
2.3 SDL

Language for the speci�cation of distributed systems.

Dates back to early 70s; formal semantics late 80s.

Language de�ned by CCITT (Committee Consulta-

tiv International Telegraphique et Telephonique).

2.3.1 Language elements

Graphical and textual format.

Basic element: process (= extended FSM);

Extension: Operations on data.

Example:

ICONreq/CR

CC/ICONconf DR/IDISind

DR/IDISind
waiting

connected

disconnected

ICONconf = Initiate Connection Confirmed
ICONreq = Initiate Connection Request

ICONreq

CR

DR

IDISind ICONconf

DR

IDISind

CC

PROCESS Initiator

diconnected

waiting disconnected connected disconnected

waiting connected

Start
(no state)

state

input

output

Semantics

Based on implicit input queues:

Process

Process

Process

For every state:

�rst signal from input queue is removed and analy-

zed whether it is relevant for any state transition.

Signals or not stored (exception: SAVE mechanism)

Input queues are assumed to have in�nite capacity.

Problem: how large should input bu�ers be for any

physical implementation?

ICONreq

CR

DR

IDISind ICONconf

DR

IDISind

CC

PROCESS Initiator

diconnected

waiting disconnected connected disconnected

waiting connected

Start
(no state)

state

input

output

Timers

warten

T

IDISind

TIMER T; SET (NOW+P, T)

disconnected

CC

RESET (T)

ICONconf

DR

RESET (T)

IDISind

connected disconnected

SET(NOW+P,T) sets timer to 'now + P'.

After the speci�ed time, an input event T will be

entered into the input queue.

No immediate action, if other events are still in the

queue.

If timer already in the queue, RESET will remove

timer from input queue.

Timer mechanism suÆcient for telecom applications,

not appropriate for hard real-time constraints.

Operations on data

Variables can be declared and used in input/output.

(1:10) (11:30) ELSE

DCL
 Zähler Integer;
 Datum String;

Zähler := Zähler + 3;

Zähler

Zähler TO

Concept of data types based on abstract data

types (ADTs). Syntax for operations just like in

usual programming languages.

Hierarchy

Processes can obtain process identi�ers of o�spring;

no other form of hierarchical processes.

However, blocks can be used to describe process

interaction.

Edges = channels; labels: channel name and/or si-

gnal names.

Blocks can be hierarchical.

- Top-level block = system;

B2

B1

C3

C4

C2

SYSTEM S

- Lowest level = process interaction diagramm:

BLOCK B1

Sw1

[A,D]

[A,B,C]

Signal A.B,C,D;

Process P1 Process P2

- Complete hierarchy:

Process-
interaction

Process-
interaction

Process-
interaction

Process-
interaction

Process-
interaction

Block

Block

System

Block

Inter-process communication

Methods for addressing recipient:

1.Explicit destination address

Zaehler
TO OFFSPRING

2.By indirect addressing:

Recipient determined by context:

BLOCK Beispiel

Sw1

[A,D]

[A,B,C]

Signal A.B,C,D;

Process P1 Process P2

Signal B will always go to process P2.

3.Addressing of the channel

For the same example:

Zaehler
VIA Sw1

Evaluation

Salient features of SDL:

� No general broadcast mechanism;

suited for distributed systems

� Adequate for telecommunications

� Problems for hard time constraints

� Processes can be generated dynamically; proces-

ses can terminate themselves

� No hierarchical processes; hierarchy limited to blocks

� Size of input bu�ers diÆcult to estimate.

� Non-deterministic behaviour in case several mes-

sages arrive at an input queue at the same time.

Complex example: vending machine for cookies,

potato chips, doughnuts and pretzels

SYNTYPE items=INTEGER
 CONSTANTS 0:7
ENDSYNTYPE items;

SYNTYPE int=INTEGER
 CONSTANTS 0:127
ENDSYNTYPE int;

CamontDisplay

DecodeRequests

[rej_further_coins,
accept_coins]

[add]
Cadd

CoinInterface
Ccoins

[nickel,dime,
quarter,half]

Ccointctrl

Creject
[reject_coin]

[amount_entered]

Crequest

reload_pretzel, reload_chip, reload_cookie,
reload_doughnut]

[pur_pretzel, pur_chip, pur_cookie, pur_doughnut,

spit_dime]
[spit_nickel,
CspitChange

[exact_only]
CexaktDisplay

cookie_empty, spit_cookie, doughnut_empty,
spit_doughnut, reload_pretzel, reload_chip,
reload_cookie, reload_doughnut]

amount_entered(int), reject_further_coins,
exact_only, accept_coins, reject_coins,

add(int), spit_change(int),
pur_cookie, pur_doughnut, pur_chip,

SIGNAL
[dime, nickel, quarter, half, pur_pretzel,

spit_pretzel,chip_empty, spit_chip,
spit_dime, spit_nickel, pretzel_empty,

Cchange[spit_change]

ChangeInterface

Cemptydisplay
[pretzel_empty, chip_empty,
cookie_empty, doughnut_empty]

CspitPurchased

System VendingMachine

[spit_pretzel, spit_chip,
spit_cookie, spit_doughnut]

CONNECT Cadd AND Radd;
CONNECT Ccoinctrl AND Rcoinctrl;
CONNECT Cchange AND Rchange;
CONNECT CAmountDisplay AND RamountDisplay;
CONNECT Crequest AND Rpretzel,Rchip,Rcookie,
 Rdoughnut;
CONNECT CemptyDisplay AND Rpretzel_e,Rchip_e,
 Rcookie_e,Rdoughnut_e;
CONNECT CspitPurchased AND Rpretzel_s,
 Rchip_s,Rcookie_s,Rdoughnut_s;

[pur_pretzel, reload_pretzel]
Rpretzel

Rchip
[pur_chip, reload_chip]

Rcookie
[pur_cookie, reload_cookie]

Rdoughnut
[pur_doughnut,
reload_doughnut]

ChipHandler

CookieHandler

DoughnutHandler

PretzelHandler

AmountHandler

Rcookie_e [cookie_empty]

Rcookie_s [spit_cookie]

Rdoughnut_s [spit_doughnut]

Rdoughnut_e [doughnut_empty]

Rchip_s [spit_chip]

Rchip_e [chip_empty]

Rpretzel_s [spit_bretzel]

Rpretzel_e [pretzel_empty]

Block DecodeRequests
Radd
[add]

Rs3[sub]

[sub]
Rs2

Rs4[sub]

Rs1
[sub]

RamountDisplay
[amount_entered]

Rchange [slit_change]

reject_further_coins]
Rcointctrl[accept_coins,

SYNONYM PRETZEL int=50
SYNONYM PCHIP int=15;
SYNONYM PCOOKIE int=55;
SYNONYM PDOUGHNUT
 int=60;
SYNONYM PMAX int=60;
SYNONYM NITEMS items=7;

SIGNAL sub(int);

VIEW(current)
>= PCHIP

sub(PCHIP)

pur_wait

pur_chip

nchip:= nchip-1;

nchip=0

pur_wait pur_wait

pur_wait

DCL nchip items:=NITEMS;

spit_chip

chip_empty

empty

reload_chip

nchip:=NITEMS

nein

ja

ja

nein

Process ChipHandler

VIEWED current int;

2.4 Petri nets

2.4.1 Introduction

Carl Adam Petri, 1962.

Modelling of causal dependence.

No explicit reference to time.

No global synchronization.

Appropriate for modelling of distributed systems.

Condition: can be met; represented by circles.

Token within circle: condition is met.

Events take no time; represented by boxes.

Dependencies modelled by edges.

Example: Synchronization of trains (token game):

to the right

Train going

single track

track available

Train going

to the left

2.4.2 Condition/Event nets

Def.: Tripel N = (B;E; F) called net, i�:

1.B and E are disjoint sets

2. F � (E � B) [(B � E) is a binary relation,

(
ow of N).

Def.: Let N be a net, x 2 (B [E).
�x := fyjyFxg is called pre-condition and

x � := fyjxFyg is called post-condition

Def.: (b; e) 2 B � E is called ||||||{

i� bFe ^ bFe.

N is called pure, if F has no |||||{.

Def.:N is called simple, if di�erent elements don't

have the same pre- and post-conditions.

Condition/event nets are simple nets with no iso-

lated elements and additional properties.

Condition/event nets are bipartite graphs.

Condition/event nets: maximum of 1 token per

condition.

2.4.3 Place/transition nets

Several tokens per condition (called places P in this

case); weighted edges.

Def.: Mapping M : S ! IN [f!g is called

marking.

Def.: (S; T; F;K;W;M0) is called place/transition

net ()

1.N = (S; T; F) is a net, S is the set of places, T

is the set of transitions.

2.K : S ! (IN [f!g) n f0g is called capacity of

places (! = unlimited).

3.W : F ! (IN n f0g) is the weight of edges.

4.M0 : S ! IN [f!g is called initial marking.

Def.: Switching transition results in new marking

M 0, generated from current marking M by:

M 0(s) =

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

M (s)�W (s; t); if s 2 �t n t�

M (s) +W (t; s); if s 2 t� n �t

M (s)�W (s; t)+

W (s; t); if s 2 �t \ t�

M (s) otherwise

Example:

3 2

1

tj

2

1

3 2

1

tj

2

1

Default: W (f) = 1;K(s) = !.

Transition t can take place if t is activated.

Def.: Transition t 2 T ist called M-activated ()

(8s 2 �t : M (s) �W (s; t)) ^

(8s 2 t� : M (s) � K(s)�W (t; s))

Def.: Let t : S ! ZZ be de�ned as:

t(s) =

8
>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

�W (s; t); if s 2 �t n t�

+W (t; s); if s 2 t� n �t

�W (s; t) +W (s; t); if s 2 �t \ t�

0 otherwise

A transition t taking place will generate a new mar-

king from the current one as follows:

8s 2 S : M 0(s) = M (s) + t(s)

If we consider M and t to be vectors

and '+' to denote vector addition, then

M 0 = M + t

Def.: N : S � T ! ZZ, 8t 2 T : N(s; t) = t(s) is

called incidence matrix.

For pure nets: W can be computed from N.

Invariants

Total number of tokens in R � S remains constant

for tj 2 T i� P
s2R tj(s) = 0

Example:

3 2

1

tj

cR(s) =

8>>>><
>>>>:

1 if s 2 R

0 if s 62 R

is called characteristic vector of set R � S.

Sum of tokens can be represented as scalar product:

X

s2R
tj(s) = tj � cR

If total number of tokens is constant for all tj 2 T :

t1 � cR = 0

::: :: ::

tn � cR = 0

t1 � cR = 0

::: :: ::

tn � cR = 0

Number of tokens is constant for sets of places sa-

tisfying

NT
� cR = 0(1)

where

NT =

0
BBBBBBBBBBBBBB@

t1
::

::

tn

1
CCCCCCCCCCCCCCA

Linear equation system.

Only 0 and 1 accepted as results.

Example:

9

8

4

9 2 3

1

5

5

6

6

1

2

4

7

7

8

11 13

10

310

12

Separation

waiting for

Amsterdam

Connecting

train from Lyon

Cologne

Paris

Brussels

Lyon (or local station)

Matrix:

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13

t1 1 -1 -1 1

t2 1 -1

t3 1 -1

t4 1 -1 1

t5 1 -1 -1 1

t6 -1 1

t7 1 -1

t8 1 -1

t9 1 -1

t10 1 -1 -1

b1 = cR1
1 1 1 1 1 1 0 0 0 0 0 0 0

b2 0 -1 -1 -1 0 0 0 0 1 1 1 0 0

b3 = cR3
0 0 0 0 0 0 1 1 0 0 0 1 0

b4 = cR4
0 0 0 0 0 0 0 0 1 1 0 0 1

b1 + b2 = cR2
1 0 0 0 1 1 0 0 1 1 1 0 0

S invariants:

9

8

4

9 2 3

1

5

5

6

6

1

2

4

7

7

8

11 13

10

310

12
c

R

4R

Brussels

Paris

Lyon

Amsterdam Cologne

Rc c
R

c
1

3

2

