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Abstract

For the Weibull- and Richards-regression model robust designs are determined by max-
imizing a minimum of D- or D1-efficiencies, taken over a certain range of the non-linear
parameters. It is demonstrated that the derived designs yield a satisfactory solution of the
optimal design problem for this type of model in the sense that these designs are efficient and
robust with respect to misspecification of the unknown parameters. Moreover, the designs
can also be used for testing the postulated form of the regression model against a simplified
sub-model.
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1 Introduction

Sigmoidal growth curves are widespread tools for analyzing data from processes arising in various
fields. Such curves are increasing functions with an inflection point after which the growth rate
decreases to approach asymptotically a finite value. Numerous mathematical functions have been
proposed for modelling sigmoidal curves. Typical applications include subject areas such as biology
[see Landaw and DiStefano (1984)], chemistry, pharmacokinetics [see Liebig (1988), or Krug and
Liebig (1988)], toxicology [Becka and Urfer (1996), Becka, Bolt, Urfer (1993)] or microbiology [see
Coleman, Marks (1998)]. An appropriate choice of the experimental conditions can improve the
quality of statistical inference substantially. Although optimal designs for non-linear regression
models have been discussed by many authors, much less attention has been paid to the problem
of designing experiments for sigmoidal regression models.
In non-linear models the Fisher information matrix of the maximum likelihood estimator depends
on the unknown parameters and for this reason optimal designs, which maximize some function of
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the Fisher information matrix are difficult to implement in practice. Many authors concentrate on
local optimal designs, where it is assumed that a preliminary guess for the unknown parameters is
available [see Chernoff (1953) or Silvey (1980)]. Most local optimal designs for non-linear regression
models have been criticized for two reasons. First these designs are not necessarily robust with
respect to a misspecification of the non-linear parameters in the model. Secondly they advice
the experimenter to take observations only at a few different points. The number of these points
usually coincides with the number of parameters in the regression model and as a consequence
these designs are not applicable for testing the goodness-of-fit of the assumed model.
Several proposals have been made to obtain robust designs with respect to misspecification of
the parameters [see Pronzato and Walter (1985), Chaloner and Verdinelli (1995), Müller (1995),
Dette (1997), Imhof (2001) or Dette and Biedermann (2003)], but less literature is available to
address the possibility of model checking in the construction of optimal designs. In linear models
some suggestions can be found in Stigler (1971) or Studden (1982) in the context of a polynomial
regression model, who suggested to embed the postulated model in an extended model (usually a
polynomial of larger degree) and to construct an optimal design for testing the postulated against
the extended model. Discrimination designs for polynomial regression models in a more general
context have been discussed in Dette (1990, 1995), but not much literature seems to be available
in the context of non-linear models. Atkinson and Fedorov (1975) proposed the T -optimality
criterion, which adapts Stigler’s idea to the nonlinear setup. However, their criterion is local and
therefore not necessarily robust with respect to a misspecification of the unknown parameters.
Recently, Dette, Melas and Wong (2004) considered the Michaelis-Menten model and constructed
robust and efficient designs, which can on the one hand be used for testing this model against an
extension (called EMAX model) and are on the other hand robust with respect to misspecification
of the non-linear parameters.
It is the purpose of the present paper, to demonstrate that this approach is more broadly applicable
and useful for the construction of efficient and robust designs in nonlinear models for several
objects. For this we consider two commonly used sigmoidal regression models and its corresponding
extension. The first model under consideration is the exponential regression model

η(t, θ) = a− be−λt(1.1)

(with θ = (a, b, λ)), which is called von Bertalanffy growth curve or Mitscherlichs growth law.
Numerous authors studied optimal designs for this model from various points of view [see Dette
and Neugebauer (1997) and Han and Chaloner (2004) for example]. Most of these optimal designs
are three-point designs and can for this reason not be used for testing the goodness-of-fit of the
postulated model. For this purpose we consider the Weibull regression model

η(t, θ) = a− be−λth(1.2)

(here θ = (a, b, λ, h)), which is an extension of the model (1.1). The Weibull model is also widely
used for describing sigmoidal growth [see e.g. Ratkowsky (1983), Zeide (1993) or Vanclay and
Skovsgaard (1997) among many others]. Our goal is to construct an optimal experimental design
for model (1.1) and (1.2) which fulfills at least three requirements.

(1) The design should allow to test the hypothesis

H0 : h = 1 vs H1 : h �= 1(1.3)
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in the extended model (1.2).

(2) The design should be efficient for the estimation of the parameters in the regression models
(1.1) and (1.2).

(3) The design should be robust with respect to misspecification of the non-linear parameters in
the regression models.

The second pair of sigmoidal growth models, where a similar question is considered, is given by
the logistic regression model

η(t, θ) =
a

1 + be−λt
(1.4)

(with θ = (a, b, λ)), and the Richards-regression model

η(t, θ) =
a

(1 + be−λt)h
(1.5)

(here θ = (a, b, λ, h)). The models (1.2) and (1.5) are serious competitors to the models (1.1) and
(1.4), respectively, and therefore it is desirable to incorporate in the construction of an experimental
design the flexibility to test the hypothesis (1.3) in the regression models (1.2) or (1.5).
Our first approach for the construction of efficient designs is based on the classical D-optimality cri-
terion and maximizes the determinant of the (asymptotic) covariance matrix of the least squares
estimator for the parameters in the extended model. The second method is based on the D1-
optimality criterion and determines the design such that the asymptotic variance of the least
squares estimator for the parameter h in the extended model is minimal. Because all models are
non-linear the optimal designs depend on the unknown parameters in the extended and corre-
sponding sub-model. In Section 2 we determine local optimal designs, which require an initial
guess of the unknown parameters [see Chernoff (1953)]. These designs are rather sensitive with
respect to the choice of the initial parameters and we construct in Section 3 standardized maximin
optimal designs [see Müller (1995), Dette (1997), Imhof (2001) or Imhof and Wong (2000)], which
maximize the minimum D- or D1-efficiency over a certain range of parameters. It is demonstrated
that these designs are on the one hand quite efficient for discrimination between the basic model
and its extension and on the other hand efficient for the estimation of the parameters. We also
compare the performance of these designs with the uniform design, which is commonly used in
these models. For the sake of brevity we present a detailed discussion for the model (1.1) and (1.2)
and discuss the situation of the Richards-regression model (1.5) more briefly. Some conclusions
are given in Section 4, while the proofs of our results are technical and therefore deferred to the
Appendix.

2 Local optimal designs

2.1 Preliminaries

Let [0, T ] denote the experimental region and assume that for each t ∈ [0, T ] an observation Y
could be made, where different observations are assumed to be independent with the same variance,
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say σ2 > 0, and expectation

E[Y |t] = η(t, θ) ,(2.1)

where η(t, θ) is either the function in (1.2) or (1.5). Following Kiefer (1974) we call any probability
measure

ξ =

(
t1 . . . tn
w1 . . . wn

)
(2.2)

with finite support t1, . . . , tn ∈ [0, T ], ti �= tj (i �= j) and masses wi > 0,
∑n

i=1wi = 1 an
experimental design. We assume that the design ξ has at least four support points, and denote by

M(ξ, θ) =

∫ T

0

f(t, θ)fT (t, θ)dξ(t)(2.3)

the information matrix of the design ξ for the model (2.1), where

f(t, θ) =
∂η

∂θ
(t, θ) = (f1(t, θ), . . . , fm(t, θ))T(2.4)

is the vector of partial derivatives of the conditional expectation E[Y |t] with respect to the parame-
ter θ. If N is the total sample size, the experimenter takes approximately ni ≈ Nwi observations
at the point ti (i = 1, . . . , n) such that

∑n
i=1 ni = N. It is well known [see Jennrich (1969)] that

under regularity assumptions, the asymptotic covariance matrix of the least squares estimator θ̂
for the parameter θ in the model (2.1) is given by the matrix

σ2

N
M−1(ξ, θ).

A local optimal design maximizes an appropriate function of the information matrix M−1(ξ, θ)
and there are numerous optimality criteria which can be used to discriminate among competing
designs [see Silvey (1980) or Pukelsheim (1993)]. In the present paper we restrict ourselves to the
D- and D1-optimality criterion.

For a fixed θ a local D-optimal design maximizes the determinant |M(ξ, θ)|, while the local D1-
optimal design maximizes (

eT
4M

−1(ξ, θ)e4

)−1

=
|M(ξ, θ)|
|M̃(ξ, θ)| ,(2.5)

where eT
4 = (0, 0, 0, 1) ∈ R

4 and the matrix M̃ is obtained from M by deleting the last row and
column.

2.2 Local optimal designs for the Weibull regression model

Recall the definition of the Weibull and the exponential regression model in (1.2) and (1.1), re-
spectively. For the model (1.2) we have θ = (a, b, λ, h) and a straightforward calculation yields for
the vector of partial derivatives in (2.4)

f(t, θ) = f(t, a, b, λ, h) = (1,−e−λth , bthe−λth , bλth ln(t)e−λth)T .(2.6)
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With our first result we establish some basic properties of local D- and D1-optimal designs in the
Weibull regression model (1.2), which facilitate their numerical calculation.

Lemma 2.1. The local D- or D1-optimal design in the Weibull regression model (1.2) does not
depend on the parameters a and b. Moreover, let ti(λ, h, T ) denote a support point of a local D- or
D1-optimal design on the interval [0, T ], then

ti(λ, h, T
h) = (ti(λ, 1, T ))h ,

ti(rλ, 1, T ) =
1

r
ti(λ, 1, rT )

for any r > 0. The weights of the local D- or D1-optimal design do not depend on the parameter
h and the factor r.

Note that we are interested in efficient designs for discriminating between the models (1.2) and
(1.1). Because this is most difficult if the parameter h is close to 1 we assume h = 1 throughout
this paper. This choice is also partially motivated by Lemma 2.1 which relates local D- or D1-
optimal designs in the Weibull regression model (1.2) for different values of h. An important further
consequence of Lemma 2.1 is that it is sufficient to calculate local D- or D1-optimal designs on a
fixed design space for various values of λ, where the remaining parameters a, b, h have been fixed.
Local optimal designs on a different design space or with respect to a different specification of the
parameters can then easily be calculated by a non-linear transformation. Our next result is of
some theoretical interest and the main tool for the calculation of the D1-optimal design.

Lemma 2.2. For any T > 0 the functions 1,−e−λt, te−λt, t ln(t)e−λt form a Chebyshev system on
the interval [0, T ].

It is well known [see Karlin and Studden (1966), Theorem II, 10.2] that if the system of functions
{f1, . . . , fm} is a Chebyshev system on the interval [0, T ], then there exists a unique function

m∑
i=1

p∗i fi(t) = p∗T f(t),(2.7)

with the following properties

(i) |p∗Tf(t)| ≤ 1 ∀ t ∈ [0, T ]

(ii) there exist m points t∗1 < . . . < t∗m such that p∗Tf(ti) = (−1)i−1, i = 1, . . . , m.
(2.8)

The function p∗Tf(t) is called Chebyshev polynomial, and the points t∗i are called Chebyshev
points. It turns out that in many cases the Chebyshev points are the support points of c-optimal
designs, i.e. designs minimizing cTM−1(ξ, θ)c for a given vector c ∈ R

m. In fact the following
result shows that the Chebyshev points of the system {1,−e−λt, te−λt, t ln(t)e−λt} are the support
points of the local D1-optimal design in the Weibull regression model.

Theorem 2.3. A D1-optimal design in the Weibull regression model (1.2) is uniquely determined
and supported at 4 points, say t∗1 < t∗2 < t∗3 < t∗4. The support points are the Chebyshev points

5



corresponding to the system {1,−e−λt, te−λt, t ln(t)e−λt}. Moreover, t∗1 = 0, t∗4 = T and the corre-
sponding weights w∗

1, . . . , w
∗
4 can be obtained explicitly as

w∗ = (w∗
1, . . . , w

∗
4)

T =
JF−1e4

14JF−1e4
,(2.9)

where the matrixes F and J are defined by

F = (f(t∗1, θ), f(t∗2, θ), f(t∗3, θ), f(t∗4, θ)),

J = diag(1,−1, 1,−1), respectively, and 14 = (1, 1, 1, 1)T .

It follows from (2.8) and Theorem 2.3 that the Chebyshev points t∗2, t
∗
3 can be found as a solution

of the system of equations

ψ(0) = 1 ψ(t2) = −1 ψ(t3) = 1
ψ(T ) = −1 ψ′(t2) = 0 ψ′(t3) = 0

with respect to the parameters t2, t3, p = (p1, p2, p3, p4)
T , where ψ(t) = pTf(t, θ). Some D1-

optimal designs for the Weibull regression model (1.2) are given in Table 1 for the design space
[0, T ] = [0, 10]. We observe that the support points of these designs depend sensitively on the
parameter λ while there are less changes in the weights.
The determination of local D-optimal designs is a little more complicated. We begin our discussion
with a result on minimally supported local D-optimal design. Throughout this paper a local
optimal design found in the subclass of k-point designs is called local optimal k-point design
(k ∈ N).

Lemma 2.4. The local D-optimal 4-point design for the Weibull regression model (1.2) with
h = 1 on the interval [0, T ] is uniquely determined and has equal masses at the points 0, t∗2, t

∗
3 and

T. The nontrivial support are the (uniquely determined) points maximizing the function

Φ(t2, t3, λ) = (Tt2 ln(T/t2) − t3t2 ln(t3/t2) − Tt3 ln(T/t3)) e
−λ(t2+t3+T )

−Tt2 ln(T/t2)e
−λ(t2+T ) + t3t2 ln(t3/t2)e

−λ(t2+t3) + Tt3 ln(T/t3)e
−λ(t3+T ).(2.10)

Lemma 2.5. Any local D-optimal design in the Weibull regression model (1.2) on the interval
[0, T ] contains the bounds of the design space in its support.

We were not able to prove that the local D-optimal design in the Weibull regression model (1.2)
is always supported at only four points. However, our numerical results strongly suggest that this
is indeed the case. We have calculated the best local D-optimal 4 point designs by maximizing
the function in (2.10) with respect to the points t2 and t3. The optimality of the derived designs
within the class of all designs was verified by the equivalence theorem of Kiefer and Wolfowitz
(1960). We did not find any case where the best 4-point design is not local D-optimal. In Table 2
we show some representative local D-optimal designs. Optimal designs on different design spaces
can easily be obtained by the transformation given in Lemma 2.1. We observe again that the local
D-optimal designs are rather sensitive with respect to changes in the parameter λ.
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2.3 Local optimal designs in the Richards-regression model

We now briefly mention the corresponding results for the Richards-regression model defined by
(1.5). In this case we have θ = (a, b, λ, h) and a straightforward calculation yields for the vector of
partial derivatives in (2.4)

f(t, θ) =

(
1

(1 + be−λt)h
,− ahe−λt

(1 + be−λt)h+1
,

ahbte−λt

(1 + be−λt)h+1
,−a ln(1 + be−λt)

(1 + be−λt)h

)T

.(2.11)

Theorem 2.6.
(a) The local D- or D1-optimal design in the Richards-regression model (1.5) does not depend on
the parameters a. Moreover, let ti(b, λ, h, T ) denote a support point of a local D- or D1-optimal
design on the interval [0, T ], then

ti(b, rλ, 1, T ) =
1

r
ti(b, λ, 1, rT )

for any r > 0. The weights of the local D- or D1-optimal design do not depend on the factor r.

(b) For any T > 0 the system defined by (2.11) is a Chebyshev system on the interval [0, T ]. The
D1-optimal design in the Richards-regression model (1.5) is uniquely determined and supported at
4 points, say t∗1 < t∗2 < t∗3 < t∗4. The support points are the Chebyshev points corresponding to
the system (2.11). Moreover, t∗4 = T and the corresponding weights w∗

1, . . . , w
∗
4 can be obtained

explicitly by formula (2.9) where the vector (2.11) is used instead of (2.6).

(c) The local D-optimal 4-point design in the Richards-regression model (1.5) on the interval [0, T ]
is uniquely determined and has equal masses at four points t∗1, t

∗
2, t

∗
3 and T .

In Table 3 and 4 we show some representative local D1- and D-optimal designs (where h = 1).
Note that for the Richards-regression models the local optimal designs depend on two parameters,
namely b and λ. In all our numerical examples the local D-optimal designs are supported at four
points, but a rigorous proof seems to be difficult. We observe again that the local optimal designs
are rather sensitive with respect to changes in the parameters b and λ.

3 Standardized maximin D- and D1-optimal designs

Note that the local D- and D1-optimal designs derived in the previous sections are not necessarily
robust with respect to the choice of initial values of the unknown parameters. In some cases the loss
of efficiency caused by a misspecification of the parameters in the local optimality criteria can be
substantial. A more robust approach to this problem is to, in some sense, quantify the uncertainty
in those parameters and to incorporate this additional information into the formulation of suitable
optimality criteria. This has been achieved in practice through the introduction of the concepts of
Bayesian and maximin optimality. In the present paper we will use the last named approach for
the construction of robust and efficient designs in the non-linear regression models (1.2) and (1.5),
which was proposed by Müller (1995) and Dette (1997). Our decision for the maximin approach
is motivated for two reasons. First it is our experience that in many cases the experimenter has
difficulties to specify an appropriate prior distribution, which is necessary for the definition of the
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Bayesian optimality criterion. Secondly, if the experimenter uses a noninformative prior (as the
uniform distribution) in the Bayesian optimality criterion it is demonstrated in Braess and Dette
(2005) that the standardized maximin optimal designs usually have more different support points
than Bayesian optimal designs with respect to such priors. As a consequence these designs are
more useful for testing the regression model against any deviations from the model assumptions.
To be precise let Ω be a set of plausible values for the parameter θ. We call a design ξ∗ standardized
maximin D-optimal with respect to the set Ω if it maximizes the worst D-efficiency,

min
θ∈Ω

effD(ξ, θ),(2.12)

where

effD(ξ, θ) = m

√
detM(ξ, θ)

detM(ξ∗D(θ), θ)
,(2.13)

ξ∗D(θ) is the local D-optimal design and m = 4 is the number of parameters in the extended
regression model. Similarly, a design ξ∗ is called standardized maximin D1-optimal with respect
to Ω if it maximizes the worst D1-efficiency

min
θ∈Ω

eff4(ξ, θ) ,(2.14)

where

eff4(ξ, θ) =
eT
4M

−1(ξ∗4(θ), θ)e4
eT
4M

−1(ξ, θ)e4
(2.15)

and ξ∗4(θ) is the local D1-optimal design. It is easy to see that the weights of a 4-point standardized
maximin D-optimal design have to be equal. The optimality of a given design with respect to one
of the introduced optimality criteria can easily be checked by the following equivalence theorem
[see Dette, Haines and Imhof (2004)].

Theorem 3.1. A design ξ∗ is standardized maximin D-optimal if and only if there exists a
distribution π∗ on the set

N(ξ∗) =
{
θ̃ ∈ Ω

∣∣∣ effD(ξ∗, θ̃) = min
θ∈Ω

effD(ξ∗, θ)
}
.

such that the inequality ∫
N(ξ∗)

fT (t, θ)M−1(ξ∗, θ)f(t, θ)dπ∗(θ) ≤ m,(2.16)

holds for all t ∈ [0, T ]. Moreover, there is equality in (2.16) for all support points of the standardized
maximin D-optimal design.
A design ξ∗ is standardized maximin D1-optimal if and only if there exists a distribution π̃∗ on the
set

Ñ(ξ∗) =
{
θ̃ ∈ Ω

∣∣∣ eff4(ξ
∗, θ̃) = min

θ∈Ω
eff4(ξ

∗, θ)
}
.
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such that ∫
Ñ(ξ∗)

eT
4M

−1(ξ∗, θ)fT (t)f(t)M−1(ξ∗, θ)e4
eT
4M

−1(ξ∗, θ)e4
dπ̃∗(θ) ≤ 1(2.17)

holds for all t ∈ [0, T ]. Moreover, there is equality in (2.17) for all support points of the standardized
maximin D1-optimal design.

In general the determination of standardized maximin D- and D1-optimal designs is a very hard
problem and can only be done numerically in all cases of practical interest. For our numerical
calculation we first looked at standardized maximin optimal 4-point designs. The optimality of
the best 4-point designs was checked by an application of Theorem 3.1. If the optimality of a
minimally supported design could be established, the procedure is terminated. Otherwise we
increase the number of support points and determine the standardized maximin optimal design
within the class of all 5-points designs. This procedure is repeated until it terminates (this usually
happens after a few steps). In the following we consider the Weibull and Richards-regression model
separately.

3.1 Efficient and robust designs for the Weibull regression model

Recall the definition of the exponential and Weibull regression model in (1.1) and (1.2). In the
following we are interested in a robust (with respect to misspecification of the parameters) design,
which is on the one hand efficient for discriminating between the models (1.1) and (1.2) and yields
on the other hand precise parameter estimates in both models. The proof of the next result follows
by the same arguments as given in the proof of Lemma 2.1 and is therefore omitted.

Lemma 3.2. The standardized maximin D- or D1-optimal design in the Weibull regression model
(1.2) does not depend on the parameters a and b. Moreover, if t∗i (λ1, λ2, h, T ) denote the support
points of the standardized maximin D- or D1-optimal design, where the minimum is taken with
respect to the interval λ ∈ [λ1, λ2], then

t∗i (λ1, λ2, h, T
h) = (t∗i (λ1, λ2, 1, T ))h ,

t∗i (rλ1, rλ2, 1, T ) =
1

r
t∗i (λ1, λ2, 1, rT )

for any r > 0. The weights of the the standardized maximin D- or D1-optimal design do not depend
on the parameter h and the factor r.

Similar arguments as presented in Section 2 show that the bounds of the design space [0, T ] are
always support points of the standardized maximin D- and D1-optimal design.

Lemma 3.3. Any standardized maximin D- or D1-optimal design in the Weibull regression model
(1.2) contains the bounds of the design space in its support.

Lemma 3.2 allows us to consider parameter spaces of the form

Ω = {1} × {1} × [λ1, λ2] × {1}
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in the standardized maximin optimality criteria (2.12) and (2.14) (note that we assume h = 1
addressing the most difficult case with respect to the problem of testing the hypotheses (1.3)).
Therefore we briefly call the designs standardized maximin optimal with respect to the interval
[λ1, λ2] in the following.
In Table 5 we present some standardized maximin D-optimal designs for the Weibull regres-
sion model on the interval [0, 10] with respect to various intervals [λ1, λ2], i.e. we choosed θ =
(a, b, λ, h)T ∈ Ω = {1} × {1} × [λ1, λ2] × {1} in the optimality criterion (2.12). Optimal designs
with respect to other design spaces can be obtained by an application of Lemma 3.2. We observe
that the number of support points is increasing with the length of the interval [λ1, λ2]. For exam-
ple, if [λ1, λ2] = [0.6, 4], the standardized maximin D-optimal design for the Weibull model (1.2)
has 6 support points. The table also shows the minimum D-efficiency over the interval [λ1, λ2].
This minimal efficiency corresponds to the worst case calculated over the interval [λ1, λ2] and is at
least 90%. Consequently, standardized maximin D-optimal designs are rather robust (with respect
to misspecification of the initial parameter λ) and efficient for the estimation of the parameters in
the Weibull regression model (1.2).
The corresponding results for the standardized maximin D1-optimal designs can be found in Table
6. In this case the minimum D1-efficiency of the standardized maximin D1-optimal designs is
approximately 65%. This indicates that the standardized maximin D1-optimal designs are more
sensitive with respect to the specification of the interval [λ1, λ2] than the standardized maximin
D-optimal designs.
We continue our discussion with a comparison of the standardized maximin optimal designs with
respect to their performance for the estimation of the parameters in the non-linear regression
models (1.1) and (1.2). For this we introduce for two designs, say ξ1 and ξ2, the quantity

Ci(ξ1, ξ2, θ) = Ci(ξ1, ξ2, λ) =
eT

i M
−1(ξ1, λ)ei

eT
i M

−1(ξ2, λ)ei
,(2.18)

where ei denotes the ith unit vector in R
4 (i = 1, . . . , 4) and M(ξ, λ) = M(ξ, θ) with θ = (1, 1, λ, 1).

Note that the variance of the maximum likelihood estimate for the parameter eT
i θ in the Weibull

regression model is (asymptotically) proportional to eT
i M

−1(ξ1, θ)ei, if observations are taken ac-
cording to the design ξ1. Therefore the design ξ2 is more efficient than the design ξ1 for the
estimation of the ith parameter if and only if Ci(ξ1, ξ2, λ) > 1. In Table 7 we compare the stan-
dardized maximin D- and D1-optimal designs with respect to their performance of estimating the
individual parameters in the Weibull regression model (1.2) for some representative values of the
parameter λ. The corresponding results for the exponential regression model (1.1) can be found in
Table 8. We can see from Table 7 that the standardized maximin D-optimal design ξ∗D is substan-
tially more efficient for estimating the parameter a, b, λ in the Weibull regression model than the
standardized maximin D1-optimal design ξ∗D1

. The differences are substantial and at least 65%.
On the other hand the design ξ∗D1

is more efficient for estimating parameters h than the design ξ∗D,
which is obvious by its construction. However, the improvement in the variance of the estimate for
the parameter h by choosing the standardized maximin D1-optimal design ξ∗D1

is usually smaller
(approximately 10%) compared to the loss of efficiency for estimating the other parameters. From
Table 8 we see that the performance of the standardized maximin optimal designs in the reduced
model (1.1) is very similar. In the exponential regression model (1.1) the standardized maximin D-
optimal design ξ∗D from the Weibull model is substantially more efficient for estimating parameters
a, b, λ than the standardized maximin D1-optimal design.
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We finally investigate the performance of the standardized maximin D-optimal design from the
Weibull model (1.2) in the sub-model (1.1). For this purpose we show in Table 9 the values Ci for
the standardized maximin D-optimal design ξ∗D from the Weibull model (1.2) and the standardized
maximin D-optimal design ξ̃∗D from the sub-model model (1.1). We observe that the optimal design
from the extended model yields sufficiently accurate estimates in the reduced model (1.1) (note
that we are comparing with respect to the best design in this model). Summarizing our results we
recommend to use standardized maximin D-optimal designs in the Weibull regression model (1.2)
for the following reasons:

(1) Standardized maximin D-optimal designs are very efficient for a rather broad range of the
non-linear parameters in the model.

(2) Standardized maximin D-optimal designs have approximately 90% efficiency for testing the
model (1.1) against (1.2).

(3) Standardized maximin D-optimal designs are also very efficient for the estimation of the pa-
rameters in the reduced model (1.1) (the efficiency with respect to the standardized maximin
D-optimal design for the reduced model is approximately 80%).

(4) Standardized maximin D-optimal designs often advice the experimenter to take observations
at a large number of different locations. For this reason these designs can also be used for
testing the postulated model (1.2) against models with more than four parameters by means
of a goodness-of-fit test.

Example 3.4. We briefly re-design an experiment in order to demonstrate the potential benefits of
using standardized maximin D-optimal designs for the analysis with the Weibull-regression model.
For this we reanalyze the data presented in Ratkowsky (1983), p. 88, which shows the water
content of bean root cells (Y ) versus the distance from tip (t). We fitted the Weibull regression
model (1.1) to this data and the results are depicted in Table 10.
The parameter estimates are given by â = 21.104, b̂ = 19.815, λ̂ = 0.0018 and ĥ = 3.180, while
estimate of the variance is obtained as σ̂2 = 0.364. The design used in the experiment is a uniform
design with 15 observations on the interval [0.5, 14.5] while the standardized maximin D-optimal
design with respect to the interval [λ1, λ2] = [0.0003, 0.0033] is supported at 6 points and given by(

0.5 4.8242 7.3427 9.7347 11.854 14.5
0.2354 0.1618 0.1861 0.0956 0.1197 0.2014

)
(2.19)

and this design has a minimal D-efficiency of 89.9%. The performance of the two designs is
illustrated in Table 11, where we show the quantities

Dii = eT
i M

−
i (ξ, â, b̂, λ̂, ĥ)ei i = 1, . . . , 4(2.20)

which are proportional the asymptotic variances of the maximum likelihood estimates for the
parameters a, b, λ and h, respectively. We observe a substantial improvement in the variance of
the estimates for the parameters a and b (between 25 - 35%), a moderate decrease in the variance of
the estimate ĥ (10%) and essentially no difference with respect to the estimation of the parameter
λ.
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Because the quantities Dii are based on the asymptotic theory we also performed a small simulation
study to investigate if these considerations can be transferred to a finite sample sizes. For this
we generated N = 15 observations according to the Weibull regression model with a = 21.1, b =
19.8, λ = 0.0018, h = 3.18, σ = 0.603 and normally distributed errors using the design (2.19).
In other words we took 4,2,3,1,2 and 3 observations at the points given in (2.19). We used 600
simulation runs to estimate the variances of the least squares estimates for the parameters a, b, λ
and h. The results (multiplied with the factor N/σ2) are displayed in the second row of Table 11
and confirm the superiority of the standardized maximin D-optimal design in the finite sample
situation.

3.2 Efficient and robust design for the Richards-regression model

In this section we briefly investigate the performance of standardized maximin D1- and D-optimal
designs in the Richards-regression model (1.5). Note that the minimum in the optimality criterion
now has to be taken over a two dimensional space of the form

Ω = {1} × [b1, b2] × [λ1, λ2] × {1}(2.21)

and as a consequence the calculation of the optimal designs is substantially more difficult. We
present some representative results for the D1- and D-optimality criterion in Table 13 and 12, re-
spectively. Again we observe that the standardized maximin D-optimal designs are rather efficient
for a broad range of the parameters (the minimal D-efficiency in the set Ω is at least 87%) while
the standardized maximin D1-optimal designs are more sensitive with respect to the choice of the
set Ω.
A final comparison of the standardized maximin optimal designs with respect to their performance
for estimating the individual parameters in model (1.5) and (1.4) is given in Table 14 and 15,
respectively. The conclusions are very similar as for the Weibull model. In the Richards regression
model (1.5) both designs are comparable, where the D-optimal designs are substantially more
efficient for estimating the parameter a. The other parameters are usually better estimated by the
standardized D1-optimal design (but the differences are less than 10%). However, in the reduced
model (1.4) the standardized maximin D-optimal design yields substantially smaller variances of
all parameter estimates than the standardized maximin D1-optimal design. For these reasons we
also recommend the application of standardized maximin D-optimal designs for inference in the
Richards regression model.

4 Conclusions

In this paper we have investigated a strategy which takes two objectives in the construction of
optimal designs for nonlinear regression models into account. First, the designs should be robust
with respect to a misspecification of the unknown parameters in the sense that they yield reasonable
efficiencies for the estimation of the parameters in the assumed model. Secondly, the constructed
designs should give the experimenter the flexibility do check the postulated model assumptions
with reasonable efficiency.
For this purpose we propose to consider an extended model, which reduces for a special choice
of the parameters to the model under consideration. In this extended model we use a maximin
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approach to find optimal designs which are robust with respect to misspecification and study
the performance of the resulting designs in the extended and original model. We concentrate on
two models: the exponential model (where the extension is the Weibull model) and the logistic
regression model (where the extension is the Richards-regression model). The D-optimality and
D1-optimality criterion are considered, where the lastnamed criterion is particularly useful for
discriminating between the assumed model and its extension. It is demonstrated that standardized
maximin D-optimal designs yield a satisfactory solution to the problem. These designs are usually
very efficient for model discrimination. They also allow precise estimation of all coefficients in
the original model and in the extended model. The latter property is of particular importance if
the assumed model will be rejected by means of a goodness-of-fit test. The standardized maximin
D1-optimal designs are slightly more efficient for model discrimination but have substantially lower
efficiencies for estimating the remaining parameters in the extended model and all parameters in
the assumed model. For this reason the application of standardized maximin D-optimal designs
from the extended model are recommended. We also note that these designs usually have a large
number of support points which gives the experimenter the possibility to test the postulated form
of the regression model against several other alternatives.

5 Appendix: Proofs

Proof of Lemma 2.1. Note that |M(ξ, a, b, λ, h)| = b4|M(ξ, 1, 1, λ, h)| by elementary properties of
the determinant and consequently local D- or D1-optimal designs do not depend on the parameters
a and b. Let I(x, λ, h) = f(x, 1, 1, λ, h)fT (x, 1, 1, λ, h). The remaining statement of the Lemma
follows from identities

det

∫ T h

0

I(t, λ, h)dξ(t) =
1

h2
det

∫ T h

0

I(th, λ, 1)dξ(t) =
1

h2
det

∫ T

0

I(t, λ, 1)dξ(t1/h)

and

det

∫ T

0

I(t, rλ, 1)dξ(t) =
1

r2
det

∫ T

0

I(rt, λ, 1)dξ(t) =
1

r2
det

∫ rT

0

I(t, λ, 1)dξ(t/r).

�

Proof of Lemma 2.2. Let g(t) = pTf(t) be an arbitrary linear combination of the functions
1,−e−λt, te−λt, t ln(t)e−λt, then it is easy to see that the function (g′(t)eλt)′′ = const (1 + λt)/t2

does not have any roots in the interval [0, T ]. Consequently, the function g(t) has at most 3 roots,
which proves the Chebyshev property for system of functions 1,−e−λt, te−λt, t ln(t)e−λt. �

Proof of Theorem 2.3. The proof follows by a standard argument from Lemma 2.2 . To be
precise note that Lemma 2.2 shows that the functions 1, e−λt, te−λt, t ln(t)e−λt form a Chebyshev
system on the interval [0, T ]. By similar arguments as given in the proof of this lemma the functions
1, e−λt, te−λt form also a Chebyshev system on [0, T ]. Consequently,∣∣∣∣∣∣∣∣∣

1 1 1 0

e−λx1 e−λx2 e−λx2 0

x1e
−λx1 x2e

−λx2 x3e
−λx3 0

x1 ln(x1)e
−λx1 x2 ln(x2)e

−λx2 x3 ln(x3)e
−λx3 1

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
1 1 1

e−λx1 e−λx2 e−λx3

x1e
−λx1 x2e

−λx2 x3e
−λx3

∣∣∣∣∣∣∣ �= 0
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for all 0 ≤ x1 < x2 < x3 ≤ T, and we obtain from Theorem 7.7 (Chap X) in Karlin and Studden
(1966) that the localD1-optimal design is supported at the Chebyshev points. Finally, the assertion
regarding the weights of the local D1-optimal design follows from Pukelsheim and Torsney (1991).
�

Proof of Lemma 2.4. By standard arguments the weights of a local D-optimal 4-point design
are equal [see Silvey (1980)]. Note that the determinant of the information matrix in the Weibull
regression model (1.2) of a 4-point design with equal weights at the points t1, . . . , t4 is given by

M(ξ, θ) =
(1

4

)4

[φ̃(t1, t2, t3, t4)]
2,

where the function

φ̃(t1, t2, t3, t4) = det(f(t1, θ), f(t2, θ), f(t3, θ), f(t4, θ))(2.22)

is positive for any t1 < t2 < t3 < t4 due to the Chebyshev property of the components of the vector
f(t, θ) = (1,−e−λt, te−λt, t ln(t)e−λt)T . Fix t1, t2, t3 and consider the function ψ4(t) = φ̃(t1, t2, t3, t).
Calculating the first derivative yields ψ′

4(t) > 0 and consequently the function ψ4 is strictly in-
creasing. Similarly the function ψ1(t) = φ̃(t, t2, t3, t4) is decreasing with respect to t < t1 (calculate
the first derivative and check ψ′

1(t) < 0). Consequently the bounds of the design space are support
points of the local D-optimal design.
For a 4-point design containing 0 and T as support point it follows that

Φ(t2, t3, λ) = φ̃(0, t2, t3, T )

= (Tt2 ln(T/t2) − t3t2 ln(t3/t2) − Tt3 ln(T/t3)) e
−λ(t2+t3+T )

−Tt2 ln(T/t2)e
−λ(t2+T ) + t3t2 ln(t3/t2)e

−λ(t2+t3) + Tt3 ln(T/t3)e
−λ(t3+T ).

Note that the equation
∂Φ

∂t2
(t2, t3) = 0

has only one root in the interval t2 ∈ (0, t3) and that the equation

∂Φ

∂t3
(t2, t3) = 0

has only one root in the interval t3 ∈ (t2, T ). Consequently the system of these two equations has
only one solution and the local D-optimal 4-point design is unique. �

Proof of Lemma 2.5. Let ξ be k-point design with weights w1, . . . , wk at the support points
t1 < t2 < . . . < tk. Due to the Cauchy-Binet formula

detM(ξ, θ) =
∑

1≤i1<i2<i3<i4≤k

wi1wi2wi3wi4[φ̃(ti1 , ti2 , ti3, ti4)]
2,

where the function φ̃ is defined in (2.22). It follows from the proof of Lemma 2.4 that detM(ξ, θ)
is decreasing with respect to the smallest support point t1 and increasing with respect the largest
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support tk. Consequently, the support of any D-optimal design contains the boundary points 0
and T of the experimental domain. �
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Table 1: Some local D1-optimal designs in the Weibull regression model (1.2) with design space
[0, 10].

λ t1 t2 t3 t4 w1 w2 w3 w4

0.1 0 1.129 5.959 10 0.268 0.403 0.233 0.097

1 0 0.292 1.839 10 0.229 0.364 0.271 0.136

5 0 0.058 0.368 10 0.229 0.364 0.272 0.136

Table 2: Some local D-optimal designs in the Weibull regression model (1.2) with design space
[0, 10]. The optimal design has equal masses at the four support points.

λ t1 t2 t3 t4

0.1 0 1.320 5.560 10

0.5 0 0.665 3.096 10

5 0 0.070 0.330 10

Table 3: Some local D1-optimal designs in the Richards-regression model (1.5) on the interval
[0, 10], (t1 = 0, t4 = T = 10).

b λ t2 t3 w1 w2 w3 w4

0.2 0.1 2.099 6.998 0.171 0.336 0.330 0.164

0.2 1 0.496 2.171 0.173 0.323 0.327 0.177

0.2 5 0.099 0.435 0.173 0.322 0.327 0.177

5 0.1 3.125 7.960 0.193 0.347 0.310 0.150

5 1 1.491 3.634 0.291 0.275 0.274 0.161

5 5 0.299 0.729 0.291 0.274 0.274 0.161

Table 4: Some local D-optimal designs in the Richards-regression model (1.5) on the interval [0, 10].
The optimal design has equal masses at the four support points (t1 = 0, t4 = 10).

b λ t2 t3 b λ t2 t3
0.2 0.1 2.334 6.708 5 0.1 3.425 7.725

0.2 1 0.560 2.019 5 1 1.587 3.418

0.2 5 0.112 0.404 5 5 0.318 0.685
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Table 5: Some standardized maximin D-optimal designs in the Weibull regression model (1.2) with
respect to the interval [λ1, λ2]. The design space is the interval [0, 10].

λ1 λ2 t1 t2 t3 t4 t5 t6 w1 w2 w3 w4 w5 w6 min eff
0.6 1 0 0.44 2.08 10 0.25 0.25 0.25 0.25 0.9710
0.6 2.5 0 0.21 0.82 2.39 10 0.24 0.19 0.20 0.15 0.21 0.9149
0.6 4 0 0.13 0.51 1.46 3.11 10 0.23 0.16 0.20 0.12 0.11 0.19 0.8951
0.5 1 0 0.48 2.23 10 0.25 0.25 0.25 0.25 0.9504
0.1 1 0 0.50 1.92 5.27 10 0.24 0.19 0.19 0.16 0.22 0.9153

Table 6: Some standardized maximin D1-optimal designs in the Weibull regression model (1.2)
with respect to the interval [λ1, λ2]. The design space is the interval [0, 10].

λ1 λ2 t1 t2 t3 t4 t5 t6 w1 w2 w3 w4 w5 w6 min eff
0.6 1 0 0.38 2.22 10 0.24 0.37 0.26 0.13 0.8498
0.6 2 0 0.23 0.96 2.65 10 0.23 0.31 0.19 0.17 0.10 0.6946
0.6 4 0 0.13 0.48 1.34 2.97 10 0.22 0.24 0.21 0.13 0.11 0.09 0.6284
0.5 1 0 0.40 2.00 3.51 10 0.23 0.36 0.19 0.09 0.12 0.7689
0.1 1 0 0.48 1.93 5.26 10 0.24 0.31 0.20 0.16 0.10 0.6816

Table 7: Comparison of standardized maximin D- and D1-optimal designs for the Weibull regres-
sion model with respect to the interval [λ1, λ2]. The design space is [0, 10] and the table shows the
efficiencies Ci = Ci(ξ

∗
D1
, ξ∗D, λ) defined by (2.18) in model (1.2) for various values of λ ∈ [λ1, λ2].

λ = λ1 λ = (λ1 + λ2)/2 λ = λ2

λ1 λ2 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

0.6 1 1.86 1.47 1.21 0.82 1.87 1.47 1.34 0.85 1.87 1.47 1.52 0.95
0.6 1.5 1.99 1.60 1.25 0.91 1.71 1.42 1.35 0.88 1.47 1.26 1.27 0.87
0.6 2 2.01 1.61 1.24 0.93 1.63 1.36 1.30 0.87 1.42 1.22 1.18 0.88

Table 8: Comparison of standardized maximin D- and D1-optimal designs for the Weibull regres-
sion model with respect to the interval [λ1, λ2]. The design space is [0, 10] and the table shows the
efficiencies Ci = Ci(ξ

∗
D1
, ξ∗D, λ) defined by (2.18) in model (1.1) for various values of λ ∈ [λ1, λ2].

λ = λ1 λ = (λ1 + λ2)/2 λ = λ2

λ1 λ2 C1 C2 C3 C1 C2 C3 C1 C2 C3

0.6 1 1.83 1.35 1.33 1.73 1.24 1.37 1.57 1.15 1.30
0.6 1.5 1.90 1.42 1.34 1.53 1.16 1.24 1.35 1.10 1.08
0.6 2 1.94 1.48 1.32 1.49 1.15 1.17 1.33 1.10 1.00
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Table 9: Comparison of standardized maximin D-optimal designs ξ∗D for the Weibull model (1.2)
and standardized maximin D-optimal designs ξ̃∗D for the sub-model model (1.1). The design space
is [0, 10] and the table shows the quantities Ci = Ci(ξ̃

∗
D, ξ

∗
D, λ) in the model (1.1).

λ = λ1 λ = (λ1 + λ2)/2 λ = λ2

λ1 λ2 C1 C2 C3 C1 C2 C3 C1 C2 C3

0.6 1 0.76 0.90 0.79 0.79 0.93 0.68 0.86 0.96 0.69
0.6 1.5 0.69 0.88 0.82 0.86 0.96 0.68 1.03 0.99 0.89
0.6 2 0.75 0.88 0.89 0.87 0.93 0.92 0.90 0.91 0.96

Table 10: Statistical analysis of the data in Ratkowsky (1983), p. 88. The table shows the parameter
estimates, standard deviations, resulting t-statistic, p-value and the upper (IU) and lower (IL)
confidence bound.

θ estimate st. dev. t p-value IL IU

a 21.104 0.379 55.683 0.000 20.269 21.938
b 19.815 0.620 31.964 0.000 18.450 21.179
λ 0.0018 0.0010 1.771 0.104 -0.0004 0.0040
h 3.180 0.285 11.170 0.000 2.553 3.806

Table 11: The quantities (2.20) in the Weibull regression model for the uniform design on the
interval [0.5, 14.5] and the standardized maximin D-optimal design in (2.19). First row: asymptotic
theory; second row: simulated variances obtained from N = 15 observations.

D-maximin design uniform design

D11 D22 D33 D44 D11 D22 D33 D44

asymptotic 3.47 8.11 0.000028 2.27 4.27 11.56 0.000031 2.46

finite 3.58 8.43 0.000039 2.66 4.71 11.99 0.000038 2.91

Table 12: Some standardized maximin D-optimal designs in the Richards-regression model (1.5)
on the interval [0, 10] with respect to the parameter space [b1, b2] × [λ1, λ2].

b1 b2 λ1 λ2 t1 t2 t3 t4 t5 t6 w1 w2 w3 w4 w5 w6 min eff
0.8 1.2 0.8 1.2 0 0.82 2.48 10 0.25 0.25 0.25 0.25 0.940
0.6 1.4 0.6 1.4 0 0.69 1.84 3.84 10 0.24 0.19 0.20 0.15 0.22 0.901
0.4 1.6 0.4 1.6 0 0.52 1.50 2.91 5.44 10 0.22 0.15 0.19 0.12 0.14 0.19 0.871
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Table 13: Some standardized maximin D1-optimal designs in the Richards-regression model (1.5)
on the interval [0, 10] with respect to the parameter space [b1, b2] × [λ1, λ2].

b1 b2 λ1 λ2 t1 t2 t3 t4 t5 t6 w1 w2 w3 w4 w5 w6 min eff
0.8 1.2 0.8 1.2 0 0.71 1.97 3.02 10 0.20 0.30 0.14 0.19 0.16 0.735
0.6 1.4 0.6 1.4 0 0.66 1.19 1.87 3.76 10 0.20 0.25 0.01 0.22 0.18 0.14 0.631
0.4 1.6 0.4 1.6 0 0.55 1.45 2.84 5.22 10 0.19 0.19 0.22 0.16 0.13 0.11 0.578

Table 14: Comparison of standardized maximin D- and D1-optimal designs in the Richards-
regression model on the interval [0, 10] with respect to various sets [b1, b2] × [λ1, λ2]. The table
shows the efficiencies Ci = Ci(ξ

∗
D1
, ξ∗D, b, λ) defined by (2.18) in model (1.5).

λ = λ1, b = 1 λ = (λ1 + λ2)/2, b = 1 λ = λ2, b = 1
b1 b2 λ1 λ2 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

0.8 1.2 0.8 1.2 1.55 0.89 0.92 0.90 1.48 1.00 1.08 1.02 1.38 0.98 1.05 0.99
0.7 1.3 0.7 1.3 1.51 0.92 0.93 0.93 1.43 0.91 0.97 0.93 1.28 0.91 0.98 0.92
0.6 1.4 0.6 1.4 1.50 0.95 0.95 0.96 1.40 0.90 0.95 0.91 1.24 0.90 0.97 0.91

Table 15: Comparison of standardized maximin D- and D1-optimal designs in the Richards-
regression model on the interval [0, 10] with respect to various sets [b1, b2] × [λ1, λ2]. The table
shows the efficiencies Ci = Ci(ξ

∗
D1
, ξ∗D, b, λ) defined by (2.18) in model (1.4).

λ = λ1, b = 1 λ = (λ1 + λ2)/2, b = 1 λ = λ2, b = 1
b1 b2 λ1 λ2 C1 C2 C3 C1 C2 C3 C1 C2 C3

0.8 1.2 0.8 1.2 1.45 1.06 1.19 1.33 1.06 1.19 1.22 1.09 1.14
0.7 1.3 0.7 1.3 1.45 1.06 1.13 1.29 1.06 1.15 1.17 1.10 1.09
0.6 1.4 0.6 1.4 1.48 1.10 1.09 1.28 1.08 1.11 1.15 1.12 1.04
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