2.3 SDL

Language for the specification of distributed systems. Dates back to early 70s; formal semantics late 80s. Language defined by CCITT (Committee Consultativ International Telegraphique et Telephonique).

2.3.1 Language elements

Graphical and textual format.

Basic element: process (= extended FSM);

Extension: Operations on data.

Example:

Semantics

Based on implicit input queues:

For every state:

first signal from input queue is removed and analyzed whether it is relevant for any state transition. Signals or not stored (exception: SAVE mechanism) Input queues are assumed to have infinite capacity. Problem: how large should input buffers be for any physical implementation?

Timers

SET(NOW+P,T) sets timer to 'now + P'.

After the specified time, an input event **T** will be entered into the input queue.

No immediate action, if other events are still in the queue.

If timer already in the queue, **RESET** will remove timer from input queue.

Timer mechanism sufficient for telecom applications, not appropriate for hard real-time constraints.

Operations on data

Variables can be declared and used in input/output.

Concept of data types based on **abstract data types (ADTs)**. Syntax for operations just like in usual programming languages.

Hierarchy

Processes can obtain process identifiers of offspring; no other form of hierarchical processes.

However, **blocks** can be used to describe process interaction.

Edges = channels; labels: channel name and/or signal names.

Blocks can be hierarchical.

- Top-level block = system;

- Lowest level = **process interaction diagramm**:

Inter-process communication

Methods for addressing recipient:

1. Explicit destination address

Zaehler TO OFFSPRING

2. By indirect addressing:

Recipient determined by context:

Signal B will always go to process P2.

3. Addressing of the channel

For the same example:

Evaluation

Salient features of SDL:

- No general broadcast mechanism; suited for distributed systems
- Adequate for telecommunications
- Problems for hard time constraints
- Processes can be generated dynamically; processes can terminate themselves
- No hierarchical processes; hierarchy limited to blocks
- Size of input buffers difficult to estimate.
- Non-deterministic behaviour in case several messages arrive at an input queue at the same time.

Complex example: vending machine for cookies, potato chips, doughnuts and pretzels

2.4 Petri nets

2.4.1 Introduction

Carl Adam Petri, 1962.

Modelling of causal dependence.

No explicit reference to time.

No global synchronization.

Appropriate for modelling of distributed systems.

Condition: can be met; represented by circles.

Token within circle: condition is met.

Events take no time; represented by boxes.

Dependencies modelled by edges.

Example: Synchronization of trains (*token game*):

2.4.2 Condition/Event nets Def.: Tripel N = (B, E, F) called *net*, iff:

- 1. B and E are disjoint sets
- 2. $F \subseteq (E \times B) \cup (B \times E)$ is a binary relation, (flow of N).

Def.: N is called **simple**, if different elements don't have the same pre- and post-conditions.

Condition/event nets are simple nets with no isolated elements and additional properties. Condition/event nets are bipartite graphs. Condition/event nets: maximum of 1 token per condition.

2.4.3 Place/transition nets

Several tokens per condition (called places P in this case); weighted edges.

Def.: Mapping $M : S \to \mathbb{I} V \cup \{\omega\}$ is called **marking**.

Def.: (S, T, F, K, W, M_0) is called place/transition net \iff

- 1. N = (S, T, F) is a net, S is the set of places, T is the set of transitions.
- 2. $K : S \to (I \! N \cup \{\omega\}) \setminus \{0\}$ is called capacity of places (ω = unlimited).
- 3. $W: F \to (I \setminus \{0\})$ is the weight of edges.
- 4. $M_0: S \to \mathbb{I} \cup \{\omega\}$ is called initial marking.

Def.: Switching transition results in new marking M', generated from current marking M by:

$$M'(s) = \begin{cases} M(s) - W(s, t), & \text{if } s \in \bullet t \setminus t^{\bullet} \\ M(s) + W(t, s), & \text{if } s \in t^{\bullet} \setminus \bullet t \\ M(s) - W(s, t) + \\ W(s, t), & \text{if } s \in \bullet t \cap t^{\bullet} \\ M(s) & \text{otherwise} \end{cases}$$

Default: $W(f) = 1, K(s) = \omega$.

Transition t can take place if t is activated. **Def.:** Transition $t \in T$ ist called M-activated \iff $(\forall s \in {}^{\bullet}t : M(s) \ge W(s, t)) \land$ $(\forall s \in t^{\bullet} : M(s) \le K(s) - W(t, s))$ **Def.:** Let $\underline{t}: S \to \mathbb{Z}$ be defined as:

$$\underline{t}(s) = \begin{cases} -W(s,t), & \text{if } s \in \bullet t \setminus t \bullet \\ +W(t,s), & \text{if } s \in t \bullet \setminus \bullet t \\ -W(s,t) + W(s,t), & \text{if } s \in \bullet t \cap t \bullet \\ 0 & \text{otherwise} \end{cases}$$

A transition t taking place will generate a new marking from the current one as follows:

$$\forall s \in S : M'(s) = M(s) + \underline{t}(s)$$

If we consider M and \underline{t} to be vectors and '+' to denote vector addition, then

$$M' = M + \underline{t}$$

Def.: $\underline{N}: S \times T \to \mathbb{Z}, \forall t \in T : \underline{N}(s, t) = \underline{t}(s)$ is called incidence matrix.

For pure nets: W can be computed from <u>N</u>.

Invariants

Total number of tokens in $R \subseteq S$ remains constant for $t_j \in T$ iff $\Sigma_{s \in R} \underline{t}_j(s) = 0$ Example:

$$\underline{c}_R(s) = \begin{cases} 1 & \text{if } s \in R \\ 0 & \text{if } s \notin R \end{cases}$$

is called **characteristic vector** of set $R \subseteq S$. Sum of tokens can be represented as scalar product:

$$\sum_{s \in R} \underline{t}_j(s) = \underline{t}_j \cdot \underline{c}_R$$

If total number of tokens is constant for all $\underline{t}_j \in T$:

$$\underline{t}_1 \cdot \underline{c}_R = 0$$
$$\dots \dots$$
$$\underline{t}_n \cdot \underline{c}_R = 0$$

$$\underline{t}_1 \cdot \underline{c}_R = 0$$
$$\dots \dots \dots$$
$$\underline{t}_n \cdot \underline{c}_R = 0$$

Number of tokens is constant for sets of places satisfying

(1)
$$\underline{N}^T \cdot \underline{c}_R = 0$$

where

$$\underline{N}^T = \begin{pmatrix} \underline{t}_1 \\ \cdots \\ \vdots \\ \underline{t}_n \end{pmatrix}$$

Linear equation system.

Only 0 and 1 accepted as results.

Cologne

[3]

Lyon (or local station)

Matrix:

	s_1	s_2	s_3	s_4	s_5	s_6	s_7	s_8	s_9	s_{10}	s_{11}	s_{12}	s_{13}
t_1	1	-1							-1				1
t_2		1	-1										
t_3			1	-1									
t_4				1	-1						1		
t_5					1	-1	-1					1	
t_6	-1					1							
t_7							1	-1					
t_8								1				-1	
t_9									1	-1			
t_{10}										1	-1		-1
$b_1 = \underline{c}_{R_1}$	1	1	1	1	1	1	0	0	0	0	0	0	0
b_2	0	-1	-1	-1	0	0	0	0	1	1	1	0	0
$b_3 = \underline{c}_{R_3}$	0	0	0	0	0	0	1	1	0	0	0	1	0
$b_4 = \underline{c}_{R_4}$	0	0	0	0	0	0	0	0	1	1	0	0	1
$b_1 + b_2 = \underline{c}_{R_2}$	1	0	0	0	1	1	0	0	1	1	1	0	0

