
2.2 StateCharts

2.2.1 Language Elements

Classical automata: Moore- and Mealy-automata:

�Moore-automata:

represented by two functions � and Æ:

Æ : X � Z ! Z

� : Z ! Y

X : Set of input values

Y : Set of output values

Z : States

z+ = Æ(x; z) ist called next state,

with z; z+ 2 Z.

�Mealy automata:

output also depends on input, not just on the

current state.
Æ : X � Z ! Z

� : X � Z ! Y

Moore- + Mealy automata =

�nite state machines (FSMs).



Introducing Hierarchy

Classical automata not useful for complex systems

! Introduction of hierarchy in StateCharts (Harel,

1987).

Reason for selecting this name:

StateChart = the only unused combination of '
ow'

or 'state' with 'diagram' or 'chart'.

States can be grouped into superstates.

A

B

C

a

b

b

d

A

B

C

D

a

d

b
c[P] c[P]

Def.: Superstates of this type are called (X)OR-

States (system is only in one of the substates).

Def.: States at the lowest level of the hierarchy are

called basic states.

Def.: For each basic state s, the super states con-

taining s are called anchestor states.



Additional mechanisms for de�ning the next state:

1. default state:

A

D

2. history mechanism (similar to procedures):

A

D

C

H

a

H

A

a

D

Hierarchical use of history mechanism:
K

G
A

B

C

D

E

F

H

H



AND-states (orthogonal states):

System can be in several substates of a states:
A

D

E

B C
G

H

System in states B and C if A has been entered.

Modelling of concurrency.

Entering AND-states:

A
B

C

D

E

FHa

b

c

- Explicit transistion (transition for c)

- history mechanism (transition for b)

- default mechanism (initial transistion for b)

- mixed (transition for a).



Leaving orthogonal states

B

C

E

F

G

A D

b

e

c [in B]

a

� Explicit representation of all substates (see tran-

sition for b)

� Independently of the current substate (see tran-

sition for e)

� If system is in a certain substate (see transition

for a).

States in StateCharts are

- AND-States,

- OR-States or

- basic states.



General labelling of edges

ev[cond]=react

� ev: (events) are starting reactions

(possibly state transitions)

Events exist until the next step.

Events can be generated internally or externally.

Events entered(S) and exited(S) are generated

when S is entered or left.

� cond is a condition.

Conditions are related to the current state.

Typically they exist longer than just until the

next step.

in(S) is a special condition,

true if system is in S.

� react is a reaction.

Includes generation of events and operations on

data.

Reactions include

- actions (one-shot events, take no time)

- activities (take time)



Broadcast Mechanism

Synchronisation and communication within a mo-

del by generation of events or by global access to

variables. Example:

b/s a/buf-full := 1 s buf-full = 1

BA

buf-full is a global variable. Changes are propa-

gated to all references before the next (simulation)

step is executed (broadcast)

Static reactions:

Syntax: like annotations on edges, but within states.

Semantics: Reactions of a system within a state.

Equivalent to AND-state with annotations on ed-

ges. Example: 2 models with same semantics.

t1

U

V

W

t1

U

V

W

ev/actStatic reaction: ev/act



Timers

Requirement: modelling of timing behaviour

! modelling of timers in StateCharts.

Graphical representation:

timeout
20 ms < 45 ms

Single time limit: transition after speci�ed time.

Two time values: transition within the time intervall.

Timing can be speci�ed at various levels of the hier-

archy:

timeout

timeout

10 ms

15 ms



Actions and activities

B

ein: V

A

C

D

E

a

b/w := 5

entered: s
exit: P
within: Q

Improving readability with connectors:

30s

C

timeout/b [Prog = A]

30s farm_full/a

[Prog = B]timeout/b

timeout/a 2min

Semantics: replacement of C by direct connections.



Application example:

TraÆc light controller for main road and farm road.

Two programs:

� Program A: Green light for main road for 2 mi-

nutes and for farm road for 30 seconds.

� Program B: Green light for main road until farm

road signals waiting car.

Systems for normal operating conditions and

for error state:

Traffic light controller

Lights

Control

Error

Error

Reset

TraÆc lights represented by variables RedM,

YellowM, GreenM, RedF, YellowF und GreenF .



While in the error state, yellow lights are 
ashing:

1s 1stimeout

timeout

Error

Yellow(F) := 1
Yellow(M) := 1
Yellow(F) := 0

Yellow(M) := 0

Normal operating conditions: all lights yellow initi-

ally.

5s
Gelb(H), Rot(N) := 1
Gelb(N), Rot(H) := 0

5s
Gelb(N) := 1
Gruen(N) := 0

Gelb(N), Gelb(H) := 0
Gruen(N), Rot(H) := 1

b

timeout

timeout

Yellow(M), Yellow(F) := 1
Red(M), Red(F) := 0
Green(M), Green(F) := 0

5s

Yellow(M), Yellow(F) := 0
Green(M), Red(F) := 1
Green(F), Red(M) := 0

5s
Yellow(M) := 1
Green(M) := 0

5s
Yellow(M), Red(F) := 0
Yellow(F), Red(M) := 1

Lights

timeout

a

timeout

timeout



Signals a and b generated in superstate control

30s

C

timeout/b [Prog = A]

30s farm_full/a

[Prog = B]timeout/b

timeout/a 2min

Evaluation of StateCharts

Advantages:

Any level of nesting feasible, with a free choice bet-

ween OR- and AND-states.

Semantical problems removed.

Disadvantages:

No program constructs for describing complex com-

putations.

No method for representing hardware structures.

No representation of non-functional behaviour.



2.2.2 STATEMATE and STATEMATE-Seman-

tics

STATEMATE: very popular commercial product.

STATEMATE can be used to generate VHDL.

Hence, it can be used to generate hardware.

Can also be used to generate C.



2.2.2.1 Activity-Charts and Module-Charts

STATEMATE also supports activity charts andmo-

dule charts.
Activity charts can be viewed as multi-level data-
ow diagrams. They

capture functions, or activities, all organized into hierarchies and connec-

ted via the information that 
ows between them. We adopt extensions

that distinguish between data and control information in the arrow ty-

pes, and also provide several kinds of graphical connectors, as well as a

semantics for information that 
ows to and from non-basic activities.

Figure ... illustrates some of these notions ... We see internal activi-

ties, such as GET INPUT ... and external activities such as OPERATOR ...

data 
ows such as RANGE LIMITS ... control 
ows, such as COMMANDS

and the control activity EWS CONTROL.

GET_INPUT

OPERATOR

SIGNAL

OUT_OF_
RANGE_DATA

PRINT_FAULT

OPERATOR

FAULT_
REPORT

KEY_PRESSING

SET_UP_MSGS

EWS_ACTIVITIES

EWS_CONTROLCONNECTED
SENSOR_

POWER_ON

COMMANDS

SIGNAL
PROCESS_

SET_UP

RANGE_
LIMITS

COMPARE

LEGAL_RANGE
OPERATOR

FAULT
DISPLAY_ NOTIFICATION

ALARM_
OUT_OF_RANGE

SENSOR



A module-chart can also be regarded as a cer-

tain kind of data-
ow diagram or block diagram.

Module-charts are used to describe the modules

that constitute the implementation of the system,

its division into hardware and software blocks and

their inner components, and the communication

between them.

Fig. ... shows a module chart for the EWS. It

contains internal moduels such as the control and

computation unit (CCU), ...

OPERATOR

KEYBOARD
CCU ALARM_

SYSTEM

ALARM_SIGNAL

SENSOR

OPERATOR

PRINTER

MSGS_TO_PRINT

PROCESSOR
SIGNAL_

KEY_
PRESSING ALARM

FAULT_REPORT

SIGNAL

SAMPLE

OPERATOR

POWER_ON
EWS

USER_INPUT

SCREEN

MSGS
DISPLAYED_

MSGS_DISPL

Consistency of di�erent diagrams?



2.2.2.2 Status and step

Each situation of a STATEMATE-system ist repre-

sented by the status.

The generation of the next status from the current

status requires a step to be executed.

Status Status StatusStatus Step Step Step

Executing a step takes 0 time.

Length of time interval between two steps not part

of formal semantics.

Principles of formal semantics:

1. Consequences of executing a step can only be ob-

served after the step has been executed.

2. Events only exist until the step following their

generation has been executed.

3. All computations are based on the situation be-

fore executing the step.

4. Execution will always consist of a maximal non-

con
icting set of transitions and static reactions.

STATEMATE supports timing models, for which se-

veral steps are executed at the same time.



Def. : Con�gurations are maximal feasible sets

of states.

Con�gurations are de�ned by the basic states of a

system: sich ein System be�ndet.

Example:
A

B1

B2

C1

C2

D1

D2

B C D

S

System can be in basic states B1, C1 und D1.

Con�guration contains predecessor states A und S.



Simple Transitions
Semantics of STATEMATE for simple transitions is de�ned as follows:

Assume a system to be in basic state A and event ev has taken place:

S

A B
t1: ev/act

The following will be executed:

� Transition t1 takes place, the new state is B.

Action act takes place.

� Events exited (A) and entered (B) are generated.

� Condition in (A) becomes false, in (B) becomes true.

� Action to be executed when entering B are executed.

� Static reactions for S are executed.

� Activities speci�ed as 'within(A)' are deactivated.

Activities speci�ed as 'throughout (B)' are activated.

Events and conditions depending on these changes via functions also take

place.

All changes become e�ective for the next step.



The simulation algorithm

Input:

� current status

� current time,

� list of changes since last step

Output:

new status

3 phases:

1. Execution of all conditions becoming necessary

due to changes since last step.

Includes data computations, but no new state.

2. Computation of a maximal set of transitions that

can be executed and that are con
ict free.

3. Execution of transitions.

Separation into phases 2 and 3 makes it impossible

to have changes that a�ect changes for the same

step.


