
2.4.5 Predicate/Transition nets

Goal: compact representation of complex systems:

Example: Dining philosophers.

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�
�

Boolean variables

di: i thinking, ei: i eating, gi: spoon i available.

Condition/event net:

d

d2

d3

g

g2

g

e

e

e

1

3

1

2

3

1

Predicate/Transition net:

l(x) and r(x), left resp. right spoon of x.

p p
32

p
1

g
3

u tl(x) l(x)

x

xx

x

r(x)r(x)

d

g

e

Properties:

Tokens: individuals

Modell can be extended to arbitrary number of phi-

losophers.

Semantics can be de�ned by replacing by the equi-

valent condition/event net.

2.4.6 Evaluation

Appropriate for distributed applications.

Well-known theory for formally proving properties.

For nets presented so far:

- no programming elements,

- no timing information,

- no hierarchy.

2.5 Message sequencing charts (MSCs)

Used for representing acitivities within distributed

systems.

Example: Startup phase of an RS 232 connection:

DCE
(modem)

DCE
(modem)

DTE
(terminal)

DTE
(computer)

user dials # dial digits DTR on
RI on

CTS on

TxD
RxD

DTR on
DCR on

light on

RTS on

short
delaydata button

Push

data tones

tone on

time

Also used for representing train schedules.

MSCs only show examples.

Do not show tolerances and constraints.

Not useful for formal techniques.

2.6 UML

UML (Uni�ed Modelling Language)

[Oesterreich97, Fowler98]

Language for modelling object-oriented software

development.

UML includes:

1. State diagrams:

UML includes StateCharts.

2. activity diagrams:

activity diagrams = extended Petri nets.

Extensions: symbols for decisions.

SDL-like placement

3. interaction diagrams:

Equivalent to message sequencing charts.

4. class diagrams:

Represent inheritance of classes.

5. package diagrams:

correspond to module charts of StateMate.

6. use cases: describe typical applications.

Checking of consistency?

2.7 ADA

Language designed for DoD.

Current version: ADA 1995

(object oriented extension of original language)

Salient feature:

Rendez-vous model of communication

(Processes have to meet to exchange information):

Example:

TASK screen_output IS

ENTRY call_ch(val:character; x, y: integer);

ENTRY call_int(z, x, y: integer);

END screen_out;

TASK BODY screen_output IS

...

SELECT

ACCEPT call_ch ... DO ..

END call_ch;

OR

ACCEPT call_int ... DO ..

END call_int;

END SELECT;

...

Sending a message:

BEGIN

screen_out.call('Z',10,20);

EXCEPTION

WHEN tasking_error => (exception handling)

END;

2.8 Java

Initially designed for embedded systems.

Advantages of using Java for embedded systems:

� object orientation

� supports multiple threads

� Java is simple.

� short design cycles

� Java is compact. Basic interpreter: 40 kBytes,

Thread-Support, libraries: additional 175 kBytes.

� Java is robust: No memory leaks.

� Java is plattform independent

� dynamic loading of classes.

� Java is safe: security checks etc.

Problems:

� automatic garbage collection

�Unspeci�ed dispatcher

Working groups are trying to solve the problems

(Nilsen and others).

Di�erent subsets discussed

JDK
CardJava Ejava Pjava

+Java 3D = 3D Java

+ Enterprise-Tools=Enterprise Java

Considered for set top boxes,

Mercedes-Benz cars etc.

2.9 VHDL

VHDL = VHSIC Hardware Description Language

VHSIC = very high speed integrated circuit

De�nition started by DoD in 1980.

1984: �rst version of the language de�ned.

1987: revised version became IEEE Standard 1076.

1992: revised IEEE Standard.

Salient features:

- Syntax based on ADA

-
exible de�nition of value sets

- supports bitvectors

- supports time and time units

- processes are static, non-terminating and
at

- 2-phase simulation semantics to avoid non-determinism

- includes con�guration mechanism

- Parallelism of hardware modelled by processes.

- Several processes per hardware component possi-

ble.

Example: full adder

carry_in

b

a
sum

carry_out

full_adder

Header:

ENTITY full_adder IS

PORT (a, b, carry_in: IN Bit;

sum, carry_out: OUT Bit);

END full_adder;

Behavioural body:

ARCHITECTURE behavior OF full_adder IS

SIGNAL s: Bit;

BEGIN

s <= a xor b AFTER 5 Ns;

sum <= s xor carry_in AFTER 5 Ns;

carry_out<= (a and b) or

(s and carry_in) after 10 Ns;

END behavior;

Structural body:

or_
gatehalf_adder

half_adder

a

b

carry_in

x

y z

carry_out

sum

full_adder

full_adder

half_adder half_adder or_gate

xor_gate and_gate xor_gate and_gate

ARCHITECTURE structure OF full_adder IS

COMPONENT half_adder

PORT (i1, i2:IN Bit; carry:OUT Bit; sum:OUT Bit);

END component;

COMPONENT or_gate

PORT (i1, i2:IN Bit; o:OUT Bit);

END component;

SIGNAL x, y, z: Bit;

BEGIN

s1: half_adder PORT MAP (a, b, x, y);

s2: half_adder PORT MAP (y, carry_in, z, sum);

s3: or_gate PORT MAP (x, z, carry_out);

END structure;

Simulation results:

2.10 Other languages

1. SpecCharts

SpecCharts [Gajski94] is a StateChart variant using

VHDL to denote computations.

Characteristics of StateCharts:

U
C

 Ir
vi

ne

C
op

yr
ig

ht
 (

c)
 1

99
4

D
an

ie
l D

. G
aj

sk

System specification 75 of 214

SpecCharts

� Developed for embedded
system specification [NVG92]

� PSM (program-state machine) model + VHDL

� Characteristics supported
Behavioral hierarchy : sequential/concurrent behaviors
State transitions: TOC (transition on completion) arcs
Communication : shared memory, message passing
Exceptions : TI (transition immediately) arcs

� Characteristics similar to VHDL
Programming constructs
Structural hierarchy
Synchronization and Timing

X Y

X2

e1

X1

e2

e3

B

port P, Q : in integer;
E

type INTARRAY is array
 (natural range <>) of integer;
signal A : INTARRY (15 downto 0);

variable MAX : integer ;

MAX := 0;
for J in 0 to 15 loop
 if (A(J) > MAX) then
 max := A(J) ;
 end if;
end loop

Two types of transitions: transition on comple-

tion and transition immediately.

SpecCharts descriptions can be easily translated

into VHDL.

2.Estelle

Scope: description of communication protocolls.

Standard de�ned by ISO.

Scope similar to SDL.

Attempts to integrate Estelle with SDL failed.

Communication based on channels +

FIFO bu�ers.

FSM-based modell of components.

Textual representation only. Example:

state disconnected,suspended,connected;

trans

{1} from disconnected to suspended

when User.ICONreq

begin output PDU.CR end;

{2} from suspended to connected

when PDU.CC

begin output User.ICONconf end;

{3} from suspended to disconnected

when PDU.DR

begin output User.IDISind end;

{4} from disconnected to connected ...

3.CSP [Hoare]

CSP = communicating sequential processes

One of the �rst languages containg language ele-

ments for describing interprocess communication.

Communication based on named channels.

Example:

PROCESS A PROCESS B

.....

VAR a .. VAR b ..

a := 3; ...

c!a ; c?b -- input from channnel c

END; END;

Processes waiting for meeting at rendez-vous point.

Blocking communication.

CSP formed the basis for OCCAM (language for transputers [INMOS]).

Earlier transputers: 4 hardware communication channels

Within a single transputer, communication is handled by the operating

system.

More recent transputers: virtual channels. Communic. with any number

of processors.

4.Verilog

Another hardware description language.

Less
exible than VHDL, but usually simulates

faster.

Very popular in the US.

5. Z

language for algebraic speci�cation.

6. LOTOS

Another language for algebraic speci�cation.

7.Esterel

Yet another language for algebraic speci�cation.

8. Silage

Special functional language for signal processing.

9.HardwareC

Hardware description language with syntax simi-

lar to C.

Simple extensions for describing concurrent and

parallel execution and bitvectors.

2.11 Comparison of languages

Comparison according to Gajski:

U
C

 Ir
vi

ne

C
o
p
yr

ig
h
t
(c

)
1
9
9
4
 D

a
n
ie

l D

System specification 79 of 214

Summary

Concurrency Behavioral
CompletionExceptions

VHDL

Verilog

CSP

Statecharts

SDL

Esterel

SpecCharts

Behavioral
 Hierarchy

 State
Transitions

 Program
Constructs

Embedded System Features
Language

Feature fully
supported

Feature partially
supported

Feature not
supported

Remarks:

- Esterel can be used to describe state transitions

- SDL contains programming language elements.

- contains only criteria for which SpecCharts looks

good (e.g. structural hierarchy not included, no dy-

namic process creation considered)

Comparison according to Niemann:

Silage

CSP/Occam

HardwareC
SpecCharts

Verilog

VHDL
High-Level Petri Net

StateCharts

Esterel
SDL

Lotos + 0 - + + - + + + + + + ++
+
+
+
+
+

-

+

-
+
+

-
+

-
-
-

+

0

0

+
+
+
0
-
0

+
-
-

-
-
-
-

-
-

+
+

+

-
-
-

-
+

+
+
+
+
+
+
+
+
+
0

0
0
0

0
0

+

0

0
0

+

+
-

-

-
-

-

+

-

+
+
+
+

+
+
+
+
+

+
+
-
-
+
+
+
+
+
+

+

+
-
-
+
-
-
-

-
+
-

-
+
+
+
+
+
-

0
+
+
-
0
+
+
0
+
-

+

+
+
-
+
-
-

-+

Pr
og

ra
m

m
in

g
C

on
st

ru
ct

s

B
eh

av
io

ur
al

 H
ie

ra
rc

hy

St
at

e-
T

ra
ns

iti
on

s

B
eh

av
io

ur
al

 C
om

pl
et

io
n

C
on

cu
rr

en
cy

Sy
nc

hr
on

./C
om

m
un

ic
at

io
n

E
xc

ep
tio

ns

T
im

in
g

A
sp

ec
ts

N
on

-d
et

er
m

in
is

m
Fo

rm
al

 A
na

ly
si

s

M
od

el
 E

xe
cu

ta
bi

lit
y

A
va

ila
bi

lit
y

of
 T

oo
ls

St
an

da
rd

iz
at

io
n

St
ru

ct
ur

al
 H

ie
ra

rc
hy

-
-1

+3

-4 + +5+6
+

-7 +
+

- +

-

-2

Remarks:

1. Formal semantics of StateCharts now available.

2. Possible formal semantics of VHDL described in book by Delgado-Kloos (ed.) .

3. SDL supports only mix of structural and behavioural hierarchy.

4. Non-determinism included in Petri net model.

5. Same as for SDL.

6. There are timed Petri nets. Formal properties?

InsuÆcient knowledge about variants of Petri nets.

7. IEEE standard for Verilog exists.

! no single language that meets all requirements.

Mix of languages used in practice.

Translation between languages proposed by several researchers.

