
Course

(Introduction to)

Embedded Systems

Summer 1999

Mo: 16-18

Peter Marwedel, Informatik XII

OH16, E21

phone 755 6111

fax. 755 6116

e-mail: marwedel@cs.uni-dortmund.de

Consulting: Mo, 10:30-12:00



1. Introduction

1.1 Scope

1.1.1 De�nition of embedded systems

computer science/informatics = science of informa-

tion processing.

Frequently constrained to using PCs and mainfra-

mes.

Def.: Embedded systems (ES): Systems reading,

processing and controlling physical data using in-

formation processing technologies.

Embedded systems are reactive systems:

Def. [Berge]: A reactive system is one that is in

continual interaction with its environment and

executes at a pace determined by that environ-

ment.

Reaction depends on input and current state.

Timing behaviour must be considered in detail.

Def.: An ES which has to meet certain timing cons-

traints is called a real time system.

Def.: If not meeting certain time contraints could

result in a catastrophe, then the time constraints are

called hard real-time constraints.



1.1.2 Examples of embedded systems

� ES in transportation systems

{ cars

Today, cars can only be sold if they contain a

signi�cant amount of electronics.

{ air planes

Used for pilot information systems, local di-

stance control system, 
y-by-wire.

Very high dependability requirements.



{ Trains

Train safety systems, traveller information sy-

stems, eÆcient use of energy, driver informati-

on systems.

� ES in telecommunications

Block diagramm of a one chip video phone:
MSQ:
Master
Sequencer

BSP:
Bit Stream
Processor

Controler
Memory Video

RAM

D950 Core
Sound
Processor

VIP:
VLIW  Image
Processor

Host
Interface

S Interface Glue Logic

A/D & D/A

Camera Monitor

Control Bus
Data Bus

Motion Estimator
DCT/Inverse DCT
High-speed H/W

Host µP I/F
Line

Tastatur/Hörer



� ES in medical instrumentation

(medical analysis and control systems)

� ES in military applications

� payment systems using ES

Smartpen:

mixed signal IC
including 
transmitter to
    PC

force and
acceleration
sensors

switch

inktilt sensorBatteries

� ES in fabrication



Example (from Kopetz):

Given: Container with liquid

Flow to be controled using a valve:

valve

������
������
������
������

������
������
������
������ computer

sensor

Flow to remain constant. Sensor measuring 
ow.

Opening and closing of valve takes 10 secs

(special case of an actor).

Sensor: limited resolution, e.g. 1%.

Possible set-up: sending sensor values every 100

ms. Delay between changing the valve and sensed

changes is important.

Situationmuchmore complex if many sensors and

actors are present.



Examples of industrial robots:

Pipe climber:

Mechanical model of a grasshopper:



� ES in buildings

Example: telecom company Helsinki:

- sensors indicate people entering room,

- light and air conditioning will be switched on,

- connected to light sensors and controls,

- unused rooms will not be heated or cooled as

much as used rooms,

- CO2-sensor a�ects air conditioning system.

- Noise created by ventilation reduced to mini-

mum.

- Display informs about status of each room.

- Energy consumption of each room is recorded.

- Communication using LAN network.

! huge variety of embedded systems.



1.1.2 Size of the embedded systems market

79% of all high end microprocessors are used in em-

bedded systems.

ES very important market for Europe.

Importance typically underestimated.

Mary Ryan:

Embedded chips aren't hyped in TV and magazine

ads ... but embedded chips form the backbone of

the electronics driven world in which we live. ...

they are part of almost everything that runs on

electricity.

Volume: 31 Billion US $.

(general purpose computing: 46,5 Billion US $)

Annual growth rate for ES 18% ,

(general purpose computing: 10%)

Trends

- increasing 
exibility (software)

- increasing size of the programs

- increasing development complexity.



1.1.3 Characteristics of ES

� Using sensors for reading values

actors for controlling environment

man/machine interface (MMI).

� Frequently come with hard timing constraints

� ES are reactive systems; automata model useful:

(input � state! output, new state)

� Behaviour known at design time.

� Very high requirements for:

{ reliability

Reliability R(t) is the probability of a system

working correctly at time t provided that it was

working at time t = 0.

{maintainability

Maintainability is the probability M (d), of a

system working d time units after an error oc-

cured.

{ availability

Availability is the probability of having a wor-

king system at time t.

{ safety



{ security

{ very complex, diÆcult to teach.

{ ES not well-represented in discussions.

Embedded chips aren't hyped in TV and

magazine ads ... but embedded chips form

the backbone of the electronics driven world

in which we live. ... they are part of al-

most everything that runs on electricity

[Ryan95].

� Frequently, ES come without keyboard, screen

and mouse.

"ES = information processing without screen and

keyboard."

But: there are di�erences between di�erent types of

ES.

Not every ES has all of the above characteristics.

If major number of characteristics is present! ES.

Common properties of embedded systems! it ma-

kes sense to talk about ES in general and not to

discuss each application area independently.



Things to remember from an introduction to ES

(according to Kopetz Kopetz97):

� A real-time computer system must react to sti-

muli from the controlled object (or the opera-

tor) within the time interval dictated by its

environment. If a catastrophe could result in

case a �rm deadline is missed, the deadline is

called hard.

� The probability for a perfectly designed system to

fail is equal to the probability that assumptions

about the work load and possible erros turn out

to be wrong.

� A guaranteed system response has to be explained

without using statistical arguments.

� An embedded real-time system is part of a well-

speci�ed larger system, an intelligent product.

� Knowledge about the behaviour at design time

cane be used to minimize required resources and

maximize robustness.

� The embedded system market is expected to grow

signi�cantly.



1.2 Motivation and structure of this course

Why this course?

� ES very important

� ES not discussed in other courses.

� ES important for Technical University.

� Broad scope.

Courses on ES very common at computer science

departments.

Course includes:

� Speci�cation of embedded systems

� Target architectures

� Hardware/software codesign

� Compilers for embedded systems

� Real-time operating systems

� Designing embedded systems

� Validation of embedded systems



1.3 Relation to other courses

Basic knowledge of computer architecture required.

Overlaps with courses 'Rechnergest�utzter Entwurf'

(ECAD) and 'Prozessrechnertechnik'.

Could be complemented by 'software technology'.

Provides knowledge for working on robot control.

For regular students of this University: this course

is a 'Spezialvorlesung' for all computer science stu-

dents.

1.4 Literature

� C.M. Krishnan, K. G. Shin: Real-Time Systems,

McGraw-Hill, Computer Science Series, 1997

� H. Kopetz97: Real-Time Systems {Design Prin-

ciples for Distributed Embedded Applications{,

Kluwer, 1997

� A. Burns, A. Wellings: Real-Time Systems and

Their Programming Languages, Addison-Wesley,

1990

� Slides of R. Gupta (www.ics.uci.edu)

Slides: http://ls12-www.cs.uni-dortmund.de



2 Speci�cation of embedded systems

2.1 Requirements

Context:

specification
V

al
id

at
io

n

Implementation, using
target technology

Speci�cation using natural language?

Completeness, free of contradictions, how to imple-

ment speci�cation?



Requirements for specifying reactive systems

(according to Berg�e, 1995):

1. State-oriented behaviour:

The output generated by reactive systems de-

pends on the input and the current state.

The same applies to the next state.

Automata (�nite state machine) are a good model

of reactive systems.

However: classical automata not suÆcient.

2. Speci�cation of timing behaviour

Timing constraints can exist for some state tran-

sitions.

3.Concurrent behaviour + means for specify-

ing synchronisation and communication:

Distributed systems, processing di�erent tasks,

have to be described with using the cross product

of their parts.

Classical FSM not suÆcient.



4.Exception oriented behaviour:

Systems have to react to exceptions (errors,

crashes etc) regardless of their current state.

Speci�cations are readable only if exceptions don't

have to be speci�ed at each and every state.

5.Environment dependent behaviour:

Simple means of specifying global e�ects, for ex-

ample of current temperature.

6.Non functional properties

Example: fault tolerance, reliability, power con-

sumption, weight, size, useful temperature range,

user friendlyness, extendability, expected live ti-

me, recyclability.



Additional requirements according to Gajski:

7. hierarchy (structural + behavioural):

At any point in time, humans can comprehend

only systems with a small number of objects, ac-

tual systems are much more complex! hierarchy

is required to comprehend systems

behavioural hierarchy, e.g. procedures, class libra-

ries

structural hierarchy, e.g. hardware components

8. programming langauage elements:

For example, arithmetic operations, loops, and

function calls should be available.

9. termination

It should be clear, at which time all computations

have been completed.

Additional requirements:

10. object orientation

11. executable speci�cations

12.machine independence

None of the available languages meets all require-

ments.


