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Abstract

The issue of suitable similarity measures for a particular kind of genetic

data - so called SNP data - arises, e.g., from the GENICA (The Interdiscipli-

nary Study Group on Gene Environmental Interactions and Breast Cancer

in Germany) case-control study of sporadic breast cancer. The GENICA

study aims to investigate the influence and interaction of single nucleotide

polymorphic (SNP) loci and exogenous risk factors. It is very unlikely that

there exists one main effect, say only one polymorphism, being responsible

for such a complex disease as sporadic breast cancer as the role of a single

gene within the carcinogenic process is limited (Garte, 2001). Nevertheless,

it is assumed that a number of interacting SNPs in combination with certain

environmental risk factors increase the individual susceptibility.

The search for SNP patterns in the present data set may be performed

by a variety of clustering and classification approaches. Here we consider

the problem of adequate similarity measures for variables or subjects as an

indispensable basis for a further cluster analysis. The term ’similarity’ is

still vague for SNP data. A main problem arises by the general structure

of such data sets: the proportion of hetero- or homozygous SNPs is rather

small compared with the homozygous reference sequence. Thus, the rele-

vant information of combinations of genetic alterations is often masked by a

huge amount of common occurrences of homozygous reference types. There-

fore, we examine different similarity measures, conventional ones as well as

new coefficients which we created especially for SNP data. Furthermore, we

compare the resulting partitions with each other adapting the clustering of

clustering methods of Rand (1971) for different similarity measures.

Key Words: cluster analysis, clustering clustering methods, GENICA, sim-
ilarity, single nucleotide polymorphism, sporadic breast cancer

1



Müller, Selinski and Ickstadt Similarity Measures for SNP Data

1 Introduction

Everybody’s DNA is unique. Though we share 99.9% of our DNA there remain
about 3 million differences between two individuals. Most of the genetic variation
consists of single nucleotide changes. Such a single base exchange - or a deletion or
addition of base pairs at one gene locus - is called single nucleotide polymorphism

(SNP) if it is present in at least 1% of the population.
Some SNPs affect the outcome products coded by the corresponding gene and
are therefore considered, in interaction with other SNPs and in combination with
further factors, to alter the risk for developing a particular disease.
This paper is based on the case-control study GENICA which investigates genetic
and environmental factors with respect to their impact on the risk of developing
sporadic breast cancer. The central question we examine is whether we can detect
subgroups of SNP loci which seem to interact and whether these groups vary be-
tween the cases and controls or not. In other words, we try to divide the variables
into groups whose elements are similar to each other.
The term similarity is still vague for SNP data. Usually a SNP occurs rather infre-
quently compared with the homozygous reference type of a gene locus observing a
number of individuals. As a consequence the relevant information for comparing
two SNP loci - if two SNPs share a heterozygous or homozygous variant - is often
masked by a huge amount of 0-0-matches i.e., a combination of two homozygous
reference types.
In this paper we examine different similarity measures (see section 3.2), con-
ventional ones, e.g. Pearson’s coefficient of contingency, the Simple Matching
Coefficient and Jaccard’s Coefficient, as well as new coefficients which we created
especially for SNP data (cf. Selinski and Ickstadt, 2005). In particular, we com-
pare the resulting partitions with each other, trying to find groups of measures
having the same effect and we evaluate the differences between clusterings of cases
and controls.
After short summaries of the genetic background and the study the GENICA data
set as well as simulated data are introduced in section 2. The applied methods
containing similarity measures, cluster algorithm and clustering clustering meth-
ods by Rand are described in section 3. We analyse the performances of the
different similarity measures on the real data set, compare them according to our
adaption of Rand’s method and evaluate the differences between cases and con-
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trols in section 4. To confirm our results we cluster the simulated data in section
5. Section 6 gives a final discussion as well as an outlook.

2 Background

The search for interactions between different SNP loci plays an important role in
cancer research. The reason is quite clear as it is very unlikely that only one SNP
or one variant of a gene shows a main effect which can claim responsibility for
developing a disease as complex as cancer. This fact is not astonishing because
the role of a single gene within the carcinogenic process is limited (Garte, 2001).
Furthermore, the effect of a single base pair variation on a metabolic process is
usually also restricted depending on its position within a gene or a regulating
sequence and, hence, on its impact on the gene product of gene regulation and
the role of the associated gene product in the metabolic pathway. For detailed
information about the genetic background see Snustad and Simmons (1999).
Still, if one individual carries several gene variations, maybe combined with a
certain exposure to critical substances, this combination of factors may change
the risk of developing cancer.
For most SNPs it is not clear yet which impact they have on the associated gene
products and their function. However, different genes (and the enzymes they
code) can be related to different pathways. A pathway is the field in which a
specific gene product participates, e.g., the pathway of drug metabolism. So from
the assumption that a SNP alters the respective enzyme, it can be deducted which
part of the metabolism might be affected.
The data set for the present paper is provided by the German GENICA study on
sporadic breast cancer. It aims to investigate the influence of SNPs in combination
with epidemiological and clinical factors on the risk of breast cancer in women.

2.1 GENICA Study

The GENICA Study is part of the German Human Genome Project (DHGP) and
aims to find relevant interactions of potential risk factors which alter the suscep-
tibility for breast cancer. It is an aged-matched population-based case-control
study.
The recruitment of test persons was carried out in two phases in the greater Bonn
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region between 2000 and 2002. In the second phase it should include the data
of 1000 cases (recruited in hospitals and selected by several criteria) as well as
of 1000 controls from the same region. Our analysis bases on the first period of
recruitment and comprises 1260 women.
All test persons were interviewed as well as genotyped using PCR and MALDI-
TOF (Pusch et al., 2002). In this paper, we concentrate on the genetic informa-
tion.

2.2 GENICA Data

The data we use consist of 68 SNP variables measured in 610 cases and 650 con-
trols. They are coded according to the number of occurring polymorphisms, 0 if
they show the homozygous reference type, 1 if the variant occurs in one chromo-
some and 2 if the variant is present in both chromosomes. A special feature of
these data is that most observations show the homozygous reference type.
All empirical frequency distributions of the SNPs meet the Hardy-Weinberg equi-
librium (HWE) in the control group, at least if the variant categories contain a
reasonable number of entries to guarantee that the asymptotic χ2-test for devia-
tion holds (for details on HWE testing see Hosking et al. (2004)).
Some values are missing, caused, e.g., by detection problems during the labora-
tory work. We take only women with five or less missings into further account.
That means that 1165 women (546 cases and 619 controls) remain in the data set
which corresponds to 92.46%.
In this paper, all computations will be done for cases and controls separately. The
names of the SNPs are encoded using numbers for the gene they belong to and
their specific position on the gene.

2.3 Simulated Data

In addition to the real data set from the GENICA study we use simulated data
to evaluate the effects of the similarity coefficients. The data are generated by a
software program called SNaP (Nothnagel, 2002). It simulates haplotypes first.
A haplotype is a gene sequence on one chromosome, whereas genotypes do not
contain the information how the SNPs are distributed on the two chromosomes.
SNaP simulates haplotypes by employing the idea that there are haplotype blocks
with high linkage disequilibrium within the block. A limited number of different
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haplotypes per block is generated and stored in a pool. The genotype of a person
is derived from two haplotypes per block which are randomly drawn from this
pool.
We simulate 35 SNP variables in total from five blocks labelled A to E for 500 cases
and 500 controls. The disease status of each person depends on four causative
SNPs, each of them belonging to a different block. Three of them contribute
in a dominant way and cause the disease as homo- and heterozygous variants.
The fourth SNP only impacts the disease status if it shows a homozygous variant
genotype. A person carrying all four SNPs in the described states is assigned to
the case collective, otherwise the person contributes to the control group.

3 Methods

In this paper we compare the performance of similarity measures for cluster analy-
sis introduced by Selinski and Ickstadt (2005). First we will give a short outline
of the similarity measures and clustering algorithms in general and then continue
introducing the considered measures. Finally we present Rand’s method (1971)
for the comparisons of clusterings.

3.1 Similarity and Distance

The data used in the following context consist of n objects and m variables, given
as an n×m matrix. The rows represent the objects and the columns stand for the
variables (Fahrmeir et al., 1996). V = {V1, . . . , Vm} describes the set of variables.
To define similarity between elements of V , we introduce a function S : V ×V → R

which meets the first three of the following assumptions:

1. S(Vk, Vl) > S(Vo, Vl), if Vl is more similar to Vk than
to Vo, Vk �= Vo; Vk, Vl, Vo ∈ V comparability

2. S(Vi, Vj) = S(Vj, Vi), i, j = 1, . . . , m symmetry
3. S(Vi, Vj) ≤ S(Vi, Vi), i, j = 1, . . . , m natural order
4. S(Vi, Vj) ≥ 0, i, j = 1, . . . , m positivity
5. S(Vi, Vi) = 1, i = 1, . . . , m normality.

Assumptions 4 and 5 are often useful, though not necessary for S for being a
similarity measure.
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Variable Vl

Variable Vk 1 2 · · · q
∑

1 n11 n12 · · · n1q n1.

2 n21 n22 · · · n2q n2.

...
...

...
...

...
...

p np1 np2 · · · npq np.∑
n.1 n.2 · · · n.q n

Table 1: Contingency table

In practical investigations, distances rather than similarities are of interest. For
categorical data, the similarity S is computed first and then transformed into a
distance D (Cox and Cox, 2001). Large similarities correspond to small distances
and vice versa. Therefore we use the following transformation if S ∈ [0, 1]:

D(Vk, Vl) = 1 − S(Vk, Vl), for all Vk, Vl ∈ V. (1)

If S /∈ [0, 1], we add the absolute value of the minimum to S (if the minimum is
negative, otherwise skip this step) and apply

D(Vk, Vl) = 1 − S(Vk, Vl)

max S(Vi, Vj)
, for all Vk, Vl ∈ V, i, j = 1, . . . , m. (2)

The returned distance yields D ∈ [0, 1].

3.2 Similarity Measures

The introduction of the conventional similarity measures will be quite short, for
details see Anderberg (1973) and Cox and Cox (2001). Variables Vk and Vl with
p and q categories, respectively, will be used as examples to explain the principles
of the measures (see Table 1). Using the theory of independence analysis, we
consider the elements of V as random variables and choose two χ2-statistics to be
the first candidates for meaningful similarity measures. With

eab =
na. · n.b

n
, a = 1, . . . , p , b = 1, . . . , q

we receive a first estimate for the level of independence between the two variables
under investigation by:

χ2 =

p∑
a=1

q∑
b=1

(nab − eab)
2/eab = n

(
p∑

a=1

q∑
b=1

n2
ab

na.n.b

− 1

)
.
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To standardise χ2, we use n as a normalising factor:

φ2 =
χ2

n
.

For the justification of the χ2-statistics, the assumptions of random sample, inde-
pendence and unambiguousness of assignment must be met. The first assumption
holds only for the controls as all cases who qualified for the study were included.
The second requirement is fulfilled as no relatives were accepted in the study, so
we can assume independence for the different genetic profiles. The third assump-
tion is also true. Because the first assumption is not completely met, we have to
question the justification of applying the χ2-statistics.
Other problems arise with χ2-measures: As for the considered data set it may hap-
pen that some variables are treated as constants. This occurs either if all variants
of a variable are compared to missing values of another variable and therefore do
not contribute to the calculations or if the data set contains monomorphic SNPs.
It does not make sense to apply a χ2-statistics which calculates expected values
for a constant.
To avoid this problem, we exclude monomorphic SNPs from the data. For the
variables that cause problems due to missing values we draw random samples from
their marginal distributions estimated by the relative frequencies and replace the
problematic missings.
We consider two χ2-coefficients for our analysis, Pearson’s corrected contingency
coefficient PC (cf. Sachs (1999)) and Cramèr’s C (cf. Anderberg (1973)) given by:

PC =

√
min (p, q)

min (p, q) − 1

(
φ2

1 + φ2

)1/2

and C =

(
φ2

min(p − 1, q − 1)

)1/2

.

For our SNP data, the numbers of categories are p = q = 3.
A second approach of defining a similarity measure introduces matching coeffi-
cients. They count the number of objects with the same outcome for both vari-
ables as well as the number of non-corresponding observations and use different
relations and weights to evaluate these counts. As for χ2-coefficients, the contin-
gency table provides the basis of the comparisons. Table 2 shows a new, more
specific labelling of the different cells, in comparison to Table 1. We have already
reduced the size of the variable domains to 3 as this corresponds to our data. The
categories represent the number of SNPs present and correspond to the coding of
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Vl

0 1 2

0 a b c

Vk 1 d e f

2 g h i

n

Table 2: 3 × 3 - contingency table for matching coefficients

variables described in section 2.2. Furthermore, we define m+ := a + e + i as the
number of matches and m− := b+ c+ d+ f + g +h as the number of mismatches.

All matching coefficients used in our further analysis can be found in Table
3. SD was introduced by Dice (1945). SK , SK00 SJ , and SRT00 are taken from
Anderberg (1973), SSM , SRT and SRR from Cox and Cox (2001) and SH and SSoSn

from Sokal and Sneath (1963). SH00 resembles SH , but with no consideration of
0-0-matches.
The treatment of the 0-0-matches (entry a in Table 2) decides on the partition of
the coefficients into Groups 1 to 3. The coefficients in Group 1 do not pay spe-
cial attention to the 0-0-matches. Therefore, SNP variables with a high amount
of mutual homozygous reference categories yield higher similarities than compar-
isons with less matches in total but more common SNPs.
The similarity measures in Group 2 do not count the 0-0-matches at all which
seems to settle the shortcoming of the coefficients of Group 1 at first sight. But
they have two disadvantages: If all observations of a comparison of two monomor-
phic SNPs are 0-0-matches, the denominator of the coefficients is 0 and the calcu-
lation impossible. On the other hand, variables which are concordant with each
other except for a small number of mismatches reach minimal similarity if all
matches are 0-0-matches. Even if the information about a common homozygous
reference category is less helpful than information about variants, it does not jus-
tify this result.
The coefficient of Russell and Rao ignores the 0-0-matches in the nominator, but
takes them into account in the denominator. So it shares the bad feature of the
measures from Group 2.
As an attempt to avoid the disadvantages of Groups 1 and 2 described above
we introduce the newly created coefficients in Group 3. We employed the idea
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Symbol Name Coefficient

SSM Simple Matching m+

m++m−

G
roup

1
SSoSn Sokal & Sneath 2m+

2m++m−

SRT Rogers & Tanimoto I m+

m++2m−

SK Kulczynski I m+

m−

SH Hamann I m+−m−
m++m−

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
SJ Jaccard m+−a

(m+−a)+m−

G
roup

2

SD Dice
2(m+−a)

2(m+−a)+m−

SRT00 Rogers & Tanimoto II m+−a
(m+−a)+2m−

SK00 Kulczynski II m+−a
m−

SH00 Hamann II
(m+−a)−m−
(m+−a)+m−

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
SRR Russell & Rao m+−a

m++m−
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

SQP Quarterprop
m+−3

4a

(m+−3
4a)+2m−

G
roup

3

SProp Proportions
1
5a+2e+4i

1
5a+2e+4i+m−

SMis12 Mismatch12
1
4a+2e+4i+1

2(f+h)
1
4a+2e+4i+1

2(f+h)+(b+c+d+g)

SMis01 Mismatch01
1
4a+2e+4i+1

2(b+d)
1
4a+2e+4i+1

2(b+d)+(c+f+g+h)

Table 3: Matching coefficients
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of weighting the different kinds of matches according to their assumed biological
relevance (Selinski and Ickstadt, 2005). As a first step Quarterprop weights the
frequent homozygous reference matches, which carry only moderate information,
1
4
. So only a fraction of their amount will be counted which reduces the effect of

masking rare information.
Proportions takes this idea one step further. Additionally to scaling down the
0-0-matches by 1

5
, the heterozygous and homozygous variant matches get higher

weights (2 and 4, respectively) to stress their value for the comparisons.
In addition, the last two coefficients allow the input of information about domi-
nance or recessiveness of SNPs. Mismatch12 weights a comparison that consists
of one heterozygous and one homozygous variant with half its amount as a match
(dominance), for at least one chromosome contains a SNP in each of the loci.
Mismatch01 works the same way, but with the reference types instead of variance
(recessiveness). Which of the two measures should be applied depends on the
given data.

3.3 Cluster Method

We choose an agglomerative hierarchical cluster algorithm to divide our data into
groups, in particular average linkage.
After the description of similarity S and distance D for variables, we introduce
s and d as proximity labels for clusters. Suppose every variable is regarded as
a cluster with only one element. After applying the coefficient on the data, we
obtain a similarity matrix and transform it into a distance matrix. Then the
algorithm starts using the following steps:

1. Fuse the two clusters with the smallest distance d.

2. Recompute the distances for the newly formed group to all remaining clus-
ters.

3. Iterate steps 1 and 2 until all variables lie in one big cluster.

For the computation of distances between two groups Gr and Gt with mr and mt

elements, respectively, we use the average linkage cluster method, i.e.

s(Gt, Gr) =
1

mtmr

∑
Vi∈Gt

∑
Vj∈Gr

S(Vi, Vj), with i = 1, . . . , mt,

j = 1, . . . , mr.
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For the transformation from s into distances d use Equations (1) and (2) on page
6.

3.4 Rand: Clustering Clustering Methods

In most cases, different similarity measures will produce different partitions of the
observed variables. With the given statistical means it is not possible to decide
which of these partitions is considered best or correct. Even further information
from the scientific background will only help to interpret the results, but not to
evaluate them mathematically.
Still, similarity of different cluster results can be compared by regarding the par-
titions as objects to which a certain similarity will be assigned. There exist nu-
merous suggestions how to do it. Rand (1971) proposed an intuitive and simple
method for the clustering of clustering. He applied his method for results found
by different cluster methods. Because we use the same data and the same cluster-
ing algorithm for all computations, the differences between clusterings presented
in this paper only depend on the choice of the similarity coefficient. Thus, we
use the result of the clustering of clusterings as a direct comparison between the
different similarity measures.
As a basis for his computations, Rand counts the number of pairs of variables
which are assigned either to the same or to different groups in clustering Ck and
Cl. For m variables N =

(
m
2

)
different pairs (Vi, Vj), i, j = 1, . . . , m and i �= j

exist. For further analysis the feature ’Grouping’ is introduced. It takes value 1
for each pair (Vi, Vj) which is assigned to the same group and value 2 if the two
variables lie in different groups.
The joint distribution of ’Grouping’ of two clusterings is presented in a contin-
gency table (cf. Table 4). Rand’s idea of quantifying a similarity for this situation
uses the Simple Matching Coefficient. All matches (A and D) are divided by N ,

Grouping Cl

1 2

1 A B
Grouping Ck

2 C D

N

Table 4: Contingency table for the comparison of two clusterings
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the total number of possible pairs:

R =
A + D

N
.

Thus, we obtain a similarity matrix based on the comparisons between all given
clusterings. The next step contains a standard clustering (calculating distances,
running the cluster algorithm etc.) on these results including a dendrogram to
present the outcome.
We denote by r (instead of d) the distance of two clusterings according to the
method of Rand.

3.5 Number of Classes

As we use hierarchical methods to cluster the SNP variables, we do not have to
specify the number g of clusters in advance, but get partitions for every choice
of g = 1, . . . , 68. However, for the comparison of the different measures we need
to choose a certain number gc of clusters as the method by Rand employs the
accordance of allocation of variables into groups.
The biological background does not give useful hints for a sensible choice of num-
ber of classes. The only given number is the number of different pathways in the
study (=10). It is arguable if SNPs belonging to the same pathway are likely
to display a similar pattern over many patients. In the absence of further useful
indications, we chose 10 as the number of clusters.
The graphical illustration of the clustering results, the dendrogram, yields much
more information. If it shows a stepwise structure (cf. Figure 2), meaning that
the algorithm adds variables one by one to a single big cluster, then choosing two
clusters yields one class containing only one variable and a second containing all
the others. Such partitions do not carry much information. Sometimes several
subgroups are already visible in the dendrogram (cf. Figure 3), so a meaningful
choice of cluster numbers should consider them. On the whole, two clusters pic-
ture a very rough division for 68 SNPs, whereas more than 12 classes complicate
the interpretation.
If the dendrogram provides insufficient information, we use the following guide-
lines to choose the number of clusters:

1. Choose gc as the highest number from the set of clusterings which do not
contain clusters with only one element (maximum number = 12).
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2. If all partitions contain clusters with one element choose the one with the
smallest proportion of single element clusters.

3. If 1 and 2 cannot be applied, choose gc = 10.

4 Application to the GENICA - Data

All calculations and figures were done using the software package R 1.8.0. We treat
cases and controls separately, i.e., we obtain two clusterings for every similarity
measure.
After describing the outcomes of the 17 measures from section 3 in section 4.1,
we compare the different clusterings (cf. section 4.2) and the difference between
the two collectives (cf. section 4.3) using Rand’s method.

4.1 Different Clusterings

The dendrograms corresponding to PC and C are similar for both coefficients,
so we only display the clustering of the cases received by using PC (Figure 1).
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Figure 1: Clustering of cases obtained by Pearson’s PC
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Figure 2: Clustering of cases obtained by SK (Kulczynski)

The dendrogram shows a couple of similar pairs and triples, e.g. Gen.104.1 -
Gen.104.3, Gen.2.1 and Gen.2.2 or Gen.3.1, Gen.14.3 and Gen.14.4, which merge
into smaller subgroups. The revealed structure among the variables displays lots
of SNPs that belong to one gene in one cluster, so the interpretation of several
subgroups of dependent SNP loci seems reasonable. Following the algorithm of
section 3.5, we chose 12 as the number of classes.
All coefficients from Group 1 (in Table 3 on page 9) show a similar dendrogram
structure: Two big clusters are visible, the bigger one consisting of a stepwise
structure which means that the algorithm assigns all variables one by one to the
same cluster. Thus, interacting subgroups of SNPs cannot be found. Additionally
to a similar structure, the order in which the variables join the clusters closely
resemble each other for all the coefficients of this group. The most similar pair
consists of Gen.6.1 and Gen.19.5. SK by Kulczynski gives the worst clustering
results of this group of measures (see Figure 2). Lots of variables are joint not
only to the same cluster but at a similar level of distance. The number of classes
chosen for the coefficients of this group lies between 3 and 5.
If the 0-0-matches are excluded completely from the analysis (using measures from
Group 2 in Table 3), the results get even worse. Except for some variables that

14



Müller, Selinski and Ickstadt Similarity Measures for SNP Data

G
en

.1
4.

4
G

en
.1

03
.1

G
en

.1
7.

2
G

en
.3

1.
1

G
en

.1
00

.1
G

en
.8

1.
1

G
en

.2
3.

1
G

en
.5

8.
2

G
en

.7
.1

G
en

.6
4.

1
G

en
.4

5.
2

G
en

.7
4.

3
G

en
.6

.3
G

en
.2

4.
1

G
en

.2
5.

3 G
en

.4
5.

1
G

en
.3

3.
1

G
en

.5
.1

G
en

.7
2.

2
G

en
.1

02
.1

G
en

.1
05

.1
G

en
.4

1.
1

G
en

.1
01

.1
G

en
.3

.1
G

en
.1

4.
3

G
en

.6
2.

1
G

en
.3

8.
10

G
en

.3
8.

7
G

en
.7

0.
1

G
en

.6
.2

G
en

.3
4.

1
G

en
.1

04
.2

G
en

.1
04

.1
G

en
.1

04
.3

G
en

.2
3.

2
G

en
.7

8.
1

G
en

.3
8.

1
G

en
.7

5.
1

G
en

.5
5.

1
G

en
.1

8.
2

G
en

.7
2.

1
G

en
.7

7.
1

G
en

.2
.1

G
en

.2
.2

G
en

.3
2.

2
G

en
.1

.1
G

en
.8

0.
1

G
en

.4
.2

G
en

.7
6.

1
G

en
.1

2.
1

G
en

.4
.1

G
en

.1
9.

4
G

en
.3

2.
3

G
en

.6
.4

G
en

.7
.3

G
en

.1
9.

1
G

en
.7

0.
4

G
en

.7
.2

G
en

.7
9.

1
G

en
.2

7.
1

G
en

.1
9.

2
G

en
.6

.1
G

en
.1

9.
5

G
en

.7
4.

1
G

en
.1

8.
1

G
en

.3
1.

2
G

en
.3

2.
1

G
en

.5
3.

1

0.
0

0.
2

0.
4

0.
6

D
is

ta
n

ce
 d

Figure 3: Clustering of cases obtained by SProp (Proportions)

form pairs at first (e.g. Gen.3.1 and Gen.14.3, Gen.104.1 and Gen.104.3 as well
as Gen.2.1 and Gen.2.2), all features are fused to one big cluster. The measure by
Russell and Rao shows similar characteristics as the measures of Group 2. The
number of classes chosen ranges from 7 to 11 exceeding the number of classes for
measures of Group 1.
The newly created coefficients perform better, see, e.g., the dendrogram obtained
by SProp (Proportions) in Figure 3. Several subgroups are visible, and even though
one cluster contains the same stepwise structure as the previous dendrograms it
is restricted to only a part of the data and does not affect all variables. Gen.3.1
and Gen.14.3, Gen.104.1 and Gen.104.3, Gen.2.1 and Gen.2.2 as well as Gen.6.1
and Gen.19.5 can be found among the most similar pairs. Unlike in Figure 2,
the range of distance at which a fusion takes place is wide and not similar for
most pairs. We chose 5 as the number of classes for SProp. For the other new
coefficients, the number of classes ranges from 5 to 10.
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Figure 4: Clustering of similarity measures

4.2 Comparison

As indicated by the grouping of the different coefficients in Table 3, the results of
measures within a group resemble each other quite strongly. This can be shown
by applying Rand’s method to the clusterings computed above (cf. Figure 4).
The results for cases and controls agree.
The choice of the number of classes has a big influence on the result; if two clus-
tering methods give the same partitions, but two different numbers of classes are
chosen, Rand’s coefficient will not regard them as identical. Therefore, careful
consideration is necessary for the final choice, e.g., similar numbers of classes
should be taken for outcomes which showed many common characteristics.
Group 2 forms a cluster together with the measure by Russell and Rao, whereas
Mismatch01 completes the class built up by Group 1. The rest of the new coef-
ficients forms a separate cluster, which is most similar to the cluster containing
the χ2-coefficients.
These results confirm the conclusions already drawn from construction and per-
formance of the different similarity measures. Besides Mismatch01, the new coeffi-
cients do find different structures within the variables. Additionally, they resemble
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Coefficient Rand’s Measure Coefficient Rand’s Measure

PC R = 0.8429 SRR R = 0.9491

C R = 0.8481 SH00 R = 0.9491

SK00 R = 0.8481 SSoSn R = 0.9605

SProp R = 0.9241 SSM R = 0.9605

SMis01 R = 0.9245 SH R = 0.9605

SRT00 R = 0.9249 SQP R = 0.9640

SMis12 R = 0.9320 SK R = 0.9886

SJ R = 0.9491 SRT R = 0.9886

SD R = 0.9491

Table 5: Similarity between clusterings of cases and controls

the results of the χ2-coefficients, which show a good structure as well, more closely
than the results of the other matching coefficients.

4.3 Differences between Cases and Controls

We use Rand’s method not only for comparing the different similarity coefficients,
but also for identifying the amount of difference between the case group and the
control group. A large deviation (meaning small values of R) indicates different
genetic profiles in the two subgroups. The results are given in Table 5. The
two χ2-coefficients find most differences of all measures. SK00 seems to show
differences as well, but as SK it gives the poorest clustering result in its group.
The other coefficients reveal less differences. Nevertheless, the two new coefficients
SProp and SMis01 perform slightly better than the rest of the other measures. As,
additionally, their clustering results show a very reasonable structure, they form
a good compromise for both aims.
Two possible reasons why the differences between the cases and controls are rather
small might be that either the underlying impact of SNP interactions cannot be
found with these methods, or, more likely, many SNPs chosen for the analysis do
not help to distinguish between the disease status.
To evaluate our results of section 4, we analyse the simulated data.
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Figure 5: Clustering of simulated case data obtained by Pearson’s PC (a) and
by SMis12 (Mismatch12) (b)

5 Application to the Simulated Data

Cluster analysis of the simulated data should find both the block structure and,
in the case group, the four causative SNPs, indicated by an asterisk in Figure 5.
By chance, the simulated data set contains two SNPs which are monomorphic
for the reference type in the case group (snpE6 and snpE10). Additionally, the
recessive causative SNP snpE4 shows the homozygous variant for all cases by
definition. These three SNPs are excluded for the analysis based on χ2-measures
in the case group because both coefficients cannot deal with constants. Thus, they
cannot be compared to the other coefficients by Rand’s method. The dendrograms
show that both C an PC find the block structure best of all coefficients. For
the case group, only two SNPs are assigned to clusters containing SNPs from
different blocks, the other clusters are homogenous (cf. Figure 5 (a)). Thus, the
χ2-measures are efficient for the detection of linkage disequilibrium. However, C
and PC do not find the four causative SNPs. For searching for interactions which
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alter the disease risk they do not seem to be suitable.
The performance of the other coefficients resembles the one of the real data set.
All measures find the three dominant causative SNPs, but the new coefficients
except Mismatch01 structure the data best. The result of SMis12 is displayed in
Figure 5 (b). SMis12 is the only coefficient which groups all four causative SNPs
together.
In the comparison by Rand, Group 1 and Group 2 form a cluster each with SRR

belonging to Group 2. Proportions and Mismatch12 give similar performances
and are joint later on to the cluster of Group 1. Mismatch01 gives a result most
different from all other coefficients.
The difference between the case and the control group is not large as only 4 out
of 35 SNPs determine the disease status. The values of Rand’s similarities for
the comparison of both groups lie between 0.75 and 0.87. They are lower than in
the real data set. This strengthens the idea that lots of the SNPs chosen for the
GENICA data do not contribute to a genetic profile suitable to identify women
with a specific breast cancer susceptibility.

6 Results and Discussion

The conventional coefficients of Group 1 and, respectively, of Group 2 yield sim-
ilar results. If the 0-0-matches are treated normally or are left out completely,
the weighting of matches and mismatches does not effect the outcome. All these
clusterings do not reveal an underlying structure within the real data set. In the
simulated data in which a strong structure is present, the measures did find it,
but not as distinctly as the new coefficients.
The performance of the two χ2-measures is similar to each other. They both dis-
play a better structure of subgroups of SNPs and they find dependent structures
within genes, but in many studies it is questionable if random sampling of cases
can be assumed. Their performance on simulated data shows that they can detect
blocks of high linkage disequilibrium very well, but fail to find the interactions
causing the susceptibility.
The new coefficients of Group 3, on the other hand, show a much better structure
for both the real and simulated data. Especially Proportions and Mismatch12
yield good results. They outperform PC and C in the detection of causative SNPs
in the simulated data set. Furthermore, they do not need to fulfil assumptions as
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there is no underlying model implied. The χ2-coefficients demand preprocessing
of the data in order to avoid constant variables. This problem does not affect the
new measures.
It is also possible to compare cluster results for cases and controls by the method
of Rand. We detected fairly small differences in the real data set. The differ-
ences in the simulated data set consist of four out of 35 SNPs and, indeed, Rand’s
method yields smaller similarity values than in the real data set.
If only SNP data are to be analysed, Proportions and Mismatch12 are sensible
choices for similarity measures. If the analysis involves clinical, epidemiological or
environmental variables as well, these measures usually cannot be employed any-
more since they require comparable categories for all features. Thus, for mixed
variables, PC and C represent a better choice. Another approach uses mixed simi-
larity measures which differentiate between comparisons (cf. Selinski and Ickstadt
(2005)). If SNP variables are compared, the new similarity measures are chosen.
If a SNP variable is compared to a different feature, the χ2-coefficients, for ex-
ample, can be applied. For the comparison of, say, continuous clinical variables,
metrical measure can be employed.
Cluster analysis of SNP data is only a first step on the way of identifying risk fac-
tors for complex genetic diseases like cancer. Further methods, e.g., classification
methods like CART or Support Vector Machines (Schwender et al., 2004) can use
the results of a cluster analysis to concentrate on the meaningful clusters found by
the suitable coefficients and to obtain better results by disregarding uninformative
variables.
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