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Abstract

Most credit portfolio models exclusively calculate the loss distribution for a

portfolio of performing counterparts. Conservative default definitions cause

considerable insecurity about the loss for a long time after the default. We

present three approaches to account for defaulted counterparts in the cal-

culation of the economic capital. Two of the approaches are based on the

Poisson mixture model CreditRisk+ and derive a loss distribution for an in-

tegrated portfolio. The third method treats the portfolio of non-performing

exposure separately. All three calculations are supplemented by formulae

for contributions of the counterpart to the economic capital.
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1 Introduction and notation

In finance, mixture models are a common tool for modeling dependent events

(see McNeil et al. (2004)). For the valuation of (single) financial products

subject to credit risk, Duffie and Singleton (1999) and Lando (1998) use

Bernoulli mixture models. The Bernoulli mixture model is closely related to

the Poisson mixture model in the case of rare events as is the case of credit

risk in commercial banking. The commercial portfolio credit risk model

CreditRisk+ (Credit Suisse First Boston (CSFB) (1997)) assumes a Poisson

Mixture model to derive the credit loss distribution for a loan portfolio. To

this end, the Poisson distribution is mixed with a Gamma distribution for

the probabilities of default (PD). The methodology dates back to Green-

wood and Yule (1920). For a comparison with other (commercial) models

see Crouhy et al. (2000); Gordy (2000). With the help of Bürgisser et al.

(2001) we consider the latter model and mix additionally with a (Beta) dis-

tribution to account for random exposures. The model allows for already

defaulted exposures with still unknown losses to be incorporated into the

calculation. The effect is positioned into the context of capital requirements

as under discussion in Basel Commitee on Banking Supervision (2004). The

calculation of the loss distribution and its variance are considered. Special

emphasis is put on the fair decomposition of the economic capital (EC) into

contributions for the participating engagements.

When analyzing credit portfolio risk, the loss distribution is of central

interest. The expected loss (EL) and the economic capital (EC) are derived

from it. The loss L1 is the sum of all individual losses. The bank incurs a loss

of νA for the counterpart A belonging to the portfolio A when it defaults.

The default of A can simply be seen as Bernoulli variable IA ∼ B(µA), and
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thus

L1 =
∑

A∈A

νAIA. (1)

The calculation of the distribution of L1 has been under investigation for

a long time in insurance mathematics (see e.g. Klugman et al. (1998)). In

order to account for (stochastic) dependencies between defaults of different

counterparts, the approach in CreditRisk+ is to assume random probabilities

of default (PD). We use the established model

µA = pA

K
∑

k=1

θA,kXk, (2)

where θA,k denotes the weight of counterpart A with respect to the factors

Xk, k = 1, . . . , K. The latter are often taken to be industry branches or

countries. We assume as usual that the defaults IA are independent, condi-

tional on X = (X1, . . . , XK). An obvious assumption is that
∑K

k=1 θA,k =

1 ∀ A ∈ A. The Xk’s are assumed to be Γ(σ−2
k , σ2

k) distributed, and thus

E(Xk) = 1, E(IA) = pA and V ar(Xk) = σ2
k. In the version of Credit

Suisse First Boston (CSFB) (1997) the Xk’s are assumed to be indepen-

dent. However, Bürgisser et al. (1999) allows for dependent sector vari-

ables to be used which we will make use of in the end with covariances

ckl = Cov(Xk, Xl), k, l = 1, . . . , K.

From a banking perspective, the assumption of the randomness in the

individual loss νA is even more realistic. The loss given default (LGD)

identifies the portion of the exposure at default (EAD) of a counterpart A,

which can not be regained in case of a default. The CreditRisk+ model

assumes that the net exposure νA = eA lA, where eA denotes the EAD and

lA the LGD of a counterpart A, is known. However, one observation in

banking is that the LGD’s vary significantly. If they did vary independently
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the diversification would suggest that the overall effect is negligible. In fact,

to assume the independence of LGD’s across counterparts is implausible.

Empirical evidence from time series exists proving the converse. This is also

intuitive. Often, the LGD depends on collateral, which may be any asset.

The value of an asset is surely related to the general economic activity

leading to dependent values of collateral and dependent magnitudes of the

LGD. For a similar approach see Grundke (2004). We need to account

for a stochastic LGD in the calculation of the portfolio loss distribution.

Recently, Bürgisser et al. (2001) proposed a means to integrate a stochastic

LGD under certain distributional assumptions into the loss distribution. We

will briefly review the method in Section 2.

In the case of the stochastic PD the notion is that the economic activ-

ity (at the beginning of a year) takes shape, and the counterparts default

consecutively (within the year) according to their PD’s. For the defaulted

exposure, the cascade goes even further down. If the counterpart defaults,

the LGD is still random. Only after the settlement of the claims (e.g. to the

default agent) will the realized loss be known. The definition of bankruptcy

in banking is conservative in order to put an early incentive towards inten-

sive treatment of endangered engagement. A bank might well be exposed to

a counterpart years after default occurs. The creditor needs to integrate the

insecurity about the unknown risk into his loss forecast. Allowing for mul-

tiple defaults is not feasible because the PD is usually only available for the

first default. However, for the calculation of the portfolio loss distribution,

we may account for insecurity in terms of the LGD parameter. Bürgisser

et al. (2001) allows for the treatment of the latter case.

Let in the following λA denote the stochastic LGD with the expectation

E(λA) = lA. Clearly, the expected loss of the portfolio is not changed if the
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PD’s are independent of the LGD’s λA.

EL1(λA, A ∈ A) =
∑

A

pAeA E(λA)

=
∑

A

pAeAlA = EL(lA, A ∈ A),

pA denotes the expected PD of counterpart A.

The paper is organized as follows. In Section 2 the one-factor model of

Bürgisser et al. (2001) is applied to incorporate defaulted exposure. Section

3 uses more factors to allow for imperfect correlation between the LGD’s

of segmented counterparts. Both approaches make use of the CreditRisk+

algorithm and allow for risk to be diversified across the entire portfolio. Per-

forming and non-performing portfolios are treated simultaneously. Section 4

is devoted to the necessity of calibrating the two models. Section 5 separates

the portfolios and enables a calculation of risk contributions for defaulted

counterparts without affecting the performing portfolio. A latent one-factor

model is fitted to historical data.

2 One-factor model

Consider the following simple model for the loss given default (LGD) (cf.

Bürgisser et al. (2001)):

λA = lAΛ, (3)

where Λ is a random variable with expectation 1 and variance δ2, which

is independent of the defaults IA, A ∈ A. The portfolio loss can now be

written as

L̃1 :=
∑

A

eAlAΛIA = Λ
∑

A

eAlAIA = ΛL1. (4)
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Clearly, the expected loss E(L̃1) is again equal to E(L1).

The loss distribution can be calculated as

F̃1(k) := P (L̃1 ≤ k) = P (Λ ≤ k/L1), k/0 := ∞

=
∑

n≥0

P (Λ ≤ k/L1 | L1 = n) P (L1 = n)

= P (L1 = 0) +
∑

n≥1

P (Λ ≤ k/n) P (L1 = n)

= fCR+
L1

(0) +
∑

n≥1

fCR+
L1

(n)FΛ(k/n), (5)

with fCR+
L1

(n) := P (L1 = n) and FΛ(n) := P (Λ ≤ n), n = 0, 1, . . ..

The notation for the distribution of L1 stresses that it can be calculated

using the algorithms CreditRisk+ (see Credit Suisse First Boston (CSFB)

(1997)). Sometimes, we will use fCR+
L1

(eAlA, pA, σ2
k, θA,k A ∈ A, k =

1, . . . , K), i.e. attach all parameters.

Based on the work of Bürgisser et al. (2001) we would like to devote

ourselves to the following issue of practical importance. The default of a

counterpart is economically fixed to the date of the first default on an allying

payment. At that point in time, we can model the default as a Bernoulli

experiment with parameter 1. It is common in financial institutions to make

provisions on the event of default. In the model with deterministic LGD’s

no further insecurity is left, and thus the counterpart must be excluded from

the calculation of the loss distribution. However, the definition of default

implies that the magnitude of final loss is not yet known. The case of a

stochastic LGD applies. The risk is that the final overall loss will be greater

than the provision.

The definition (4) of the portfolio loss needs a generalization which we

provide in the following
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Definition 2.1

L̃ :=
∑

A/∈E

eAλA IA +
∑

A∈E

eAλA = L̃1 + L̃2

where L̃1 :=
∑

A/∈E eAλA IA is the loss from the so-called performing port-

folio and L̃2 :=
∑

A∈E eAλA is the loss from the non-performing portfolio.

The set E denotes the defaulted counterparts. We will sometimes refer to

the performing portfolio with the notation E c.

Owing to the model (3) (λA = lAΛ) we can decompose L̃1 and L̃2 into

L̃1 = ΛL1 and L̃2 = ΛL2 with L1 :=
∑

A/∈E eA lA IA and L2 :=
∑

A∈E eA lA,

respectively.

For the ease of notation let L̃ := ΛL with L := L1 + L2.

Note that the definitions L̃1 and L1 fit the definitions in the model

without defaulted counterparts (see (4)). L̃2 constitutes the (random) loss

arising from the sub portfolio of defaulted counterparts. To stress that L2

is deterministic we will denote it by η in the sequel.

The calculation of the loss distribution is analogous to the distribution

of L̃ above

F̃ (k) = P (L̃ ≤ k) = fL(0) +
∑

n≥1

fL(n) FΛ(k/n), (6)

where now fL(·) is only dependent on fL1
(·),

fL(n) = P (L = n) = P (L1 = n − η) = fL1
(n − η). (7)

fL(0) can only be positive if E = ∅; we will not consider this degenerate case.

fL1
can be calculated with the Panjer recursion (see Panjer and Willmot

(1992)) as proposed in Credit Suisse First Boston (CSFB) (1997). For an

alternative proposal see Giese (2003).
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As a first result we now have a procedure for calculating any high quantile

of the loss distribution known as credit value-at-risk CreditV aR.

Theorem 2.1 Let the loss L1 for a portfolio of not defaulted counterparts

with deterministic LGD’s according to Definition 2.1 be distributed according

to fCR+
L1

(eAlA, pA, σ2
k, θA,k A ∈ A, k = 1, . . . , K). Then in a portfolio with

LGD’s according to model (3), factor Λ with cdf Fλ(·) and an additional

portfolio E of defaulted counterparts with expected exposure η =
∑

A∈E eA lA

the credit value-at-risk at level γ is given by

CreditV aRγ = inf







k :
∑

n≥1

fCR+

L1
(n − η) FΛ(k/n) > γ







.

The economic capital (EC) is defined as the difference between the credit

value-at-risk at level γ and the expected loss.

Corollary 2.1 Under the assumptions of Theorem 2.1 the economic capital

for a joint portfolio of not defaulted and defaulted counterparts is given by

ECγ = CreditV aRγ −

(

∑

A/∈E

pAeAlA +
∑

A∈E

eAlA

)

.

Corollary 2.1 follows from E(L̃) = E(Λ)(E(L1) + η) =
∑

A/∈E pAeAlA +
∑

A∈E eAlA.

For the next step we need the loss variance

V ar(L̃) = E(V ar(L̃1 + L̃2 | Λ)) + V ar(E(L̃ | Λ))

= E(Λ2V ar(L1 + η)) + V ar(ΛE(L))

= E(Λ2)V ar(L1) + E(L)2V ar(Λ)

= (1 + δ2)V ar(L1) + δ2(E(L1) + η)2. (8)
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An important issue in portfolio risk is the attribution of the risk to the

responsible counterparts. As standard procedure, Credit Suisse First Boston

(CSFB) (1997) propose to consider the portfolio loss variance V ar(L̃) a risk

measure and attribute the risk according to the change in variance as the

exposure νA changes. An additive risk attribution is guaranteed for the

definition

ṽcA :=
eA

2

∂σ̃2

∂eA
=

eA

2

(

(1 + δ2)
∂σ2

1

∂eA
+ δ2 ∂(ε + η)2

∂eA

)

,

with notation σ2
1 := V ar(L1), σ̃2 := V ar(L̃), ε := E(L1).

With the notation of the PD model (2), a lengthy calculation yields

σ2
1 =

∑

A/∈E

e2
Al2A pA



1 − pA



1 +
K
∑

k,l=1

cklθA,kθA,l







+
K
∑

k,l=1

ckl εkεl, (9)

where the expected loss in sector k is denoted by

εk =
∑

A/∈E

θA,kpAeAlA. (10)

The variance contribution is now twofold, according to whether counter-

part A defaulted or not.

Theorem 2.2 For the loss modeled in Definition 2.1 of a credit portfolio

with performing and defaulted exposures, additive variance contributions are

given by

ṽcA = pAeAlA

(

pAeAlA c̃A + d̃A

)

. (11)

Here dA,k :=
∑K

l=1 cklεl,−A and εl,−A :=
∑

B /∈E∪A θB,l pBeBlB. Additionally,

pA = 1 for counterparts A ∈ E and the notation

c̃A = (1 − pA + δ2)/pA, d̃A = (1 + δ2)
∑K

k=1 θA,kdA,k + δ2(ε−A + η) A /∈ E

c̃A = δ2, d̃A = (ε + η−A)δ2 A ∈ E
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where ε−A =
∑

B /∈E∪A pBeBlB and η−A =
∑

B∈E,B 6=A pBeBlB

If A /∈ E we have ṽcA = pAeAlA((1+δ2)(eAlA(1−pA)+
∑K

k=1 θA,kdA,k)+

(ε + η)δ2), whereas for A ∈ E we have ṽcA = eAlA (ε + η)δ2.

The representation (11) is similar to the original variance contribution

in Credit Suisse First Boston (CSFB) (1997). The key conclusion that can

be drawn from the representation is the penalty for large single exposures

eA, which is reflected by the quadratic component.

However, the contribution to the variance is only an intermediate step.

A key question in finance is the allocation of economic capital for pricing,

costing and budgeting. We need a portion of the EC attributable to each

counterpart so that the contributions add up to the EC and the cause-

effect model holds. We do already have a notion of cause and effect for the

dependence of the loss variance on the exposure of each counterpart. The

EC and the loss variance are closely related. Both are measures for the

potential deviation of the loss from its expectation. We will now assume

that the EC exhibits the same sensitivity with respect to the exposure of

each counterpart as the variance does.

The number

ecA =
ṽcA

∑

B ṽcB
ECγ =

ṽcA

σ̃2
ECγ (12)

constitutes an approximate contribution of the exposure of counterpart

A to the EC obeying
∑

A ecA = ECγ .

Note that we allow for correlation between the sector variables Xk in

the calculation of the loss variance (9). However, the calculation of the

CreditV aRγ in (12) is achieved from Theorem 2.1, where the sectors are

assumed to be independent. As mentioned in Section 1, we use a refinement
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of Bürgisser et al. (1999) to incorporate the correlation into the calculation

of the credit Value-at-Risk.

Remark 1. An alternative to establishing a cause-effect attribution of

the EC to each counterpart consists in calculating the EC with the whole

portfolio and separately with the portfolio leaving out one counterpart. The

difference between the two values can be interpreted as the risk contribution

of the counterpart. However, the approach has two disadvantages. On the

one hand, the attribution is not additive, and the sum of all contributions

thus derived is usually less than the EC. The “late coming counterpart”

profits from the existing diversification. The procedure could be refined by

using an idea from game theory. One could add the counterparts subse-

quently to the portfolio and average over all possible sequences. This leads

us to the second drawback. The computational effort for large portfolios

is sizeable even for the leave-one-out approach (of order N , the number of

counterparts in A). For the complete enumeration the factor is of order
∑N

i=1

(

N
i

)

, e.g. 1030 for N = 100.

Remark 2. The incorporation of the defaulted counterparts into the

total loss calculation affects the risk contributions for counterparts not in

default. The changes are noticeable, and thus one preliminary aim may be

to calculate risk contributions for defaulted counterparts independently of

the performing portfolio. To this end, we need to calculate the economic

capital for the portfolio without the defaulted counterparts and derive risk

contribution of that. In a second stage we need to calculate the distribution

(and EC) for the entire portfolio to determine the increase in EC caused by

the non-performing portfolio.

In order to start with the performing portfolio E c in analogy to the
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described procedure, we define for A /∈ E

ecA :=
ṽc

(1)
A

∑

B /∈E ṽc
(1)
B

EC(1)
γ (13)

where EC
(1)
γ := CreditV aR

(1)
γ −E(L̃1) and CreditV aR

(1)
γ = inf{k : P (L̃1 ≤

k) > γ} denotes the Value-at-Risk. The variance contributions for the not

defaulted exposures are denoted by ṽcA, A /∈ E . Note for σ̃2
1 = V ar(L̃1):

ṽc
(1)
A :=

eA

2

∂σ̃2
1

∂eA
=

eA

2

(

(1 + δ2)
∂σ2

1

∂eA
+ δ2 ∂ε2

∂eA

)

= pAeAlA

(

(1 + δ2)
(

eAlA(1 − pA) +
K
∑

k=1

θA,kdA,k

)

+ εδ2
)

.

The ecA is now calculated as in (13). For A ∈ E the marginal contribution

of the non performing portfolio ECγ − EC
(1)
γ can be distributed according

to the expected individual loss. Finally, the expected individual loss is

subtracted

ecA :=
eAlA

∑

B∈E eBlB
(ECγ − EC(1)

γ ) (14)

to obtain again the necessary requirement
∑

A ecA = ECγ .

3 Multi-factor model

The one-factor model (3) in Section 2 assumes that the LGD’s of the coun-

terparts are perfectly correlated. We will now relieve the assumption of one

latent LGD factor Λ and allow for inhomogeneous LGD correlations. The

LGD of a counterpart is assumed to follow the model

λA = lAΛA

M
∑

j=1

wA,j Λj (15)

Assumptions are that:
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A1 The random variables Λj , j = 1, . . . , M are independent of the defaults

IA, A = 1, . . . , N with E(Λj) = 1 and V ar(Λj) = δ2
j .

A2 The ΛA, A = 1, . . . , N, are independent of the Λj , j = 1, . . . , M, and

the IA, A = 1, . . . , N, with E(ΛA) = 1 and V ar(ΛA) = δ2
A.

A3 For all A holds wA,j ≥ 0, j = 1, . . . , M, and
∑M

j=1 wA,j = 1.

Before the calculation of the portfolio loss distribution, we will first con-

sider its variance

σ̃2 =
∑

A/∈E

e2
Al2ApA

(

(1 + δ2
A) − pA(1 +

K
∑

k,l=1

ckl θA,kθA,l)
)(

1 +
M
∑

i,j=1

aij wA,iwA,j

)

+
M
∑

i,j=1

K
∑

k,l=1

aij ckl ε
(i)
k ε

(j)
l +

K
∑

k,l=1

ckl εkεl

+
M
∑

i,j=1

aij

(

ε(i)ε(j) + 2 ε(i)η(j) + η(i)η(j)
)

+
∑

A∈E

e2
Al2A δ2

A

(

1 +
M
∑

i,j=1

aij wA,iwA,j

)

, (16)

where aij := Cov(Λi, Λj), εk as in equation (10),

ε
(i)
k =

∑

A/∈E

θA,k wA,i pAeAlA, ε(i) =
∑

A/∈E

wA,i pAeAlA

and

η(i) =
∑

A∈E

wA,i eAlA. (17)

For the calculation of the loss distribution we follow the old statistical

idea of moment fitting (which Bürgisser et al. (1999) used to integrate cor-

relations for the economic activity variables Xk into the loss distribution).

As the expectation is not changed by random LGD’s at all, we fit the vari-

ance of the loss for the LGD multi-factor model (15) to the variance of a
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one-factor model (3). We approximate the distribution of the multi-factor

model by the distribution of the one-factor model. The reason for the sim-

plification is technical, since the loss distribution would otherwise no longer

be given in closed form. A numerical evaluation, i.e. a numerical integra-

tion, would constitute a second numerical procedure, because the derivation

of the loss probabilities from the probability generating function must also

be established using numerical differentiation (with the Panjer recurssion).

Theorem 3.1 Let the loss L1 for a portfolio of not defaulted counterparts

with deterministic LGD’s according to Definition 2.1 be distributed according

to fCR+
L1

(eAlA, pA, σ2
k, θA,k A ∈ A, k = 1, . . . , K). Then in a portfolio with

LGD’s according to model (15) fulfilling assumptions A1-3 and an additional

portfolio E of defaulted counterparts with expected exposure η =
∑

A∈E eA lA.

If it holds true that the loss distribution for the multi-factor model is equal

to the distribution for the one-factor model (3) if the first two moments are

equal, then the credit value-at-risk at level γ is given by

CreditV aRγ = inf







k :
∑

n≥1

fCR+

L1
(n − η) FΛ(k/n) > γ







whenever the volatility δ2 of the (equivalent) factor Λ is given by

δ =

√

σ̃2 − v1 − v2

v1 + v2 + (ε + η)2
,

with v1 =
∑

A/∈E e2
Al2ApA

(

1−pA(1+
∑K

k,l=1 ckl θA,kθA,l)
)

and v2 =
∑K

k,l=1 ckl εkεl.

Proof: For the case M = 1 and δA = 0 holds for all A (see (8) and (9))

σ̃2
M=1, δA=0 = (1 + δ2)(v1 + v2) + δ2(ε + η)2

= v1 + v2 + δ2(v1 + v2 + (ε + η)2).
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In order to obtain the variance of the factor Λ in the equivalent one-factor

model we set σ̃2 = σ̃2
M=1, δA=0. �

The calculation of the EC follows Corollary 2.1.

We have now enabled the calculation of the economic capital, as in the

one-factor model in Section 2.

In order to derive risk contributions, we follow the same line as in Section

2. The variance contributions in the multi-factor model (15) only depend

on the loss variance which is - in contrast to the loss distribution - exactly

given.

Theorem 3.2 Consider the loss modeled in Definition 2.1 of a credit port-

folio with performing and defaulted exposures. The LGD λA is assumed to

follow (15). Then, additive variance contributions are for A /∈ E given by

ṽcA = e2
Al2ApA

(

(1 + δ2
A) − pA(1 +

K
∑

k,l=1

ckl θA,kθA,l)
)(

1 +
M
∑

i,j=1

aij wA,iwA,j

)

+ eAlApA

(

M
∑

i,j=1

aij wA,i(ε
(j) + η(j) +

K
∑

k,l=1

θA,kε
(j)
l ) +

K
∑

k,l=1

ckl θA,kεl

)

(18)

For A ∈ E holds

ṽcA = e2
Al2Aδ2

A

(

1+
M
∑

i,j=1

aij wA,iwA,j

)

+eAlA

M
∑

i,j=1

aij wA,i

(

ε(j)+η(j)
)

. (19)

The contribution to economic capital can now again (see 12) be defined

as ecA := ṽcA
∑

B
ṽcB

ECγ .

Remark 2 - continued. In the last section we considered the problem

of dependence between the non-performing portfolio E and the performing

portfolio (Ec). One might strive for an uncoupled calculation of economic

capital charges in the two portfolios for the LGD multi-factor model as well.
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The performing portfolio is treated as “stand alone”. The EC for the non-

performing portfolio is taken to be an increase in the EC when it is added

to the performing portfolio, i.e. taken as ECγ − EC
(1)
γ . The latter eco-

nomic capital for the defaulted counterparts may be attributed to the single

counterpart in proportion to the expected loss as in the single factor model

(see (14)). However, the variance contribution for the performing portfolio

needs further attention. The formula (18) describes a contribution in the

case of the LGD multi-factor model when the variance of the whole portfo-

lio is decomposed. However, the simplification in the absence of defaulted

exposure is minimal. Only the terms η(j) must be omitted, which represent

the expected loss in the LGD class j for the defaulted exposure.

4 Calibration of the models and impact study

We restrict ourselves to the calibration of the one-factor model described

in Section 2. The multi-factor model from Section 3 may be calibrated

accordingly in the presence of data stratified to LGD classes.

A common distributional assumption for the factor Λ as defined in (3) is

the log-normal distribution (see Bürgisser et al. (2001)). However, the LGD

is bounded at both sides because the loss after settlement of all claims ranges

between 0% and 100% of the exposure at default. And, empirically, the log-

normality does not fit very well. Assuming a uniform distribution, we found

that the boundaries of the uniform density are more pronounced than the

empirical ones in our sample. A generalization is the Beta distribution (as

we will clarify below). The use of the Beta distribution for the recovery rates

(which is the inverse of the LGD) is propagated in Grundke (2004). Based

on data of a cooperating bank we found that the Beta distribution fits for
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the distribution of Λ with some modifications. Now we discuss the use of

the distribution and add empirical evidence, once the parameter estimates

are presented.

As distribution for the factor Λ we assume an affine transformation of

the Beta distribution, i.e.

Λ ∼ a + (b − a) Beta(α, β), (20)

where 0 ≤ a < 1 < b and α, β > 0. Beta(α, β) denotes the Beta distribution

with parameters α and β and density xα−1(1−x)β−1/B(α, β) with B(α, β) =

Γ(α)Γ(β)/Γ(α + β) and Γ(α) =
∫∞

0 exp(−x)xα−1dx.

The assumption 1 = E(Λ) = a + (b − a) α/(α + β) forces β = α (b −

1)/(1 − a). The parameter β is fixed given a, b and α.

For the variance, V ar(Λ) = (b − a)2αβ/((α + β)2(α + β + 1)) holds.

A special case is b − 1 = 1 − a and α = β = 1, where the distribution is

uniform around 1 on the symmetric interval [a, 2 − a].

Remark 3. In order to accelerate the computation of the value-at-risk

arising from Theorem 2.1, we restrict the definition of the Beta distribution

to the discrete points 10−5 × N, i.e. FBeta(α,β) is replaced by

F̂Beta(α,β) =
n−1
∑

i=0

FBeta(α,β)(i/n) I[i/n,(i+1)/n) (n = 10000).

Thus, the processing time is drastically reduced.

Remark 4. Additionally, the distribution function of L̃ need not be

calculated entirely. The new value-at-risk is obtained by nested intervals,

which again reduce the computation markedly. Obviously, the value-at-risk

increases due to the additional variability of exposure and increased business

coverage. Hence, the iteration starts at the value-at-risk for the performing

portfolio without stochastic LGD, i.e. at the γ-quantile of fCR+
L1

(·).
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Table 1: Elementary statistics of the empirical relative LGD

Mean Std Min Max

Empirical 1 0.5686 0.0512 2.5817

Beta 1 0.56 0.05 2.4

As mentioned in the beginning, the calibration of the model is performed

with historical data. The descriptive statistics are given in Table 1. A model

fit is derived heuristically using Figure 1. The parameters a = 0.05, b =

2.4, α = 1.31, β = 1.93 lead to sensible results.

Figure 1: Distribution of Λ in comparison to the empirical relative LGD

movement

We can now assess the impact of the developed enhancement. To this

end, we need a benchmark. A simple (and typical) treatment of defaulted
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exposure is to add their expected loss to the expected loss of the performing

portfolio. The loss distribution of the performing portfolio is simply shifted

to the right. The loss distribution for the performing portfolio is calculated

neglecting the stochastic LGD by using expected LGD’s and treating them

as deterministic (and known in advance).

Let us first determine the effect of incorporation of the LGD stochastic.

We compare the latter approach to our method based on the one-factor

model (3) in the Definition 2.1 for the loss and with value-at-risk according

to Theorem 2.1. The performing portfolio we study is realistic – although

fictitious – for an international bank. It consists of around 5000 exposures

distributed asymmetrically over 20 sectors (denoted by Xk in definition (2))

with 20 to 500 counterparts per sector. The total exposure is 35 billion Euro

with the largest exposure of 0.7 billion Euro and the smallest exposure of

0.1 million Euro. The counterpart specific default probability varies between

0.03% and 7%. By using the parameters mentioned above we find that the

one-factor model suggests a value-at-risk which is 1.55 times higher than the

value-at-risk with the deterministic approach.

Clearly, if we add a non-performing part, the increase in value-at-risk

is even higher. The shift to the right in the simplified approach ignores

the variability of the LGD in the non-performing portfolio and hence the

credit value-at-risk is underestimated. The quantification crucially depends

on the portion of non-performers in a the whole portfolio. But the latter is

governed by the business area and policy of work-out treatment on defaulted

counterparts differing across banks. A quick settlement of claims can reduce

the portion whereas e.g. long negotiations will increase the portion. We

cannot think of a typical case, and thus we must refrain from a quantification

here. However, a heuristic reason why the effect must be substantial goes as
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follows. The ratio of value-at-risks in the performing portfolio of 1.55 is only

due to the LGD stochastic. The variability arising from the random PD’s

and the Bernoulli events as such are already accounted for in both models.

Diversification between the LGD and the other two stochastic effects reduces

the effect of each single source. For the non-performing portfolio, the LGD

stochastic is the only source of insecurity. The increase in value-at-risk of the

non-performing portfolio in the simplified method is the expected loss. The

increase in value-at-risk in our method is implicitly given as the difference of

the value-at-risk of L̃ an L̃1. Clearly, the increase in terms of ratio between

expected loss from the non-performing portfolio and the marginal value-at-

risk using our method is larger than 1.55.

5 Further Remarks and Extensions

Along the lines of Remark 2 in Section 2, we now consider the task of estab-

lishing an independent calculation of the loss distribution for the portfolio

of defaulted counterparts whose exposure is not yet completely provisioned.

The portfolio in mind may be under a separate response and management,

and thus an independent assessment may be needed. Or, it is simply not

plausible that defaulted counterparts have an impact on the performing

portfolio. To lay out the methodological details, we denote with νA the ex-

posure at default (EAD) of the defaulted counterparts A ∈ E . The change

of provision for counterpart A in year t is denoted ∆At, whereas the relative

change of the provision with respect to the first date of provision (which is

the date of default) is δAt (δAt = ∆At/νA).

We assume the relative change in the provision to depend on a latent
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factor Yt which models economic activity:

δAt = Yt + εAt A ∈ E , t = 1, . . . , T. (21)

The idiosyncratic variability of the relative provision for counterpart A

in year t is represented by the noise εAt.

We assume the Yt’s and the εAt’s to be independently normally dis-

tributed (N(µ, σ2
Y ) and N(0, σ2

ε ), respectively), i.e. we assume the absence

of higher cumulants because the amount of data does not allow us to prove

those effects. The distribution is assumed to be the same for all points in

time t. The common correlation ρ determines the relation of the variances

of Yt and εAt. For A 6= Ã, ρ = corr(δAt, δÃt) = σ2
Y /(σ2

Y + σ2
ε ) holds, which

is equivalent to σ2
Y = ρσ2

ε /(1 − ρ). For the variance σ2
δ of the normally

distributed variable δAt follows

σ2
δ = σ2

Y + σ2
ε = σ2

ε /(1 − ρ). (22)

We see that σ2
δ is determined by the variance σ2

ε of the εAt’s and the

correlation ρ. We will explore the connection while estimating the variance

σ2
δ .

We estimate the pairwise correlation between δAt and δÃt with

ρ̂AÃ :=
T
∑

t=1

(δAt − δ̄A·)(δÃt − δ̄Ã·)/

√

√

√

√

T
∑

t=1

(δAt − δ̄A·)2
T
∑

t=1

(δÃt − δ̄Ã·)
2,

where δ̄A· denotes the mean of the δAt’s with respect to time t, δ̄A· :=
∑T

t=1 δAt/T . The common correlation is estimated as

ρ̂ := 2
∑

A∈E

∑

Ã∈E

ρ̂AÃ/(]E(]E − 1)), (23)

where ]E denotes the number of defaulted counterparts.
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The individual noises εAt are not observable. However, their variance

σ2
ε can be estimated from the observable δAt’s σ̂2

ε :=
∑T

t=1

∑

A∈E(εAt −

ε̄·t)
2/(]ET ) =

∑T
t=1

∑

A∈E(δAt − δ̄·t)
2/(]ET ), where ε̄·t :=

∑

A∈E εAt/]E and

δ̄·t :=
∑

Ã∈E δAt/]E =
∑

Ã∈E(εAt + Yt)/]E = ε·t + Yt.

The variance σ2
Y of the latent economic activity Yt is estimated using

formula (22) as σ̂2
Y := σ̂2

ε ρ̂/(1 − ρ̂) as well as formula (22) enables us to

estimate the variance of the δAt’s as

σ̂2
δ := σ̂2

Y + σ̂2
ε = σ̂2

ε /(1 − ρ̂) (24)

The last parameter we want to estimate in our one-factorial model (21)

is the location, µ = E(Yt) = E(δAt)

µ̂ :=
T
∑

t=1

∑

A∈E

δAt/(]ET ) (25)

We now have sufficient information to calculate the credit value-at-risk

of the non-performing portfolio.

The loss generated by the portfolio at time t is

Zt =
∑

A∈E

∆At =
∑

A∈E

νAδAt.

The loss Zt is independent of t, i.e. stationary, and Zt ∼ N(µ, σ2
Z) with

σ2
Z =





∑

A∈E

ν2
A +

∑

A,Ã∈E,A6=Ã

νAνÃρ



σ2
δ (26)

The current state of provisions for the already defaulted counterparts

reflects the expected amount of the loss arising from the non-performing

portfolio. The variable Zt defines the unexpected loss of that portfolio for

one time period. We may hence derive the credit value-at-risk (and the
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Table 2: Values of uγ for a typical γ

γ uγ

99.95% 3.29

99.50% 2.58

99.00% 2.33

90.00% 1.28

75.00% 0.68

economic capital) from the normal distribution of Zt. With probability γ

the variable Zt will express below

Zγ = µ + uγσZ , (27)

where uγ denotes the γ-quantile of the standard normal distribution.

Typical values for uγ are given in Table 2.

The distribution of Zt is asymptotically unchanged if the parameters

µ and σ2
Z are estimated consistently, as is the case for the estimate (25)

for µ and the canonical estimate derived from (23) and (24) for σ2
Z in its

representation (26). The reason is Slutsky’s theorem, see e.g. Ferguson

(1996)).

Again, the calculation of the economic capital for the non-performing

portfolio is derived by subtracting the expected loss µ (or rather its estimate)

from the credit value-at-risk (27).

The risk contributions for the separate exposures can now be attributed,

e.g. proportionally with respect to the exposure

r̃cA := νA



µ̂ + uγσδ

√

∑

A∈E

ν2
A +

∑

A,Ã∈E,A6=Ã

νAνÃρ



 /
∑

A∈E

νA. (28)
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An alternative is to attribute the economic capital proportional to the ex-

pected loss (given default) which did change the denominator to
∑

A∈E lAνA

and the νA at the beginning of the numerator to lAνA.

Remark 5. We find it important to note that even the simple approach

described above incorporates diversification. We may see the risk contri-

bution (28) as percentage of νA (times νA). The factor r̃cA/νA is of order

O(]E−1/2) if the correlation ρ is 0. This can be seen by using νA = 1 through-

out. The risk vanishes for an infinitely large portfolio. If the correlation is

perfect, i.e. ρ = 1, the order is O(1), no diversification due to portfolio size

is possible.

6 Conclusion

We have proposed three methods to calculate risk contributions for non-

performing exposure in portfolio credit risk. The economic risk is calculated

together with the performing portfolio and separately. The main suggestion

is to use a Poisson mixture model, equivalent to CreditRisk+, and incor-

porate a (Beta) mixture distribution for the loss given default (LGD). In

the latter setup a one-factorial design of the LGD is described in detail. A

multi-factorial generation of the LGD is included allowing for more realistic

situations. These two approaches imply dependencies between the perform-

ing portfolio and the non-performing portfolio. The dependency can be

relieved for the calculation of the risk contributions only. To this end, one

may use the marginal contribution of the non-performing portfolio for the

overall economic capital and distribute it across the originators. Or, if a

full disconnection between the two portfolios is wanted, we propose a simple

stand-alone method. The LGD is modeled with a normal (Merton-type)
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one-factor model and the economic capital is derived and contributions for

the counterparts defined. Our theoretical calculations are supplemented by

calibration of the LGD models based on real historical data and an exem-

plary impact study.
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