
5. Real-time operating systems

5.1 Functionality

Standard functions should not be re-implemented

for each and every new application.

! Real-time operating systems (RTOS)

RTOS should have the following functionality:

� Flexible con�guration features

Large variation of embedded systems +

required eÆciency! specialised RTOS

�Direct control of I/O devices

Facts:

- For ES, only few bytes have to be transfered per

input/output operation.

- In most of the cases, I/O devices are immediate

devices.

- There are no 'users' that have to be protected

against each other.

- OS calls come with a major overhead

! allow for direct I/O by processes.

� Interrupts can be used by every process

Example: a certain interrupt should start a cer-

tain process immediately

�Time services

� Scheduling and synchronisation

Scheduling =

mapping: processes ! time values.

For real-time systems: most processes and their

dependencies are known.

Timing constraints have to be met.

In order to guarantee timing constraints, the

worst case execution time (WCET) has to

be computed for every process.

Using WCETs, static scheduling can be used

to guarantee meeting the timing constraints.

Example:

M5 M3

T2

T3

T1

10 20 30 40 50

T21

t

T1

Processors

Schedule will be stored in tables; these tables will

be used by RTOS for allocating the processor.

Term according to Kopetz: time-triggered system

In an entirely time-triggered system, the tem-

poral control structure of all tasks is establis-

hed a priori by o�-line support-tools. This tem-

poral control structure is encoded in a Task-

Descriptor List (TDL) that contains the cyclic

schedule for all activities of the mode. This

schedule considers the required precedence and

mutual exclusion relationships among the tasks

such that an explicit coordination of the tasks

by the operating system at run time is not ne-

cessary.

10 start T1 12
17 send M5

stop T1
38 20
47

Dispatcherstart T3
send M3

22

Time Action WCET

The dispatcher is activated by the synchroni-

zed clock tick. It looks at the TDL, and then

performs the action that has been planned for

this instant.

A task of a TT system with non-preemptive S-

Tasks (task without interprocess communication)

is in one of the two states; inactive or active:

Inactive Active
Task Activation

Task Termination or Error

More complex in the case of interprocess communi-

cation and dynamic scheduling.

Advantages of static scheduling:

�Meeting time constraints can be guaranteed.

� RTOS is very simple.

For satisfying timing constraints in hard real-

time systems, predictability of the systems beha-

vior is the most important concern; pre-run-time

scheduling is often the only practical means of

providing predictability in a complex system. [Xu,

Parnas]

Disadvantage: Slow response to urgent events.

RTOS Examples:

� Fast, proprietary kernels

For complex embedded systems, these kernels

are inadequate, because they are designed to

be fast, rather than to be predictable in every

respect [Gupta98].

Examples: QNX, PDOS, pSOS, VCOS, VRTX32,

VxWORKS (Wind River Systems).

�Real time extension to standard OSes

Slower and behaviour not quite predictable.

More comprehensive functionality, including

standard APIs.

Not the correct approach because too many ba-

sic and inappropriate underlying assumptions

still exist such as optimizing for the average

case (rather than worst case), assigning re-

sources on demand, ignoring most if not all se-

mantic information about the application, and

independent CPU scheduling and resource al-

location possibly causing unbounded blocking

Examples: RT-Unix, RT-POSIX, RT-MACH,

Real time version of CHORUS.

�Research systems

Examples: MARS, Spring, MARUTI, ARTS, HAR-

TOS, DARK, Lehrstuhl III, GMD.

�OS/9

OS/9 RTOS with Unix-Like �le system.

�Real time kernels as add-ons to Win-

dows or DOS

Based on the idea of using low-cost PCs.

Real-time kernels implement several virtual ma-

chines.

Windows can be executed on one of these virtual

machines.

Maintenance requires signi�cant e�orts.

�Windows CE: Announced to be used in the

embedded market.

� Java

Allows several threads. However, scheduling is not

deterministic.

6 Software development

for real time systems

Software development for real time systems

= software development + 0
x
0

0
x
0 :

1. Scheduling (see discussion of RTOS)

2. Increased validation e�ort

Normal software can be validated o�ine.

Testing embedded software requires testing in the

environment.

May even be dangerous.

3.Continous operation of software

No memory leaks.

Correct response to exceptions.

...

4.Dependable software required

Emphasis on item 1.

6.1 Real time scheduling

6.1.1 Terms

Purpose: generation of task/process schedule satis-

fying all constraints (including resource constraints,

deadlines, dependencies).

Classi�cation:

�Dynamic scheduling: decisions at run time.

� Static scheduling: generation of schedule at

design time; Generation of a table containing pro-

cess start and termination times.

�Non-preemptive scheduling

�Preemptive scheduling

�Centralized scheduling

�Distributed scheduling

Terms:

�Periodic processes: process Ti has to be exe-

cuted once during period pi.

� ci: computation time of process i.

� di: deadline interval, time between Ti becoming

executable and time at which Ti has to have �-

nished execution.

� di � ci: laxity of task Ti.

di = ci: task i has to be executed immediately.

In the following: restriction to periodic tasks.

Necessary condition for the existance of a schedule

for m processors:

� =
X ci

pi
� m

Scheduler is optimal ()

it will �nd a schedule if one exists.

6.1.2 Dynamic scheduling

6.1.2.1 Independent processes

Standard: rate monotonic scheduling (Liu, 1973).

Preemptive dynamic scheduler, �xed priorities.

Assumptions:

1. All tasks fTig with deadlines are periodic.

2. All tasks are independent.

3. di = pi, for all tasks i.

4. ci is known and constant, for all tasks i.

5. Context switching times can be ignored.

6. The following holds for processor utilization � for

m = 1:

� =
nX

i=1

ci

pi
� n(21=n � 1)

lim
n!1

(21=n � 1) = ln(2)(=� 0:7)

Task with shortest execution has highest

priority etc.

Priority is descending function of execution time.

Dispatcher will select task with highest priority.

Properties

- All tasks keep their deadlines.

- For mono-processor systems, rate monotonic sche-

duling is optimal.

Steps of the proof: (c.f. Liu)

1. Considers times (critical times), at which all re-

quests arrive simultaneously.

It can be shown that the task with the highest

priority keeps its deadline.

2. Next, the task with the second largest priority is

considered, etc.

3. In a second phase, it is shown that all deadlines

are met, if they are met for critical times.

If all tasks have a period which is a multiple of the

period of the process with the highest priority, then

schedules can be found also for � = 1:0

In this case, assumption 6 can be replaced by:

� =
nX

i=1

ci

pi
� 1

Rate monotonic scheduling has been extended.

Alternatives:

� Earliest deadline �rst scheduling (EDF):

dynamic priorities, preemptive scheduler,

for mono-processors: EDF is optimal,

even for � = 1:0

� Least laxity scheduling (LL):

task with smallest value of li = di�ci is assigned

to CPU.

For mono-processors: LL is optimal.

For multi-processors: neither EDF nor LL are opti-

mal.

6.1.2.2 Dependent tasks

Problem: Priority inversion

Given: tasks T1; T2 and T3,

T1 has highest priority, T3 lowest priority

rate monotonic scheduling

T1 and T3 require exclusive use of some resource,

via semaphore S.

Assumption: T3 in its critical section

Now, T2 preempts T3

!: S will not be reset

!: T1 cannot be executed

!: T2 prevents execution of T1

!: priority inversion.

First attempt to avoid priority inversion:

Priority inheritance protocol

For critical sections: task priority is maximum of

task priority of dependent tasks.

Similar to ADA concept: priority in rendez-vous is

the highest priority of involved tasks.

Results in deadlocks and chains of blocked tasks.

Priority ceiling protocol:

- For each semaphore, there is an upper bound on its priority.

- Semaphores can only be used by tasks with the same or a

lower priority

- Critical sections can be entered only, if the task priority is

larger than those of other active semaphores.

- Task priority = assigned priority, except within critical secti-

ons; Within critical sections: tasks blocking others tasks inherit

their largest priority.

Example:

T1

T2

T3

��������

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�������� ��
��
��
��

��
��
��
��

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T1: ...P(S1), .., V(S1)Sequence
of tasks:

Critical section protected by: S1 (high) S2 (medium) S3 (medium)

(highest priority)
T2: ..,P(S2),...,P(S3),...,V(S3),...,V(S2), (medium priority)
T3: ..,P(S3),...,P(S2),...,V(S2),...,V(S3),... (lowest priority)

1. T3 starts execution

2. T3 sets S3

3. T2 starts execution and preempts T3

4. T2 attempts setting S2, is preempted, since its priority is

not larger than the priority of S3. T3 regains control, exe-

cutes its critical section with the inherited priority of T2.

- Semaphores can only be used by tasks with the same or

a lower priority

- Critical sections can be entered only, if the task priority

is larger than those of other active semaphores.

- Within critical sections: tasks blocking others tasks inherit

their largest priority.

T1

T2

T3

��������

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�������� ��
��
��
��

��
��
��
��

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T1: ...P(S1), .., V(S1)Sequence
of tasks:

Critical section protected by: S1 (high) S2 (medium) S3 (medium)

(highest priority)
T2: ..,P(S2),...,P(S3),...,V(S3),...,V(S2), (medium priority)
T3: ..,P(S3),...,P(S2),...,V(S2),...,V(S3),... (lowest priority)

5. T1 starts execution and preempts T3

6. T1 sets S1. Priority of T1 > priorities of active semaphores.

7. T1 resets S1.

8. T1 terminates, T3 is executed with the priority of T2.

9. T3 sets S2.

10. T3 resets S2.

11. T3 resets S3 and returns to low priority. T2 sets S2.

12. T2 sets S3.

13. T2 resets S3.

14. T2 resets S2.

15. T2 terminates, T3 regains control.

16. T3 terminates.

Formal veri�cation of properties of this protocol re-

quired.

General property of dynamic scheduling: checking

of timing constraints diÆcult, especially for multi-

processor systems.

6.1.3 Static scheduling

Sequence of execution de�ned during software deve-

lopment.

Consideration of precedence constraints and mutual

exclusion.

Precedence constraints represented by precedence

graphs.

T0

T1 T4

T5 T6

T7

T2

T3

M1

M2

Node A

Node B

Sequence represented by table.

Table contains times and actions.

Timer will generate interrupts and these will cause

the table to be checked.

No other interrupts.

Times = multiples of smallest time unit.

Repeated for each schedule period.

Optimal scheduling for a single processsor is NP

complete

Systematic search for schedules.

4

1
2
3

5
6
7
8

T0
T1 T2
T2 T1&M1

T3&T4M1&T3
M2&T4 M2&T6

T5
T7

T5
T6
T7

T6
T5
T7

Times

Assumption: identical execution and communication

times.

Only potentially minimal schedules considered.

