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Abstract
In the common Fourier regression model we determine the optimal designs for estimating

the coefficients corresponding to the lower frequencies. An analytical solution is provided
which is found by an alternative characterization of c-optimal designs. Several examples are
provided and the performance of the D-optimal design with respect to the estimation of
the lower order coefficients is investigated. The results give a complete answer to an open
question which was recently raised by Dette and Melas (2003).

AMS Subject classification: 62K05
Keywords and Phrases: trigonometric regression model, c-optimal design, Chebyshev approxima-
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1 Introduction

Fourier regression models are widely used to describe periodic phenomena in applications. Typical
subject areas include engineering [see e.g. McCool (1979)], medicine [see e.g. Kitsos, Titterington
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and Torsney (1988)], agronomy [see e.g. Weber and Liebig (1981)] or more generally biology [see
the recent collection of research papers edited by Lestrel (1997)]. Recent applications of trigono-
metric regression models appear also in two dimensional shape analysis, where the coefficients of
lower order are of particular importance, because they have a specific meaning in the biological
context [see e.g. Young and Ehrlich (1977) and Currie et al. (2000) among many others].
It is well known that the application of an appropriate design can improve the performance of
the statistical analysis in a regression model substantially and several authors have considered the
problem of determining optimal designs for least squares estimation of the parameters in Fourier
regression models [see e.g. Karlin and Studden (1966), page 347, Hill (1978), Lau and Studden
(1985) or Wu (2002)]. Most authors concentrate on the estimation of the full vector of parameters
and use Kiefer’s Φp-optimality criteria to find efficient designs for this purpose [see e.g. Pukelsheim
(1993), p. 241]. Recently Dette and Melas (2003) determined optimal designs for estimating the
individual coefficients corresponding to the higher frequencies in trigonometric regression models
but the design problem for the estimation of the coefficients corresponding to the lower frequencies
was left open. However, in many biological applications, such as two dimensional shape analysis,
the coefficients corresponding to lower frequencies are usually more important, because of their
concrete biological interpretation [see e.g. Young and Ehrlich (1977)]. It is the purpose of the
present paper to derive an explicit solution of this problem.
The model is introduced in Section 2, where we also state some basic facts about optimal design
theory. In particular a reformulation of the equivalence theorem for c-optimal designs [see e.g.
Pukelsheim (1993)] is presented, which turns out to be a particularly useful tool for the solution
of the optimal design problem in the present context. Our main results are stated in Section 3,
where we present an explicit solution of the optimal design problem for estimating the individual
coefficients corresponding to the lower frequencies in a Fourier regression model. In contrast to the
designs for estimating the coefficients corresponding to the higher frequencies the optimal designs
for estimating the lower order coefficients are not necessarily uniform designs. In Section 4 we
present several examples illustrating our approach, while some of the technical details are deferred
to an Appendix.
The optimal designs for estimating the individual coefficients advise the experimenter to take
observations at a number of different locations which is smaller than the number of parameters
in the model. For this reason the optimal designs derived in this paper can not be directly
recommended for applications. However, we recommend to use these designs as benchmarks
in evaluating the performance of commonly applied designs. Our results therefore provide an
important tool for identifying efficient designs for the statistical analysis in trigonometric regression
models. We illustrate this by analyzing the optimal designs in the sense of Kiefer (1974) with
respect to its performance in the estimation of the individual coefficients corresponding to the lower
frequencies in the trigonometric regression model. In particular it is shown that for large degree
trigonometric models [as they are used in series estimation, see Eubank (1999)] these designs are
rather efficient, but the loss of efficiency in lower order trigonometric regression models [as they
are used in two dimensional shape analysis in biology - see Young and Ehrlich (1977) and Currie
et al. (2000)] may be substantial.
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2 Optimal designs for estimating individual coefficients

The Fourier regression model is usually represented in the form

y = β0 +

m∑
j=1

β2j−1 sin(jt) +

m∑
j=1

β2j cos(jt) + ε, x ∈ [−π, π] ,(2.1)

where ε denotes a random variable with zero mean and positive variance, say σ2 > 0, and different
observations are assumed to be independent. We define β = (β0, β1, . . . , β2m)T as the vector of
parameters and

f(t) = (1, sin t, cos t, . . . , sin(mt), cos(mt))T = (f0(t), . . . , f2m(t))T(2.2)

as the vector of regression functions in the model (2.1). Following Kiefer (1974) we call any
probability measure ξ on the design space [−π, π] with finite support an (approximate) design.
The support points of the design ξ give the locations, where observations are taken, while the
weights give the corresponding proportions of the total number of observations to be taken at these
points. For uncorrelated observations [obtained from an approximate design by some rounding
procedure - see e.g. Pukelsheim and Rieder (1992)] the covariance matrix of the least squares
estimator for the parameter β is approximately given by

σ2

n
M−1(ξ),

where n denotes the sample size and the matrix

M(ξ) =

∫ π

−π

f(t)fT (t)dξ(t) ∈ R
2m+1×2m+1(2.3)

is called information matrix in the design literature. An optimal design minimizes (or maximizes)
an appropriate convex (or concave) function of the information matrix and there are numerous
criteria proposed in the literature, which can be used for the discrimination between competing
designs [see e.g. Silvey (1980) or Pukelsheim (1993)].

In this paper we are interested in optimal designs for the estimation of the individual coefficients βk

corresponding to the lower frequencies in the trigonometric regression model (2.1). To be precise
let ek ∈ R

2m+1 denote the (k + 1)th unit vector (k = 0, . . . , 2m) and A− be a generalized inverse
of the matrix A ∈ R

2m+1×2m+1; then a design ξ is called ek-optimal or optimal for estimating the
coefficient βk, if βk is estimable by the design ξ [i.e. ek ∈ Range(M(ξ))] and ξ minimizes the
function

Φk(η) = eT
k M−(η)ek(2.4)

in the set of all designs η such that the parameter βk is estimable by the design η. ek-optimal
designs have been discussed by several authors, mainly for the case of polynomial regression on
the interval [−1, 1] [see e.g. Studden (1968), Spruill (1990)]. Dette and Melas (2003) solved the
ek-optimal design problem for the case k = 2�, k = 2� − 1, where � > m/3, and for the sake of
completeness we restate this result here.

Theorem 2.1. [Dette, Melas (2003)] Consider the trigonometric regression model (2.1) on the
design space [−π, π].
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(a) For any � such that m/3 < � ≤ m and any δ ∈ [0, 1
2�

] the design

ξ∗2� =

(
−π −π + π

�
. . . −π + 2�−1

�
π π

1
2�
− δ 1

2�
. . . 1

2�
δ

)
(2.5)

is optimal for estimating the parameter β2�. Moreover, in this case Φ2�(ξ
∗
2�) = 1.

(b) For any � such that m/3 < � ≤ m the design ξ∗2� defined by (2.5) is optimal for the estimation
of the intercept β0.

(c) For any � such that m/3 < � ≤ m the design

ξ∗2�−1 =

(
−π + π

2�
−π + 3π

2�
. . . −π + 2�−3

2�
π −π

2�
+ π

1
2�

1
2�

. . . 1
2�

1
2�

)

is optimal for estimating the coefficient β2�−1. Moreover, in this case Φ2�−1(ξ
∗
2�−1) = 1.

The construction of efficient designs for estimating the lower frequencies in the trigonometric
regression model appears to be substantially more difficult. In the following section we will
provide an explicit solution of this problem. The main tool in our approach is a reformulation of
the equivalence theorem for c-optimal designs as it is presented in Dette, Melas and Pepelyshev
(2004) in the case of polynomial models. Because this result does not depend on a particular
regression model, it is presented here for a general linear regression model of the form

E[y|t] = βT f(t), t ∈ [a, b](2.6)

where the βT = (β0, . . . , βd), f(t) = (f0(t), . . . fd(t))
T . The case of the Fourier regression model

(2.1) is obtained for d = 2m and the choice (2.2).

Lemma 2.2. Let f̄k(t) = (f0(t), f1(t), . . . , fk−1(t), fk+1(t), . . . , fd(t))
T denote the vector obtained

from f(t) = (f0(t), f1(t), . . . , fd(t))
T by omitting the function fk(t). A design ξ∗k is ek-optimal on

the interval [a, b] if and only if there exists a positive number hk and a vector q∗ ∈ R
d such that

the function ϕk(t) = fk(t) − f̄T
k (t)q∗ satisfies the following conditions

(1) hkϕ
2
k(t) ≤ 1 ∀ t ∈ [a, b]

(2) supp(ξ∗k) ⊂ {t ∈ [a, b] | hkϕ
2
k(t) = 1}

(3)
∫ b

a
ϕk(t)f̄k(t)dξ∗k(t) = 0 ∈ R

d.

Moreover, in this case hk = Φk(ξ
∗
k).
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3 Optimal designs for estimating lower frequencies

Recall from Section 2 that Theorem 2.1 provides a solution of the e2�−1- and e2�-optimal design
problem whenever m/3 < � ≤ m. It is also notable that the optimal designs depend rather weakly
on the degree of the Fourier regression (namely only by the lastnamed inequality). For example
the e9- and e10-optimal design (i.e. the optimal designs for estimating the coefficients β9 or β10

in the trigonometric regression model (2.1)) are the same for m = 5, 6, . . . , 14 and do not depend
on m. Both designs have essentially 10 support points. However, if the degree m exceeds 14 the
optimal designs can not be determined by Theorem 2.1 and the dependency on the degree of
the Fourier regression is more severe. In particular the number of support points is substantially
larger (at least 16) and the weights of the optimal designs are not necessarily equal any more.
The optimal design for this case is presicely described by the main result of the present section.

Theorem 3.1 Consider the trigonometric regression model (2.1), where m ≥ 3 and assume that
� ≤ m/3.

(a) If p = �m+3�
2�

� is odd, then the design

ξ∗2� =

(
−tn . . . −t1 t1 . . . tn
wn . . . w1 w1 . . . wn

)

with n = �(p − 1),

ti =
(
2i − 1 + 2� i − 1

p − 1
+

1

2
�
) π

2p�
i = 1, . . . , n(3.1)

wi =
| cos ti|

2
∑n

j=1 | cos tj | i = 1, . . . , n(3.2)

is optimal for estimating the coefficient β2� in the trigonometric regression model (2.1).
Moreover, the value of the optimality criterion is given by

Φ2�

(
ξ∗2�

)
=
( 2

�p

n∑
i=1

| cos ti|
)2

=
(2

p
cot
( π

2p

))2

(3.3)

(b) If p = �m+3�
2�

� is even, then any design of the form

ξ∗2� =

(
−π −tn . . . −t2 0 t2 . . . tn π

µ wn . . . w2 w1 w2 . . . wn w1 − µ

)

with n = �(p − 1),

ti =
(
2(i − 1) + 2� i − 1

p − 1
+

1

2
�
) π

2p�
i = 1, . . . , n(3.4)

wi =
| cos ti|

2
∑n

j=1 | cos tj| i = 1, . . . , n(3.5)

µ ∈ [0, w1](3.6)

5



is optimal for estimating the coefficient β2� in the trigonometric regression model (2.1).
Moreover, the value of the optimality criterion is given by (3.3).

(c) Define p = �m+3�
2�

�, n = �(p − 1), then the design

ξ∗2�−1 =

(
−tn . . . −t1 t1 . . . tn
wn . . . w1 w1 . . . wn

)

with

ti =
(
i + � i − 1

p − 1
�
) π

p�
i = 1, . . . , n(3.7)

wi =
| sin ti|

2
∑n

j=1 | sin tj | i = 1, . . . , n(3.8)

is optimal for estimating the coefficient β2�−1 in the trigonometric regression model (2.1).
Moreover, the value of the optimality criterion for this design is given by

Φ(ξ∗2�−1) =
( 2

p�

n∑
i=1

| sin ti|
)2

=
(2

p
cot

π

2p

)2

.

Proof. All cases are proved similarly and for this reason we restrict ourselves to the case (a)
where p = �m+3�

2�
� is assumed to be odd. In other words we are interested in the optimal design

for estimating the coefficient β2� of the function cos(�t) where � ≤ m
3
. The proof of Theorem 3.1

is based on an explicit construction of the function ϕ� in Lemma 2.2. For this note that p ≥ 3
(because � ≤ m/3) and consider the trigonometric polynomial

L(t, a) =

p−1∑
j=1

aj cos((2j − 1)�t),(3.9)

where (a1, . . . , ap−1)
T ∈ R

p−1 is a given vector. We determine this vector such that the function
L satisfies

L(ti, a) =
cos(�ti)

| cos �ti| i = 1, . . . ,
p − 1

2

(3.10)

L′(ti, a) = 0 i = 1, . . . ,
p − 1

2

where the points t1, . . . , t p−1
2

are defined by (3.1). It is easy to see that the system of equations in

(3.10) is equivalent to the system

Ba = e,(3.11)
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where the vector e ∈ R
p−1 is given by

e =
( cos(�t1)

| cos(�t1)| , . . . ,
cos(�t p−1

2
)

| cos(�t p−1
2

)| , 0, . . . , 0
)T

(3.12)

and the (p − 1) × (p − 1) matrix B is defined as

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos(�t1) cos(3�t1) . . . cos((2p − 3)�t1)
...

...
...

...

cos(�t p−1
2

) cos(3�t p−1
2

) · · · cos((2p − 3)�t p−1
2

)

−� sin(�t1) −3� sin(3�t1) · · · −(2p − 3)� sin((2p − 3)�t1)
...

...
...

...

−� sin(�t p−1
2

) −3� sin(3�t p−1
2

) · · · −(2p − 3)� sin((2p − 3)�t p−1
2

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.(3.13)

It follows from Lemma A.1 in the Appendix that det B �= 0. Therefore the system of equation
in (3.11) or equivalently in (3.10) has a unique solution, say â = (â1, . . . , âp−1)

T . In the following
we investigate the properties of the function L(t, â) corresponding to this solution. In order to
simplify the notation we assume � = 1 throughout the remaining part of the proof. The general
case can be proved exactly in the same way and the (minor) differences will be briefly mentioned
at the corresponding places.
We will show in Lemma A.2 in the Appendix that the function L(t, â) satisfies

|L(t, â)| ≤ 1 ∀ t ∈ [−π, π].(3.14)

From the orthonormality conditions

2

π

∫ π

0

cos(it) cos(jt)dt =

{
1 if i = j �= 0

0 if i �= j

we obtain that the coefficient of cos t in the function L(t, â) has the representation

â1 =
2

π

∫ π

0

L(t, â) cos tdt.(3.15)

In order to calculate this expression explicitly we will use the fact that the points

xi = cos ui = cos
(2i − 1

2p
π
)
, i = 1, . . . , p(3.16)

and weights αi = 1
p

(i = 1, . . . , p) define a quadrature formula of degree 2p − 1 on the interval
with respect to the arcsine distribution, that is

1

π

∫ 1

−1

Pk(x)
dx√

1 − x2
=

1

π

∫ π

0

Pk(cos t)dt =

p∑
i=1

Pk(xi)αi =

p∑
i=1

αiPk(cosui)(3.17)
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for all polynomials Pk of degree k ≤ 2p − 1 [see Stroud and Secrest (1966)]. Since

2p − 1 = 2�m + 3

2
� − 1 = 2�m + 1

2
� + 1 ≥ m + 1

and the function L(t, α̂) cos t can be represented in the form Pm+1(cos t), where the degree of Pm+1

is at most m + 1, we can use the quadrature formula (3.17) to evaluate the expression in (3.15).
For this we note that by the definition of the points ti and ui in (3.1) and (3.16), respectively, we
have

ui = 2i−1
2p

π = ti if i = 1, . . . , p−1
2

,

ui = π
2

if i = p+1
2

,

ui = ti−1 if i = p+3
2

, . . . , p,

(3.18)

which yields, by the definition of the function L(t, â),

L(ui, â) =

⎧⎪⎪⎨
⎪⎪⎩

cos ui

| cos ui| if i �= p+1
2

0 if i = p+1
2

.

This gives for the coefficient â1 in (3.15)

â1 =
2

π

∫ π

0

L(t, â) cos tdt =
2

p

p∑
i=1

L(ui, â) cos ui(3.19)

=
2

p

p∑
i=1

| cosui| =
2

p

p−1∑
i=1

| cos ti|.

Consider now the function

ϕ(t) =
L(t, â)

â1

(3.20)

and note that the coefficient of cos t is 1. Therefore the function ϕ can be represented as

ϕ(t) = cos t − ãT f̄2(t)(3.21)

with a suitable vector ã and

f̄2(t) = (1, sin t, sin 2t, cos 2t, . . . , sin(mt) cos(mt))T .(3.22)

We will now show that the conditions of Lemma 2.2 are satisfied for the function ϕ. For this we
define h = â2

1 and obtain from (3.14) and (3.20)

hϕ2(t) ≤ 1(3.23)

for all t ∈ [−π, π]. Moreover, it follows from the construction of the function L that there is
equality in (3.23) if t = ti or t = −ti for i = 1, . . . , n. Therefore the function ϕ satisfies the
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conditions (1) and (2) of Lemma 2.2. In order to prove the remaining condition (3) of this Lemma
we note ϕ(ti) = ϕ(−ti), i = 1, . . . , n, which implies

∫ π

−π

ϕ(t) sin(jt)dξ∗2(t) =

n∑
i=1

{
ϕ(ti) sin(jti) + ϕ(−ti) sin(−jti)

}
wi = 0(3.24)

for j = 1, . . . , m. Moreover, from (3.17) we derive the well known relation

p∑
i=1

cos
(
k
2i − 1

2p
π
)

= 0, k = 1, 2, . . . , 2p − 1,

which imply [note that n = p − 1 and observe the relation (3.10), (3.18) and (3.19)]

∫ π

−π

ϕ(t) cos(jt)dξ∗2(t) = 2
n∑

i=1

ϕ(ti) cos(jti)wi

=
n∑

i=1

L(ti, â)

â1
cos(jti)

| cos ti|∑n
j=1 | cos tj |

=
2

pâ2
1

p∑
i=1

cos
(2i − 1

2p
π
)

cos
(
jπ

2i − 1

2p

)

=
1

pâ2
1

p∑
i=1

{
cos
(
(j − 1)

2i − 1

2p
π
)

+ cos
(
(j + 1)

2i − 1

2p
π
)}

= 0

for j = 2, 3, . . . , 2p − 2. Since m ≤ 2p − 2 it therefore follows from these relations that∫
ϕ(t)f̄2(t)dξ∗2(t) = 0 ∈ R

2m,

which proves the remaining assumption (3) of Lemma 2.2. By this result it now follows that the
design ξ∗2 is optimal for estimating the coefficient β2 in the trigonometric regression model (2.5).
For a proof of the identity in (3.3) we note that it follows from formula 420 in Jolley (1961) that

n∑
i=1

| cos ti| = 2

� p−1
2

�∑
i=1

cos ti = 2

� p−1
2

�∑
i=1

cos
(2i − 1

2p
π
)

=
sin
(

(p−1)π
2p

)
sin
(

π
2p

) = cot
( π

2p

)
.

This proves part (a) of Theorem 3.1 in the case � = 1. The general case � ≥ 2 follows by exactly
the same arguments with an additional amount of notation in this proof. Finally, the cases (b)
and (c) are shown similarly and the proof is therefore omitted.

�
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4 Examples

In this section we briefly illustrate the results of Section 3 by calculating explicitly the optimal
designs for estimating the coefficients corresponding to the lower frequencies in a Fourier regression
model (2.1) of degree m = 3, 4, 5, 6.

Example 4.1. Consider a Fourier regression model of degree m = 3 or m = 4. The optimal
designs for estimating the coefficients β0 and βi (i ≥ 3) can be directly obtained from Theorem
2.1 and are not given here for the sake of brevity. For the construction of the two remaining
optimal designs we begin with the optimal design for estimating the coefficient β1 (that is � = 1)
and note that in this case

p = �m + 3�

2�
� = �m + 3

2
� = 3

for m = 3, 4. By Theorem 3.1(c) the points t1, t2 are given by t1 = π/3, t2 = 2π/3 which gives
sin t1 = sin t2 =

√
3/2. Therefore the optimal design for estimating the coefficient β1 in the

trigonometric regression model (2.5) with degree m = 3, 4 is given by

ξ∗1 =

(
−2π

3
−π

3
π
3

2π
3

1
4

1
4

1
4

1
4

)
,

and the value of the optimality criterion is Φ1(ξ
∗
1) = 4

3
. Finally, the function ϕ required for the

application of Lemma 2.2 is given by

ϕ(t) = sin t +
1

6
sin(3t).

In order to determine the optimal design for estimating the coefficient β2 we use the first part of
Theorem 3.2 and obtain t1 = π/6, t2 = π/6. Observing that cos t1 = − cos t2 =

√
3/2 it follows

that

ξ∗2 =

(
−5

6
π −π

6
π
6

5
6
π

1
4

1
4

1
4

1
4

)

is an optimal design for estimating the coefficient β2 in the trigonometric regression of degree
m = 3, 4. The value of the optimality criterion is again Φ2(ξ

∗
2) = 4

3
and the function required for

the application of in Lemma 2.2 is given by

ϕ(t) = cos t − 1

6
cos 3t.

Example 4.2. Consider the Fourier regression model (2.5) of degree m = 5 and 6. If m = 5 only
the designs for estimating the individual coefficients β1 and β2 can not be obtained from Theorem
2.1. The optimal design for estimating the coefficient β1 in the trigonometric regression model
(2.5) with m = 5 is given by

ξ∗1 =

(
−3π

4
−π

2
−π

4
π
4

π
2

3π
4

1
4+2

√
2

√
2

4+2
√

2
1

4+2
√

2
1

4+2
√

2

√
2

4+2
√

2
1

4+2
√

2

)
(4.1)
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Figure 4.1: The functions defined in Lemma 2.2 corresponding to the estimation of the coefficients
β1 and β2 in a Fourier regression model of degree m = 5, respectively. The functions are defined
explicitly by (4.2) (solid line) and (4.4) (dotted line).

and the function required for the application of Lemma 2.2 is

ϕ(t) = sin t +
8 − 5

√
2

4
sin(3t) +

3
√

2 − 4

4
sin(5t).(4.2)

The value of the optimality criterion is obtained as Φ(ξ∗1) = 3+2
√

2
4

. The optimal design for esti-
mating the coefficient β2 is given by

ξ∗2 =

(
−π −3π

4
−π

4
0 π

4
3π
4

π

µ
√

2
4+4

√
2

√
2

4+4
√

2
2

4+4
√

2

√
2

4+4
√

2

√
2

4+4
√

2
2

4+4
√

2
− µ

)
(4.3)

where µ ∈ [0, 2/(4 + 4
√

2)] is arbitrary. The corresponding function in Lemma 2.2 is given by

ϕ(t) = cos t − 8 − 5
√

2

4
cos(3t) − 3

√
2 − 4

4
cos(5t).(4.4)

The polynomials in (4.2) and (4.4) are depicted in Figure 4.1.

In the trigonometric regression model of degree m = 6, the optimal designs for estimating the
coefficients β1, β2, β3, β4 can not be found by an application of Theorem 2.1, and Theorem 3.1 has
to be used for this purpose. The optimal designs for estimating the coefficients β1 and β2 are given
by (4.1) and (4.3), respectively. The optimal design for estimating the coefficient β3 is a uniform
distribution at the 8 points

±π

6
,±2π

6
,±4π

6
,±5π

6
,

while the corresponding function in Lemma 2.2 is given by

ϕ(t) = sin(2t) +
1

6
sin(6t),(4.5)

11



and the value of the optimality criterion is Φ(ξ∗3) = 4
3
. Finally, the design for estimating the

coefficient β4 is given by a uniform distribution at the points

±11π

12
,±7π

12
,±5π

12
,± π

12
,

the corresponding function in Lemma 2.2 is ϕ(t) = cos(2t) − 1
6
cos(6t) and the value of the

optimality criterion is again Φ(ξ∗4) = 4
3
.

Example 4.3. Commonly used designs for trigonometric regression models are uniform designs
with at least n ≥ 2m + 1 different points. As pointed out by Pukelsheim (1993) these designs are
optimal with respect to Kiefer’s Φp-criteria for the least squares estimation of the full vector of
parameters. It is therefore of interest to investigate the performance of these designs with respect
to the estimation of the coefficients corresponding to the lower frequencies in the trigonometric
regression model (2.5). For this purpose we note that the information matrix of a uniform design,
say ξu, in this model is given by

M(ξu) = diag(1, 2, . . . , 2) ∈ R
2m+1×2m+1,

[see Pukelsheim (1993)] and therefore the efficiency of the uniform design for estimating the
coefficient βk (k ≥ 1) is obtained as

effk(ξu) =
Φk(ξu)

Φk(ξ
∗
k)

= (2 − δk0)
(2

p
cot
( π

2p

))−2

,

where k = 2�, 2� − 1, � ≤ m/3 and p = �m+3�
2�

�. For example, if m = 6 and k = 4(� = 2) or
k = 3(� = 2) we obtain

eff3(ξu) = eff4(ξu) =
3

2
,

which shows that the loss of efficiency for estimating the coefficients β3 and β4 in a trigonometric
regression model of degree m = 6 is 50% if a uniform design is used. However, if the degree of the
trigonometric regression is larger, then the uniform design has a better efficiency. In particular, if
m → ∞ we obtain

lim
p→∞

2

p
cot
( π

2p

)
=

4

π
,

which gives for the efficiency of the uniform design

lim
m→∞

effk(ξu) =
π2

8
≈ 1.235, k ≥ 1

(note that asymptotically the limit does not depend on k). In other words if the uniform design
is used in a trigonometric regression with a large degree [as it appears in series estimation, see
Eubank (1999)] the loss of efficiency for estimating the coefficients corresponding to the lower
frequencies is 23.5 %. However, if the uniform design is used in a trigonometric regression model
of lower degree [as it appears in two dimensional shape analysis, see Young and Ehrlich (1977) or
Currie et al. (2000)] the loss of efficiency is more substantial.

12



5 Appendix: some technical results

Lemma A.1. The matrix B defined by (3.13) is nonsingular.

Proof. Let s ∈ N and consider the matrix

A =

⎛
⎜⎜⎜⎜⎝

cos t1 cos(3t1) . . . cos((4s − 1)t1)

cos t2 cos(3t2) . . . cos((4s − 1)t2)
...

...
...

...

cos t2s cos(3t2s) . . . cos((4s − 1)t2s)

⎞
⎟⎟⎟⎟⎠ = (u1, . . . , u2s) ∈ R

2s×2s

whee t1 < t2 < . . . < t2s are arbitrary numbers and the vector u� is defined by

u� = (cos((2� − 1)t1), . . . , cos((2� − 1)t2s))
T � = 1, . . . , 2s.

Let U2�−1(x) = sin(2� arccos x)/ sin(arccos x) denote the Chebyshev polynomial of the second kind
[see Szegö (1975)]. Observing the identity

�∑
j=1

cos((2j − 1)t) =
1

2

sin(2�t)

sin t
=

1

2
U2�−1(x)

with x = cos t [see Jolley (1961), formula 420]. This implies

det A = det(u1, u1 + u2, u1 + u2 + u3, . . . , u1 + . . . + u2s)

=
(1

2

)2s

det
(
U2j−1(xi)

)2s

i,j=1

where xi = cos ti (i = 1, . . . , 2s). It is well known that the leading coefficient of Uj(x) is 2j [see
Szegö (1975)], and we obtain (using the Vandermonde determinant formula)

det A = (
1

2
)2s2

�2s
j=1(2j−1) det(x2j−1

i )2s
i,j=1

= 22s(2s−1)
2s∏

i=1

cos ti
∏

1≤i<j≤2s

(cos2 tj − cos2 ti).

Subtracting the ith row of the matrix A from the (i + 1)th row (i = 1, . . . , s) it follows that the
determinant of the matrix B defined by (3.13) can be obtained as

det B = lim
ti+s→ti;i=1,...,s

det A∏s
i=1(ti+s − ti)

= −22s(2s−1)

s∏
i=1

(cos2 ti sin 2ti)
∏

1≤i<j≤s

(cos2 ti − cos2 tj)
4.

Finally, if s ≥ p−1
2

and the points t1, . . . , t p−1
2

are given by (3.1) it follows that tj ∈ (0, π
2
) (j =

1, . . . , p−1
2

) which implies det B �= 0.

13
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Lemma A.2. The polynomial L(t, â) defined by (3.9) and (3.11) satisfies the inequality (3.14).

Proof. Recall that p is assumed as odd. Note that the system

{sin t, sin(3t), . . . , sin((2p − 1)t)}
is a Chebyshev system on the interval (0, π

2
) and consequently the function

L′(t, â) = −
p−1∑
j=1

(2j − 1)âj sin((2j − 1)t)(A.1)

has at most p − 2 roots in the interval (0, π
2
) counted with their multiplicities [see Karlin and

Studden (1966)]. Therefore a careful counting of the multiplicities yields that the function L(t, â)
has exactly one extreme point in each of the intervals (ti, ti+1); i = 1, . . . , p−3

2
.

Moreover, by (3.10) we have L̂(ti, â) = 1, if i = 1, . . . , p−1
2

, and in follows from the Chebyshev
property of the system {cos t, cos(3t), . . . , cos((2p−3)t)} on the interval (0, π

2
) that there is exactly

one local minimum in the intervals (ti, ti+1); i = 1, . . . , p−3
2

. Now the system

{sin t, sin(2t), . . . , sin((2p − 3)t)}
is a Chebyshev system on the interval (0, π) and therefore the function in (A.1) has at most (2p−4)
roots in this interval (counted with their multiplicities). By the above discussion there remain
(p − 2) roots (counted with their multiplicities) and by (3.10)

L(ti, â) = −1; i =
p + 1

2
, . . . , p − 1.

Again a careful counting of the multiplicities of the roots shows that there is exactly one local
maximum in the intervals

(ti, ti+1), i =
p + 1

2
, . . . , p − 2.

Note that in the case p < 5 there do not exist such intervals.
Now assume that there exists a point t∗ ∈ [−π, π] such that |L(t∗, â)| > 1. A direct calculation
shows that this is not possible in the case p = 3 and we can assume p ≥ 5 in the remaining part
of the proof. By the discussion of the previous paragraph there exists a point

t̄ = min{|t∗|, π − |t∗|} ∈ (0,
π

2
)(A.2)

such that

L(t̄, â) < −1(A.3)

and t̄ ∈ (ti, ti+1) for some i ∈ {1, . . . , p−3
2
}. We now compare the function L(t, â) with the function

cos(2pt) [in the case � > 1 one has to use the function cos(2p�t)]. For this purpose we define the
trigonometric polynomial

Q(t) = L(t, â) − cos(2pt).(A.4)
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Figure 4.2: The functions L(t, â) defined by (3.10) and the function t → cos(2pt) in the case p = 5.
The polynomial Q(t) defined by (A.4) has two roots of multiplicity 2 at t1 = π

10
, t2 = 3π

10
and both

graphs intersect in each of the intervals ((j − 1) π
10

, j π
10

) j = 5, . . . , 10.

Because the functions

1, cos t, cos(2t), . . . , cos(2pt)(A.5)

form a Chebyshev system on the interval [0, π], it follows that the function Q(t) has at most 2p
roots in the interval [0, π] counted with their multiplicities. From the definition of the function L
in (3.10) we obtain that the points t1, . . . , t p−1

2
are roots of the trigonometric polynomial Q and

their multiplicity is at least two. Moreover, since L(t, â) changes in the interval ((p − 1) π
2p

, π
2
)

from +1 to 0 and − cos(2pt) changes from −1 to 1, the function has a further root in the interval
((p − 1) π

2p
, π

2
). By a similar argument it follows that the function Q has a root in each of the p

intervals (π

2
, (p + 1)

π

2p

)
,
(
(p + 1)

π

2p
, (p + 2)

π

2p

)
, . . . ,

(
(2p − 1)

π

2p
, π
)

(note that cos(2pt) attains each value in [−1, 1] in each of these intervals ). Consequently, there
do not exist any other roots of the trigonometric polynomial Q. A typical picture of the function
L and the function − cos(2pt) is displayed in Figure 1 for the case p = 5.

By our assumption the point t̄ defined in (A.2) satisfies (A.3) and is located in one of the intervals
(ti, ti+1), where i ∈ {1, . . . , p−3

2
}. But this would mean that the function Q has two additional

roots in the interval (ti, ti+1) yielding to a total number of 2p + 2 roots (counted with their
multiplicities). This is a contradition to the Chebyshev property of the system in (A.5) and shows
that |L(t, â)| ≤ 1 for all t ∈ [0, π]. By the symmetry of the function L this property also holds for
the interval [−π, 0], which completes the proof of Lemma A.2. �
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