=RBF
(dashed). (b) one outlier in y−direction at (x, y) = (−2, 100). ε−SVR with
k=RBF (solid); LS-SVR with k=RBF (dashed). (c) Simulated data set with ad-
ditional 1, 2, or 3 data points in (x, y) = (100, 0). ε−SVR with k=linear; ε−SVR
with k=RBF. (d) two additional data points in (x, y) = (100, 0) and (x, y) =
(100, 100). ε−SVR with k=linear; ε−SVR with k=RBF (RBF,a) and k=RBF
with (ε, γ, C) = (0.1, 0.00001, 10000) (RBF,b), respectively. The hyperparame-
ters were (ε, γ, C) = (0.1, 0.1, 10) for ε−SVR with k=RBF, (ε, C) = (0.1, 10) for
ε−SVR with k=linear, and (γ, C) = (0.1, 10) for LS-SVR with k=RBF.

p.315) assume existence and non-singularity of EP η′ (X, [Y −X ′T (P)]/σ) XX ′, and Davies
(1993, p.1876) assumes EP||X||(||X||+ |Y |) < ∞. Another important issue was to deal with
the estimation error in the consistency analysis. We decided to use a stability approach
in order to avoid truncation techniques, so that the proof of our consistency result became
surprisingly short. An additional benefit of this approach was that it revealed an interesting
connection between the robustness and the consistency of KBR methods. Note that a
somewhat similar observation was recently made by Poggio et al. (2004) and Mukherjee
et al. (2004) for a wide class of learning algorithms. However, they assume that the loss
function or Y is bounded and hence their results cannot be used in our more general setting.
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Our results concerning the influence function of kernel based regression (Theorem 18 and
Corollary 19) are valid under the assumption that the loss function is twice continuously
differentiable, whereas our other robustness results are valid for more general loss functions.
The strong differentiability assumption was made because our proof is based on a classical
theorem of implicit functions. We have not investigated whether similar results hold true
for continuous but not differentiable loss functions. It may be possible to obtain such results
by using an implicit function theorem for non-smooth functions based on a weaker concept
than Fréchet differentiability. However, there are indications why a smooth loss function
may even be desirable. The function −L′ has a similar role for kernel based regression than
the ψ−function for M-estimators. Huber (1981, p. 51) considered robust estimation in
parametric models and investigated the case that the underlying distribution is a mixture
of a smooth distribution and a point mass. He showed that an M-estimator has a non-
normal limiting behavior if the point mass is at a discontinuity of the derivative of the
score function. Since distributions with point masses are not excluded by nonparametric
regression methods such as KBR his results indicate that a twice continuously differentiable
loss function may guard against such phenomena.

Theorems 18 and 21 and the comments after Theorem 15 show that KBR estimators based
on appropriate choices of L and k have a bounded influence function if the distribution
P has the tail property |P|a < ∞, but are non-robust against small violations of this
tail assumption. The deeper reason for this instability is that the theoretical regularized
risk itself is defined via EPL(Y, f(X)), which is a non-robust location estimator for the
distribution of the losses. This location estimator can be infinite for mixture distributions
(1− ε)P + εP̃ no matter how small ε > 0 is. Following general rules of robust estimation in
linear regression models, one might replace this non-robust location estimator by a robust
alternative like an α-trimmed mean or the median (Rousseeuw, 1984), which results in

f∗P,λ = arg min
f∈H

MedianPL(Y, f(X)) + λ‖f‖2
H , (16)

or might use a bounded, non-convex loss function L (Rousseeuw and Yohai, 1984). We
conjecture that f∗P,λ offers additional robustness, but sacrifices computational efficiency.
However, such methods are beyond the scope of this paper.

To our best knowledge there are no results on robustness properties of KBR which are
comparable to those presented here. However, Suykens et al. (2002) proposed the WLS-
SVR algorithm which is based on KBR with least squares loss function (LS-SVR) in the
following way: a LS-SVR is fitted, then data points with large absolute residuals divided by
a robust scale estimate are downweighted, and finally a second LS-SVR is done taking these
weights into account. Our theoretical results given in Section 5 show that a robustification
of LS-SVR is indeed necessary because its loss function increases too fast. However, it is
doubtable whether the WLS-SVR approach completely resolves that problem since a general
result of robust statistics is that such weighted estimators already need a robust estimator
in the first step, see e.g. Rousseeuw (1984) and Yohai et al. (1991) for linear regression.
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Appendix: Proofs of the Results

A.1 Proofs of Section 3

Proof of Lemma 4. Assertion iii) is trivial and the left inequality of assertion iv) is well
known from convex analysis. Furthermore, the right inequality of iv) easily follows from
l(r) = |l(r) − l(0)| ≤ H(r)|r − 0| = |r|H(r) for all r ∈ R. Moreover, the right inequality
of iv) directly implies ii). Furthermore i) can be easily by the left inequality of vi) since
lim|r|→∞ l(r) = ∞ implies H(r) > 0 for all r 6= 0. Finally, the last assertion follows from

L(y, t) = l(y − t) ≤ c
(|y − t|p + 1

) ≤ c
(|y|p + |t|p + 1

)
. ¤

Proof of Proposition 6. For bounded measurable functions f : X → R we have

RL,P(f) =
∫

X×Y
L(y, f(x)) dPX(x, y) ≤ c

∫

X×Y

(
a(y) + |f(x)|p + 1

)
dPX(x, y)

≤ c ‖a‖L1(P) + c ‖f‖p
Lp(P) + c < ∞ . ¤

Proof of Lemma 7. For all a, b ∈ R we have (|a|+ |b|)p ≤ 2p−1(|a|p + |b|p) if p ≥ 1, and
(|a| + |b|)p ≤ |a|p + |b|p otherwise. This obviously implies |a|p ≤ 2p−1(|a − b|p + |b|p) and
|a|p ≤ |a − b|p + |b|p, respectively. Now let us assume that we know f ∈ Lp(P). By our
preliminary considerations we then obtain

∞ > RL,P(f) ≥ c

∫

X×Y

(|y − f(x)|p − 1
)
dP(x, y) ≥ c

∫

X×Y

(|y|p − cp|f(x)|p − 1
)
dP(x, y)

for some finite constants c > 0 and cp > 0. From this we immediately |P |p < ∞. The
converse implication can be shown analogously. ¤

Proof of Proposition 9. Our proof follows DeVito et al. (2004). However, the assertion
can also be shown elementarily by modifying the proof of Lemma 3.1 in Steinwart (2005).
Since L is of type (a, p) we observe by (Ekeland and Turnbull, 1983, Prop. III.5.1) that
RL,P : Lp(P) → R is continuous (actually, their result is only stated for X ⊂ R, but
it is straightforward to check that it holds for arbitrary measure spaces). Furthermore,
id : H → Lp(P) is continuous since k is bounded and hence Rreg

L,P,λ : H → R is continuous.
This map is also convex, and the set {f ∈ H : Rreg

L,P,λ(f) ≤ δP,λ} is non-empty (it contains
0 ∈ H) and bounded. Therefore, (Ekeland and Turnbull, 1983, Prop. II.4.6) ensures the
existence of fP,λ. The uniqueness follows from the strict convexity of Rreg

L,P,λ. The last
assertion is trivial. ¤

Proof of Theorem 13. We begin with proving the general case. By Proposition 12
there exists an h ∈ Lp′(P) with h(x, y) ∈ ∂2L(y, fP,λ(x)) for all (x, y) ∈ X × Y , and
fP,λ = − 1

2λ EP hΦ. Let us first show that h is integrable for Q. To this end using the
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shorthand K := ‖k‖∞ we find

|h(x, y)| ≤ |∂2L(y, fP,λ(x)| ≤ ∣∣L(y, .)|[−fP,λ(x),fP,λ(x)]

∣∣
1

≤ ∣∣L(y, .)|[−δP,λK,δP,λK]

∣∣
1

≤ 2
δP,λK

∥∥L(y, .)|[−2δP,λK,2δP,λK]

∥∥
∞

≤ 2c
∣∣a(y) + |2δP,λK|p + 1

∣∣
δP,λK

. (17)

From this we immediately deduce h ∈ L1(Q).
Now, by the definition of the subdifferential we have

h(x, y)
(
fQ,λ(x)− fP,λ(x)

) ≤ L(y, fQ,λ(x))− L(y, fP,λ(x)) ,

and hence

E(x,y)∼Q L(y, fP,λ(x)) + 〈fQ,λ − fP,λ , EQhΦ〉 ≤ E(x,y)∼Q L(y, fQ,λ(x)) . (18)

Moreover an easy calculation shows

λ ‖fP,λ‖2
H + 2λ 〈fQ,λ − fP,λ , fP,λ〉+ λ‖fP,λ − fQ,λ‖2

H = λ‖fQ,λ‖2
H . (19)

Combining (18) and (19) it follows

Rreg
L,Q,λ(fP,λ) + 〈fQ,λ − fP,λ , EQhΦ + 2λfP,λ〉+ λ‖fP,λ − fQ,λ‖2

H ≤ Rreg
L,Q,λ(fQ,λ)

≤ Rreg
L,Q,λ(fP,λ) .

Therefore by using fP,λ = − 1
2λ EPhΦ we obtain

λ‖fP,λ − fQ,λ‖2
H ≤ 〈fP,λ − fQ,λ , EQhΦ− EPhΦ〉

≤ ‖fP,λ − fQ,λ‖H · ‖EQhΦ− EPhΦ‖H ,

which shows the assertion in the general case.
Now let us assume that L is invariant. As usual we denote the function that represents

L by l : R → [0,∞). Then we easily check that h satisfies h(x, y) ∈ ∂2L(y, fP,λ(x)) =
−∂l(y − fP,λ(x)) for all (x, y) ∈ X × Y . Now for p = 1 we see by iv) of Lemma 4 that l
is Lipschitz continuous and hence the function H is constant. Since this gives, cf. (Phelps,
1986, Prop. 1.11),

|h(x, y)| ≤ H(y − fP,λ(x)) ≤ ‖H‖∞
we find h ∈ L∞(Q) which is the assertion for p = 1. Therefore let us finally consider the
case p > 1. Then for (x, y) ∈ X × Y with r := |y − fP,λ(x)| ≥ 1 we have

|h(x, y)| ≤ |∂l(y − fP,λ(x))| ≤ H(r) ≤ 2
r
‖l|[2r,2r]‖∞ ≤ c rp−1

for a suitable constant c > 0. Furthermore, for (x, y) ∈ X × Y with |y − fP,λ(x)| ≤ 1 we
have |h(x, y)| ≤ |∂l(y− fP,λ(x))| ≤ H(y− fP,λ(x)) ≤ H(1). Together, these estimates show

|h(x, y)| ≤ c̃max
{
1, |y − fP,λ(x)|p−1

} ≤ c̃ ĉp

(
1 + |y|p−1 + |fP,λ(x)|p−1

)

17



A. CHRISTMANN AND I. STEINWART

for some constant c̃ only depending on the loss function L and ĉp := max{1, 2p−2}. Now,
using p′(p− 1) = p we obtain h ∈ Lp′(Q) with

‖h‖Lp′ (Q) ≤ c̃ ĉp

(|Q|p + ‖k‖p−1
∞ ‖fP,λ‖p−1

H + 1
)
. (20)

Finally, for later purpose we note that our previous considerations for p = 1 showed that
(20) also holds in this case. ¤

A.2 Proofs of Section 4

In order to prove Theorem 15 we need some preliminary results. Our first lemma shows
that the influence of the regularization term λ‖fP,λ‖2

H used in the definition of kernel based
regression methods vanishes for λ → 0.

Lemma 23 Let L be a loss function, H be a RKHS over X with continuous kernel k and
P be a distribution on X × Y . Suppose that the minimizer fP,λ of (2) exists for all λ > 0.
Then we have

lim
λ→0

Rreg
L,P,λ(fP,λ) = inf

f∈H
RL,P(f) := RL,P,H .

Proof of Lemma 23. Let ε > 0 and fε ∈ H with RL,P(fε) ≤ RL,P,H + ε. Then for all
λ < ε‖fε‖−2

H we have

RL,P,H ≤ λ‖fP,λ‖2
H +RL,P(fP,λ) ≤ λ‖fε‖2

H +RL,P(fε) ≤ 2ε +RL,P,H . ¤

The next lemma shows that universal kernels have zero approximation error with respect
to the L-risk.

Lemma 24 Let L be an convex and invariant loss function of lower and upper order p ≥ 1,
and H be a RKHS of a universal kernel. Then for all distributions P on X×Y with |P|p ≤ ∞
we have

RL,P,H = RL,P .

Proof of Lemma 24. We split the proof into two parts by first showing

RL,P,H = RL,P,L∞(P) := inf
{RL,P(f)

∣∣f ∈ L∞(P)
}

(21)

and then establishing
RL,P,L∞(P) = RL,P . (22)

In order to prove (21) let us choose an ε > 0 and a g ∈ L∞(P). Then by the universality of
H there exists a function f ∈ H with ‖f‖∞ ≤ ‖g‖∞ and PX

(|f−g| ≥ ε
) ≤ ε. Furthermore,

with the arguments used in the proof of Theorem 13 we find

H
(|y|+ ‖g‖∞

) ≤ c
(|y|p−1 + ‖g‖p−1

∞ + 1
)
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for all y ∈ Y and a suitable constant c > 0 only depending on L and p. This shows
(y 7→ H(|y|+ ‖g‖∞)) ∈ L1(P) and hence we obtain

∣∣RL,P(f)−RL,P(g)
∣∣ ≤

∫

X×Y

∣∣l(y − f(x))− l(y − g(x))
∣∣ dP(x, y)

≤
∫

X×Y
H

(|y|+ ‖g‖∞
)∣∣f(x)− g(x)

∣∣ dP(x, y)

≤
∥∥∥
(
y 7→ H

(|y|+ ‖g‖∞
))∥∥∥

L1(P)

(
ε + 2ε ‖g‖∞

)
.

From this we easily get (21). In order to show (22) let us first recall that for all f : X → Y
with RL,P(f) < ∞ we have f ∈ Lp(P) by Lemma 7. Therefore we can restrict the infimum
used in the definition of RL,P to functions contained in Lp(P). Now for a fixed f ∈ Lp(P)
we define h(x, y) := (|y|p−1 + |f(x)|p−1 + 1) |f(x)|, (x, y) ∈ X × Y . By Hölder’s inequality
and p′(p− 1) = p we then find

∫

X×Y

(|y|p−1 + |f(x)|p−1
)|f(x)| dP(x, y)

≤ 2
(∫

X×Y
|y|p′(p−1) + |f(x)|p′(p−1) dP(x, y)

)1/p′

‖f‖Lp(P)

< ∞ ,

where in the last estimate we used f ∈ Lp(P) and ((x, y) 7→ y) ∈ Lp(P). This shows
h ∈ L1(P). Let us now define fn := 1{|f |≤n}f , n ≥ 1, where 1A denotes the indicator
function of A. Then we obtain

∣∣RL,P(fn)−RL,P(f)
∣∣ ≤

∫ ∣∣l(y − fn(x))− l(y − f(x))
∣∣ dP(x, y)

≤
∫

|f |≥n
H

(|y|+ |f(x)|) |f(x)| dP(x, y)

≤ c

∫

|f |≥n
h dP(x, y) ,

and hence we get limn→∞RL,P(fn) = RL,P since h ∈ L1(P). ¤

Under the assumptions of Lemma 23 and Lemma 24 we immediately see that
RL,P(fP,λn) → RL,P holds for λn → 0. Therefore, we obtain L-consistency whenever
we can show that |RL,P(fP,λn) − RL,P(f̂n,λn)| → 0 holds in probability for n → ∞ and
suitable null sequences (λn). Our main tool for ensuring this convergence will be Theorem
13 which in particular describes the behavior of ‖fP,λn− f̂n,λn‖∞ if we let Q be an empirical
measure based on a sample set of length n. The next result shows how the norm of this
difference can be used to estimate |RL,P(fP,λn)−RL,P(f̂n,λn)|.
Lemma 25 Let L be a convex invariant loss function of some type p ≥ 1 and P be a
distribution on X × Y with |P|p < ∞. Then there exists a constant cp > 0 only depending
on L and p such that for all bounded measurable functions f, g : X → Y we have

∣∣RL,P(f)−RL,P(g)
∣∣ ≤ cp

(|P|p−1 + ‖f‖p−1
∞ + ‖g‖p−1

∞ + 1
)‖f − g‖∞ .
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Proof of Lemma 25. Again we have H(|y|+ |a|) ≤ c̃p

(|y|p−1 + |a|p−1 + 1
)

for all a ∈ R,
y ∈ Y , and a suitable constant c̃p > 0 depending on L and p. Furthermore, we find

∣∣RL,P(f)−RL,P(g)
∣∣ ≤

∫ ∣∣l(y − f(x))− l(y − g(x))
∣∣ dP(x, y)

≤
∫

H
(|y|+ ‖f‖∞ + ‖g‖∞

)∣∣f(x)− g(x)
∣∣ dP(x, y) .

Now we easily obtain the assertion by combining both estimates. ¤

Let us now deal with the stochastic analysis of |RL,P(fP,λ) − RL,P(f̂n,λ)| → 0. To this
end we need the following lemma.

Lemma 26 Let Z be a measurable space, P be a distribution on Z, H a Hilbert space and
f : Z → H be a measurable function with ‖f‖q := (EP‖f‖q

H)1/q < ∞ for some q ∈ (1,∞).
We write q∗ := min{1/2, 1/q′}. Then there exists a universal constant cq > 0 such that for
all ε > 0 and all n ≥ 1 we have

Pn
(
(z1, . . . , zn) ∈ Zn :

∥∥∥ 1
n

n∑

i=1

f(zi)− EPf
∥∥∥ ≥ ε

)
≤ cq

(‖f‖q

ε nq∗

)q

.

For the proof of Lemma 26 we have to recall some basics from local Banach space theory.
To this end we call a sequence of independent, symmetric {−1, 1}-valued random variables
(εi) a Rademacher sequence. Now let E be a Banach space, (Xi) be an i.i.d. sequence of E-
valued, centered random variables and (εi) be a Rademacher sequence which is independent
to (Xi). Then for all 1 ≤ p < ∞ and all n ≥ 1 we have (see Hoffmann-Jørgensen (1974,
Cor. 4.2))

E
∥∥∥

n∑

i=1

Xi

∥∥∥
p
≤ 2p E

∥∥∥
n∑

i=1

εiXi

∥∥∥
p
. (23)

Furthermore, a E is said to have type p, 1 ≤ p ≤ 2, if there exists a constant cp(E) > 0
such that for all n ≥ 1 and all finite sequence x1, . . . , xn ∈ E we have

E
∥∥∥

n∑

i=1

εixi

∥∥∥
p
≤ cp(E)

n∑

i=1

‖xi‖p .

Since in the following we are only interested in Hilbert spaces H we note that these spaces
always have type 2 with constant c2(H) = 1 by orthogonality. Furthermore, they also have
type p for all 1 ≤ p < 2 by Kahane’s inequality (see e.g. (Diestel et al., 1995, p. 211)) which
ensures (

E
∥∥∥

n∑

i=1

εixi

∥∥∥
p
)1/p

≤ cp,q

(
E

∥∥∥
n∑

i=1

εixi

∥∥∥
q
)1/q

for all 0 < p, q < ∞, all Banach spaces E, all finite sequence x1, . . . , xn and constants cp,q > 0
only depending on p and q. For more information we refer to Ledoux and Talagrand (1991)
and Diestel et al. (1995). Now we can proceed with

20



CONSISTENCY AND ROBUSTNESS OF KERNEL BASED REGRESSION

Proof of Lemma 26. Let us write h(z1, . . . , zn) := 1
n

∑n
i=1 f(zi)−EPf . Then a standard

calculation shows

Pn
(‖h‖ ≥ ε

)
=

∫
1{‖h‖q≥εq}dP ≤ EP‖h‖q

H

εq
,

and hence it remains to estimate EP ‖h‖q
H . To this end recall that by (23) we have

E(z1,...,zn)∼Pn

∥∥∥
n∑

i=1

f(zi)− EPf
∥∥∥

q

H
≤ 2qE(z1,...,zn)∼PnE

∥∥∥
n∑

i=1

εi

(
f(zi)− EPf

)∥∥∥
q

H
, (24)

where the inner expectation on the right hand side is with respect to the Rademacher
sequence (εi). For 1 < q ≤ 2 we hence obtain

EP ‖h‖q
H = n−qE(z1,...,zn)∼Pn

∥∥∥
n∑

i=1

f(zi)− EPf
∥∥∥

q

H

≤ 2qn−qE(z1,...,zn)∼PnE
∥∥∥

n∑

i=1

εi

(
f(zi)− EPf

)∥∥∥
q

H

≤ 2qcqn
−q

n∑

i=1

Ezi∼P‖f(zi)− EP f‖q
H

≤ 4qcqn
1−q EP ‖f‖q

H ,

where cq is the type q constant of Hilbert spaces. From this we easily obtain the assertion
for 1 < q ≤ 2. Now let us assume that 2 < q < ∞. Then using Kahane’s inequality there
is a universal constant cq > 0 with

EP ‖h‖q
H ≤ 2qn−qE(z1,...,zn)∼PnE

∥∥∥
n∑

i=1

εi

(
f(zi)− EPf

)∥∥∥
q

H

≤ cqn
−qE(z1,...,zn)∼Pn

(
E

∥∥∥
n∑

i=1

εi

(
f(zi)− EPf

)∥∥∥
2

H

)q/2

≤ cqn
−qE(z1,...,zn)∼Pn

( n∑

i=1

‖f(zi)− EPf‖2
H

)q/2

≤ cqn
−q

( n∑

i=1

(
Ezi∼P‖f(zi)− EP f‖q

H

)2/q
)q/2

≤ 2qcqn
−q/2 EP ‖f‖q

H ,

where we used that Hilbert spaces have type 2 with constant 1. From this estimate we
easily obtain the assertion for 2 < q < ∞. ¤

Proof of Theorem 15. To avoid handling with too many constants let us assume
‖k‖∞ = 1, |P|p = 1, and c = 2−(p+2) for the upper order constant of L. Then an easy
calculation shows RL,P(0) ≤ 1. Furthermore, we assume without loss of generality that
λn ≤ 1 for all n ≥ 1. Obviously this implies ‖fP,λn‖∞ ≤ ‖fP,λn‖H ≤ λ

−1/2
n Now for n ∈ N
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and regularization parameter λn let hn : X × Y → R be the function obtained by Theorem
13. Then our assumptions and (20) give ‖hn‖Lp′ (P) ≤ 3 · 2p∗/p−2λ

−(p−1)/2
n . Furthermore,

Lemma 25 provides a constant cp > 0 such that for all g ∈ H with ‖fP,λn − g‖H ≤ 1 we
have

∣∣RL,P(fP,λn)−RL,P(g)
∣∣

≤ cp

(|P|p−1 + ‖fP,λn‖p−1
∞ + ‖g‖p−1

∞ + 1
)‖fP,λn − g‖∞

≤ cp

(
2 + λ−(p−1)/2

n +
(‖fP,λn‖∞ + ‖fP,λn − g‖∞

)p−1
)
‖fP,λn − g‖H

≤ c̃p λ−(p−1)/2
n ‖fP,λn − g‖H , (25)

where c̃p ≥ 1 is a suitable constant only depending on p and L. Now let 0 < ε ≤ 1 and T
be a training set of length n with

‖EPhnΦ− ET hnΦ‖H ≤ λ
(p+1)/2
n ε

c̃p
. (26)

Then Theorem 13 gives ‖fP,λn − fT,λn‖H ≤ c̃−1
p λ

(p−1)/2
n ε ≤ 1 and hence (25) yields

∣∣RL,P(fP,λn)−RL,P(fT,λn)
∣∣ ≤ c̃p λ−(p−1)/2

n ‖fP,λn − fT,λn‖H ≤ ε . (27)

Let us now estimate the probability of T satisfying (26). To this end we define q := p′.
Then we have q∗ := min{1/2, 1/q′} = min{1/2, 1/p} = p/p∗ and by Lemma 26 we obtain

Pn

(
T ∈ (X × Y )n : ‖EPhnΦ− ET hnΦ‖ ≤ λ

(p+1)/2
n ε

c̃p

)
≥ 1− ĉp

( ‖h‖p′

ε λ
(p+1)/2
n nq∗

)p′

≥ 1− ĉp

(
3 · 2p∗/p−2

ε λp
n np/p∗

)p′

,

where ĉp is a constant only depending on L and p. Now using λp
nnp/p∗ = (λp∗

n n)p/p∗ → ∞
we find that the probability of samples sets T satisfying (26) converges to 1 if n = |T | → ∞.
As we have seen above this implies that (27) holds true with probability tending to 1. Now,
since λn → 0 we additionally have |RL,P(fP,λn)−RL,P| ≤ ε for all sufficiently large n and
hence we finally obtain the assertion.

A.3 Proofs of Section 5

In order to shorten notations we sometimes write L(f) instead of L(y, f(x)). Moreover we
also use this kind of notation for derivatives of L.

The following proofs heavily rely on the implicit function theorem in Banach spaces.
Therefore, we recall a simplified version of this theorem (cf. Akerkar, 1999; Zeidler, 1986).
Here and throughout the rest of the appendix BE denotes the open unit ball of a Banach
space E.
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Theorem 27 (Implicit function theorem) Let E,F be Banach spaces and G : E×F →
F be a continuously differentiable map. Suppose that we have (x0, y0) ∈ E × F such that
G(x0, y0) = 0 and ∂G

∂F (x0, y0) is invertible. Then there exists a δ > 0 and a continuously
differentiable map f : x0 + δBE → y0 + δBF such that for all x ∈ x0 + δBE, y ∈ y0 + δBF

we have
G(x, y) = 0 if and only if y = f(x) .

Moreover, the derivative of f is given by

f ′(x) = −
(

∂G

∂F

(
x, f(x)

))−1 ∂G

∂E

(
x, f(x)

)
.

For the application of the implicit function theorem we have to show that certain operators
are invertible. For this the following theorem which is known as the Fredholm Alternative
(cf. Cheney, 2001) turns out to be helpful:

Theorem 28 (Fredholm Alternative) Let E be a Banach space and S : E → E be a
compact operator. Then idE + S is surjective if and only if it is injective.

Proof of Theorem 18. The key ingredient of our analysis is the map G : R ×H → H
defined by

G(ε, f) := 2λf + E(1−ε)P+ε∆z
L′(Y, f(X))Φ(X)

for all ε ∈ R, f ∈ H. Let us first check that its definition makes sense. To this end recall
that every f ∈ H is a bounded function since we assumed that H has a bounded kernel k.
As in the proof of Proposition 6 we then find EP |L′(Y, f(X))| < ∞ for all f ∈ H. Since
the boundedness of k also ensures that Φ is a bounded map, we then see that the H-valued
expectation used in the definition of G is defined for all ε ∈ R and all f ∈ H (Note that for
ε 6∈ [0, 1] the H-valued expectation is with respect to a signed measure, cf. Dudley (2002)).
Now for ε ∈ [0, 1] we obtain (see Christmann and Steinwart (2004) for a detailed derivation)

G(ε, f) =
∂Rreg

L,(1−ε)P+ε∆z ,λ

∂H
(f) . (28)

Since f 7→ Rreg
L,(1−ε)P+ε∆z ,λ(f) is convex and continuous (cf. proof of Prop. 9) for all ε ∈ [0, 1]

equation (28) shows that we have G(ε, f) = 0 if and only if f = f(1−ε)P+ε∆z ,λ for such ε.
Our aim is to show the existence of a differentiable function ε 7→ fε defined on a small
interval (−δ, δ) for some δ > 0 that satisfies G(ε, fε) = 0 for all ε ∈ (−δ, δ). Once we have
shown the existence of this function we immediately obtain

IF (z; T, P) =
∂fε

∂ε
(0) .

For the existence of ε 7→ fε we only have to check by Theorem 27 that G is continuously
differentiable and that ∂G

∂H (0, fP,λ) is invertible.
Let us start with the first. To this end we find by an easy calculation

∂G

∂ε
(ε, f) = −EPL′(Y, f(X))Φ(X) + E∆zL

′(Y, f(X))Φ(X) , (29)
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and a slightly more involved computation (cf. Christmann and Steinwart (2004)) shows

∂G

∂H
(ε, f) = 2λ idH + E(1−ε)P+ε∆z

L′′(Y, f(X))〈Φ(X), .〉Φ(X) = S . (30)

In order to prove that ∂G
∂ε is continuous we fix an ε and a convergent sequence fn → f

in H. Since H has a bounded kernel the sequence of functions (fn) is then uniformly
bounded. By the continuity of L′ we thus find a measurable bounded function g : Y → R
with L′(y, fn(x)) ≤ L′(y, g(y)) for all n ≥ 1 and all (x, y) ∈ X × Y . As in the proof of
Proposition 6 we find (y 7→ L(y, g(y))) ∈ L1(P) and therefore an application of Lebesgue’s
theorem for Bochner integrals gives the continuity of ∂G

∂ε . Since the continuity of G and
∂G
∂H can be shown analogously we obtain that G is continuously differentiable (cf. Akerkar,
1999).

In order to show that ∂G
∂H (0, fP,λ) is invertible it suffices to show by the Fredholm Alter-

native that ∂G
∂H (0, fP,λ) is injective and that

Ag := EPL′′(Y, fP,λ(X))g(X)Φ(X) , g ∈ H,

defines a compact operator on H.
To show the compactness of the operator A recall that X and Y are Polish spaces (cf.

Dudley (2002)) since we assumed that X and Y are closed. Furthermore, Borel probability
measures on Polish spaces are regular by Ulam’s theorem, i.e. they can be approximated
from inside by compact sets, cf. (Bauer, 1990, p. 180). In our situation, this means that
for all n ≥ 1 there exists a compact subset Xn × Yn ⊂ X × Y with P(Xn × Yn) ≥ 1 − 1

n .
Now we define a sequence of operators An : H → H by

Ang :=
∫

Xn

∫

Yn

L′′(y, fP,λ(x)) P(dy|x) g(x)Φ(x) dPX(x) (31)

for all g ∈ H. Note that if X × Y is compact we can choose Xn × Yn := X × Y which
implies A = An. Let us now show that all An are compact operators. To this end we first
observe for g ∈ BH , n ≥ 1, and x ∈ X that

hg(x) :=
∫

Yn

L′′(y, fP,λ(x))
∣∣g(x)

∣∣ P(dy|x) ≤ c‖k‖∞
∫

Yn

(
a(y)+|fP,λ(x)|p+1

)
P(dy|x) =: h(x)

for a : Y → R, p ≥ 1 and c > 0 according to the (a, p)-type of L′′. Obviously, we have
h ∈ L1(PX) which implies hg ∈ L1(PX) with ‖hg‖1 ≤ ‖h‖1 for all g ∈ BH . Consequently
dµg := hgdPX and dµ := hdPX are finite measures and by (Diestel and Uhl, 1977, Cor. 8
on p. 48) we hence obtain

Ang =
∫

Xn

sign g(x)Φ(x)hg(x)dPX(x) =
∫

Xn

sign g(x)Φ(x)dµg(x)

∈ µg(Xn) acoΦ(Xn)

⊂ µ(Xn) acoΦ(Xn) ,

where aco Φ(Xn) denotes the absolute convex hull of Φ(Xn), and the closure is with respect
to ‖.‖H . Now using the continuity of Φ we see that Φ(Xn) is compact and hence so is the
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closure of aco Φ(Xn). This shows that An is a compact operator. In order to see that A
is compact, it therefore suffices to show ‖An − A‖ → 0 for n → ∞. Recalling that the
convexity of L implies L′′ ≥ 0 the latter convergence follows from P(Xn × Yn) ≥ 1 − 1

n ,
L′′ ◦ fP,λ ∈ L1(P ), and

‖Ang −Ag‖ =
∥∥∥
∫

(X×Y )\(Xn×Yn)
L′′(y, fP,λ(x))g(x)Φ(x) dP(x, y)

∥∥∥

≤
∫

(X×Y )\(Xn×Yn)
L′′(y, fP,λ(x)) |g(x)| ‖Φ(x)‖ dP(x, y)

≤ ‖k‖2
∞ ‖g‖H

∫

(X×Y )\(Xn×Yn)
L′′(y, fP,λ(x)) dP(x, y) .

Let us now show that ∂G
∂H (0, fP,λ) = 2λidH + A is injective. To this end let us choose a

g ∈ H with g 6= 0. Then we find
〈
(2λ idH + A)g, (2λ idH + A)g

〉
= 4λ2〈g, g〉+ 4λ〈g, Ag〉+ 〈Ag, Ag〉
> 4λ〈g, Ag〉
= 4λ

〈
g,EPL′′(Y, fP,λ(X))g(X)Φ(X)

〉

= 4λEPL′′(Y, fP,λ(X))g2(X)
≥ 0 ,

which shows the injectivity.
As already described we can now apply the implicit function theorem to see that ε 7→ fε

is differentiable on a small interval (−δ, δ). Furthermore, (29) and (30) yield

IF (z; T, P) =
∂fε

∂ε
(0) = −S−1 ◦ ∂G

∂ε
(0, fP,λ)

= S−1
(
EP(L′(Y, fP,λ(X))Φ(X))

)− L′(y, fP,λ(x))S−1Φ(x) . ¤

Proof of Theorem 20. Let us write Q := (1 − ε)P + εP̃. By Theorem 13 there then
exists a bounded, measurable function h : X × Y → R independent of ε and P̃ such that
we have

‖fP,λ − f(1−ε)P+εP̃,λ‖H ≤ λ−1 ‖EPhΦ− E(1−ε)P+εP̃hΦ‖H

= ε λ−1 ‖EPhΦ− E P̃hΦ‖H

≤ ε λ−1 ‖k‖∞
(‖h‖L1(P) + ‖h‖L1(P̃)

)

≤ 2εc
(|P|a + |P̃|a + 2p+1

∣∣δP,λ‖k‖∞
∣∣p + 2

)

λ δP,λ

where in the last estimate we used (17). ¤

Proof of Theorem 21. Let us use the notations of the previous proof. Using ‖fP,λ‖∞ ≤
‖k‖∞

√RL,P(0)/λ we then obtain analogously to the proof of Theorem 13 that

|h(x, y)| ≤ c̃
(|y|p−1 + |fP,λ(x)|p−1 + 1

) ≤ c
(
|y|p−1 + ‖k‖p−1

∞ |P|(p−1)/2
p λ−(p−1)/2 + 1

)
,
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where c̃, c > 0 are constants only dending on L and p. With this estimate we find

‖fP,λ − f(1−ε)P+εP̃,λ‖H

≤ ε λ−1 ‖EPhΦ− E P̃hΦ‖H

≤ ε λ−1 ‖k‖∞E|P−P̃||h|

≤ c ε ‖k‖∞
|P− P̃|p−1 + |P− P̃|0

(
‖k‖p−1∞ |P|(p−1)/2

p λ−(p−1)/2 + 1
)

λ
. ¤

Proof of Corollary 22. Using the notations of the previous proof we have |h(x, y)| ≤ |l|1
for all (x, y) ∈ X × Y . Now the first assertion can be shown analogously to the previous
proof. Using (9) the second assertion is a direct consequence of the first one. ¤
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