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Abstract

We provide a set of probabilistic laws for range-based estimation of integrated variance

of a continuous semi-martingale. To accomplish this, we exploit the properties of the price

range as a volatility proxy and suggest a new method for non-parametric measurement

of return variation. Assuming the entire sample path realization of the log-price process

is available - and given weak technical conditions - we prove that the high-low statistic

converges in probability to the integrated variance. Moreover, with slightly stronger condi-

tions, in particular a zero drift-term, we find an asymptotic distribution theory. To relax

the mean-zero constraint, we modify the estimator using an adjusted range. A weak law

of large numbers and central limit theorem is then derived under more general assump-

tions about drift. In practice, inference about integrated variance is drawn from discretely

sampled data. Here, we split the sampling period into sub-intervals containing the same

number of price recordings and estimate the true range. In this setting, we also prove

consistency and asymptotic normality. Finally, we analyze our framework in the presence

of microstructure noise.
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Phone: (+45) 89 48 63 74, fax: (+45) 86 15 37 92, e-mail: kic@asb.dk.
‡Ruhr University of Bochum, Dept. of Probability and Statistics, Universitätstrasse 150, 44801 Bochum,

Germany. Phone: (+49) 234 / 23283, fax: (+49) 234 / 32 14559, e-mail: podolski@cityweb.de.



Christensen, K. and Podolskij, M.: Range-Based Estimation of Integrated Variance

1 Introduction

The latent security price volatility is an essential measure of unexpected return variation and a

key ingredient in several pillars of financial economics. Some years ago, academia customarily

adopted constant volatility (e.g., Black & Scholes (1973)), despite the data argued against this

assumption (e.g., Mandelbrot (1963)). Today, the gathering of empirical evidence makes us

recognize that the conditional variance is both time-varying and highly persistent. Such stylized

facts have been uncovered by the development and application of strict parametric models, such

as ARCH (see, e.g., Engle (1982), Bollerslev (1986), Nelson (1991), and Bollerslev, Engle &

Nelson (1994)), through stochastic volatility models (e.g., Hull & White (1987), and Ghysels,

Harvey & Renault (1996)), and more recently non-parametric methods based on high-frequency

data, the most conspicuous idea being the notion of ”realized variance” (see, e.g., Taylor &

Xu (1997), Andersen & Bollerslev (1998), Andersen, Bollerslev & Diebold (2002), Barndorff-

Nielsen & Shephard (2004a)).

Unlike the daily squared return, realized variance is computed by summing high-frequency

squared returns over the sampling period. The motivation is the theory of quadratic variation,

which states that given weak regularity conditions, realized variance converges uniformly in

probability to the quadratic variation of all semi-martingales as the sampling frequency tends

to infinity (e.g., Protter (2004)). Since realized variance is, in theory, a consistent estimator of

the latent volatility it may, as such, be regarded largely free of error, which justifies treating

volatility as observed. In fact, recent work on volatility has progressed mainly by the growing

availability of high-frequency data, which are routinely used in research projects now (for an

incomplete list, see the above and also, e.g., Andersen, Bollerslev, Diebold & Ebens (2001),

Andersen, Bollerslev, Diebold & Labys (2003), and Barndorff-Nielsen & Shephard (2002a,

2002b)).

In practice, the assumptions behind realized variance breaks down. Data limitations prevent

the sampling frequency from rising without bound and, more notably, market microstructure

effects contaminate high-frequency asset prices and induce autocorrelation in returns. This

(potentially) inflates realized variance with a large cumulative error, invalidates its asymptotic

properties, and in the presence of noise realized variance is both biased and inconsistent (e.g.,

Bandi & Russell (2004a, 2004b), Aı̈t-Sahalia, Mykland & Zhang (2004), and Hansen & Lunde

(2006)). To control the magnitude of the error, an optimal sampling-scheme is often selected

with MSE-criteria by inducing a bias/variance trade-off, resulting in moderate sampling and

throwing data away. Though current research seeks to develop methods of making realized

variance robust against microstructure noise, getting accurate estimates of price uncertainty

remains unsettled. Set against this backdrop, we suggest a simple approach to reduce the

impact of microstructure noise, using another volatility proxy: the price range.

Range-based estimation of volatility, as developed in, e.g., Feller (1951), Garman & Klass
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(1980), Parkinson (1980), Ball & Torous (1984), Rogers & Satchell (1991), Kunitomo (1992),

and Yang & Zhang (2000), is very efficient, since the extremes are formed from the entire curve

of the process and reveal more information than points sampled at fixed intervals. For example,

the daily range is about five times more efficient than the daily squared return. However,

Andersen & Bollerslev (1998, footnote 20) remark that ”...compared to the measurement errors

reported in Table 3, this puts the accuracy of the high-low estimator around that afforded by

the intra-day sample variance based on two- or three-hour returns.” Despite the daily range

is more precise than the daily squared return, a consequence of its measurement error against

realized variance is that the class of range-based proxies remains neglected. This is unfortunate,

as range-based variance encompasses both time-varying dynamics, multivariate interactions

and, moreover, the range is somewhat robust against common forms of microstructure noise,

including bid-ask bounce and asynchronous trading (e.g., Alizadeh, Brandt & Diebold (2002)

and Brandt & Diebold (2004)).

Nonetheless, one subject, with the potential of markedly reducing the error in range-based

volatility, remains uncharted territory: intra-day range-based estimation of stochastic volatility.

That is, while the range is recognized as being highly efficient, no one has explored the properties

of price ranges sampled within the trading day in the context of estimating integrated variance.

With access to high-frequency data, however, low-frequency measures are also obsolete in the

range-based context. Thus, we conjecture that the failure of range-based volatility to match

realized variance is grounded on an unfair comparison. The current paper seeks to remedy

this surprising fact: we propose sampling and summing intra-day price ranges to obtain more

precise estimates of integrated variance. For example, with exchange-rate data available around

the clock, what can we expect by using, properly transformed, high-frequency ranges? Direct

extrapolation suggests that, if daily ranges are as accurate as realized variance based on two- or

three-hour returns, then hourly ranges, say, achieve the accuracy of realized variance sampled

at five- or ten-minute intervals.

The remainder of the paper is organized as follows. In the next section, we unfold the

necessary diffusion theory, present various ways of measuring financial market volatility and

advance our methodological contribution by suggesting the high-frequency range-based estima-

tor. Under mild regularity conditions, we prove consistency for the estimation method, and

also provide an asymptotic distribution theory under stronger conditions. Section 3 illustrates

the approach in more detail with a simple Monte-Carlo analysis to discover its relative merits,

and we consider the impact of market microstructure noise. Rounding up, section 4 offers

conclusions and sketches several important directions for further research.
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2 A Semi-Martingale Framework

In this section, we propose a new method based on the price range for consistently estimating

the integrated variance (IV ). The theory is developed for the log-price of a univariate asset

evolving in continuous-time over some interval, say p = {pt}t∈[0,∞). p is defined on a filtered

probability space
(
Ω,F , {Ft}t∈[0,∞),P

)
and adapted to the filtration {Ft}t∈[0,∞); i.e. a family

of σ-fields with Fs ⊆ Ft ⊆ F for all s ≤ t < ∞.

The basic building block is that p constitutes a (special) semi-martingale. This may, for

instance, be achieved by invoking standard assumptions of no-arbitrage and a finite expected

return. A fundamental result states that semi-martingales admit a decomposition into a term

with sample paths of bounded variation plus an infinite variation local martingale (e.g., Back

(1991) or Protter (2004)). The first (last) component represents the expected (unexpected)

return innovation and, as such, semi-martingales provide a rather general class of stochastic

processes. Much work in both theoretical and empirical finance or time-series econometrics is

cast within this setting (see, e.g., Andersen, Bollerslev & Diebold (2002) or Barndorff-Nielsen

& Shephard (2005) for excellent reviews and several references).

We specialize by assuming that the sample path of p is continuous.1 Hence, we write the

time t price in the generic form:

pt = p0 +
∫ t

0
µsds +

∫ t

0
σs−dWs, for 0 ≤ t < ∞ (2.1)

where µ = {µt}t∈[0,∞) (the instantaneous mean) is a locally bounded predictable process,

σ = {σt}t∈[0,∞) (the spot volatility) is a strictly positive càdlàg process, W = {Wt}t∈[0,∞) is a

standard Brownian motion, and σs− = limt→s,t<s σt.

Except for the continuity of the local martingale, here comprised by
{∫ t

0 σs−dWs

}
t∈[0,∞)

, we

impose little structure on the model.2 In fact, for semi-martingales with continuous martingale

component as above, the form
{∫ t

0 µsds
}

t∈[0,∞)
is implicit, when the drift-term is predictable

(in the absence of arbitrage). Note in passing that, without loss of generality, our conditions

imply we can restrict the functions µ and σ to be bounded (e.g., Barndorff-Nielsen, Graversen,

Jacod, Podolskij & Shephard (2004)).

The objective is to estimate a suitable measure of the return variation over a sub-interval

[a, b] ⊆ [0,∞), termed the sampling period or measurement horizon. We assume [a, b] = [0, 1];

this will be thought of as representing a trading day, but the choice is arbitrary and can serve

as a normalization. At any two distinct sampling times ti−1 and ti, with 0 ≤ ti−1 < ti ≤ 1,

the intra-day (in general, intra-period) return over [ti−1, ti] is denoted by rti,∆i = pti − pti−1 ,

1We adopt the continuity assumption as a starting point only. In concurrent work, we are analyzing the

properties of our method, when p exhibits jumps.
2All continuous local martingales, whose quadratic variation (to be defined in a moment) is absolutely con-

tinuous has the stochastic volatility representation of the second term in equation (2.1), e.g., Doob (1953). We

refer to Barndorff-Nielsen & Shephard (2004a) for a discussion of the details of this aspect.
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where ∆i = ti − ti−1. As a convention, we call the return strecthing [0, 1] for the inter-day (in

general, inter-period) or daily return.

From the theory of stochastic calculus, it is well-known that quadratic variation (QV ) -

or conditional expectations thereof - are natural measures of variability for the class of semi-

martingales. Specifically, for every semi-martingale, X = {Xt}t∈[0,∞), there exists a unique

increasing QV process, [X, X] = {[X,X]t}t∈[0,∞), given by:

[X, X]t = X2
t − 2

∫ t

0
Xs−dXs (2.2)

with Xs− = limt→s,t<s Xt.

In the absence of jumps in p, QV is entirely induced by innovations to the continuous local

martingale. Moreover, QV coincides with IV that is central to financial economics, whether

in asset- and derivatives-pricing, portfolio selection or risk management (e.g., Hull & White

(1987)). IV is the object of interest here, and we recall its definition:

IV =
∫ 1

0
σ2

sds (2.3)

The econometrical problem is that IV is latent, which renders empirical estimation of this

quantity a crucial issue in practice. We shall briefly review the literature on existing methods

for measuring IV , before carrying on to suggest a new approach.

2.1 Return-Based Estimation of Integrated Variance

Not long ago, the daily squared return was employed as a non-parametric ex-post measure of

IV . Although the estimator is (conditionally) unbiased under some auxiliary conditions, this

method is not optimal, as the inter-period return is a noisy indicator of volatility. With the

advent of high-frequency data, more recent work computes realized variance (RV ), being the

summation of squared intra-period returns sampled over non-overlapping intervals (see, e.g.,

Taylor & Xu (1997), Andersen & Bollerslev (1998), Andersen, Bollerslev & Diebold (2002),

Andersen et al. (2003), and Barndorff-Nielsen & Shephard (2004a)).3

More formally, consider a (deterministic) partition 0 = t0 < t1 < · · · < tn = 1. Then, we

define RV at sampling times Ξ = {ti | i = 0, 1, . . . , n} by setting:

RV Ξ =
n∑

i=1

r2
ti,∆i

(2.4)

Intuitively, the daily squared return is the least efficient member of this class of estimators,
3The work of Poterba & Summers (1986), French, Schwert & Stambaugh (1987), Schwert(1989, 1990), and

Hsieh (1991), among others, pioneered the construction of a volatility proxy by exploiting data sampled at a

higher frequency than the measurement horizon.
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and the justification for the RV procedure builds directly on the theory of QV .4 An equivalent

definition of QV is the probability limit of RV Ξ, when the diameter of Ξ tends to zero (e.g.,

Protter (2004)). Hence, as n →∞ : max1≤i≤n{∆i} → 0, it follows that in our model:

RV Ξ p→ IV (2.5)

The convergence is also locally uniform in time. Thus, given a complete record of p, IV is

estimated with arbitrary accuracy, effectively making it observed.

Of course, we are forced to work with a set of discretely sampled data in applications, but

the theory encourages using high-frequency proxies to reduce the measurement error. And

though an irregular partition of the sampling period suffices for consistency, an equidistant

time series of intra-period returns is often computed in practice by various approaches, such as

linear interpolation (see, e.g., Andersen & Bollerslev (1997a, 1997b, 1998), and Andersen et al.

(2001)), or the previous-tick method suggested in Wasserfallen & Zimmermann (1985).5 The

equidistant RV based on n high-frequency returns, sampled over non-overlapping intervals of

length ∆ = 1/n, is defined as:

RV ∆ =
n∑

i=1

r2
i∆,∆ (2.6)

Barndorff-Nielsen & Shephard (2002b) found a distribution theory for RV ∆ (in relation to IV ).

The limit law of the scaled difference between RV ∆ and IV is mixed Gaussian:

n1/2
(
RV ∆ − IV

) d→ MN

(
0, 2

∫ 1

0
σ4

sds

)
(2.7)

where
∫ 1
0 σ4

sds is the integrated quarticity (IQ). Thus, the size of the error bounds for RV ∆

is positively related to the level of σ. Barndorff-Nielsen & Shephard (2002b) also derived a

feasible central limit theorem (CLT), where all quantities except IV can be computed directly

from the data. This was done by simply replacing the latent IQ by a consistent estimator, like

RQ∆ = n/3
∑n

i=1 r4
i∆,∆, making it possible to construct approximate confidence bands for RV

to measure the estimation error involved with finite samples.

2.2 Range-Based Estimation of Integrated Variance

In practice, the choice of volatility proxy is less obvious, as financial markets are not frictionless

and microstructure bias sneaks into RV . With noisy prices, for instance, RV is both biased

and inconsistent, see, e.g., Bandi & Russell (2004a, 2004b), Aı̈t-Sahalia et al. (2004), Hansen &

Lunde (2006).6 Thus, RV is error-free in theory, but in reality this condition is not satisfied.
4In general, the (non-normed) qth order realized power variation is defined as

Pn
i=1 |rti,∆i |q, with q > 0.

For Brownian semi-martingales, only q = 2 leads to a non-trivial limit (IV ). Barndorff-Nielsen & Shephard

(2003b, 2004c) use a normalizing sequence to compute
Pn

i=1 ∆
1−q/2
i |rti,∆i |q. They prove that, under suitable

conditions,
Pn

i=1 ∆
1−q/2
i |rti,∆i |q

p→ E [|φ|q] R 1

0
σq

sds, where φ is a standard normal random variable.
5A side-effect of the linear interpolation method is that - with a fixed number of discretely sampled data -

RV Ξ p→ 0 as n →∞. Intuitively, a straight line is the ”minimum-variance” path between two points.
6Technically, with IID noise, RV diverges to infinity almost surely, i.e. RV Ξ a.s.→ ∞ as n →∞.
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Academia has recognized this by developing bias-reducing techniques (e.g., pre-whitening of

the return series with moving average or autoregressive filters as in Andersen et al. (2001) and

Bollen & Inder (2002), or kernel-based estimation as in Zhou (1996) and Hansen & Lunde

(2006)). In empirical work, the benefit of more frequent sampling is traded off against the

damage caused by cumulating noise, and - using various criteria for picking the optimal sampling

frequency - the result is often moderate sampling (e.g., at the 5-, 10-, or 30-minute frequency),

whereby data are discarded.

The pitfalls of RV motivate our choice of another proxy with a long and colorful history in

finance: the price range or high-low. Using a terminology similar to the above, we define the

intra-period range at sampling times ti−1 and ti, with 0 ≤ ti−1 < ti ≤ 1, as:

spti,∆i
= sup {pt − ps}

ti−1≤s,t≤ti

(2.8)

Compared to the return over [ti−1, ti], rti,∆i , the extra subscript p indicates that we are taking

supremum of the price process. Below, we also need the range of a standard Brownian motion

over [ti−1, ti], which is denoted by sWti,∆i
= supti−1≤s,t≤ti {Wt −Ws}. We use the short-hand

notation sp and sW for the inter-period ranges.

2.2.1 The Inter-Period Range

Newspapers usually report the high-low of the preceding trading day’s security price next to

the open-close. So without high-frequency data at hand, the daily range - printed freely in the

business press - provides indirect access to the intra-day price information by screening all data

over the sampling period. Thus, in a setup where tick-by-tick data are not accessible, this is

a major advantage from using the range as a volatility proxy. In contrast, RV is restricted to

inter-day estimation, rendering it inefficient.7

The nature of the daily range is appealing: suppose the asset price fluctuates wildly within

the sampling period, but happens to end near the starting point; then an inter-period high-low,

unlike the corresponding return, correctly reports the level of volatility as high. In technical

analysis it also figures as a key indicator when constructing so-called ”candlestick plots,” e.g.,

Edwards & Magee (2001).

Its attractiveness is not based on just intuitive grounds, however. The theoretical under-

pinnings go a long way back.8 Feller (1951) found the distribution of the range by using the
7Of course, high-frequency data are increasingly available, and we return to this setting shortly.
8There are basically two branches in the range-based volatility context: i) relies purely on the high-low, while

ii) adds the open-close, e.g., Garman & Klass (1980), Beckers (1983), Ball & Torous (1984), Rogers & Satchell

(1991) and Yang & Zhang (2000). Brown (1990) and Alizadeh et al. (2002) argue against inclusion of the latter

on the grounds that they are highly contaminated by microstructure effects. Thus, throughout we only report

on the high-low estimator.
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theory of Brownian motion.9 According to his work, the density of the range from a standard

Brownian motion, over a general interval of length ∆i ending at ti, is given by:

P
[
sWti,∆i

= r
]

= 8
∞∑

x=1

(−1)x−1 x2

√
∆i

φ

(
xr√
∆i

)
(2.9)

with φ (x) = 1√
2π

e−x2/2. The infinite series is evaluated by a suitable truncation. In Figure 1,

we plot the probability function of the daily range (taking ti = ∆i = 1).

[INSERT FIGURE 1 ABOUT HERE]

In a historical context, another reason for selecting the daily high-low to estimate IV relates

to its sampling stability. Viewed separatively, the density function does not reveal this feature.

Therefore, the figure also displays the distribution of the daily absolute return. By comparing

these proxies, the efficiency of the range, or in other words its lower variance vis-á-vis the

return, is more evident.

Parkinson (1980) advanced Feller’s insights by deriving the moment-generating function for

the range of a Wiener diffusion with µ = 0 and σt = σ.10 For the rth moment:

E
[
sr
pti,∆i

]
= λr∆

r/2
i σr, for r ≥ 1 (2.10)

where λr = E [sr
W ]. In particular, λ2 = 4 ln (2) and λ4 = 9ζ (3) are needed below.11 For daily

sampling (again with ti = ∆i = 1), this gives an unbiased estimator of IV - equal to σ2 in this

simple model - by scaling s2
p down with λ2.

If µ 6= 0, the inter-period range cannot distinguish drift from volatility and is upward biased.

A number of methods have been suggested to accommodate non-zero, but constant, µ. Rogers

& Satchell (1991) used the exponential distribution and Wiener-Hopf factorization of a Lévy

process to produce a range-based estimator that is independent of µ. Yang & Zhang (2000)

developed a multi-period estimator, while Kunitomo (1992) suggested the range of a Brownian

bridge (from 0 to 0), which removes drift by construction.12 The latter is also applied in the

sequel (see, section 2.2.5).

Arguably, a process with constant µ and σ is irrelevant from an empirical point of view. The

most critical aspect of range-based theory is perhaps the homoscedasticity constraint forced
9Assuming Gaussian increments makes the range more restricted vis-á-vis RV , as the latter is non-parametric

and consistent for all return distributions. Nonetheless, the majority of empirical work is conducted within the

log-normal diffusion framework.
10Note, σ does double-duty; representing either the process σ = {σt}t∈[0,∞) or a constant diffusion parameter

σt = σ. The meaning is clear from the context.
11The explicit formula for λr is: λr = 4√

π
(1− 4

2r )2
r
2 Γ( r+1

2
)ζ(r−1), for real r ≥ 1; where Γ(x) and ζ (x) denote

the Gamma and Riemann’s zeta function, respectively.
12Making this transformation requires access to high-frequency data; a prerequisite, which is fundamental for

our analysis below.
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upon σ. An overwhelming amount of research indicates that the conditional variance is time-

varying, see, e.g., Ghysels et al. (1996). Nonetheless, to our knowledge there exists no, or

little, theory about range-based estimation of IV in the presence of a continually evolving

diffusion parameter.13 Previous work achieve (randomly) changing volatility by holding σt

fixed within the trading day, while allowing for (stochastic) shifts between them (e.g., Alizadeh

et al. (2002), Brunetti & Lildholdt (2002)).14 Still, there are strong intra-day movements in σt

(e.g., Andersen & Bollerslev (1997b)).

A main objective of this paper is therefore to extend the theoretical domain of the extreme

value method to a more general class of stochastic processes. Contrary to the extant research,

we develop a statistical framework for the Brownian semi-martingale in equation (2.1), featuring

less restrictive dynamics for µ and σ.

The contribution is three-fold in this respect. First, we deal with range-based estimation of

time-varying volatility, when µ and σ are (possibly) continuously evolving random functions.

Such a model is capable of - but also necessary for - fitting the stylized facts of financial markets

data; in particular the second moment structure of the conditional return distribution. Second,

we develop a new method for non-parametric measurement of IV with a variant of the range-

based estimator that, unlike the existing theory, uses high-frequency data more efficiently. This

provides a framework for comparing our results to RV . Third, we formalize the approach by

deriving a set of probabilistic laws for sampling intra-period high-lows.

2.2.2 An Intra-Period Range-Based Estimator

Despite the high-low is more efficient than RV on an inter-period basis, the sampling variation

of a low-frequency proxy is too high. By analogy with the daily squared return, the daily

squared range is noisy. Thus, while the inter-period range processes the entire price trajectory,

it does so inefficiently. For example, using simulations Andersen & Bollerslev (1998) found that

mean-squared error (MSE) of the daily range is about that afforded by RV computed from

two- or three-hour returns.

In the presence of tick-by-tick data, we can, however, exploit the insights of RV to construct

more precise range-based estimates of IV . The idea is simple enough: we split the measurement

horizon in minor pieces and sample high-lows within the trading day. Accordingly, consider

again the partition 0 = t0 < t1 < · · · < tn = 1. We then propose a high-frequency range-based
13An exception is Gallant, Hsu & Tauchen (1999), who estimate two-factor stochastic volatility models in a

general continuous-time framework. They derive the density function of the range in this setting, but do not

otherwise explore its theoretical properties.
14Brunetti & Lildholdt (2002) consider a discrete-time model with GARCH dynamics and show that the scaled

squared range is unbiased for the unconditional variance.
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variance (RBV ) estimator of IV at sampling times Ξ:

RBV Ξ =
1
λ2

n∑

i=1

s2
pti,∆i

(2.11)

or,

RBV ∆ =
1
λ2

n∑

i=1

s2
pi∆,∆

(2.12)

where RBV ∆ is the equidistant version.

The intra-day range-based statistic has three advantages compared to the previous return-

and range-based methods suggested in the extant research on volatility measurement. First,

in the spirit of Aı̈t-Sahalia et al. (2004), the approach uses all data points (regardless of the

sampling frequency); whereby we avoid neglecting any information about IV . Second, the the-

oretical efficiency of our estimator is several times that obtained with RV , leading to narrower

confidence bands for IV (see below). Third, to a certain extent the estimator is more efficient,

compared to RV , in the presence of common forms of market microstructure noise. This is

indicated by the simulation evidence in Alizadeh et al. (2002). We return to the impact of

microstructure bias in the Monte Carlo section below.

2.2.3 Convergence in Probability to the Integrated Variance

At a minimum, the estimator should be consistent for IV . In the classic time-invariant driftless

diffusion setting for the range, i.e. µ = 0 and σt = σ, proving this property of RBV ∆ is trivial.15

As the fill-in asymptotics start operating by letting n →∞, we achieve an increasing sequence of

IID random variables. Suitably transformed to unbiased measures of σ2, the consistency follows

from a standard law of large numbers by averaging. To see this, note that E
(
RBV ∆

)
= σ2

and var
(
RBV ∆

)
= Λn−1σ4, with Λ =

(
λ4 − λ2

2

)
/λ2

2. Hence, MSE → 0 as n → ∞, which is

sufficient.

If µ and σ are stochastic, establishing the large-sample properties of RBV ∆ is more in-

volved, but nonetheless feasible. Overall, the basic idea extends to a general continuous semi-

martingale, given the appropriate regularity conditions. To justify our approach, we therefore

progress by deriving limit theorems for RBV ∆. Its probability limit is stated first.16

Theorem 1 Let µ and σ fulfil the conditions following equation (2.1). As n →∞

RBV ∆ p→ IV (2.13)
15Henceforth, we use equidistant estimation, as this simplifies the notational burden in the proofs. All re-

sults can be generalized to irregular subdivisions of the sampling period with just a slight modification of the

conditional variance in the CLT.
16Throughout the paper, proofs of the theorems are reserved for the appendix.
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This result mirrors the consistency of RV that by definition converges in probability to the

limit process IV . It speaks directly for more efficient use of high-frequency data in range-based

estimation of IV by sampling intra-period ranges.

That Theorem 1 allows for general specifications of µ, for instance, is a consequence of the

fact that for continuous-time arbitrage-free price processes, the expected move in p is an order

of magnitude lower than variation induced by the local martingale; i.e. the stochastic volatility

component
{∫ t

0 σs−dWs

}
here. Thus, while the inter-period range is sensitive to drift, the mean

component vanishes (sufficiently fast) as n →∞.

From the perspective of volatility measurement, the analysis extends the theory of RBV -

where the time-invariant geometric Brownian motion is a leading model - much further. Except

for weak technical conditions on σ, no knowledge about its dynamics is needed. Hence, we allow

for very general continuous-time processes, including, but not limited to, volatility models that

possess leverage, long-memory, jumps or diurnal effects. This is certainly not appreciated in

the previous literature.

2.2.4 Asymptotic Mixed Normality of Range-Based Variance

In empirical work, we often compute confidence bands as a guide to the error made from

estimation based on a finite sample. Theorem 1 does not reveal the precision IV is estimated

with for moderate n. As an approximation to the finite-sample variation of RBV ∆, we now

develop an asymptotic distribution theory for it. Here, the weak assumptions on µ and σ are

too general, and we need stronger conditions to prove a CLT. In particular, some smoothness

of σ is required.

To avoid any confusion about our terminology, we first present the definition of a special

mode of convergence that is probably not widely familiar to people in econometrics and finance;

namely stable convergence in law.

Definition 1 A sequence of random variables, {Xn}n∈N, converges stably in law with limit

X, defined on an appropriate extension of
(
Ω,F , {F}t∈[0,∞),P

)
, if and only if for every F-

measurable, bounded random variable Y and any bounded, continuous function g, the conver-

gence limn→∞ E [Y g (Xn)] = E [Y g (X)] holds.

Throughout the paper, the symbol ”Xn
ds→ X” will be used to denote stable convergence in

law (see, e.g., Rényi (1963) or Aldous & Eagleson (1978) for more details). Note that such

asymptotic behavior is slightly stronger than - and implies - weak convergence, which may

equivalently be defined by taking Y = 1. From this, we now state the next result, which is a

non-standard CLT.

Theorem 2 Suppose µ = 0 and that σ is Hölder continuous of order γ > 1/2 in L2 (P), i.e.

10
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E
[
(σt − σs)

2
]

= O
(| t− s |2γ

)
. Then,

n1/2
(
RBV ∆ − IV

) ds→ Λ1/2

∫ 1

0
σ2

sdBs (2.14)

where B = {Bt}t∈[0,1] is a standard Brownian motion, independent of σ and W .

Thus, RBV ∆ minus IV converges stably at rate n1/2 to a process being the stochastic integral

with respect to a Brownian motion, which is unrelated to the driving terms σ and W . A crucial

feature of the theorem is the stochastic independence of B, as this implies n1/2
(
RBV ∆ − IV

)

has a mixed Gaussian limit law, with σ governing the mixture, i.e.:

n1/2
(
RBV ∆ − IV

) d→ MN

(
0, Λ

∫ 1

0
σ4

sds

)
(2.15)

Remark 1 The Λ scalar in front of IQ in equation (2.15) is roughly 0.4. In contrast, the

number appearing in the CLT for RV ∆ is 2.

In reflection of this, we revise an incorrect conjecture heard in the literature; that RV theoret-

ically outperforms the range. An assertion that originated from the fact that RV ∆ p→ IV as

n → ∞, in contrast to the scaled squared inter-period range. RBV ∆ has the same property

and, indeed, given a sufficiently fine partition of the sampling period, the error of RBV ∆ is

about one-fifth of RV ∆. This is not surprising: the range inspects all the data, whereas RV

is based on high-frequency returns sampled at fixed points in time. As, for the moment, p is

assumed fully observed, RV ∆ is neglecting a lot of information. But even with discrete-time

data, RV ∆ is a lower bound for the efficiency of RBV ∆ (see, section 2.2.6).

Remark 2 The Lipschitz-like condition on σ is a limitation; it excludes some models used in

both theoretical and applied work. While this assumption is sufficient, it may not be necessary.

In fact, it seems possible to relax it, but we haven’t formally proved this yet. In the special case

that σ |= W , it nevertheless suffices to assume that σ satisfies the condition:

σ2
t = σ2

0 +
∫ t

0
µ∗sds +

∫ t

0
σ∗s−dW ∗

s , for 0 ≤ t < ∞ (H)

where µ∗ = {µ∗t }t∈[0,∞) is locally bounded, σ∗ = {σ∗t }t∈[0,∞) is càdlàg, and W ∗ = {W ∗
t }t∈[0,∞) is

a Brownian motion (see ”Proof of Remark” in the appendix). It comes at the cost of excluding

real-world stylized facts such as leverage effects in stock markets.

The integral appearing on the right-hand side in (2.15) is statistically infeasible and cannot be

computed directly from the data. We resolve this by setting:

RBQ∆ =
n

λ4

n∑

i=1

s4
pi∆,∆

(2.16)

With techniques similar to the proof of Theorem 1 we have that RBQ∆ p→ ∫ 1
0 σ4

sds. Thus, by

exploiting the properties of stable convergence, we get the next corollary.

11
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Corollary 1 Given the assumptions of Theorem 2, it holds that:

n1/2
(
RBV ∆ − IV

)

(ΛRBQ∆)1/2

d→ N(0, 1) (2.17)

2.2.5 A Central Limit Theorem with Drift

Although the probability limit of RBV ∆ is IV under weak regularity conditions on µ and σ,

we imposed a mean-zero restriction to establish a CLT. But even though drift is small over

shorter time-periods - like a day - assets trade with a positive expected return. Therefore, a

more general distribution theory for the range is required.

We exploit a change-of-variables:

p̃t = pt − pti−1 −
t− ti−1

∆i
rti,∆i , for ti−1 ≤ t ≤ ti and i = 1, . . . , n (2.18)

Note that the transformation maps p to 0 at all sampling times ti ∈ Ξ. Its main purpose is to

eliminate drift.

From p̃ = {p̃t}t∈[0,1] we sample new high-lows, termed ”adjusted ranges.” The theory for the

adjusted range was developed by Kunitomo (1992), but a further analysis has been missing, as

until recently high-frequency data were not available. Thus, with only daily data the approach

is not feasible, because the intra-day trajectory of p is required to construct (a non-trivial) p̃.

We denote the intra-period adjusted range of p̃ over [ti−1, ti] by:

sp̃ti,∆i
= sup {p̃t − p̃s}

ti−1≤s,t≤ti

(2.19)

and

sW̃ti,∆i
= sup

{
W̃t − W̃s

}
ti−1≤s,t≤ti

(2.20)

with W̃t = Wt −Wti−1 − (t− ti−1) /∆i

(
Wti −Wti−1

)
, is notation for the adjusted range of a

standard Brownian motion over [ti−1, ti], adopting the convention from above.
{
W̃t

}
t∈[ti−1,ti]

connects Wti−1 at ti−1 with itself at ti and normalizes by subtracting Wti−1 . For daily sampling

(taking ti = ∆i = 1), W̃ =
{
W̃t

}
t∈[0,1]

is a Brownian bridge on [0, 1], and sW̃ is short-hand

notation for the high-low of this process. Notice the remarkable sampling stability of sW̃ by

its density function, as plotted in Figure 1.

An equidistant estimator of IV is now defined by setting:

R̃BV ∆ =
1
λ̃2

n∑

i=1

s2
p̃i∆,∆

(2.21)

where λ̃r = E
[
sr
W̃

]
. In particular, λ̃2 = π2/6 and λ̃4 = π4/30.17 Below, we also construct the

ratio Λ̃ =
(
λ̃4 − λ̃2

2

)
/λ̃2

2 = 0.2.

17A closed-form expression for λ̃r was found by Kunitomo (1992): λ̃r = 21−r/2Γ( r+2
2

)ζ(r), for real r ≥ 2,

where Γ (x) and ζ (x) are the Gamma and Riemann’s zeta function. For r = 1 : λ̃1 =
p

π
2
.
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The consistency of Theorem 1 holds for R̃BV ∆, i.e. R̃BV ∆ p→ IV as n →∞ (proof omitted

for brevity). Moreover, the next result gives a CLT under weaker conditions on µ.

Theorem 3 If µ is continuous and σ is Hölder continuous of order γ > 1/2 in L2 (P):

n1/2
(
R̃BV ∆ − IV

)
ds→ Λ̃1/2

∫ 1

0
σ2

sdBs (2.22)

where B |= µ, σ,W .

Remark 3 The conditional variance of the limit process in (2.22) is Λ̃
∫ 1
0 σ4

sds. Hence, R̃BV ∆

is, asymptotically, ten times more efficient than RV ∆.

Theorem 3 leads to the mixed normal distribution:

n1/2
(
R̃BV ∆ − IV

)
d→ MN

(
0, Λ̃

∫ 1

0
σ4

sds

)
(2.23)

with a feasible estimator of IQ defined by:

R̃BQ∆ =
n

λ̃4

n∑

i=1

s4
p̃i∆,∆

(2.24)

If σ |= W , we also have asymptotic normality under the weaker assumption (H).

2.2.6 Discretely Sampled High-Frequency Data

Estimation of IV relies on discretely sampled high-frequency data in practice. As p is not con-

tinuously monitored, we cannot extract the supremum of the increments to the semi-martingale.

Hence, if unaccounted for, the range is a downward biased measure of IV (e.g. Garman & Klass

(1980)). With a fixed number of data points, the discretization error will be progressively more

severe as n grows larger.

Rogers & Satchell (1991) improved upon the earlier work and simulation evidence from

Garman & Klass (1980) to propose a technique for bias-correcting the range; a method that

largely removed the error from a numerical perspective.

We develop the point by using two estimators that account for the number of transactions

used in forming the high-low; thereby removing the source of the bias. To formalize this idea, a

bit more notation is required. Assume, without loss of generality, that mn equidistant data are

available. We split them into n intervals with m observations each and denote the maximum

observed price difference by:

mpi∆,∆ = max
1≤s,t≤m

{
p(i−1)/n+t/mn − p(i−1)/n+s/mn

}
(2.25)

mp̃i∆,∆ = max
1≤s,t≤m

{
p̃(i−1)/n+t/mn − p̃(i−1)/n+s/mn

}
(2.26)

13
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Also, let mW = max1≤s,t≤m

{
Wt/m −Ws/m

}
, and mW̃ = max1≤s,t≤m

{
W̃t/m − W̃s/m

}
. Then,

we define the new high-low statistics by setting:

RBV ∆
m =

1
λ2,m

n∑

i=1

m2
pi∆,∆

(2.27)

and

R̃BV ∆
m =

1
λ̃2,m

n∑

i=1

m2
p̃i∆,∆

(2.28)

where λr,m = E [mr
W ], λ̃r,m = E

[
mr

W̃

]
. The constants appearing in these expressions are

nothing more than (the reciprocal of) the rth moment of the range of a standard Brownian

motion - or Brownian bridge for the latter - over a unit interval, when we only observe the

continuous-time process at m points in time.

To the best of our knowledge, there are no explicit formulas for λr,m and λ̃r,m, but they are

easily computed to any degree of accuracy from simple simulations. Figure 2 details this for

the example r = 2 and selected values of m (see below).

[INSERT FIGURE 2 ABOUT HERE]

Of course, λ2,m → λ2 and λ̃2,m → λ̃2 as m → ∞, but note also that λ2,1 = 1 (this

defines RV ∆). The downward bias reported from previous simulation studies on the range is

a consequence of the fact that λ2 was incorrectly applied in place of λ2,m, as the bias is in

one-to-one correspondence with the difference.

Having completed these preliminaries, we prove consistency and asymptotic normality for

the estimators in equations (2.27) and (2.28) by letting n → ∞. Note, m is not required to

approach infinity; convergence to a (positive) integer is sufficient.18

Theorem 4 Assume n →∞ and m → c ∈ N ∪ {∞}. Then,

RBV ∆
m

p→ IV (2.29)

Moreover, if µ = 0 and σ is Hölder continuous of order γ > 1/2 in L2 (P):

n1/2
(
RBV ∆

m − IV
) ds→ Λ1/2

c

∫ 1

0
σ2

sdBs

where Λc =
(
λ4,c − λ2

2,c

)
/λ2

2,c and B |= σ,W . Finally,

n1/2
(
RBV ∆

m − IV
)

(ΛmRBQ∆
m)1/2

d→ N(0, 1) (2.30)

with Λm =
(
λ4,m − λ2

2,m

)
/λ2

2,m and

RBQ∆
m =

n

λ4,m

n∑

i=1

m4
pi∆,∆

18We only state the theorem for RBV ∆
m . The version with R̃BV ∆

m is identical, except for the same modifications

made in the previous theorem.
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Remark 4 A corollary worth pointing out is that our distribution theory nests RV , in the

sense that for the special case m = 1, Theorem 4 provides a CLT for RV ∆, as discussed in,

e.g., Barndorff-Nielsen, Graversen, Jacod, Podolskij & Shephard (2004) or Barndorff-Nielsen

& Shephard (2004b).

Again, if σ |= W , Theorem 4 delivers a mixed normal as the limit distribution, even when σ

only satisfies assumption (H).

[INSERT FIGURE 3 ABOUT HERE]

Figure 3 provides an impression of the efficiency of RBV ∆
m and R̃BV ∆

m. Along the y-axis,

it depicts Λm and Λ̃m, respectively, as a function of the number of returns, m, on the x-axis.

Several hundred recordings are needed to achieve a good fit to the asymptotic values of 0.4 and

0.2, but the steep initial decline renders the advantage of the high-low statistics huge compared

to RV even for small m. For the case m = 5, say, the scalars appearing in front of IQ in the

CLT for the range-based estimators equal roughly 0.8 and 0.5, making the confidence bands

for IV about two and a half to four times more narrow than with RV ∆.

3 Monte Carlo Exploration

In this section, we illustrate the workings of our theory by using repeated samples from a

stochastic volatility model to further study its finite-sample performance and to document the

asymptotic properties of the range-based statistics. The following bivariate system of stochastic

differential equations is simulated:

dpt = σtdWt

d lnσ2
t = θ(ω − lnσ2

t )dt + ηdBt

(3.1)

where W and B are independent Brownian motions, while (θ, ω, η) are parameters.19 Thus,

spot log-variance evolves as a mean-reverting Ornstein-Uhlenbeck process with mean ω, mean

reversion parameter θ and volatility η (see, e.g., Gallant et al. (1999), Alizadeh et al. (2002),

and Andersen, Benzoni & Lund (2002)). The vector (θ, ω, η) is from Andersen, Benzoni & Lund

(2002), who apply Efficient Method of Moments (EMM) to calibrate numerous continuous-time

diffusions; except that we standardize the (annualized) average of IV to unity, i.e. (θ, ω, η) =

(0.032,−0.103, 0.115).

The initial conditions are set to p0 = 0 and lnσ2
0 = ω, and our simulation design is completed

by generating T daily replications from this model with mn price increments each, with T and

mn depending on the setting (see below). Throughout, we continue to ignore the irregular

spacing of high-frequency data and work with equidistant data.
19A discrete-time version of the continuous-time model in (3.1) is obtained with a standard Euler approxi-

mation scheme, i.e. pt+∆ = pt + σt

√
∆φt and ln σ2

t+∆ = θω∆ + ln σ2
t (1 − θ∆) + η

√
∆εt, where φt and εt are

orthogonal N(0,1) variates.
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3.1 Simulation Results

To maintain a streamlined exposition, we start with the distributional implications derived for

RBV ∆
m .20 After this, we elaborate on the consistency result of Theorem 4 by augmenting the

simulated prices with microstructure noise.

In the current context we select m = 5, but our results are not that sensitive to specific

values of m. In general, higher values of m lead to size properties of the asymptotic confidence

bands. We use n = 10, 50, 100 for a total of mn = 50, 250, 500 increments each day. This

allows us to visualize the gradual convergence in distribution to the standard normal for daily

high-frequency sample sizes that resemble those of moderately liquid assets. As one simulation

is quite fast with these specifications, a total of T = 1, 000, 000 replications are generated,

providing very accurate estimation of the actual finite-sample density.

[INSERT FIGURE 4 ABOUT HERE]

Figure 4, upper panel, graphs smoothed densities for the standardized errors of RBV ∆
m ; cf.

the ratio in equation (2.30). It details that for n = 10, the distribution is left-skewed with a

poor behavior in both the center and tail areas compared to the superimposed N(0,1) reference

density. The size properties improve by progressively increasing the sample and n = 100 tracks

the tails quite closely.

Barndorff-Nielsen & Shephard (2003a) showed that log-based inference via standard lin-

earization methods improved upon the raw distribution theory for RV . They found a better

finite-sample behavior for the errors of the log-transform than those extracted with the feasi-

ble version of the CLT outlined in equation (2.7). The shape of the actual densities for the

range-based statistic suggests this also applies in our setting. By the delta-rule, the log-version

of the CLT for RBV ∆
m takes the form:

n1/2
(
ln RBV ∆

m − ln IV
) d→ MN

(
0, Λm

∫ 1

0
σ4

sds/IV 2

)
(3.2)

In the lower panel of Figure 4, we plot the density function of the feasible log-based t-statistics.

Apparently, the coverage of the limit theory in equation (3.2) is a much better guide for small

values of n; with n = 100 providing a near-perfect fit to the N(0,1). Hence, the results for the

range are broadly consistent with the findings for RV .

3.2 Market Microstructure Noise

To conclude our analysis of range-based estimation of IV , we consider the impact of market

microstructure noise. This bias arises from a variety of sources, including price discreteness,

bid-ask bounce and illiquidity. A lot of work can be conducted in this setting and we are
20The limit theory for the adjusted range is omitted for compactness, though all results are available upon

request. In fact, for small n it affords a better description than the version with the range.
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currently devoting a separate paper for further results and improvements of our theoretical

framework to the presence of microstructure noise. Consequently, the exposition serves as a

brief illustration.

Start with the decomposition:

p∗i/mn = pi/mn + εi/mn (3.3)

where ε =
{
εi/mn

}
0≤i≤mn

is an IID process with E
[
εi/mn

]
= 0, E

[
ε2
i/mn

]
= σ2

ε and ε |= p.

Here, the observed price p∗ =
{
p∗i/mn

}
0≤i≤mn

equals the efficient price p plus the ε term due

to microstructure bias. In this case, the p-part of p∗ is asymptotically negligible.

For simplicity, assume εi/mn ∼ U ([−ν, ν]), implying that σ2
ε = ν2/3. We then compute

some bounds for the estimators of IV . Starting with RV ∆, we have:

E
[
RV ∆

] ≈ 2
3
ν2n (3.4)

Likewise, the bound for RBV ∆
m is:

E
[
RBV ∆

m

] ≈ E

[
1

λ2,m

n∑

i=1

max
1≤s,t≤m

(
ε(i−1)/n+t/mn − ε(i−1)/n+s/mn

)2

]

≤ E

[
4

1
λ2,m

n∑

i=1

max
1≤t≤m

ε2
(i−1)/n+t/mn

]

= 4
1

λ2,m

m

m + 2
ν2n

Hence, E
[
RBV ∆

m

] → ν2n/ ln (2) for m → ∞. For the expected value of R̃BV ∆
m, we calculate

an upper bound, which is probably not optimal,

E
[
R̃BV ∆

m

]
≈ E

[
1

λ̃2,m

n∑

i=1

max
1≤s,t≤m

(
ε(i−1)/n+t/mn − ε(i−1)/n+s/mn −

t− s

m

(
εi/n − ε(i−1)/n

))2
]

≤ E

[
4

1
λ̃2,m

n∑

i=1

max
1≤t≤m

ε2
(i−1)/n+t/mn + ε2

i/n

]

= 4
1

λ̃2,m

(
m

m + 2
+

1
3

)
ν2n

and E
[
R̃BV ∆

m

]
→ 32ν2n/π2 for m →∞.

To interpret these results, compare 1/ ln (2) ≈ 1.44 and 32/π2 ≈ 3.24 to the constant 2/3

appearing in the expected value of RV ∆. It means that given a sampling frequency n, the two

range-based statistics are more biased than RV ∆. The intuition is clear: the high-low is more

sensitive to movements in the price and, hence, also microstructure fluctuations. However,

RBV 3∆
3m is less biased than RV ∆ in the model with noise and more efficient without noise (as

m → ∞). So instead of using RV sampled at, say, the 5-minute frequency, one could use the

range at the 15-minute frequency to reduce bias, while retaining efficiency. For the adjusted

range, R̃BV 5∆
5m has the same property.
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We now provide a simple illustration of these insights by using a second set of repeated

samples to compute the intra-day range-based statistics and RV ∆. In this simulation, we use

T = 10, 000, mn = 23, 400 and report the results for every sampling frequency n that divides

mn evenly. Thus, we have estimates of IV for a total of 72 different frequencies. The same

frequencies were used in the previous section. The simulated prices are contaminated by adding

uniform noise and setting ν = 0.001.

[INSERT FIGURE 5 ABOUT HERE]

The results of the Monte-Carlo experiments are plotted in Figure 5. To assess the perfor-

mance of the volatility proxies, we plot the root mean squared error (RMSE) for the no-noise

case, and a ”signature plot” in the setting with noise.

With no microstructure noise, RMSE of both range-based statistics are always lower than

RV , which is consistent with the theory outlined in this paper. By incorporating noise, all

estimators of IV diverge to infinity as n → ∞, as we are cumulating increasingly more mi-

crostructure noise. The asymptotic bounds hold approximately for frequent sampling (high

values of n), but are less accurate in the right-most part of the figure, corresponding to low

values of n.

In an independent and concurrent paper, Dijk & Martens (2005) use Monte Carlo experi-

ments - closely related to ours - for the scaled Brownian motion (i.e. µ = 0 and σt = σ). They

specify more structural mechanisms for the microstructure noise and report that RMSE for the

range-based estimator of equation (2.12) is lower than that of RV . Our evidence is somewhat

mixed; in unreported studies the range achieves a lower RMSE in some settings, but RV also

manages to outperform the range depending on specifications. There seems to be no systematic

pattern, but it admits a further investigation.

All told, range-based estimation of IV offers several advantages compared to the standard

method of computing RV ; both from a theoretical and practical viewpoint. But, as a final

remark, we acknowledge that if the data are subject to pricing errors, it is central with formal

tools for getting consistent estimates of IV . Such techniques are already being developed in

the context of RV , see, e.g., Aı̈t-Sahalia et al. (2004) or Barndorff-Nielsen, Hansen, Lunde

& Shephard (2004), and it presents a central topic for future research to verify whether this

extends to our method.

4 Conclusions and Directions for Future Research

In this paper, we developed a framework for estimation of the latent integrated variance (IV )

using the high-low as a volatility proxy. The setup is a continuous semi-martingale for the

log-price of a security. Unlike existing range-based theory, where the (driftless) geometric

Brownian motion is a leading model, we allow the instantaneous mean and variance to evolve
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stochastically. Both from a theoretical and empirical point of view, this extension is attractive.

As a novelty we suggested a new approach for non-parametric estimation of IV , which extracts

information in high-frequency data more efficiently than previous methods. The outline -

inspired by realized variance (RV ) - is the summation of price ranges sampled at a higher

frequency than the measurement horizon.

As a third contribution, we provided a set of probabilistic laws for sampling intra-day high-

lows. Under weak technical conditions, the estimator converges in probability to IV as the

sampling frequency tends to infinity. With stronger conditions, in particular a mean-zero as-

sumption, we also found a mixed Gaussian asymptotic distribution theory for the standardized

statistic. Compared to RV , the conditional variance of the high-low is five times smaller. To

relax the restriction on the drift-term, we transformed the price process and sampled an ad-

justed range. Consistency holds for the modified statistic and we proved a central limit theorem

(CLT) under weaker conditions about the drift. Moreover, the greater sampling stability of

the adjusted range makes it (asymptotically) ten times more efficient than RV . Finally, we

analyzed the setting, where estimation of IV relies on discretely sampled data. Here, similar

results were derived.

With Monte Carlo simulations, we investigated the finite-sample performance of our method

and documented its asymptotic properties. The approximation to the normal law of the stan-

dardized errors is fairly accurate for moderate sample sizes, especially for the log-based version

of the CLT. Moreover, if the high-low is constructed on the basis of just a few discrete-time

increments - five or ten is sufficient - the efficiency of our estimators is quite high compared

to RV . Thus, in a setting where true asset prices are subject to error, it may be preferable

to sparsely sample an intra-day range-based statistic, as it holds the same efficiency as RV

sampled at a higher frequency but reduces the bias arising from microstructure noise.

In future projects, we envision several extensions of our methodological contribution. First,

there is plenty of evidence against the continuous sample path diffusion adopted in this paper;

particularly at very high frequencies. We are convinced that the high-low statistics are capable

of providing consistent estimates of quadratic variation, when the underlying process exhibits

jumps. Second, if a jump component is added, it may be preferable to untangle the continuous

and discontinuous innovation part in order to construct more robust volatility measures or an-

alyze their separate properties; equivalently to the theory of realized power/bipower variation.

Finally, a further theoretical examination of the range is needed, when the observed price is

partly due to microstructure noise. As for RV , subsampling based methods for the range seem

promising in, hopefully, providing consistent estimates of IV irrespective of the noise, while

being more efficient.
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A Appendix of Proofs

A.1 Proof of Theorem 1

First, we define:

ξn
i =

1
λ2

σ2
i−1
n

s2
Wi∆,∆

Un =
n∑

i=1

ξn
i

Note that:

E
[
ξn
i | F i−1

n

]
=

1
n

σ2
i−1
n

so,
n∑

i=1

E
[
ξn
i | F i−1

n

]
p→ IV (A.1)

Now, by setting

ηn
i = ξn

i − E
[
ξn
i | F i−1

n

]

we get:

E
[
(ηn

i )2 | F i−1
n

]
= Λ

1
n2

σ4
i−1
n

Therefore,
n∑

i=1

E
[
(ηn

i )2 | F i−1
n

]
p→ 0

Hence, the assertion Un p→ IV follows directly from (A.1). As a sufficient condition in the next

step, we deduce RBV ∆ − Un p→ 0. Note, the equality:

RBV ∆ − Un =
1
λ2

n∑

i=1

(
spi∆,∆ − σ i−1

n
sWi∆,∆

) (
spi∆,∆ + σ i−1

n
sWi∆,∆

)

≡ Rn
1 + Rn

2

with Rn
1 and Rn

2 defined by:

Rn
1 =

2
λ2

n∑

i=1

σ i−1
n

sWi∆,∆

(
spi∆,∆ − σ i−1

n
sWi∆,∆

)

Rn
2 =

1
λ2

n∑

i=1

(
spi∆,∆ − σ i−1

n
sWi∆,∆

)2

We decompose the second term further:

Rn
2 ≤ 1

λ2

n∑

i=1

(
sup

i−1
n
≤s,t≤ i

n

|
∫ t

s
µudu +

∫ t

s

(
σu − σ i−1

n

)
dWu |

)2

≤ 2
λ2

n∑

i=1

(
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i−1
n
≤s,t≤ i
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|
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s
µudu |
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+
2
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(
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≤s,t≤ i

n

|
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s

(
σu − σ i−1

n

)
dWu |

)2

≡ Rn
2.1 + Rn

2.2
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It is straightforward to verify the estimation E [Rn
2.1] = O

(
n−1

)
. For the latter term, we exploit

the Burkholder inequality (e.g., Revuz & Yor (1998)):

E [Rn
2.2] ≤ 2C

λ2

n∑

i=1

E

[∫ i
n

i−1
n

(
σu − σ i−1

n

)2
du

]

=
2C

λ2
E

[∫ 1

0

(
σu − σ [nu]

n

)2
du

]

= o(1)

for some constant C > 0. Thus, Rn
2 = op (1). With a decomposition as above and the Cauchy-

Schwarz inequality, we have Rn
1 = op (1). By assembling the parts, RBV ∆ − Un p→ 0. ¥

A.2 Proof of Theorem 2

First, note:

n∑

i=1

E
[
ξn
i | F i−1

n

]
− IV =

n∑

i=1

∫ i
n

i−1
n

(
σ2

i−1
n

− σ2
s

)
ds

= op

(
n−1/2

)
(A.2)

as σ has Hölder index of order γ > 1/2 in L2 (P). Using the Hölder continuity again and

methods similar to the previous proof, yields Rn
1 = op

(
n−1/2

)
and Rn

2 = Op

(
n−1

)
. Combining

this with (A.2), we obtain:

n1/2
(
RBV ∆ − IV

)
= n1/2

n∑

i=1

ηn
i + op (1)

We see that:

n
n∑

i=1

E
[
(ηn

i )2 | F i−1
n

]
p→ Λ

∫ 1

0
σ4

sds

and by the scaling property of Brownian motion,

n1/2
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E
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(
W i
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−W i−1

n
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| F i−1

n
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p→ ν

λ2
IV

where ν = E
[
W1s

2
W

]
. Quite trivially, {Wt}t∈[0,1]

d= {−Wt}t∈[0,1], with the consequence ν = −ν

and, hence, ν = 0.

Next, let N = {Nt}t∈[0,1] be a bounded martingale on
(
Ω,F , {Ft}t∈[0,1], P

)
, which is or-

thogonal to W (i.e., with quadratic covariation process {[W,N ]t}t∈[0,1] = 0). Then,

n1/2
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i=1

E
[
ηn

i

(
N i

n
−N i−1

n

)
| F i−1

n

]
= 0 (A.3)
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For this result, we use Clark’s representation theorem (see, e.g., Karatzas & Shreve (1998),

Appendix E):

s2
Wi∆,∆

− 1
n

λ2 =
∫ i

n

i−1
n

Hn
s dWs (A.4)

for some predictable function Hn
s . Notice E

[∫ b
a fsdWs (Nb −Na) | Fa

]
= 0, for any [a, b] and

predictable f . To prove this assertion, take a partition a = t∗0 < t∗1 < . . . < t∗n = b and compute:
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]

= 0

From equation (A.4), (A.3) is attained. Finally, stable convergence in law follows by Theorem

IX 7.28 in Jacod and Shiryaev (2003):

n1/2
(
RBV ∆ − IV

) ds→ Λ1/2

∫ 1

0
σ2

sdBs

¥

A.3 Proof of Theorem 3

For i−1
n ≤ s, t ≤ i

n , we have:

p̃t − p̃s =
∫ t

s
µudu +

∫ t

s
σudWu − n (t− s)
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i−1
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σudWu
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+
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s
σudWu − n (t− s)
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i−1
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σudWu

By the continuity of µ and Hölder continuity of σ (and methods similar to the above), we get

the estimate:

n1/2
(
R̃BV ∆ − IV

)
= n1/2

n∑

i=1

η̃n
i + op (1)

with the sequence η̃n
i being defined by,

η̃n
i =

1
λ̃2

σ2
i−1
n

(
s2
W̃i∆,∆

− 1
n

λ̃2

)

Now, the CLT for n1/2
∑n

i=1 η̃n
i is derived exactly as in the previous proof. ¥

A.4 Proof of Theorem 4

The result is shown in the same manner as Theorem 1, 2, and 3. ¥
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A.5 Proof of Remark

Recall µ = 0 and σ |= W . Notice, under assumption (H), that it suffices to verify:

RBV ∆ − Un =
1
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Set,
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From the Markov and scaling property of Brownian motion, we get the identity:
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Figure 1: The Distribution of the Absolute Return, Range and Adjusted Range
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We present the distribution of the absolute return, range and adjusted range of a standard
Brownian motion over an interval of unit length.
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Figure 2: The Finite-Sample Expectation of the Squared Adjusted Range and Range of a
Standard Brownian Motion
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The figure details the second moment of the adjusted range and range of a standard Brownian
motion over an interval of unit length, when the underlying continuous-time process is only
observed at m (equidistant) points in time. The dashed lines represent the asymptotic values.
The figure is based on a simulation with 1,000,000 repetitions.
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Figure 3: The Variance of the Adjusted Range- and Range-Based Estimator of Integrated
Variance of a Standard Brownian Motion
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We plot the variance of the adjusted range- and range- based estimator of IV of a standard
Brownian motion over an interval of unit length, when the underlying continuous-time process
is only observed at m (equidistant) points in time. The dashed lines represent the asymptotic
values. The figure is based on a simulation with 1,000,000 repetitions.
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Figure 4: Asymptotic Normality for the Standardized Range-Based Statistics in Estimating
Integrated Variance
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We illustrate the asymptotic normality of the errors of the standardized range-based statistic
RBV ∆

m in estimating IV . The plots are smoothed densities - using a Gaussian kernel - for the
finite-sample settings with n = 10, 50, 100 and m = 5, and the graphs are based on a simulation
with 1,000,000 repetitions from a log-normal diffusion for σ, as detailed in the main text. In
the upper panel, we depict the t-statistics of the feasible CLT for RBV ∆

m , while the lower panel
is the corresponding log-based version. The solid line is the density function of a standard
normal random variable.
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