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Abstract. Motivated by applications in image processing, quality control, and econo-

metrics we derive the exact distribution function of the clipping median estimator which is

designed to provide simultaneously robust smooths and jump-preserving reconstructions.

We allow for a mixture model which is of special interest for applications in pixel-wise

object detection. To construct statistical tests for pixel classification, we propose to rely

on estimated p-values. Simulations suggest that the resulting approximations are reliable.
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Introduction

Suppose we are given n real-valued random variables (r.v.s) Y1, . . . , Yn and aim at testing

whether mn = E(Yn) is affected by a level shift when compared to m1, . . . ,mn−1, where

mi = E(Yi), i = 1, . . . , n. This problem arises in various contexts, e.g., when a sequential

monitoring scheme for an economic time series or a series of quality measurements is

established for the first time and one wants to compare the current observation Yn with

past data Y1, . . . , Yn−1 to detect a level shift with no delay. Such a comparison can also

be an useful additional tool for a fixed sample analysis, if the analysis is naively applied
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in a sequential way after getting the new observation Yn, as it is often done in empirical

econometric research. In image processing an important task is to decide whether a pixel

belongs to the background or to the foreground (object). In this case we may define a local

neighborhood of h = n − 1 neighboring pixels, denote their grey values by Y1, . . . , Yn−1,

and add the grey value Yn of the current pixel to the sample. In this article we focus on

this image processing problem, last but not least because the estimator has its origins in

that field, but our results can be applied in various settings.

Quite often primary interest is in detecting level jumps. An estimator which is especially

designed to reproduce (grey level) jumps defining edges and contour lines of objects and

their location with high precision is the clipping median of mn defined as the empirical

median of all Yi’s with similar values as Yn. Here we consider a slightly more general

version. Let k ≥ 0 be a symmetric function R → R+, usually but not necessarily unimodal

and decreasing, and M > 0 a parameter. Common choices for k are the uniform kernel or

the Gaussian kernel. Define the clipping median estimator by

m̂n = ClipMed{k([Yi − Yn]/M)Yi},

where ClipMed is defined as

(1) Med{k([Yi − Yn]/M)Yi : 1 ≤ i ≤ n with |Yi − Yn| ≤ M}.

We use the common definition

Med{ξ1, . . . , ξn} =

{
1
2
(ξ(n/2+1) + ξ(n/2)), n even,

ξ([n+1]/2), n odd.

of the empirical median of n r.v.s ξ1, . . . , ξn, where ξ(1) ≤ · · · ≤ ξ(n) denotes the corre-

sponding order statistic. Recall that the exact distribution for i.i.d. observations is related

to the binomial distribution due to the relationship

Med{ξ1, . . . , ξn} ≤ x ⇔
n∑

i=1

1(ξi ≥ x) ≤ (n + 1)/2

which holds true for both even and odd n. For the clipping median the situation is more

involved and is the topic of this paper.

The particular version (1) has been studied in Pawlak, Rafaj lowicz and Steland (2004),

where sufficient conditions were derived which ensure that the sequential stopping rule

inf{n ∈ N : m̂n > c} can detect jumps in time series with no delay, if c is appropriately
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chosen. Note that m̂n reduces to the empirical median of all Yi such that |Yi−Yn| ≤ M if k

is the uniform kernel. However, the behavior of m̂n for general k is as follows. Observations

with |Yi − Yn| > M , i.e., far away from the current observation, are excluded from the

calculation (clipping). The kernel k performs a shrinkage operation, since observations

Yi with large values of |Yi − Yn|, which are not ignored by the clipping mechanism, are

shrunken towards 0. This means, the data transformation Yi 7→ Zi = k([Yi − Yn]/M)Yi

forms a cluster. The clipping mechanism ensures that the sample from which the median is

calculated shrinks substantially, if the current observation is different from the other ones.

This property ensures that sufficiently large level shifts can be reproduced more accurately

than with classic averaging procedures. If |Yi − Yn| > M for all 1 ≤ i < n, the clipping

median interpolates, i.e., m̂n = Yn. Finally note that if the sample is homogenous (i.i.d.)

with median 0, we have Med k([Yi − Yn]/M)Yi = 0, 1 ≤ i ≤ n. If there is a level shift, the

Zis before the shift will be shrunken to 0 if k is chosen appropriately, whereas the Zis afer

the shift are not shrunken.

The basic idea underlying the estimator m̂n can be traced back to Lee (1983) who studied

the problem of edge-preserving estimators for image processing purposes. Lee’s estimator is

implemented in many image processing packages including Mathematica, see WolframRe-

search (2004). It has been studied in different contexts, e.g., to smooth magnetic resonance

(MR) images. That application has been studied by Godtliebsen (1991), Godtliebsen and

Spøtvoll (1991), chapter 4 of Budinger et al. (1996), and Chiu et al. (1998). The latter

paper also discusses the relationship to M estimation. For a discussion of an applica-

tion of nonlinear Gaussian filters to images we refer to Godtliebsen and Marron (1997).

Further recent work can be found in Pawlak and Rafaj lowicz (2001). The application of

jump-preserving estimators for sequential monitoring and related theoretical results can

be found in Pawlak and Rafaj lowicz (2000), Steland (2002a, 2002b, 2004a), and Pawlak,

Rafaj lowicz and Steland (2004). For related recent results on classic kernel estimators we

refer to Steland (2004b) and the references given there.

The contribution of this article is to provide a theoretical basis for deriving statistical

test procedures based on the clipping median. We consider two models. In Section 1 we

study the d.f. of m̂n assuming that the neighborhood Y1, . . . , Yn−1 forms a homogenous

i.i.d. sample. Section 2 considers a more general mixture model. Finally, in Section 3 we

study the a.s. convergence of the proposed estimated p values.
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1. I.I.D. Neighborhoods

Let us first study a setting which can be used to decide whether or not a single pixel belongs

to a homogeneous background. Assume Y1, . . . , Yn are independent such that Y1, . . . , Yn−1

are i.i.d. with common d.f. F (x), and Yn ∼ F (x − ∆) for some shift ∆ ∈ R. We aim at

testing H0 : ∆ = 0 versus H1 : ∆ 6= 0 based on the test statistic m̂n. Let

Gn(x; ∆) = P∆(m̂n ≤ x), x ∈ R,

denote the d.f. of the clipping median estimator m̂n.

Further, let p1, p2 ∈ [0, 1] be two probabilities and denote by

(2) q(n, i, k, p1, p2) =
n!

i!k!(n− i− k)!
pi

1p
k
2[1− p1 − p2]

n−i−k

the trinomial probabilites, where n ∈ N, i, k ≥ 0, and i + k ≤ n. We set q(n, i, k) =

0 whenever the constraints on the indices are not satisfied. For an event A (or logical

expression) 1(A) is 1 if A occurs (is true), and equals 0 otherwise.

Theorem 1. Let Y1, . . . , Yn be independent random variables such that Y1, . . . , Yn−1 are

i.i.d. with c.d.f. F and Yn ∼ F (x−∆) for some shift ∆ ∈ R. For all x ∈ R we have

Gn(x; ∆) =

∫ ∑
(k,i)∈J (x,y)

q(n− 1, k, i, p+(x, y), p−(x, y)) dF (y −∆),

where J = {(k, i) ∈ {0, . . . , n− 1}2 : k − i ≤ 21(y > k(0)/M)} and

p+(x, y) = P (|Y1 − y| ≤ M, k([Y1 − y]/M)Y1 ≥ x),

p−(x, y) = P (|Y1 − y| ≤ M, k([Y1 − y]/M)Y1 < x),

for x, y ∈ R.

Proof. We shall consider the case ∆ = 0, the general case ∆ ∈ R will be obvious. Hence,

we have for each x ∈ R

Gn(x; 0) =

∫
P [Med{k([Yi − y]/M)Yi : |Yi − y| ≤ M} ≤ x|Yn = y] dF (y).

To calculate the integrand let

L(y) = {i ∈ {1, . . . , n} : |Yi − y| ≤ M}
4



be the random set of all indices corresponding to the clipped observations and put L(y) =

|L(y)|. Note that n ∈ L(y). Recall that by definition of the clipping median,

ClipMed{Zi(y)} ≤ x ⇔ SL(y)(x) ≤ [L(y) + 1]/2,

for both L(y) odd and even, where

Sl =
l∑

i=1

1(Zi(y) ≥ x), l ∈ N,

with Zi(y) = k([Yi − y]/M)Yi, i = 1, . . . , n. Consequently,

Gn(x; 0) =

∫
P [SL(y)(x)− (L(y) + 1)/2 ≤ 0|Yn = y] dF (y).

We have

L(y) =
n−1∑
i=1

1(|Yi − y| ≤ M) + 1

SL(y)(x) =
∑

i∈L(y)

1(Zi(y) ≥ x)

=
n−1∑
i=1

1(|Yi − y| ≤ M)1(Zi(y) ≥ x) + 1(y ≥ x/k(0))

Thus, SL(y)(x)− L(y)/2 ≤ 0 is equivalent to

n−1∑
i=1

ηi(x, y) ≤ 21(y > k(0)/M)

where

ηi(x, y) = 21(|Yi − y| ≤ M){1(Zi(y) ≥ x)− 1/2}, i = 1, . . . , n− 1,

are i.i.d. {−1, 0, +1}-valued r.v.s with

P (η1(x, y) = k|Yn = y) = p−(x, y)1(k=−1)p+(x, y)1(k=1)[1− p+(x, y)− p−(x, y)]1(k=0).

By independence of ηi(x, y), i = 1, . . . , n, the random vector (N+(x, y), N−(x, y)), where

N+(x, y) =
n−1∑
i=1

1(δi(x, y) = +1),

N−(x, y) =
n−1∑
i=1

1(δi(x, y) = −1),
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follows a trinomial distribution with parameters n − 1, p+(x, y), and p−(x, y), Therefore,

we obtain

P [SL(y) − (L(y) + 1)/2 ≤ 0|Yn = y]

= P [N+(x, y)−N−(x, y) ≤ 21(y > k(0)/M)|Yn = y]

=
∑

(k,i)∈J (x,y)

q(n− 1, k, i, p+(x, y), p−(x, y)).

Obviously, the last expression is integrable w.r.t. dF (y). Hence,

Gn(x; ∆) =

∫ ∑
(k,i)∈J (x,y)

q(n− 1, k, i, p+(x, y), p−(x, y)) dF (y).

If Yn ∼ F (x−∆), the measure dF (y) is replaced by dF (y −∆). �

This result suggests the following estimators for the d.f. of the clipping median under both

the null hypothesis and the alternative. For ∆ = 0 let

ĜL1,L2,n(x; 0) =

∫ ∑
(k,i)∈J ∗(x,y)

q(n− 1, k, i, p+(x, y), p−(x, y) dF̂n(y)

=
1

n− 1

∑
(k,i)∈J ∗(x,Yj)

q(n− 1, k, i, p+(x, Yj), p−(x, Yj),(3)

where

J ∗(x, y) = {(k, i) ∈ {0, . . . , n− 1}2 : |k − (n− 1)p+(x, y)| ≤ L1,

|i− (n− 1)p−(x, y)| ≤ L2, |k − i| ≤ 21(y > k(0)/M)}.

L1, L2 are truncation constants selecting the central atoms around the means. F̂n−1(x) =

(n− 1)−1
∑n−1

j=0 1(Yj ≤ x) is the e.d.f. of Y1, . . . , Yn−1, and

p̂1(x, y) =
1

n− 1

n−1∑
j=1

1(|Yn−j − y| ≤ M, Zn−j(y) ≥ x),(4)

p̂2(x, y) =
1

n− 1

n−1∑
j=1

1(|Yn−j − y| ≤ M, Zn−j(y) < x).(5)
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For ∆ 6= 0 the d.f. can be estimated by replacing dF̂n−1(y) in (3) by dF̂n−1(y −∆). Thus,

define Ĝn(x; ∆) as

(6)
1

n− 1

∑
(k,i)∈J ∗(x,Yj+∆)

q(n− 1, k, i, p+(x, Yj + ∆), p−(x, Yj + ∆)),

where p̂+(x, y) and p̂−(x, y) are defined as in (4) and (5), respectively.

We now propose to test H0 : ∆ = 0 against H1 : ∆ 6= 0 using the test φ given by

(7) φ = 1(p̂L1,L2,n 6∈ (α/2, 1− α/2))

where

p̂L1,L2,n = ĜL1,L2,n(m̂n; 0)

is the estimated p value. The a.s. convergence of the estimated p value will be discussed in

Section 3 using the more general framework of the next section.

2. Mixture Model for Neighborhoods

We shall now generalize the results of the previous section to a mixture model for the

neighborhood of the current observation Yn. So let Y1, . . . , Yn be independent r.v.s. We

assume that k Yis are distributed according to F (x) (background), n−1−k have distribution

F (x−∆) (object), and Yn ∼ F (x−∆′). This means, there exists a decomposition {1, . . . , n−
1} = I1 + I2 into disjoint nonempty sets I1 ⊂ {1, . . . , n− 1} and I2 ⊂ {1, . . . , n− 1} with

|I1| = k and |I2| = n− 1− k, such that

(8) Yi ∼ F (x), i ∈ I1,

(9) Yi ∼ F (x−∆), i ∈ I2.

Further, assume

(10) Yn ∼ F (x−∆′).

Here ∆, ∆′ ∈ R are level shifts. Provided ∆ is known, the testing problem of interest is

H0 : ∆′ = ∆ versus H1 : ∆′ = 0 to reveal that Yn is a background pixel, or H0 : ∆′ = 0

versus H1 : ∆′ = ∆ to reveal that Yn belongs to the object.

Put ∆ = (∆, ∆′) and let

Gn(x; ∆) = P∆[m̂n ≤ x], x ∈ R,
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denote the d.f. of the clipping median, where P∆ indicates that the probability is calculated

assumming the mixture model given by (8), (9), and (10) holds true.

Theorem 2. Let Y1, . . . , Yn be independent random variables such that (8), (9), and (10)

hold true. Let I1 + I2 = {1, . . . , n− 1} be a disjoint decomposition in two non-empty sets.

For all x ∈ R we have

G(I1,I2)
n (x; ∆) =

∫ ∑
(k,i)∈J (x,y)

P1,|I1|(x, y, k)P2∆,|I2|(x, y, i) dF (y −∆′),

where J (x, y) = {(k, i) ∈ N2 : |k| ≤ |I1|, |i| ≤ |I2|, k + i ≤ 21(y > k(0)/M)}, and

P1,l(x, y, r) =
l−r∑

i=−r

q(|I1|, i, r + i, p+(x, y; 0), p−(x, y, 0)), |r| ≤ |I1|,(11)

P2∆,l(x, y, r) =
l−r∑

i=−r

q(|I2|, i, r + i, p+(x, y; ∆), p−(x, y; ∆)), |r| ≤ |I2|,(12)

with

p+(x, y; δ) = P (|Y + δ − y| ≤ M, k([Y + δ − y]/M)Y ≥ x),(13)

p−(x, y; δ) = P (|Y + δ − y| ≤ M, k([Y + δ − y]/M)Y < x),(14)

for δ ∈ R.

Proof. The proof is similar as the proof of Theorem 1. Let Ỹ1, . . . , Ỹn
i.i.d.∼ F (x). Then we

may assume Yi = Ỹi if i ∈ I1, Yi = Ỹi + ∆ if i ∈ I2, and Yn = Ỹn + ∆′. Using the same

notation as in the proof of Theorem 1, we have given Yn = y

L(y; ∆) =
∑
i∈I1

1(|Ỹi − y| ≤ M) +
∑
i∈I2

1(|Ỹi + ∆− y| ≤ M) + 1

SL(y)(x; ∆) =
∑
i∈I1

1(|Ỹi − y| ≤ M)1(Z̃i(y; 0) ≥ x)

+
∑
i∈I2

1(|Ỹi + ∆− y| ≤ M)1(Z̃i(y; ∆) ≥ x) + 1(y ≥ x/k(0))

where

Z̃i(y; δ) = 1(k([Ỹi + δ − y]/M)(Ỹi + δ),

i = 1, . . . , n. Now SL(y)(x; ∆)− L(y; ∆)/2 ≤ 0 is equivalent to

(15) C(x, y; ∆) ≤ 21(y ≥ k(0)/M),
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where

C(x, y; ∆) = S1(x, y) + S2(x, y; ∆)

with

S1(x, y) =
∑
i∈I1

ηi(x, y; 0), S2(x, y; ∆) =
∑
i∈I2

ηi(x, y; ∆)

and

ηi(x, y; δ) = 21(|Ỹi + δ − y| ≤ M){1(Z̃i(y; δ) ≥ x)− 1/2},

i = 1, . . . , n− 1. Clearly,

S1(x, y) ∼ P1(x, y; ◦) and S2(x, y; ∆) ∼ P2∆(x, y; ◦),

where the probability functions P1(x, y; ◦) and P2∆(x, y; ◦) are defined in (11) and (12). By

independence of S1(x, y) and S2(x, y; ∆), we have

P (S1(x, y) + S2(x, y) ≤ 21(y > k(0)/M)|Yn = y) =
∑

(k,i)∈J (x,y)

P1,|I1|(x, y, k)P2∆,|I2|(x, y, i).

Therefore, we obtain

G(I1,I2)
n (x; ∆) =

∫ ∑
(k,i)∈J (x,y)

P1,|I1|(x, y, k)P2∆,|I2|(x, y, i) dF (y −∆′),

�

The definition of appropriate estimators strongly depends on the application. For instance,

for certain applications in image processing one would prefer to estimate background and/or

foreground using external data. If no external data is available or a local estimation pro-

cedure seems to be more appropriate one can proceed as follows. Calculate residuals

ε̂i = Yi, i ∈ I1,

ε̂i = Yi − ∆̂, i ∈ I2,

where, e.g, ∆̂ = |I2|−1
∑

i∈I2
Yi. Let F̂n(x) = (n − 1)−1

∑n−1
i=1 1(ε̂i ≤ x). The d.f. of the

clipping median under the mixture model can now be estimated by

Ĝ
(I1,I2)
L1,L2,n(x; ∆) =

∫ ∑
(k,i)∈J ∗(x,y)

P̂1,L1(x, y, k)P̂2∆,L2(x, y, i) dF̂n(y −∆′)
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where J ∗(x, y) = {(k, i) ∈ N2 : |k− (n−1)p+(x, y)| ≤ L1, |i− (n−1)p−(x, y)| ≤ L2, k + i ≤
21(y > k(0)/M)} for truncation constants L1 and L2. Further,

P̂1,L1(x, y, r) =

L1−r∑
i=−r

q(|I1|, i, r + i, p̂+n(x, y; 0), p̂−n(x, y, 0)), |r| ≤ |I1|,

P̂2∆,L2(x, y, r) =

L2−r∑
i=−r

q(|I2|, i, r + i, p̂+n(x, y; ∆), p̂−n(x, y; ∆)), |r| ≤ |I2|,

with

p̂+n(x, y; δ) = (n− 1)−1

n−1∑
i=1

1(|ε̂i + δ − y| ≤ M, k([ε̂i + δ − y]/M)ε̂i ≥ x),

p̂−n(x, y; δ) = (n− 1)−1

n−1∑
i=1

1(|ε̂i + δ − y| ≤ M, k([ε̂i + δ − y]/M)ε̂i < x),

for δ ∈ R.

Now we may test H0 : ∆′ = ∆ versus H1 : ∆′ 6= ∆ using the test

(16) φn = 1(p̂L1,L2,n 6∈ [α/2, 1− α/2] ).

where

p̂L1,L2,n = Ĝ
(I1,I2)
L1,L2,n(m̂n; ∆̂)

is the estimated p-value.

3. Convergence of p-Values

It remains to discuss the convergence of the proposed estimators for the p values associated

to the testing problem. We consider the general mixture model case studied in the previous

section. The following theorem provides sufficient conditions for a.s. convergence of the

distance between p̂L1,L2,n and the truncated p-value

G
(I1,I2)
L1,L2,n(m̂n; ∆, ∆) =

∫ ∑
(k,i)∈J ∗(m̂n,y)

P1,L1(m̂n, y, k)P2∆,L2(m̂n, y, i) dF (y −∆).

For sufficiently large L1 and L2 the distance to the true p-value G
(I1,I2)
n (m̂n; ∆, ∆) is small.

Theorem 3. Let F be a Lipschitz continuous d.f. Assume (8), (9), (10), and

0 < c1 ≤
|I1|
n

,
|I2|
n

≤ c2 < 1
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for constants c1, c2. Suppose

(17) ∆̂n
a.s.→ ∆, n →∞,

and

(KC) The kernel k is continuous and the sets {ỹ : k([ỹ− (y−δ)]/M)ỹ ≥ x}
are intervals [A(x, y, δ), B(x, y, δ)] with continuous functions A and B.

Then

sup
x
|Ĝ(I1,I2)

L1,L2,n(x; (∆̂n, ∆̂n))−G
(I1,I2)
L1,L2,n(x; (∆̂n, ∆̂n))| P→ 0,

as n →∞.

Remark 3.1. Condition (KC) is satisfied by many kernels, e.g, the Gaussian kernel for

which j(z) = zK([z − a]/M), a ∈ R, is unimodal and concave. The implicit function

theorem ensures that the solutions z = z(c, a, M) of j(z) = x, x > 0, depend continuously

on c, a, and M . Thus A and B are continuous.

Proof. Clearly, ∆̂n
a.s.→ ∆, n →∞, implies that

max
i=1,...,n

|ε̂i − εi|
a.s.→ 0,

as n →∞, where εi = Yi if i ∈ I1, εi = Yi −∆, if i ∈ I2, ε̂i = Yi, i ∈ I1, and ε̂i = Yi − ∆̂n,

i ∈ I2. Therefore the e.d.f. of ε̂1, . . . , ε̂n converges to F (x), uniformly in x ∈ R. This implies

weak convergence, i.e.,

(18)

∫
g(y)dF̂n(y −∆′) →

∫
g(y)dF (y −∆′),

a.s., as n → ∞, for all bounded and continuous functions g. Note that for R-valued

functions gn, g defined on R3 the estimate∣∣∣∣∫ ĝn(x, y, δ) dF̂n(y)−
∫

g(x, y, δ) dF (y)

∣∣∣∣
≤ sup

x,y,δ
|ĝn(x, y, δ)− g(x, y, δ)|+

∫
g(x, y, δ)d(F̂n − F )(y)

also implies

sup
x,δ

∣∣∣∣∫ ĝn(x, y, δ) dF̂n(y)−
∫

g(x, y, δ) dF (y)

∣∣∣∣ a.s.→ 0,

as n →∞, if

(19) ‖ĝn − g‖∞
a.s.→ 0,
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as n →∞, and ‖g‖∞ < ∞.

Note that

Ĝ
(I1,I2)
L1,L2,n(x; ∆̂) =

∫ ∑
(k,i)∈J ∗(x,y+∆̂n)

P̂1,L1(x, y + ∆̂n)P̂2∆̂n,L2
(x, y + ∆̂n) dF (y).

Thus, the assertion follows if we verify (19) for the functions

ĝn(x, y, δ) =
∑

(k,i)∈J ∗(x,y+δ)

P̂1,L1(x, y + δ)P̂2δ,L2(x, y + δ)

g(x, y, δ) =
∑

(k,i)∈J ∗(x,y+δ)

P1,L1(x, y + δ, k)P2δ,L2(x, y + δ, i),

since ‖g‖∞ ≤ 1. We start by showing that p̂+n(x, y; δ) → p+(x, y; δ), as n →∞, a.s. Define

p̃+n(x, y; δ) =
1

n− 1

n−1∑
i=1

1(εi ∈ [(y − δ)−M, (y − δ) + M ], k([εi − δ)/M ]εi ≥ x).

Note that by (KC) there exist functions I1(x, y, δ) and I2(x, y, δ) such that

p̃+n(x, y; δ) =
1

n− 1

n−1∑
i=1

1(εi ∈ [I1(x, y, δ), I2(x, y, δ)]).

Thus, by uniformity of the Glivenko-Cantelli Theorem over VC classes (see Blum (1955),

DeHardt (1971), and Shorack and Wellner (1986, Ch. 26, Sec. 1, Th. 1)) we obtain

sup
x,y,δ

|p̃+n(x, y, δ)− p+(x, y, δ)| a.s.→ 0,

as n →∞. Note that

|p̂+n(x, y, δ)− p̃+n(x, y, δ)| = (n− 1)−1

n−1∑
i=1

[ξ′i(x, y, δ) + η′i(x, y, δ)]

where

ξ′i(x, y, δ) = 1(εi 6∈ [I1(x, y, δ), I2(x, y, δ)], ε̂i ∈ [I1(x, y, δ), I2(x, y, δ)]),

ζ ′i(x, y, δ) = 1(εi ∈ [I1(x, y, δ), I2(x, y, δ)], ε̂i 6∈ [I1(x, y, δ), I2(x, y, δ)]),

i = 1, . . . , n. Let η > 0. On a set Z with P (Z) = 1 there exists a n0 ∈ N with En =

max1≤i≤n |ε̂i − εi| < η for all n ≥ n0. Writing ε̂i = εi + (ε̂i − εi) we may estimate

ξ′i(x, y, δ) ≤ 1(εi 6∈ [I1(x, y, δ), I2(x, y, δ)], εi ∈ [I1(x, y, δ)− η, I2(x, y, δ) + η])

≤ ξi(x, y, δ) = 1(εi ∈ [I1(x, y, δ)− η, I1(x, y, δ)] ∪ [I2(x, y, δ), I2(x, y, δ) + η])
12



and, similarly,

ζ ′i(x, y, δ) ≤ ζi(x, y, δ) = 1(εi ∈ [I1(x, y, δ), I1(x, y, δ) + η] ∪ [I2(x, y, δ)− η, I2(x, y, δ)].

Again, since the Glivenko-Cantelli Theorem holds uniformly over VC classes,

sup
x,y,δ

∣∣∣∣(n− 1)−1

n−1∑
i=1

ξi(x, y, δ)− P (ξ1(x, y, δ) = 1)

∣∣∣∣ a.s.→ 0,

as n → ∞. By Lipschitz continuity of F we have P (ξi(x, y, δ) = 1) = O(η) where the O

does not depend on x, y, δ. Similarly, supx,y,δ |(n−1)−1
∑n−1

i=1 ζi(x, y, δ)| a.s.→ O(η), as n →∞.

Hence, we obtain

(20) sup
x,y,δ

|p̂+n(x, y; δ)− p+(x, y; δ)| a.s.→ 0, sup
x,y,δ

|p̂−n(x, y; δ)− p−(x, y; δ)| a.s.→ 0,

as n →∞. Note that this implies

q(i, j, p̂+n(x, y; δ), p̂−n(x, y; δ))
a.s.→ q(i, j, p+(x, y; δ), p−(x, y; δ)),

uniformly in (x, y, δ) and |i| < I and |j| < K, as n → ∞. Consequently, the difference of

the corresponding d.f.s converges uniformly in (x, y, δ) to 0, i.e., for all x′, y′ ∈ R,∣∣∣∣∣∑
k≤x′

∑
l≤y′

q(k, l, p̂+n(x, y; δ), p̂−n(x, y; δ)))−
∑
k≤x′

∑
l≤y′

q(k, l, p+(x, y; δ), p−(x, y; δ))

∣∣∣∣∣ → 0,

as n → ∞, w.p. 1, since there are only a finite number of summands. Noting that by

definition P̂1,L1 , P1,L1 , P̂2,δ,L2 , and P2δ,L2 are finite sums, (19) follows. �

4. Simulations

We conducted a simulation study to assess the accuracy of the proposed methods. In

our first experiment i.i.d. N(0, 1) samples were generated, and the clipping median m̂n

using the Gaussian kernel was calculated. For the simulation we used estimators without

truncation, but the resulting procedure is very time consuming. Therefore, for time critical

applications we recommend to use the proposed truncated estimators. Table 1 reports the

simulated level of the test which rejects the null hypothesis that ∆′ = 0 if the estimated p

value is less than 0.025 or greater 0.975. Each entry was obtained by 5,000 repetitions. It

can be seen that the estimated p-values provide reliable statistical tests.
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h

M 25 50 100

0.5 0.0360 0.0360 0.0466

0.75 0.0372 0.0522 0.0554

1 0.0488 0.0512 0.0494

1.25 0.0418 0.0490 0.0526

1.5 0.0428 0.0478 0.0446

1.75 0.0352 0.0450 0.0448

2 0.0244 0.0360 0.0468

Table 1. Accuracy of the estimated null distribution for a two-sided signif-

icance test with nominal level α = 0.05

The second experiment deals with the more interesting mixture model. Test samples were

simulated according to the model

Yi ∼ N (0, 1), i ∈ I1, Yi ∼ N (∆, 1), i ∈ I2,

and Yn ∼ N (∆′, 1). We used a Gaussian kernel (standard normal density) for k.

To mimick an object detection problem, we used h = 24, 48, and 63, and M = 0.5, 1, 1.5,

and 2. The level shifts were chosen as ∆ = 1 and ∆′ = 0, 1. The number of background

pixels k was chosen to ensure k/h = 0.25 and 0.5. Since the computations are more time

consuming in the mixture model case, each table entry was calculated based on 1,000

replications.

Table 2 provides estimates for the true level of the proposed procedure for a nominal level

α = 0.05 using ∆′ = ∆ = 1, and power estimates for ∆′ = 0 and ∆ = 1. It can be seen that

the test procedure is conservative and also has power to detect small to moderate shifts.

The results also indicate that there is an optimal value of M which maximizes the power.
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sample size background M

h k 0.5 1 1.5 2

Size (∆′ = ∆ = 1).

24 6 0.041 0.021 0.021 0.025

12 0.036 0.024 0.019 0.015

48 12 0.026 0.034 0.033 0.021

24 0.024 0.017 0.028 0.018

63 24 0.027 0.023 0.041 0.040

48 0.024 0.028 0.032 0.023

Power for ∆′ = 0, ∆ = 1.

24 6 0.097 0.118 0.121 0.079

12 0.090 0.115 0.109 0.071

48 12 0.120 0.161 0.151 0.101

24 0.126 0.161 0.144 0.106

63 24 0.144 0.149 0.167 0.116

48 0.129 0.157 0.165 0.116

Table 2. Level and power of the test (16) to test the null hypothesis that

the current pixel belongs to the object against the alternative that it belongs

to the background for different sample sizes and parameter settings.
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