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Abstract
In dose-response studies, the dose range is often restricted due to concerns over drug

toxicity and/or efficacy. We derive optimal designs for estimating the underlying dose-response
curve for a restricted or unrestricted dose range with respect to a broad class of optimality
criteria. The underlying curve belongs to a diversified set of link functions suitable for the dose
response studies and having a common canonical form. These include the fundamental binary
response models – the logit and the probit as well as the skewed versions of these models. Our
methodology is based on a new geometric interpretation of optimal designs with respect to
Kiefer’s Φp-criteria in regression models with two parameters, which is of independent interest.
It provides an intuitive illustration of the number and locations of the support points of Φp-
optimal designs. Moreover, the geometric results generalize the classical characterization of
D-optimal designs by the minimum covering ellipsoid [see Silvey (1972) or Sibson (1972)] to
the class of Kiefer’s Φp-criteria. The results are illustrated through the re-design of a dose
ranging trial.
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1 Introduction

The motivation for preparing this article arose from a commonly observed design problem in dose-

response experiments which are routinely conducted in preclinical and Phase I and II clinical trials

to study the relationship between the dose level of a drug and the probability of a response, be it

“cured” or “poisoned”. For decades, statisticians have been searching and advocating the adoption

of optimal designs in clinical trials. However, computer algorithms for generating theoretical optimal

designs usually assume an unrestricted dosage range; see for example, Chaloner and Larntz (1989),

Zhu and Wong (2001). The issue of a restricted dose range is especially pertinent to studies done

with human subjects. In clinical trials it was often noted (Gart et al., 1986) that “for many agents,

the response rate at the high dose in the optimal design may exceed that found at the maximum

tolerated dose”. We recently encountered such an example. Prior to a dose ranging trial on a new

rheumatoid arthritis drug at the Merck Research Laboratories, a pilot study was done where 120

patients were equally randomized into a placebo (dose 0) and a high dose (dose 50) group for a

6-week trial. According to this pilot study, the dose-response relationship with the original doses

was found to be logistic (Zeng, Zhu and Wong (2000)) and as a consequence the original dose level

was used in the dose-response function instead of the log dose level. The observed response rates

were 35% at the placebo and 65% at the high dose. Based on these parameter estimates it follows

from Ford, Torsney and Wu (1992), Table 4, that the locally optimal design for estimating the

shape (slope) of the underlying dose-response curve (logit) would allocate half of the subjects to

dose −71 and the other half to dose 121. It is impossible to implement such a design because the

higher dose (121) exceeds the safety limit, and the lower dose (−71) has less drug content than the

placebo. It is also hard to justify the role of this optimal design as a ‘gold standard’ in gauging

other competing designs.

Little work has been done on the construction of optimal designs for dose response studies with

a restricted dose interval. Extensive literature search yielded three related papers one by Ford,

Torsney and Wu (1992), who derived locally c- and D-optimal designs on restricted and unrestricted

design spaces, one by Mats, Rosenberger and Flournoy (1998) where they derived the locally c-

and D-optimal designs for estimating the maximum tolerated dose in a Phase I clinical trial on

a restricted design space, and one by Haines, Perevozskaya and Rosenberger (2003) where they

extended the latter approach to Bayesian c- and D-optimal designs. For the Merck dose ranging

trial, the goal was indeed to estimate the shape of the logit curve as precisely as possible subject

to the constraint that the median effective dose, which is often regarded as the key index of a

dose-response study, will be estimated with a certain precision. Such an optimal design is called a

constrained optimal design (Lee, 1987). The constrained optimal designs are often hard to derive

and little progress was made until Cook and Wong (1994) showed that there is a 1-1 correspondence

between the constrained and the compound optimal designs. The compound optimal design would

minimize a convex combination of the individual design criteria (in our example two variances) and

is in general easier to solve for than its constrained counterpart. The implication is that we can now

construct the entire class of compound optimal designs first and then search among them for the

desired constrained optimal design using such straightforward tool as the efficiency plot proposed

in Cook and Wong (1994).

For the Merck dose ranging trial, the locally compound optimal designs with unrestricted design

interval carry the same undesirable feature as the slope optimal design. Therefore in this paper,
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we will focus on the derivation of restricted optimal designs for estimating the location and slope

parameters of a binary response model, where the probability of a response at dose level x is given

in a common canonical form for the usual class of dose-response models; see Wu (1988) and Mats,

Rosenberger and Flournoy (1998) among many others. Our results, however, apply to the case

of an unrestricted design interval as well. In Section 2 of this article, we put this design problem

into a much more general framework. Following Chernoff (1953), we consider “locally optimal”

design problems depending on a “best guess” for the unknown model parameters. In the ensuing

discussion we will omit the word “locally” for simplicity. We will also suppress dependence on

the nonlinear parameters in the notation which follows. Section 3 contains the main theoretical

results of this paper. We present a new geometric interpretation of optimal design problems with

respect to Kiefer’s Φp-criteria in regression models with two parameters, which is of its own interest

independent to the dose-response scenario. Roughly speaking, the Φp-optimal design problem is

equivalent to the problem of finding the ellipse, which covers the induced design space and has

minimal content relative to an �2q-norm of the lengths of the maximal and minimal diameter of the

ellipse (where 1/p + 1/q = 1). This optimal ellipse essentially determines the support points but

not necessarily the weights; see Example 1 in Section 3. For the D-optimality criterion our result

simplifies to the famous minimum covering ellipsoid problem studied by many authors [see, e.g.,

Silvey (1972), Sibson (1972), Silvey and Sibson (1973) and Haines (1993) among many others], but

the geometric characterization of the optimal designs with respect to the other optimality criteria

is novel, and provides a better understanding of the structure of Φp-optimal designs. In Section

4, we use this new geometric interpretation to study the properties of optimal designs in binary

response models for a broad class of link functions with respect to all Φp-optimality criteria. In

particular, we deal with the problem of restricted design spaces, which includes restrictions with

respect to one as well as the two boundaries of the design interval. Moreover, we utilize the results

of Pukelsheim and Torsney (1991) to derive formulas for the weights of the optimal designs. To

illustrate the application of this new approach, we apply our results in Section 5 to re-design the

dose ranging trial conducted at the Merck Research Laboratories (XXX, 1997). Some conclusions

are given in Section 6, while the proofs of our results are deferred to an appendix.

Works most similar in spirit to the present paper are the publications of Ford, Torsney and Wu

(1992) and Haines (1993). Ford, Torsney and Wu (1992) restricted themselves to the D- and

c-optimality criteria. They used Elfving’s (1952) and Sibson’s (1972) classical geometric charac-

terization of D- and c-optimality to determine optimal designs for regression models with two

parameters. In some models only minimally supported D-optimal designs are determined. Haines

(1993) also considered the D-optimality criterion and minimally supported designs. In the present

paper we present a new geometric interpretation of Φp-optimal designs, which is of independent

interest and generalizes the classical results of Silvey (1972) and Sibson (1972). We use these argu-

ments to derive sufficient conditions for the two-parameter binary dose-response link functions such

that the corresponding Φp-optimal designs are supported at exactly two points. Our conditions are

satisfied within a broad class of binary response models on restricted or unrestricted dose ranges,

and the theoretical results are applicable to ALL Φp-optimality criteria.
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2 Optimal designs for binary response experiments

In a dose-response experiment, suppose we have n subjects and a proportion of ωi subjects are

allocated to dose xi, i = 1, 2, . . . , k. The corresponding design is usually denoted by

ξ =

{
x1 x2 · · · xk

ω1 ω2 · · · ωk

}
.

Let π(x) represent the probability of success at a given dose level x, H : [0, 1] → R denotes a given

distribution function (assumed to be almost surely continuously differentiable) and h2(z) is defined

by

h2(z) =
(H ′)2

H (1 −H)
(z). (1)

The Fisher information matrix under the model π (x) = H (β (x− α)) is given by

M (ξ) =
k∑
i=1

nωih
2 (β (xi − α))

(
β2 −β (xi − α)

−β (xi − α) (xi − α)2

)
.

For convenience, we will consider only approximate designs in the following, i.e. designs where

nωi, i = 1, . . . , k, are not necessarily integers. For practical applications, some rounding procedure

(see, e.g., Pukelsheim and Rieder (1992)) must be applied to the optimal approximate design before

use.

For moderate sample sizes, the covariance of the maximum likelihood estimator for the parameter

KT θ = KT (α, β)T is approximately proportional to the matrix KTM−1 (ξ)K. An optimal design

maximizes an appropriate function of the information matrix

C (ξ) = (KTM−1(ξ)K)−1 , (2)

where the 2 × 2 matrix K used in this paper is defined by K = diag(
√
λ,

√
1 − λ) for some

value λ ∈ (0, 1), reflecting different emphasis on the precision of the estimation of the respective

parameters α and β. For the choice λ = 1/2, K is proportional to the identity matrix, yielding the

corresponding design problem for estimating the parameter (α, β)T . Since we deal with optimal

designs for estimating two model parameters, the support of such a design contains at least two

different points, therefore we obtain a non-singular Fisher information matrix M(ξ). That is the

inverse M−1(ξ) used in the formulas above exists. In this work, we consider the well-known Φp-

criteria,

Φp(C) = (
1

2
trCp)1/p with p ∈ (−∞, 1], Φ−∞(ξ) = λmin(C), (3)

where λmin(C) denotes the minimum eigenvalue of the matrix C; see Kiefer (1974) or Pukelsheim

(1993). A design ξ∗ is called Φp-optimal for estimating the vector of weighted parameters KT θ =

(
√
λα,

√
1 − λβ) if ξ∗ maximizes the function Φp(C(ξ)). The most widely used criteria are the

well known A-, D- and E-optimality criterion, where p = −1, 0, −∞, respectively. We further

note that the matrix C (ξ) is also proportional to the Fisher information matrix for the parameter

(τ1, τ2)
T in the linear regression model

y = φ1 (z) τ1 + φ2 (z) τ2 + η, z ∈ Z (4)
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where z = β (x− α), φ1 (z) = −βh (z) /
√
λ, φ2 (z) = z · h (z) /(β

√
1 − λ), τ1 and τ2 are model

parameters and η is a normal distributed error with mean 0 and variance σ2. In (4) the design

space Z is obtained from the original dose range by the transformation z = β (x− α). Note that if

the original dose range in the binary response model is given by R we have Z = R and we call this

an unrestricted design space. Similarly, if the dose range is of the form [xmin,∞) or (−∞, xmax] the

set Z is of the form [A,∞) or (−∞, B], which is denoted as one-sided or one-sided restricted design

space. Finally two restrictions on the dose range, i.e. x ∈ [xmin, xmax], yield a two-sided or two-

sided restricted design space, say Z = [A,B]. Thus, the Φp-optimal design problem for estimating

the weighted parameter vector (
√
λ α,

√
1 − λ β) in the binary response model coincides with a Φp-

optimal design problem for the linear model (4). We finally note that Φp-optimal designs for different

values of the location parameter, say µ1, µ2, are related by the transformation x→ x+(µ1−µ2). A

similar statement, however, is not true for the scaling parameter, because the regression functions

φ1 and φ2 in the equivalent linear model (4) depend on the parameter β.

3 A geometric interpretation of Φp-optimal designs in mod-

els with two parameters

The geometric interpretation of optimal design problems has a long history. Elfving (1952) charac-

terized c-optimal designs, Silvey (1972), Sibson (1972) and Silvey and Titterington (1973) studied

the geometric properties of D-optimal designs. Haines (1993) provided an alternative proof of this

result and also considered minimally supported D-optimal designs. A geometric characterization of

E-optimal designs can be found in Dette and Haines (1994), Dette and Studden (1993a, b), while

more general versions of Elfving’s work (for D-optimality and Bayesian optimality criteria) can be

found in Dette (1993) and Dette (1996). Ford, Torsney and Wu (1992) used Elfving’s (1952), Silvey’s

(1972) and Sibson’s (1972) geometric characterizations to derive c-optimal and D-optimal designs

for nonlinear regression models with two parameters (for the D-optimality criterion only minimally

supported designs are determined by these authors). The same methods were used by Mats, Rosen-

berger and Flournoy (1998) to find c- and two-point D-optimal designs for binary response models.

In this section, we derive a new interpretation of Φp-optimal designs, which generalizes the classical

interpretation of Silvey (1972) and Sibson (1972) for the D-optimality criterion to all Φp-criteria.

In the subsequent sections, we will use these geometric results to study the properties of Φp-optimal

designs in binary response models with a restricted or unrestricted dose range.

As pointed out in the previous section, the optimal design problem for the binary response model

is equivalent to an optimal design problem in the two-dimensional linear regression model (4). In

the following, we consider the problem of maximizing Φp(C(ξ)) where ξ is a design on Z, and C(ξ)

denotes the information matrix in model (4). In order to guarantee the existence of a Φp-optimal

design we assume that the induced design space

G = {(φ1(z), φ2(z))
T | z ∈ Z} (5)

is compact. Define φ(z) = (φ1(z), φ2(z))
T as the design locus [see Haines (1993)] and for a nonneg-

ative definite matrix N ∈ R
2×2 the ellipse

EN = {u ∈ R
2 | uTNu ≤ 1}. (6)
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Let q ∈ [−∞, 1] denote the conjugate of p ∈ [−∞, 1], that is p + q = pq, and for a vector x =

(x1, x2)
T ∈ R

2 its �2q-mean or norm by

�2q(x) =
[1
2

(
|x1|2q + |x2|2q

)]1/2q
. (7)

It is easy to see that 2q ≥ 1 if and only if p ∈ [−∞,−1], and consequently for “most” of the

Φp-criteria the formula (7) defines actually a norm on R
2. For an ellipse EN of the form (6) let

�2q(EN ) denote the �2q-mean of the lengths of its major and minor diameter and define Vol(EN)

as its volume. Note that for a 2 × 2 matrix N with eigenvalues λi (i = 1, 2) it follows that

Vol(EN) = π/
√
λ1λ2 and �2q(EN) = [(|2/√λ1|2q + |2/√λ2|2q)/2]1/2q. The following result states

that the problem of finding an ellipse of the form (6) covering G with minimal v2q-content

v2q(EN ) =
Vol(EN)

�2q(EN )
(8)

is the dual of the Φp-optimal design problem in the linear regression model (4).

Theorem 1 If the assumptions stated at the beginning of this section are satisfied, the Φp-optimal

design problem in the linear regression model (4) is the dual of the problem of finding a centered

ellipse which covers the induced design space G defined in (5) and has minimal v2q-content, i.e.

max
ξ

Φp(C(ξ)) = 2π−2 · min
G⊂EN

v2
2q(EN) = 2π−2 · min

G⊂EN

{Vol(EN)

�2q(EN )

}2

. (9)

Moreover, the ellipse with minimal v2q-content touches the induced design space G at the points

φ(z∗i ), where z∗i are the support points of any Φp-optimal design in the linear regression model (4).

Remark 1 Note that in the case p = 0 we have q = 0 which means

�2q(EN) =
( 4√

λ1λ2

)1/2

= 2
√

Vol(EN )/π,

where λ1, λ2 are the eigenvalues of the matrix N corresponding to the ellipse EN . Therefore the

duality in (9) reduces to the well known geometric interpretation of the D-optimal design problem

[see Silvey (1972) or Sibson (1972)].

There are some other cases of particular interest. For example, if p = −∞ (corresponding to the

E-criterion) we have q = 1 and

v2(EN ) =
Vol(EN)

�2(EN)

gives the ratio of the volume and an �2-norm of the length of the maximal and minimal diameter

of the ellipse. Similarly, the important case of A-optimality (p = −1, q = 1/2) corresponds to an

�1-norm, i.e.

v1(EN) =
Vol(EN )

�1(EN)
.
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Example 1 Note that the ellipse which covers G with minimal v2q-volume determines the support

supp(ξ∗) of a Φp-optimal design ξ∗ in the sense that each point z∗i ∈ supp(ξ∗) corresponds to a

point φ(z∗i ) = (φ1(z
∗
i ), φ2(z

∗
i ))

T ∈ G, where the minimum ellipse touches the induced design space.

It might be tempting to derive a similar geometric characterization for the weights of the Φp-optimal

design. However, the following example shows that this is not possible in general. Consider the

linear regression model

y = τ1z1 + τ2z2 + η, (z1, z2)
T ∈ [0, 1]2. (10)

Then the induced design space is the unit square, i.e. G = [0, 1]2, and the Φp-optimal design has

masses ω, (1 − ω)/2, (1 − ω)/2 at the points
(
1
1

)
,
(
1
0

)
,
(
0
1

)
, respectively, where

ω = 1 − 4

3 + 31/(1−p) (11)

[see Pukelsheim (1993)]. The corresponding information matrix is given by

C(ξ∗) =
1

2

(
1 + ω 2ω

2ω 1 + ω

)

and has eigenvalues 1
2
(1 + 3ω) and 1

2
(1 − ω), which yields

Φp(C(ξ∗)) =
1

2

{1

2

[
(1 + 3ω)p + (1 − ω)p

]} 1
p

=
2

61/p

(
3 + 31/(1−p)

)(1−p)/p
, (12)

where we used (11) in the last step. On the other hand the ellipse

EN∗ =
{(x1

x2

)
| x2

1 − x1x2 + x2
2 ≤ 1

}
(13)

obviously contains the induced design space G = [0, 1]2 and touches G at the points
(
1
1

)
,
(
0
1

)
,
(
1
0

)
[see

Figure 1]. A straightforward calculation using the relation 1
p

+ 1
q

= 1 shows that

v2
2q(EN∗) =

(Vol(EN∗)

�2q(EN∗)

)2

=
π2

2

{1

2
(1 + 3q)

}− 1
q

=
π2

61/p
(3 + 31/(1−p))(1−p)/p,

and a comparison with (12) shows that EN∗ is in fact the covering centered ellipse with minimal

v2q-content [see also Figure 1].

Therefore for any p ∈ [−∞, 1] the minimal ellipse is given by EN∗ , which does not depend on p,

whereas the weights of the Φp-optimal design depend on the parameter p in a nontrivial way by

(11). This example demonstrates that in general the weights of optimal designs cannot be obtained

from the optimal ellipse EN∗ . In paragraph 4.5 of the following section, we will present an explicit

method for determining the weights of the Φp-optimal design if the support points have been found

by the geometric arguments presented in Theorem 1.

4 Φp-optimal designs for binary response models

In the situation considered in Section 2 we obtain for the design locus

φ(z) = (φ1(z), φ2(z))
T = (−β h(z)/

√
λ, zh(z)/(β

√
1 − λ))T ,

7
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-1

-0.5

0.5

1

Figure 1: The induced design space G = [0, 1]2 (solid line) in model (10) and the covering centered

ellipse EN∗ with minimal v2q-content (dotted line), which is the same for all p = 1−1/q ∈ [−∞, 1].

and the induced design space defined by (5) is given by

G =
{
(−β h(z)/

√
λ, zh(z)/(β

√
1 − λ))T | z ∈ Z} (14)

(note that Z is obtained from the original dose range by the transformation z = β(x − α) and

therefore depends on α and β). By the assumption λ ∈ (0, 1) the Φp-optimal design ξ∗ must have a

non-singular information matrix C(ξ∗) and therefore at least two support points. On the other hand

it follows from Caratheodory’s theorem [see Silvey (1980)] that there exists a Φp-optimal design

with at most three support points.

We will now use the geometric intepretation in Theorem 1 to derive a suffient condition such that

Φp-optimal designs in particular binary response models are minimally supported for all p ∈ [−∞, 1].

Following the discussion in Section 3, we have to find an ellipse, say EN∗ , with minimal v2q-volume

defined by (8), which covers the induced design space G. In Figure 2, we illustrate the induced

design space for the logistic, complementary log-log (left part) and the double exponential and

reciprocal model (right part) in the case λ = 1/2, β = 1.

-1 -0.8 -0.6 -0.4 -0.2

-1

-0.5

0.5

1

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2

-0.75

-0.5

-0.25

0.25

0.5

0.75

Figure 2: The induced design space defined by (14) for Z = R, λ = 1/2, β = 1 for various binary

response models. Left part: logistic model (solid) and complementary log-log model (dashed); Right

part: double exponential model (solid) and double reciprocal model (dashed).

It is apparent that a centered ellipse touching one of the induced design spaces presented in the

left part at three points would have a rather large v2q-volume. Therefore we expect Φp-optimal

designs in the logistic and complementary log-log model to be supported at only two points. On

the other hand, for the double exponential and reciprocal model the v2q-volume of the ellipse can

be diminished by using the interval [−1, 1] as major diameter and consequently a centered covering
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ellipse with minimal v2q-content would touch the induced design space at more than two points.

Therefore we expect that Φp-optimal designs in these models have three support points. In the

following we will make these heuristic arguments more rigorous. For this purpose, we state a

condition on the function h(z) such that the appropriate ellipse touches the induced design space

at exactly two points.

Condition (I): The function g(z) = h−2(z) is twice differentiable on R, and the equation g′′(z) = c

has at most two solutions for any real constant c.

Condition (I) is satisfied by many of the commonly applied link functions, such as the logit and the

probit link. A more detailed overview on the behavior of the commonly used link functions with

respect to condition (I) is displayed in Table 1. Note that condition (I) is not complied with by

the double exponential and the double reciprocal link functions, since the function g(z) = h−2(z)

is not differentiable in the origin z = 0. The probit and logit models are the most fundamental

models in dose-response studies. The logit model closely resembles the probit model and both are

symmetrical around the ED50. One can easily envisage situations where the researcher would not

want to impose the symmetry feature of the logit/probit link functions on their data (Stukel, 1988).

The skewed logit model, also called power logit model, was first proposed by Prentice in 1976. It

generalizes the logit model by adding an additional skew parameter in the form of the power of the

logit function and has found applications in the biomedical field as well as other scientific research

areas (e.g. Gaudard et al., 1993; Nagler, 1994; Hedayat et al., 1997; Wang and Hung,1997; Leuraud

and Benichou 2001). The complementary log-log model is another asymmetrical extension of the

logit/probit model especially pertinent to the toxicity studies (Kuk, 2004) and design in the time

domain (Throne et al., 1995). In all these models condition (I) is satisfied.

Table 1: Behavior of the function h(z) for several common link functions H(z) with respect to

condition (I); (s(z) = sign(z), Ψ(z) the distribution function of the standard normal distribution,

ψ(z) the corresponding density function.)

link function H(z) h2(z) condition (I)

Double Exponential 1+s(z)
2

− s(z)
2
e−|z| 1

2e|z|−1
not met

Double Reciprocal 1+s(z)
2

− s(z)
2

(
1

1+|z|
)

1
(1+|z|)2(2|z|+1)

not met

Complementary Log-Log 1 − e−e
z e2z

−1+eez met

Logit 1
(1+e−z)

ez

(1+ez)2
met

Probit Ψ(z) ψ2(z)
Ψ(z)(1−Ψ(z))

met

Skewed Logit (m > 0) 1
(1+e−z)m

m2

(1+ez)2(−1+(1+e−z)m)
met

4.1 Φp-optimal designs on unrestricted design spaces

We now state several results about Φp-optimal designs in binary response models for estimating the

vector of weighted parameters KT θ = (
√
λα,

√
1 − λβ) on the unrestricted design interval Z = R.
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The proofs are given in the appendix.

Theorem 2 Assume that condition (I) is satisfied for the binary response model under considera-

tion.

(a) For any p ∈ [−∞, 1] the Φp-optimal design for estimating the vector of weighted model pa-

rameters KT θ = (
√
λα,

√
1 − λβ) is supported at two points, which are uniquely determined.

(b) If, additionally, the function h(z) is symmetric, then there exists a symmetric Φp-optimal de-

sign ξ on two points for estimating the vector of weighted parameters KT θ = (
√
λα,

√
1 − λβ),

i.e. ξ is supported at points −z0, z0 with weights 1/2 and 1/2.

(c) For any p ∈ (−∞, 1) the Φp-optimal design is unique.

Note that Theorem 2 is applicable to ANY binary response model, which satisfies Condition (I). In

Table 1 we have presented four examples where this condition is satisfied and as a consequence the

Φp-optimal designs in the corresponding binary response models are supported at two points. There

are many other link function, where Theorem 2 can be applied sucessfully. A typical nonstandard

example is given by the Cauchy distribution function H(z) = 1
2

+ 1
π

arctan(z), for which condition

(I) can easily be checked. As a consequence all Φp-optimal designs for this binary response model

are also supported at only two points. In the double exponential and reciprocal model condition (I)

is not satisfied. This coincides with the result of Ford, Torsney and Wu (1992), who found that the

D-optimal designs for these two links are supported on three points. We note that in these models

the number of support points of the Φp-optimal designs depends on the size of the dose range and

the weight λ in the optimality criterion [see our discussion in Section 4.6].

Remark 2

(a) If the function h is symmetric it follows from Theorem 2 (b) that Φp-optimal designs can be

determined by a one-dimensional optimization problem.

(b) The results of Theorem 2 remain valid if the Φp-optimality criteria are replaced by general

information functions in the sense of Pukelsheim (1993). This follows by a careful inspection

of the corresponding proofs, where the geometric characterization of Φp-optimal designs has

to be replaced by the general equivalence theorem in Pukelsheim (1993), sec. 7.16. A similar

statement can be made for all other results presented in this paper. The geometric interpreta-

tion derived in Section 3, however, facilitates more insight and a deeper understanding of the

nature of the design problem at hand, so that our results are given in terms of the geometric

viewpoint, although the class of optimality criteria is thus restricted to Φp-criteria.

4.2 Optimal designs on restricted design spaces

To guarantee a certain level of drug efficacy due to the increasing ethics concerns, one must impose

a lower bound on the design interval. Moreover, to avoid a severe side-effect or drug toxicity, one

would have to impose an upper bound on the design interval. This means that the equivalent design
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space in the linear regression model (4) is of the form Z = [A,∞), Z = (−∞, B] or [A,B]. Note

that for a restricted design space the induced design space G is curtailed. Consequently, if one of

the support points of the unrestricted Φp-optimal design is not contained in the restricted design

space one expects that the smallest (with respect to the v2q-volume) ellipse enclosing G will touch

G at one (or two) extreme point(s) corresponding to the boundary of the design space. A typical

situation for the logistic regression model is depicted in Figure 3 for the case p = −1. For arbitrary

models the situation is more complicated and an additional condition on the link function of the

binary response model is required to make this geometric argument rigorous.

-0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

-1

-0.5

0.5

1

-0.75 -0.5 -0.25 0.25 0.5 0.75

-1

-0.5

0.5

1

Figure 3: The induced design space G defined by (14) for the logistic regression model and the

covering ellipse with minimal v1-content (corresponding to the A-criterion), where α = 0, β = 1,

λ = 1/2. The left part shows the situation for an unrestricted design space Z = R, while the case

of a restricted design space Z = [−0.5,∞) is illustrated in the right part of the figure.

We will first present the left-restricted Φp-optimal designs for estimating the vector of weighted

parameters KT θ = (
√
λα,

√
1 − λβ) in the binary response model with the normalized design

interval in terms of z = β (x− α) being [A,∞), where 0 > A > z∗L, and z∗L denotes the lower

design point of the Φp-optimal design with the same λ on the unrestricted design interval Z = R.

The derivation of optimal designs for the right-restricted design interval (−∞, B] with B < z∗U , z∗U
denoting the upper design point, follows along the same lines and is thus omitted. These results

will lead us to the more realistic scenario where both sides of the design interval are bounded as is

true with the Merck dose ranging trial.

4.3 One-sided restricted intervals

Throughout this section, we assume that condition (I) is satisfied and denote by z∗L and z∗U the

lower and upper support point of the unrestricted Φp-optimal design for estimating the vector of

weighted parameters KT θ = (
√
λα,

√
1 − λβ). Note that in the case z∗L ≥ A the Φp-optimal design

on the unrestricted design space is obviously also Φp-optimal on the restricted design space [A,∞).

The following two results concern the remaining case of z∗L < A. We show that the left-restricted

Φp-optimal design on [A,∞) is a two-point design, and furthermore its lower support point is always

the left boundary point of the design interval. The following results hold as long as condition (I)

and

Condition (II): z · h (z) → 0 as z → ±∞.

are satisfied.

11



Lemma 1 If condition (I) is fulfilled and z∗L < A for a given boundary value A, then the Φp-optimal

design ξ∗ for estimating the vector of weighted parameters KT θ = (
√
λα,

√
1 − λβ) on the interval

[A,∞) is supported on exactly two different points.

The proof of Lemma 1 follows by similar geometric considerations as given in the proof of Theorem

2 and is therefore omitted. The following theorem shows that in the case z∗L < A the point A is

always a support point of the Φp-optimal design.

Theorem 3 Assume that condition (I) and (II) are satisfied. If, for a given λ ∈ (0, 1), the smaller

support point of the Φp-optimal design for estimating the vector KT θ = (
√
λα,

√
1 − λβ) on Z = R

is not included in the interval [A,∞), then any Φp-optimal design for estimating the vector of

weighted parameters KT θ = (
√
λα,

√
1 − λβ) on the interval [A,∞) has two unique support points,

one of which is the boundary point A.

It is easy to show that all link functions from Table 1 satisfy condition (II). Theorem 3 provides a

sufficient condition such that Φp-optimal designs for estimating the vector of weighted parameters

KT θ = (
√
λα,

√
1 − λβ) on the design space [A,∞) put masses ω1 and 1 − ω1 at the points A and

z, respectively, where z denotes the upper support point of the design. A formula for the weight ω1

is derived in paragraph 4.5, leaving only a univariate optimization problem in the variable z, which

can be solved by standard numerical methods.

Remark 3 Note that Theorem 3 also applies to optimal design problems for binary response models

with restricted dose ranges, where the restrictions are functions of the parameters [see e.g. Mats,

Rosenberger and Flournoy (1998)]. Consider, for example, the situation where the experimenter is

interested in precise estimation of the parameters α, β. Additionally no patient should be exposed

to doses, where the probability of a response is less than π ∈ (0, 1). In this case the dose range is

[xmin,∞) with xmin = µ + H−1(π)/β, which corresponds to the design space Z = [H−1(π),∞) in

the equivalent model (4).

4.4 Two-sided restricted intervals

The more realistic situation in dose-response experiments is when there exist restrictions on both

the upper and the lower bound of the design interval. Furthermore, the restricted interval is not

necessarily symmetrical around the location parameter α, or 0 in terms of the normalized dose

level z = β (x− α). In the following, we assume the normalized design interval, i.e. the design

interval corresponding to normalized dose levels z, to be [A,B]. For a given λ ∈ (0, 1), we assume

that the upper support point for the corresponding left-restricted Φp-optimal design on the design

space [A,∞), say z∗U,A, and the smaller support point for the right-restricted Φp-optimal design on

the design space (−∞, B], say z∗L,B, are not contained in the design interval [A,B]. If one of these

points is in the interval [A,B] the two-sided restricted Φp-optimal design for estimating the vector of

weighted parameters KT θ = (
√
λα,

√
1 − λβ) coincides with the corresponding Φp-optimal design

for the one-sided restricted design space.
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Theorem 4 Assume that conditions (I) and (II) are satisfied and z∗L,B < A < B < z∗U,A. The

two-sided restricted Φp-optimal design ξ∗A,B for estimating the vector of weighted parameters KT θ =

(
√
λα,

√
1 − λβ) on the design interval [A,B] has two support points, which are given by the bound-

ary points A and B. In particular, when the design interval and the function h are symmetric, the

design which allocates equal weight to both boundary points is Φp-optimal for estimating the vector

of weighted parameters KT θ = (
√
λα,

√
1 − λβ).

4.5 A formula for the weights of optimal designs

In the cases considered in the two previous paragraphs, the optimal design problem reduces to the

determination of one support point with corresponding weight in the case of a one-sided restricted

design space and to the determination of the weight at one point in the case of a two-sided restricted

design space. In the preceding discussion, we have provided some geometric tools for the determi-

nation of the support points of a Φp-optimal design. We will now derive formulas for the weights of

the optimal designs using the results of Pukelsheim and Torsney (1991). For simplicity, we restrict

ourselves to the case of a two-sided restricted interval [A,B]. The analogous results apply in the

cases of unrestricted or one-sided restricted design spaces if A and B are replaced by the support

points of the Φp-optimal design in the formulas below. Define by V the matrix V = (XXT )−1XK

with XT = (φ(A), φ(B)) ∈ R
2×2. For the given matrix K used in (2) the matrix V for a two-sided

restricted Φp-optimal design on the design interval [A,B] supported at A and B has the form

V =

 B
√
λ

(B−A)βh(A)

A
√
λ

(A−B)βh(B)

β
√

1−λ
(B−A)h(A)

β
√

1−λ
(A−B)h(B)


which in turn implies that the information matrix C = C(ξ) = (KTM−1(ξ)K)−1 of the design ξ

with masses ω1 and 1 − ω1 at the points A and B has the form

C =

 B2λ
ω1(B−A)2β2h2(A)

+ A2λ
(1−ω1)(A−B)2β2h2(B)

B
√

1−λ√λ
ω1(B−A)2h2(A)

+ A
√

1−λ√λ
(1−ω1)(A−B)2h2(B)

B
√

1−λ√λ
ω1(B−A)2h2(A)

+ A
√

1−λ√λ
(1−ω1)(A−B)2h2(B)

β2(1−λ)
ω1(B−A)2h2(A)

+ β2(1−λ)
(1−ω1)(A−B)2h2(B)

−1

.

We finally define by L the matrix L = V Cp+1V T . In the case p ∈ (−∞, 1], it then follows from the

results of Pukelsheim and Torsney (1991) that the weight vector ω = (ω1, 1 − ω1) of a Φp-optimal

design is given by

ω1 =

√
L11∑2

i=1

√
Lii

(15)

where Lii, i = 1, 2, are the diagonal elements of the nonnegative definite 2× 2 matrix L. Note that

here the matrix Cp+1 for any criterion p ∈ (−∞, 1] results from the eigenvalues λi, i = 1, 2, and the

eigenvectors xi, i = 1, 2, with ||xi||2 = 1 of the matrix C−1(ξ) = KTM−1(ξ)K = V T∆−1
ω V with ∆ω

= diag(ω1, 1 − ω1) by the relation

Cp+1 =
2∑
i=1

λ−p−1
i xix

T
i .
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The weight ω1 can now be determined explicitly by solving the nonlinear equation (15). This

problem can easily be implemented in standard software such as Mathematica or Matlab. For

p = −∞, i.e. the E-criterion, the Φ−∞-optimal weight ω1 corresponding to the support point A

can be determined by the formula

ω1 =
√
J11, (16)

where J11 denotes the first diagonal element of the matrix J = V CDCV T , and D is given by

D =


xxT

λmin(C)
if λmin(C) is of multiplicity 1

γx1x
T
1 + (1 − γ)x2x

T
2

λmin(C)
if λmin(C) is of multiplicity 2

;

see, e.g., Pukelsheim (1993). The expressions x, x1, x2 denote the norm 1 eigenvectors of the

information matrix C corresponding to its smallest eigenvalue λmin(C), and γ is a constant from

the open unit interval (0, 1). The implementation of formula (16) in standard software is somewhat

more complex than for the case p ∈ (−∞, 1] but still feasible.

Remark 4

(a) If the function h is symmetric and the design ξ has Φp-optimal design weights ω1, 1 − ω1 at

the points z1, z2, then the Φp-optimal design weights of a design supported on −z2,−z1 are

given by 1 − ω1 and ω1, respectively.

(b) If ξ∗A = {A, z;ω1, 1 − ω1} denotes a Φp-optimal design on the one-sided restricted interval

[A,∞), then the design ξ∗−A = {−z,−A; 1 − ω1, ω1} is Φp-optimal on the one-sided restricted

interval (−∞,−A].

(c) If ξ∗A,B = {A,B;ω1, 1 − ω1} denotes a Φp-optimal design on the two-sided restricted inter-

val [A,B], then the design ξ∗−B,−A = {−B,−A; 1 − ω1, ω1} is Φp-optimal on the two-sided

restricted interval [−B,−A].

Remark 4 is illustrated in Figure 4 where we display the behavior of the weight ω1 corresponding

to the smaller design support point A as a function of the value of p ∈ (−∞, 1] in the optimality

criterion for the logit link function and on various two-sided restricted design spaces [A,B] with

different parameter values β and λ.

It is worthwhile to mention that the Φp-optimal designs highly resemble each other for p ≤ −2. A

heuristic explanation of this observation is as follows. Note that by Theorem 1 the determination

of the Φp-optimal design requires the calculation of a covering ellipse with minimal v2q-content [see

the duality in (9)]. If p ∈ [−∞,−2] we have 2q ∈ [4/3, 2]. We have depicted three unit balls with

respect to the �2q-norm introduced in Section 3, 2q ∈ {4/3, 3/2, 2}, in Figure 5, and the differences

between these balls are not substantial. Consequently, we expect the covering ellipses with minimal

ν2q-content and, as a consequence, the Φp-optimal designs to be very similar.

Example 2 We discuss the important example of (weighted) A-optimality, which corresponds to

the particular choice p = −1 in the Φp-optimality criterion. If condition (I) is satisfied the one-

sided restricted Φ−1-optimal design ξ∗A on [A,∞) puts masses ω1 and 1 − ω1 at two points A and
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Figure 4: The Φp-optimal weight ω1 corresponding to the smaller support point A as a function of

the parameter p in the Φp-optimality criterion. Left panel: A = −0.4, B = 0.9, β = 2, λ = 0.25

(solid line); A = −0.9, B = 0.4, β = 2, λ = 0.25 (dotted line). Right panel: A = −0.8, B = 0.5,

β = 2, λ = 0.75 (solid line); A = −0.5, B = 0.8, β = 2, λ = 0.75 (dotted line).
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Figure 5: The unit ball in R
2 with respect to several �2q-norms. Solid line: 2q = 2 (p = −∞),

dashed line: 2q = 3/2 (p = −3), dotted line: 2q = 4/3 (p = −2).

z. The A-optimal design problem is now to find the support point z and the allocation proportion

ω1 ∈ [0, 1] such that tr[C−1 (ξ)] is minimized. Solving equation (15) with respect to ω1 yields

ω1 =

[
1 +

h (A)

h (z)

√
(1 − λ) β2 + λA2/β2

(1 − λ)β2 + λz2/β2

]−1

. (17)

This weight is now used in the criterion function tr[C−1 (ξ)] and the determination of the Φ−1-

optimal design becomes a univariate optimization problem for the support point z, for which stan-

dard numerical methods can be applied. In the two-sided restricted case, we obtain for ω1 the

corresponding expression with the unknown support point z replaced by the upper boundary B

and the Φ−1-optimal design has been found explicitly.

4.6 Binary response models with three-point optimal designs

We conclude this section with an illustration of the particular difficulties in the calculation of

Φp-optimal designs for models, where condition (I) is not met, such as the double exponential

or the double reciprocal model. In this situation, we obtain from Caratheodory’s Theorem [see

Silvey (1980)] that there exists a Φp-optimal design with at most three support points. We will
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demonstrate that in this model the number of support points of the Φp-optimal design depends

sensitively on the size of the design space and also on the parameter λ.

Again, we consider the case p = −1 corresponding to the A-optimality criterion, and choose the

double exponential model (with α = 0, β = 1) as an example. In Figure 6, we display the induced

design space defined in (14) (solid line) and the ellipse with minimal v1-content (dashed line) for the

double exponential model, where λ = 0.5. For the set Z three cases are investigated: Z = R (left

panel), Z = [−0.2,∞) (middle panel), and Z = [−0.2, 1] (right panel). If Z = R the Φ−1-optimal

design allocates weights 0.3593, 0.2814 and 0.3593 to the support points −1.5936, 0 and 1.5936 (see

the left panel of Figure 6). If Z = [−0.2,∞) the Φ−1-optimal design has also three support points

−0.2, 0, 1.9056, with weights 0.3198, 0.0947, 0.5855, respectively (see the middle panel of Figure

6). The situation for the design space Z = [−0.2, 1] is different. Here the Φ−1-optimal design has

only two support points and allocates weights 0.4416 and 0.5584 to the left and right boundary of

the design interval (right panel in Figure 6).
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Figure 6: The induced design space (14) with λ = 0.5 for the double exponential model (solid line)

and the corresponding covering centered ellipse with minimal v1-content (dashed line). Left panel:

Z = R; Middle panel Z = [−0.2,∞); Right panel: Z = [−0.2, 1].

We note that the number of support points depends on the design space Z and a general statement

regarding the number of support points of Φp-optimal designs will be difficult to obtain in such

cases. Moreover, the picture depicted for λ = 0.5 also changes with the parameter λ. For example

if λ = 0.2 only the Φ−1-optimal design with Z = R has three support points, while in the cases of

Z = [−0.2,∞) and Z = [−0.2, 1] two point designs are Φ−1-optimal. On the other hand, if λ = 0.8,

the Φ−1-optimal design has three support points for all three scenarios. (The corresponding figures

are not displayed for the sake of brevity).

5 Merck dose ranging trial revisited

In this section, we reanalyze a data example and demonstrate the practical relevance of the optimal

designs derived in this work. The A-criterion discussed in Example 2 is an appropriate criterion

for the given example. By this choice of optimality criterion, we obtain designs that minimize the

weighted average of the variances λVar(α̂) + (1 − λ)Var(β̂) of the maximum likelihood estimators
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for the unknown model parameters α and β. This optimality criterion is also commonly referred

to as compound optimality criterion in the multiple-objective optimality context.

¿From the 6-week pilot study done before the Merck dose ranging trial, the response rate at the

placebo was 35% and the response rate at the high dose (dosage 50) was 65%. The logit model

was fitted to these data and the maximum likelihood estimates of the model parameters were then

obtained as α̂ ≈ 25 and β̂ ≈ 0.025, which will be assumed the true values of α and β in the following.

By a straightforward calculation, it follows that the variances of α̂ and β̂ are proportional to 1/β2

and β2, respectively, so since the value of β is very small, i.e. β2 differs from 1/β2 considerably, we

felt the necessity to use a particular standardized version of the A-optimality criterion (see, e.g.,

Dette (1997)), that is

λ̃
Var(α̂)

vα(ξ∗α)
+ (1 − λ̃)

Var(β̂ )

vβ(ξ∗β)
, (18)

where vβ(ξ
∗
β) = minξ(0, 1)M−1(ξ)(0, 1)T corresponds to the optimal design for estimating the param-

eter β, vα(ξ
∗
α) denotes the analogous expression for the parameter α, and λ̃ ∈ (0, 1) is a preliminary

weight chosen by the experimenter. In terms of the original weight λ, this approach corresponds

to the choice λ = ( λ̃
vα(ξ∗α)

)/( λ̃
vα(ξ∗α)

+ 1−λ̃
vβ(ξ∗β)

). We derived unrestricted compound optimal designs for

estimating the two model parameters α and β under the logit model. For each choice of preliminary

weight λ̃, the compound optimal design is equally supported at two dose levels symmetrical to α.

Selected unrestricted compound optimal designs are presented in Table 2. We found that the same

negative lower dose and large higher dose pattern persists in the compound optimal designs for the

Merck dose ranging trial.

To avoid the negative dose levels, we restricted the design interval to [0,∞) in terms of the original

dosages where dose 0 corresponds to the placebo. This translates to a normalized dose range

of [−0.625,∞). The smaller support points of the corresponding unrestricted compound optimal

designs are not included in this interval. Selected left-restricted compound optimal designs in

terms of the original design support points and the corresponding allocation proportions are given

in Table 3. As the right support points from the left-restricted compound optimal designs appear

to be high or very high, we felt it is necessary to restrict the design interval at both ends to avoid

excessive toxicity and side effects, and thus use the interval [0, 60] in the original dose scale. The

ensuing designs are supported on the two ending points with the corresponding design allocation

proportions shown in Table 4.

Now that we have derived these reasonable optimal designs for the given dose ranging trial, we can

gauge the efficiency of a practical design researchers wish to adopt for the upcoming trial against the

optimal designs. For example, the uniform designs are popular choices for dose response studies in

practice; see, e.g., Zhu, Ahn and Wong (1998). To gauge the efficiency of a 5-point equal allocation

rule for estimating two logit model parameters with equal interest, we conducted the following

simulation study. We assume the underlying logit model to be

Yi ∼ Bin(1, pi), pi = 1/(1 + e−β(xi−α)), (19)

where α = 25 and β = 0.025. Two designs are compared in this study:

(1) the two-sided restricted compound optimal design ξ∗comp with weight λ̃ = 0.5, and
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(2) the uniform design ξ∗uni on the five equidistant points 0, 15, 30, 45, 60 from the interval [0, 60]

including the endpoints (placebo dose and the highest dosage level allowed in the study).

Table 5 shows the simulated mean squared errors of the maximum likelihood estimates α̂, β̂ for

the designs defined in (1) and (2) based on data generated from model (19). The sample sizes are

chosen consistently with the usual sample sizes in phase II clinical trials (for more information on

sample sizes in clinical trials see, e.g., www.clinicaltrials.gov/ct/info/phase) and are given by 100,

150, 200 and 300, respectively, and 10,000 runs were carried out.

In general, the simulated mean squared errors for almost all estimates turn out to be significantly

larger if the data are collected according to the uniform design ξ∗uni, in particular for small to

moderate sample sizes. For the large sample size of n = 300, the mean squared errors of the

estimate α̂ become relatively close for the two designs under consideration. For the mean squared

errors of β̂, however, we find that for whatever sample size, the MSE of β̂ based on the uniform

design ξ∗uni is about twice as large as the MSE of β̂ when data are generated according to the

two-sided restricted compound optimal design ξ∗comp.
The above simulation study illustrates the importance of the compound optimal design on a re-

stricted design interval for dose response clinical trials. In fact, virtually all dose response ex-

periments involving human subjects have to be conducted on restricted design intervals. In the

drug development process, dose-response studies are conducted mainly in the Phase I and Phase

II clinical trials. The goal of the Phase I clinical trial is to determine the maximum tolerated dose

(MTD). The dose response experiment is usually conducted in the interval of placebo to the larger

of the dose with adverse effect and the top designed dose. In the Phase II clinical trial, the goal

is to determine the dose response curve on drug efficacy. The dose response interval is between

the placebo (dose 0) and the MTD (Chow, 2003). We feel that the Merck Dose Ranging study

represents the typical case of a dose response study involving human subjects. It will alert statisti-

cians and researchers to utilize optimal designs based on restricted dose intervals either directly or

indirectly in their future dose-response trials.

6 Conclusions

In this paper we have presented a new geometric interpretation of Φp-optimal designs for regression

model with two parameters, which generalizes the famous minimum ellipsoid problem for the D-

optimality criterion [see Silvey (1972) or Sibson (1972)] to most of the commonly used optimality

criteria. The dual problem of the Φp-optimal design problem is to find an centered ellipse covering

the induced design space with minimal v2q-content defined in (8), where q is the conjugate number

of p ∈ [−∞, 1]. This result provides some intuitive understanding of the number and location of the

support points of Φp-optimal designs, although less can be said about the corresponding weights

[see Example 1 presented in Section 3].

Our work was motivated by some optimal design problem for binary response models with restricted

dose range, and we have successfully applied the above geometric characterization towards this

challenge. In particular, we derived a sufficient condition on the link function such that the Φp-

optimal design in the corresponding binary response model is minimally supported. If the dose

range is restricted and the support points of the optimal designs on an unrestricted design space

are not contained in the dose range under consideration we show that under a (very weak) additional
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condition the boundary points of the design space always appear as support points of the optimal

design. Both conditions are satisfied for most of the commonly used binary response models, but

one condition is not fulfilled for the double reciprocal and the double exponential model. For the

latter model, we present an example to demonstrate the difficulties in constructing Φp-optimal

designs on restricted design spaces, if this condition is not met. In this case the answer to the

question of whether the optimal design has two or three support points depends on the size of the

dose range and a weight λ in the optimality criterion.

We also illustrate our methodology by re-designing an experiment conducted at the Merck Research

Laboratories (XXX, 1997). We hope that our work will facilitate the utilization of optimal designs

based on restricted dose intervals either directly or indirectly in the upcoming dose response trials.
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7 Appendix: Proofs

7.1 Proof of Theorem 1

Let Φ be an information function in the sense of Pukelsheim (1993), which maps the nonnegative def-

inite 2×2 matrices on the real line. More precisely, an information function features the properties

of being positively homogeneous, concave, nonnegative, non-constant and upper semicontinuous.

Define

Φ∞(D) = inf
A>0

{tr (AD)} ,
as the polar function of an information function, where the infimum is taken over all 2 × 2 positive

definite matrices; see Pukelsheim (1993). We use the notation N ≥ 0 (N > 0) for a nonnegative

(positive) definite matrix N ∈ R
2×2. It follows from Pukelsheim (1993), Section 7.12, that

max
ξ

Φ(C(ξ)) = min
N∈N

1

Φ∞(N)
(20)

where the maximum is taken over all designs on Z and

N = {N ≥ 0 | uTNu ≤ 1 ∀ u ∈ G}. (21)

Obviously, we have N ∈ N if and only G ⊂ EN , and it follows from (20)

max
ξ

Φ(C(ξ)) = min
G⊂EN

1

Φ∞(N)
. (22)

We now specialize this result to the case of Φp-optimality criteria, for which

Φ∞
p (N) = 2Φq(N) = {(trN q)/21−q}1/q,
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where q ∈ [−∞, 1] is the conjugate of p ∈ [−∞, 1]. If λ1, λ2 denote the (positive) eigenvalues of the

matrix N it follows that(trN q

21−q

)− 1
q

=
( 1

21−q (λ
q
1 + λq2)

)− 1
q

=
{ 1

21−q (λ−q1 + λ−q2 )}− 1
q

λ1λ2

= 2 ·
{ [1

2
{( 2√

λ1
)2q + ( 2√

λ2
)2q}]−1/2q

√
λ1λ2

}2

= 2π−2 ·
{Vol(EN)

�2q(EN)

}2

,

where Vol(EN ) is the volume of the ellipse EN and �2q(EN) the �2q-norm defined in (7) of the lengths

of its major and minor diameter. Consequently, it follows that

max
ξ

Φp(C(ξ)) = 2π−2 · min
G⊂EN

{Vol(EN)

�2q(EN)

}2

= 2π−2 · min
G⊂En

v2
2q(EN ), (23)

which proves the first assertion of the theorem. Moreover, there must be equality in (23) [or

equivalently in (20)] for any Φp-optimal design ξ∗ and the centered covering ellipse EN∗ with minimal

v2q-content. Now Theorem 7.11 in Pukelsheim (1993) implies

1 = tr(C(ξ∗)N∗) =

n∑
i=1

ω∗
i φ

T (z∗i )N
∗φ(z∗i ),

where φ(z) = (φ1(z), φ2(z))
T , and z∗1 , . . . , z

∗
n denote the support points with corresponding weights

ω∗
1, . . . , ω

∗
n of the Φp-optimal design ξ∗. Since G ⊂ EN∗ it follows that the ellipse EN∗ with minimal

v2q-content touches the induced design space G at the suppport points of the Φp-optimal design ξ∗,
i.e. φT (z∗i )N

∗φ(z∗i ) = 1; i = 1, . . . , n.

�

7.2 Proof of Theorem 2

The proof of Theorem 2 is divided into two lemmata, from which the assertion of the theorem

becomes obvious. The first lemma shows that a Φp-optimal design ξ∗ for estimating the vector of

weighted parameters in a binary response model will always be a two point design if condition (I)

is satisfied. The second lemma deals with the symmetry of a Φp-optimal design.

Lemma 2 Assume condition (I) is satisfied. Then any Φp-optimal design for estimating the vector

of weighted parameters KT θ = (
√
λα,

√
1 − λβ) is supported on exactly two points.

Proof of Lemma 2: By Theorem 1, we have to find an ellipse EN with minimal v2q-content, which

covers the induced design space. Let N denote the corresponding matrix of the ellipse, then EN
contains G if and only if

φT (z)Nφ(z) ≤ 1 ∀ z ∈ Z. (24)

Moreover, the ellipse EN touches G at all points φ(zi) corresponding to the support points zi ∈ Z of

the Φp-optimal design, which means that there is equality in (24) for these points. A straightforward

calculation shows then that the inequality in (24) is equivalent to

az2 + bz + c ≤ h−2(z) ∀ z ∈ Z (25)
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for some real coefficients a, b, c. Suppose that the Φp-optimal design has at least three support

points z1 < z2 < z3, i.e. we have f(zi) = g(zi), i = 1, 2, 3, where f(z) denotes the left hand

side of the inequality (25). By the mean value theorem we obtain that there exist z′1, z
′
3 such

that z1 < z′1 < z2 < z′3 < z3 and f ′(z′i) = g′(z′i), i = 1, 3. Since f(z) ≤ g(z) holds for all

z ∈ R, the points zi, i = 1, 2, 3, are all tangent points, i.e. f ′(zi) = g′(zi). Applying the mean

value theorem again to the functions f ′(z), g′(z), we receive points z′′i , i = 1, . . . , 4 such that

z1 < z′′1 < z′1 < z′′2 < z2 < z′′3 < z′3 < z′′4 < z3 and f ′′(z′′i ) = g′′(z′′i ), i = 1, . . . , 4. Since f ′′(z) = 2a for

all z ∈ R, we have g′′(z′′i ) = 2a, i = 1, . . . , 4, which contradicts with condition (I). �

Lemma 3 If the function h is symmetric, then there exists a symmetric Φp-optimal design for

estimating the vector of weighted parameters KT θ = (
√
λα,

√
1 − λβ) on Z = R.

Proof of Lemma 3: The existence of a Φp-optimal design follows from the compactness of the

induced design space and the continuity of the optimality criterion. Note that the Φp-optimality

criterion is concave and symmetric, i.e. Φp(C(ξ)) = Φp(C(ξ−)), where ξ− denotes the reflection

of the design ξ at the origin. The existence of a symmetric Φp-optimal design now follows by a

standard argument in decision theory. �

Proof of Theorem 2: By Lemma 2 and 3 it remains to prove the uniqueness of the support of

the Φp-optimal design.

(a) Let ξ1, ξ2 be two Φp-optimal designs for estimating the vector KT θ = (
√
λα,

√
1 − λβ). ¿From

Lemma 2, we conclude that they are both supported on two points. The concavity of the criterion

function Φp implies that the design ξ3 = 1
2
ξ1 + 1

2
ξ2 is also Φp-optimal. If the support of the design

ξ1 does not coincide with the support of ξ2, the design ξ3 is supported on more than two points,

which contradicts the assertion of Lemma 2.

(b) Let ξ be a Φp-optimal design for estimating the vectorKT θ = (
√
λα,

√
1 − λβ). The assumptions

regarding the information function Φp imply that ξ− is also Φp-optimal. ¿From the concavity of

the criterion function we derive that ξs = 1
2
ξ + 1

2
ξ− is also Φp-optimal. If the support of ξ is not

equal to the support of ξ−, i.e. the support points of ξ are not symmetric about the origin, this is

a contradiction to the assertion of Lemma 2.

(c) For −∞ < p < 1 the criterion function Φp is strictly concave, and it follows that ξs = ξ and

thus the uniqueness of the Φp-optimal design. �

7.3 Proof of Theorem 3

For each λ ∈ (0, 1), first we notice that the Φp-optimal design ξ∗A for estimating the vector of weighted

parameters KT θ = (
√
λα,

√
1 − λβ) on the restricted design space [A,∞) satisfies condition (25)

on the interval [A,∞) but not on the whole real axis. Otherwise, ξ∗A would also be optimal in

the unrestricted situation. Since we assume that the smaller support point for the unrestricted

Φp-optimal design is not included in [A,∞), we have two designs with different support points

which are both optimal in the unrestricted sense. This contradicts the uniqueness of the support

of the unrestricted Φp-optimal design. The above reasoning implies that there exists some z′ < A

such that f(z′)h2(z′) > 1. Moreover, from condition (II), it follows that there exists a point z′′ < z′

such that for z ≤ z′′ the inequality f(z)h2(z) ≤ 1 holds again. Therefore we will encounter two

intersection points z0, z1 between the functions f(z) and h−2(z) on the interval (−∞, A]. Assume
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that z0 < z1 < A and denote by z2, z3 the support points of the design ξ∗A, where A < z2 < z3, i.e.

f(zi) = g(zi) for i = 0, 1, 2, 3. By applying the mean value theorem to f and g and bearing in mind

that z2 and z3 are tangent points, we obtain that there exist points z′1, z0 < z′1 < z1 < A and z′2,
z2 < z′2 < z3 with f ′(z′i) = g′(z′i), i = 1, 2 and f ′(zi) = g′(zi), i = 2, 3. A further application of the

mean value theorem yields that there exist points z′′i , i = 1, 2, 3, z′1 < z′′1 < z2 < z′′2 < z′2 < z′′3 < z3
where f ′′(z′′i ) = g′′(z′′i ), i = 1, 2, 3, which leads to a contradiction with the fact that the equation

g′′(z) = 2a can have at most two different solutions. Therefore, the smaller support point for the

one-sided restricted Φp-optimal design must be the left boundary point of the design interval.

�

7.4 Proof of Theorem 4

By the same line of argument as in the proof of Theorem 3, we can show that there exist points

z′, z′′, z′ > B, z′′ < A such that f ′(z′) = g′(z′) and f ′(z′′) = g′(z′′). Next, we will show that a

Φp-optimal design ξ∗A,B for estimating the vector of weighted parameters KT θ = (
√
λα,

√
1 − λβ) on

the two-sided restricted interval [A,B] has only two support points by contradiction. Assume that

z1 < z2 < z3 are support points for ξ∗A,B. The mean value theorem implies that there exist points

z′1 and z′2 such that z1 < z′1 < z2 < z′2 < z3 and f ′(z′i) = g′(z′i), i = 1, 2. Applying the mean value

theorem to f ′ and g′ again, we found three different values z′′1 , z
′′
2 , z

′′
3 such that f ′′(z′′i ) = g′′(z′′i ),

i = 1, 2, 3. This leads to a contradiction to the fact that the equation g′′(z) = 2a can have at

most two different solutions. Thus the Φp-optimal design ξ∗A,B has only two support points, which

are given by the two boundary points A and B of the design interval [A,B]. If A = −B and the

conditions of part (b) of Theorem 2 are fulfilled, the optimality of the equally weighted design on

−B, B follows along the same lines as in the proof of part (b) of Theorem 2. �
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Table 2: Selected unrestricted compound optimal designs for the Merck dose ranging trial in terms

of the support points

λ̃ .1 .2 .3 .4 .5 .6 .7 .8 .9

x1 -56.94 -48.94 -42.96 -37.90 -33.26 -28.73 -23.99 -18.56 -11.23

x2 106.94 98.94 92.96 87.90 83.26 78.73 73.99 68.56 61.23

Table 3: Selected left-restricted compound optimal designs in terms of the original support points

x1 = 0, x2 and the corresponding allocation proportions ω1, ω2

λ̃ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x2 129.25 124.10 119.39 114.70 109.71 104.07 97.21 88.02 73.51

ω1 0.385 0.428 0.464 0.496 0.526 0.553 0.578 0.597 0.598

ω2 0.615 0.572 0.536 0.504 0.474 0.447 0.422 0.403 0.402

Table 4: Selected 2-side unsymmetrically restricted compound optimal designs (supported at the

boundary values x1 = 0, x2 = 60)

λ̃ .1 .2 .3 .4 .5 .6 .7 .8 .9

ω1 0.492 0.495 0.499 0.503 0.509 0.516 0.524 0.535 0.550

ω2 0.508 0.505 0.501 0.497 0.491 0.484 0.476 0.465 0.450

Table 5: Simulated mean squared errors of the maximum likelihood estimates α̂, β̂ for the two-sided

restricted compound optimal design ξ∗comp with weight λ̃ = 0.5 and the uniform design ξ∗uni on five

different equidistant points from the design interval [0, 60] including the endpoints

n = 100 n = 150 n = 200 n = 300

α̂ β̂ α̂ β̂ α̂ β̂ α̂ β̂

ξ∗comp 106.56 6.10 · 10−5 58.61 3.54 · 10−5 42.17 2.72 · 10−5 26.21 1.73 · 10−5

ξ∗uni 176.81 1.09 · 10−4 93.67 7.21 · 10−5 57.70 5.25 · 10−5 30.05 3.35 · 10−5
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