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Abstract

If we are given a time series of economic data, a basic question is

whether the series is stationary or a random walk, i.e., has a unit root.

Whereas the problem to test the unit root null hypothesis against the

alternative of stationarity is well studied in the context of classic hy-

pothesis testing in the sense of Neyman, sequential and monitoring

approaches have not been studied in detail yet. We consider stopping

rules based on a sequential version of the well known Dickey-Fuller

test statistics in a setting, where the asymptotic distribution theory

becomes a nice and simple application of weak convergence of Ito in-

tegrals. More sophisticated extensions studied elsewhere are outlined.

Finally, we present a couple of simulations.

1 Introduction

Non-stationarity is a serious concern of many time series. A possible de-

parture from the stationarity assumptions are trends. However, one has to

distinguish between deterministic trends and stochastic trends, whereas the

latter means that the process has mean zero, but is a random walk, whose

trajectories often exhibit a trend-like behavior. Even if deterministic trends

can be excluded, the problem to decide whether the process is stationary

or a random walk is crucial from both a theoretical and practical point of

view. As a practical problem it arises, e.g., in econometrics when analyzing

log returns of assets, macroeconomic series as the GDP, or equilibrium errors

of a known cointegration relationship. The question whether a time series
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is stationary or a random walk is of considerable importance for a correct

interpretation of a time series, and is also crucial to choose a valid method

when analyzing the series to detect or trends which usually assume station-

arity as in Steland (2004), Pawlak et al. (2004), Husková (1999), Husková

and Slabý (2001), among others. It is also interesting from a more theoretical

point of view, since standard statistics as averages have different convergence

rates and different limiting distributions in the random walk case. Various

approaches to test the unit root null hypothesis against stationarity have

been studied in the statistics and econometrics literature, in contrast to the

monitoring perspective, where we aim at detecting stationarity as soon as

possible. For a review see Stock (1994). In this article we consider some sim-

ple stopping times (control charts) to detect stationarity, being motivated by

least squares, for which the asymptotic theory can be easily based on a known

result on weak convergence of stochastic Ito integrals. A more sophisticated

procedure (Steland, 2005b) requiring other techniques is briefly outlined. For

a nonparametric approach based on the KPSS test (Kwiatkowski et al., 1982)

we refer to Steland (2005a).

Let us assume that we are given a time series {Yt} with

Yt = ρYt−1 + εt, t ≥ 1, Y0 = 0, (1)

where ρ ∈ (−1, 1] is a deterministic but unknown parameter, and {εt} is

a mean-zero sequence of i.i.d. error terms (innovations). If |ρ| < 1, {Yt} is

stationary, whereas for ρ = 1, the differences ∆Yt form a stationary process.

To estimate ρ one may use the ordinary least squares (OLS) estimator, which

is given by

ρ̂T =
T∑

t=1

YtYt−1 /
T∑

t=1

Y 2
t−1

As well known, for |ρ| < 1,
√

T (ρ̂T−ρ) is asymptotically normal. To construct
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a test we need the distribution under the null hypothesis H0 : ρ = 1, which

has been studied by White (1958), Dickey and Fuller (1979), and many others.

It is known that

DT = T (ρ̂T − 1)
d→ (1/2)(B(1)2 − 1)/

∫ 1

0
B(r)2 dr,

as T → ∞. Here B denotes standard Brownian motion. The result shows

that ρ̂T has a different convergence rate in the random walk case, and a

non-standard asymmetric limit distribution.

In this article we are interested in the construction of detection procedures

to detect the stationarity alternative as soon as possible. In practice such a

monitoring scheme is often applied until a certain time horizon T . After T

observations corresponding to a certain time interval, a conclusion should be

made in any case. Let us define the stopping rule

ST = inf{1 ≤ t ≤ T : Dt < c}

for some fixed control limit c. If ST < T , we reject the unit root hypothesis

after ST observations in favor of stationarity. If ST = T , we accept the unit

root hypothesis as a plausible model for the time series. One reasonable

approach to specify the control limit c is to ensure that the above detection

procedure has a controlled type I error of size α, when interpreted as a

classic hypothesis test, i.e., we reject the unit root null hypothesis if ST < T .

However, one could also choose the control limit to ensure that the average

run length defined as

ARL(ST ) = E0(ST ),

where E0 indicates that the expectation is calculated under H0, is sufficiently

large, i.e., ARL(ST ) ≥ ξ for some prespecified so-called in-control average

run length ξ. Having in mind that the distributions of stopping times are
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typically skewed, it would also be reasonable to take the median instead

of the mean. For these reasons we provide asymptotic results which provide

assertions about the asymptotic distribution and are not restricted to certain

functionals of it.

The key to derive such limit theorems is to the following simple observation.

Note that ST can be written as T inf{s ∈ (0, 1) : DFT (s) < c}, where

DFT (s) = bTsc(ρ̂bTsc − 1) =
bTsc−1 ∑bTsc

t=1 Yt∆Yt

bTsc−2
∑bTsc

t=1 Y 2
t−1

, s ∈ [0, 1].

Here and in the sequel bzc is the greatest integer less or equal to z ∈ R.

Using that representation in terms of a inf functional of a stochastic process

allows to obtain the desired asymptotic results about the distribution of ST .

The organization of the paper is as follows. Section 2 provides a functional

central limit theorem for the process underlying the detection procedure ST .

A more sophisticated procedure studied in detail in a separate article is

briefly outlined in Section 3. Simulation resuls proving the applicability of

the procedure and studying its statistical behavior in some respects are given

in the last section.

2 A functional central limit theorem

In this section we provide an elegant proof of the asymptotic distribution

of DFT and ST /T using a theorem about weak convergence of Ito integrals.

The general and more involved case dealing with a general weighting function

is studied in Steland (2005b), where a detailed treatment of the asymptotic

theory under various stochastic models is given.
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Noting that all processes defined in the previous section are elements of

the function space D[0, 1], we show weak convergence with respect to the

Skorokhod topology, denoted by ⇒. Recall that for a semimartingale X

and a predictable process H the Ito integral is defined as the process t 7→∫ t
0 H(s) dX(s), t ∈ [0, 1], and abbreviated as

∫
H dX. We consider the canoni-

cal filtration {σ(Y1, . . . , Yt)} associated to the time series {Yt}. The following

theorem is taken from Kurtz and Protter (2004, Sec. 7). For an introduction

to Ito integrals we also refer to Oksendahl (1992).

Theorem 1 Suppose Xn is a semimartingale for each n, and Hn is pre-

dictable for each n. If (Hn, Xn) ⇒ (H, X) in the space DR2 [0, 1] equipped

with the Skorokhod topology, and supn Var(Xn) < ∞, then, as n →∞,

(
Hn, Xn,

∫
Hn dXn

)
⇒

(
H, X,

∫
H dX

)
.

The following result is a nice application of Theorem 1.

Theorem 2 (Functional Central Limit Theorem) Assume ρ = 1. We

have

DFT (s) ⇒ (2s)−1(B(s)2 − s)/
∫ s

0
B(r)2 dr,

as T →∞.

Proof. For a proof, define ZT (r) = T−1/2YbTsc, s ∈ [0, 1], and note that

ZT is a L2-martingale and therefore a semimartingale. Thus, for each T the

numerator of DFT can be represented via an Ito integral,

bTsc−1
bTsc∑
t=1

Yt−1(Yt − Yt−1) = bTsc−1T
∫ s

0
ZT (r) dZT (r).
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More generally, since under the assumptions of the theorem, ZT ⇒ σB(r),

as T →∞, we have joint weak convergence of integrand and integrator, and

since ZT is a local martingale with supT VarZT = supT (bTsc/T )Var(ε1) <

∞, we can apply Theorem 1 to obtain

bTsc−1T
∫ s

0
ZT (r) dZT (r) ⇒ η2s−1

∫ s

0
B dB = η2(2s)−1(B2(s)− s).

Since any linear combination of bT◦cT−1
∫ ◦
0 ZT (r) dZT (r) and

∫ ◦
0 Z2

T (r) dr is

a functional of ZT , it converges weakly to the associated linear combination

of η2
∫

B dB and η2
∫ ◦
0 B(r) dr, yielding the assertion of the theorem. ◦

Due to a.s. continuity of the limit process, the following corollary can be

proved using arguments given in greater detail in Steland (2005b).

Corollary 1 If ρ = 1, we have for T →∞,

ST /T → inf{s ∈ (0, 1] : (2s)−1(B(s)2 − s)/
∫ s

0
B(r)2 dr < c}

Remark 1 Let us briefly discuss the benefits from these limit theorems.

Firstly, they show that asymptotically the distribution of the detection proce-

dure ST is a functional of standard Brownian motion, at least if the model

assumptions are satisfied. Second, and for applications more important is that

the established representations of the limit distributions can be used to obtain

study the shape of the asymptotic distribution and to obtain asymptotic criti-

cal values. By simulating trajectories of the Brownian motion, which is rather

simple, and approximating the integrals by appropriate sums, one can simu-

late trajectories of the limit processes. These can be then used to simulate the

distribution of ST and to obtain critical values.
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It is interesting to look how the Dickey-Fuller test relates to the optimal test

for simple hypotheses. If εt ∼ N(0, σ2), σ2 > 0, the critical region of the

Neyman-Pearson test of H0 : ρ = 1 against H1 : ρ = ρ′, ρ′ < ρ, can be

written as

(T (ρ′ − 1))2T−2
T∑

t=1

Y 2
t−1 − 2T (ρ′ − 1)T−1

T∑
t=1

Yt−1∆Yt < k,

for a constant k, see Stock (1994). This fact shows that there is no uniformly

most powerful test against the composite alternative H1 : ρ < 1. However,

this fact motivates to consider linear combinations of the two statistics defin-

ing the optimal critical region. Let

DF ∗
T (s) = w1bTsc−2

bTsc∑
t=1

Y 2
t−1 + w2bTsc−1

bTsc∑
t=1

Yt−1∆Yt, s ∈ [0, 1],

for two constants w1, w2, and the corresponding stopping time

S∗
T = inf{s ∈ (0, 1] : DF ∗

T (s) < c}.

Noting that DF ∗
T is a linear combination of two processes that have already

been dealed with in Theorem 2, one can verify the following result.

Theorem 3 If ρ = 1, we have

DF ∗
T (s) ⇒ w1s

−2
∫ s

0
B(r)2 dr + w2s

−1
∫ s

0
B(r) dB(r)

and

S∗
T

d→ inf{s ∈ (0, 1] : w1s
−2

∫ s

0
B(r)2 dr + w2s

−1
∫ s

0
B(r) dB(r) < c},

as T →∞.

However, to apply the procedure S∗
T one has to choose the weights w1 and

w2. In the last section we examine this issue by simulations.
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3 An outline of kernel-weighted processes

Note that the procedures of the previous section cumulate observations. If

the time series is a random walk at the beginning, and changes to stationar-

ity at a certain change-point q, then the stopping time S may react slowly,

since the terms corresponding to time points before q can dominate the con-

trol statistic. To circumvent that problem, one considers a kernel-weighted

sequential Dickey-Fuller type process

DT (s) =
bTsc−1 ∑bTsc

t=1 Yt−1∆YtK((bTsc − t)/h)

bTsc−2
∑bTsc

t=1 Y 2
t−1

, s ∈ [0, 1].

and the associated stopping time

ST = inf{s ∈ (0, 1] : DT (s) < c}. (2)

K : R → R is a kernel function to downweight summands in the numerator

with large distances, |t − bTsc|, to the current time bTsc. K is assumed to

have the following properties: (i) K ≥ 0,
∫

K(x) dx = 1, ‖K‖∞ < ∞, (ii) K

is of class C2 with ‖K ′′‖∞ < ∞, and (iii) K is of bounded variation. h = hT

is a sequence of bandwidths hT ≥ 0 such that

lim T/hT = ζ ∈ (1,∞).

Notice that if K has support [−1, 1], the detection rule ST uses exactly h

past observations.

In the previous section we assumed that the innovation process, {εt}, is i.i.d.

That assumption is often too restrictive for applications. What happens if

the innovations are correlated? In this case Theorem 1 does no longer apply,

and it turns out that in this case the limiting distributions of the processes

defined in Section 1 depend on the nuisance parameter ϑ = σ/η, where

σ2 = E(ε2
1), η2 = r(0)(1 + 2

∞∑
k=1

r(k)).
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Here r(k) = E(ε1ε1+k)/E(ε2
1). In Steland (2005b) it is shown that under weak

regularity conditions on the moments of {εt} the limit process of DT (s) is

given by

(s/2){K(0)B(s)2+ζ
∫ s

0
B(r)2K ′(ζ(s−r))dr−ϑ2

∫ s

0
K(ζ(s−r))dr}/

∫ s

0
B(r)2dr

This means, the control limit c in (2) ensuring an asymptotic level α test

becomes a function of ϑ. Using at each time point t a nonparametric estimator

of ϑ using only past and current data yields an estimated control limit c(ϑ̂t).

This means, we consider the stopping time

ŜT = inf{s ∈ (0, 1) : DT (s) < c(ϑ̂s)}.

Simulations given in Steland (2005b) show that this procedure behaves con-

siderably better than ST , if ϑ 6= 1.

4 Simulations

In this section we briefly present some simulations to analyze the detection

procedure given by the stopping rule ST . The computer programs were de-

veloped under a Linux system using the statistics software R. To speed up

calculations, a shared library of C routines was developed using the GNU

C-compiler.

When applying the detection procedure ST , prerun data are required, i.e.,

one starts monitoring after, say, l, observations. The following table provides

some simulated control limits (20,000 repetitions) under H0 : ρ = 1 assuming

ϑ = 1 for various strategies given by (T, h, l), in particular for small values

of T and h. Brownian motion was approximated by scaled partial sums with
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T h l 1% 5% 10%

50 5 5 −3.73 −2.60 −2.13

50 5 10 −3.20 −2.18 −1.74

75 5 5 −3.79 −2.60 −2.13

75 5 10 −3.18 −2.19 −1.74

100 10 10 −4.12 −2.96 −2.35

100 10 20 −3.44 −2.33 −1.79

500 50 100 −3.62 −2.36 −1.78

500 50 150 −2.57 −1.68 −1.30

T = ∞ −2.97 −1.40 −0.86

Table 1: Simulated control limits for various design strategies (T, h, l).

250 terms. We see that the influence is also present for relatively large time

horizons.

The following table provides the simulated type I error if α = 0.05, power,

and average run lengths, ES∗
T , for the procedure based on linear combina-

tions motivated by the optimal test, using simulated critical values. Compar-

ing the different weigthing schemes, it seems that the component
∑

t Yt∆Yt

contributing to the DF statistic, is preferable to detect ρ < 1. This motivates

to study DF type detection procedures in greater detail, see Steland (2005b).

Many time series arising in economics and finance have fat tails. Thus, let us

take a brief look at this stylized fact. To study the sensitivity of the Dickey-

Fuller type detection rule with estimated nuisance parameters outlined in

Section 3 we simulated time series of N = 250 observations satisfying model
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w1 w2 ρ

1 0.98 0.95 1.1

0.5 0.5 0.051 242.7 0.146 233.9 0.543 200.5 0.004 250

0.2 0.8 0.048 243.4 0.154 233.5 0.556 200.2 0.003 250

0.8 0.2 0.053 242.5 0.143 234.0 0.529 201.1 0.005 249.7

Table 2: Simulation results for the linear combination method. Table entries

are empirical rejection rates (first column) and average run length (second

column). Nominal significance level is 0.05.

ρ df

2 3 10 ∞

1 0.119 0.069 0.035 0.033

0.95 0.653 0.541 0.353 0.326

Table 3: Size and power for fat tailed error terms. Nominal significance level

is 0.05.

(1) with t(df)-distributed error terms with asymptotic control limits (h = 10,

thus ζ = 10). The following empirical rejection rates under H0 : ρ = 1 and

the alternative ρ = 0.95 show a considerable sensitivity w.r.t. fat tails.
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