
A note on some extremal problems for trigonometric

polynomials

Holger Dette

Ruhr-Universität Bochum

Fakultät für Mathematik

44780 Bochum, Germany

e-mail: holger.dette@rub.de

FAX: +49 234 3214 559

Viatcheslav B. Melas

St. Petersburg State University

Department of Mathematics

St. Petersburg

Russia

email: v.melas@pobox.spbu.ru

July 6, 2005

Abstract

We consider the problem of finding the trigonometric polynomial

ϑ0 +
m

∑

j=1

ϑ2j−1 sin(jx) + ϑ2j cos(jx)

with minimal sup-norm on the interval [−π, π], where one coefficient in the polynomial, say
ϑk (0 ≤ k ≤ 2m), has been fixed. A complete solution of this problem is given, which depends
sensitively on the ratio k/m, and the problem of uniqueness is discussed. Several examples
are presented to illustrate the main properties of the extremal polynomials.
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1 Introduction

Consider the class

T =
{

ϕm(x) = ϑ0 +
m

∑

j=1

ϑ2j−1 sin(jx) + ϑ2j cos(jx)
∣

∣

∣
x ∈ [−π, π]; ϑi ∈ R, i = 0, . . . , 2m

}

(1.1)

of all trigonometric polynomials of degree m, and let

‖f‖∞ = max
|x|≤π

|f(x)|
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denote the sup-norm of a continuous function on the interval [−π, π]. In the present paper we
derive an analytic solution of the extremal problem

min{‖ϕm‖∞ | ϕm ∈ T , |ϑk| = 1};(1.2)

where k ∈ {0, . . . , 2m} is arbitrary but fixed. Extremal problems of this type have been originally
studied for ordinary polynomials by Chebyshev (1859), who determined the minimal sup-norm of
all polynomials with a fixed degree and leading coefficient 1 [see e.g. Achieser (1956) or Natanson
(1955) among others]. In the context of algebraic and trigonometric polynomials numerous ex-
tremal problems have been studied in the literature [see Rivlin (1974) or Milavonović, Mitrinovicć
and Rassias (1994) among many others] but to the knowledge of the authors a solution of the
above problem is not available. Note that the extremal problem (1.2) can be reformulated to the
problem of finding the best constant, say cm,∞, such that the inequality

1 = |ϑk| ≤ ck,m,∞‖ϕm‖∞ ∀ ϕm ∈ T(1.3)

holds. This problem is related to the problem of determining the best constant cm,p such that

2m
max
j=0

|ϑj| ≤ cm,p‖ϑm‖p ∀ ϕm ∈ T ,(1.4)

(here ‖f‖p = (
∫ π

−π
|f(x)|pdx)1/p denotes the Lp-norm), which was recently solved by Marshall and

Ganzburg (1999). Similar problems for the L1-norm of nonnegative trigonometric polynomials
were studied by Peherstorfer (1982). We finally note that the extremal problem (1.2) is also
equivalent to the problem

max{|ϑk| | ϕm ∈ T , ‖ϕm‖∞ ≤ 1}(1.5)

in the following sense. If ϕm is a solution of the extremal problem (1.2), then ϕm/||ϕm||∞ is a
solution of the extremal problem (1.5) and vice versa. It is also easy to see that −ϕm is a solution
of the extremal problem (1.2) [or equivalently (1.3) or (1.5) ] if and only if ϕm is a solution, and
throughout this paper we do not distinguish these two solutions.
It is the purpose of the present note to derive an explicit solution of the extremal problem (1.2),
[or equivalently (1.3), (1.5)]. In Section 2 we provide a necessary and sufficient condition for
a trigonometric polynomial to be a solution of the extremal problem. It turns out that this
solution depends sensitively on the value of k ∈ {0, . . . , 2m}, and two different scenarios are
identified in Section 3 and Section 4 corresponding to the cases b k+1

2
c ≤ m/3 and bk+1

2
c > m/3,

respectively. Finally, in Section 5 the problem of uniqueness is discussed and it is demonstrated
that the extremal problem (1.2) can have uncountable many solutions. Moreover, several examples
are presented, which illustrate some peculiar properties of the extremal polynomials in the case
bk+1

2
c < m/3.
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2 A necessary and sufficient condition for the solution of

the extremal problem

For the sake of a transparent notation we introduce the functions

fj(x) =











1 if j = 0

sin(`x) if j = 2` − 1; ` = 1, . . . , m

cos(`x) if j = 2`; ` = 1, . . . , m

(2.1)

and rewrite a trigonometric polynomial ϕm ∈ T as

ϕm(x) =

2m
∑

j=0

ϑjfj(x).(2.2)

The following result characterizes the solution of the extremal problem (1.5).

Theorem 2.1. A trigonometric polynomial of the form (2.2) with ‖ϕm‖∞ ≤ 1 is a solution of
the extremal problem (1.5) if and only if there exist points x1, . . . , xN ∈ [−π, π] and real constants
A1, . . . , AN (N ∈ N) such that N ≤ 2m and

(i) sign(Aj)ϕm(xj) = 1 whenever Aj 6= 0 (j = 1, . . . , N);

(ii)
N

∑

j=1

Ajfi(xj) = 0; for all i ∈ {0, 1, . . . , 2m}\{k};

(iii)

N
∑

j=1

Ajfk(xj) = 1.

Moreover, if ϕ̂m =
∑2m

j=0 ϑ̂jfj is a solution of the extremal problem (1.5) the coefficient ϑ̂k corre-
sponding to the function fk in the polynomial ϕ̂m is given by

ϑ̂k =

N
∑

j=1

|Aj|.(2.3)

Proof. Using Theorem 1.3 in Singer (1970) it follows that a trigonometric polynomial ϕ̃m is a
solution of the extremal problem (1.2) if and only if there exist N ≤ 2m points x1, . . . , xN and N
scalars µ1, . . . , µN with

∑N
i=1 |µi| = 1 such that

N
∑

j=1

µjfi(xj) = 0 i ∈ {0, . . . , 2m}\{k}(2.4)

N
∑

j=1

µjϕ̃m(xj) = ‖ϕ̃m‖∞(2.5)

ϕ̃m(xj) sign(µj) = ‖ϕ̃m‖∞ j ∈ {0, . . . , N}(2.6)
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Define Aj = µj/‖ϕ̃m‖∞, note that ϕ̃m(x) = fk(x)+
∑

i6=k ϑifi(x) and define ϕ̂m(x) = ϕ̃m(x)/‖ϕ̃m‖∞.
Because the extremal problems (1.2) and (1.5) are equivalent, it is now easy to see that the trigono-
metric polynomial ϕ̂m is a solution of the extremal problem (1.5), if and only if there exist points
x1, . . . , xN and constants A1, . . . , AN such that the conditions (i) – (iii) of Theorem 2.1 are satsified.
Finally, we obtain from the conditions (i) – (iii) the representation

1 =

N
∑

j=1

Ajfk(xj) =
1

ϑ̂k

N
∑

j=1

Ajϕ̂m(xj) =
1

ϑ̂k

N
∑

j=1

|Aj|,

which proves the remaining assertion (2.3) of Theorem 2.1. 2

3 Extremal polynomials in the case k = 0,m/3 < b k+1
2 c ≤ m

In this section we provide a solution of the extremal problem (1.2) for the case k = 0 and “large”
values of k. It turns out that in this case the solution is very transparent.

Theorem 3.1. Assume that k = 0 or m/3 < b k+1
2
c ≤ m, then the trigonometric polynomial

ϕ̂m(x) = fk(x) is a solution of the extremal problem (1.2). In particular the constant cm,∞ in
(1.3) is given by cm,∞ = 1 if k = 0 or m/3 < bk+1

2
c ≤ m.

Proof. Consider the case k = 2` with ` > m/3, for which we have to show that the solution of the
extremal problem is given by ϕ̂m(x) = fk(x) = cos(`x). Obviously, we have ‖ϕ̂m‖∞ = 1. Define

xj =
j − 1

`
π − π; j = 1, . . . , 2`,

(3.1)

Aj =
1

2`
cos(`xj) =

(−1)`−j+1

2`
; j = 1, . . . , 2`,

and observe the identities

q
∑

j=1

cos
(

s
(j − 1

q
π − π

))

cos
(

i
j − 1

q
π − π

))

= 0(3.2)

for all i ∈ {0, . . . , s− 1, s + 1, . . . , m} such that s + i and |s− i| are not multipliers of 2q [see e.g.
Rivlin (1974), Exercise 1.5.28]. Using these equalities it is easy to see that

2
∑̀

j=1

Ajf2i(xj) =
1

2`

2
∑̀

j=1

cos(`xj) cos(ixj) = 0,(3.3)

whenever i ∈ {1, . . . , m}\{`} [note that we require the condition ` > m/3 for the application of
formula (3.2)]. On the other hand it follows from the definition of the points xj in (3.1) that

x2`−j + xj+2 = 0, j = 0, . . . , ` − 1; x1 = −π; x`+1 = 0,
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and a direct calculation shows

2
∑̀

j=1

Ajf2i−1(xj) =
1

2`

2
∑̀

j=1

cos(`xj) sin(ixj) = 0,

which proves the conditions (i) and (ii) of Theorem 2.1. Finally, the remaining condition (iii) of
this Lemma is obvious from

2
∑̀

j=1

Ajf2`(xj) =
1

2`

2
∑̀

j=1

cos2((j − 1 − `)π) = 1,

and by Theorem 2.1 the function ϕm(x) = f2`(x) = cos(`x) is a solution of the extremal problem
(1.5) which is equivalent to the extremal problem (1.2).
The case k = 0 is obtained exactly in the same way. Finally, the remaining case k = 2`−1, ` > m/3
is treated by similar arguments using the the points

xj =
2j − 1

2`
π − π, j = 1, . . . , 2`,

the weights

Aj =
1

2`
sin(`xj), j = 1, . . . , 2`

in (3.1) and observing the identity

q
∑

j=1

sin
(

s
(2j − 1

2q
π − π

))

sin
(

i
(2j − 1

2q
π − π

))

= 0

for all i ∈ {0, . . . , s−1, s+1, . . . , m} such that s+ i and |s− i| are not multipliers of 2q [see Rivlin
(1974)]. The details are omitted for the sake of brevity.

2

4 Extremal polynomials in the case 1 ≤ b k+1
2 c ≤ m/3

It will be demonstrated in the present section that the solution of the extremal problem (1.2) in
the case 1 ≤ bk+1

2
c ≤ m/3 is substantially more complicated. Throughout this section we define

the index

p = bm + `

2`
c + 1,(4.1)

which will be an important quantity for the classification of the solution of the extremal problem.
In particular we have to distinguish the following three cases

k = 2`, p is odd(4.2)

k = 2` − 1(4.3)

k = 2`, p is even(4.4)
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Trigonometric polynomials of the form

ϕ(x, ϑ) =



































p−1
∑

j=1

ϑ2`(2j−1)f2`(2j−1)(x) =

p−1
∑

j=1

ϑ2`(2j−1) cos(`(2j − 1)x) if k = 2`

p−1
∑

j=1

ϑ2`(2j−1)−1f2`(2j−1)−1(x) =

p−1
∑

j=1

ϑ2`(2j−1)−1 sin(`(2j − 1)x) if k = 2` − 1

(4.5)

will serve as appropriate candidates for the extremal polynomial [recall the definition of the func-
tion fk(x) in (2.1)]. The following result is the basic tool for the solution of the extremal problem
(1.2).

Lemma 4.1. Assume that 1 ≤ bk+1
2
c ≤ m

3
.

(a) If condition (4.2) is satisfied, define

xi =
(

2i − 1 + 2b i − 1

p − 1
+

1

2
c
) π

2p`
; i = 1, . . . , p − 1,(4.6)

then there exists a unique trigonometric polynomial of the form (4.5), which is determined
by of the system of equations

ϕ(xi, ϑ) =
fk(xi)

|fk(xi)|
; i = 1, . . . , p − 1,(4.7)

ϕ′(xi, ϑ) = 0; i = 1, . . . , p − 1.(4.8)

(b) If condition (4.3) is satisfied, define

xi =
(

i + b i − 1

p − 1
c
) π

p`
; i = 1, . . . , p − 1,(4.9)

then there exists a unique trigonometric polynomial of the form (4.5) which is determined
by the equations (4.7) and (4.8) .

(c) If condition (4.4) is satisfied, define

xi =
(

i − 1 + b i − 1

p − 1
+

1

2
c
) π

p`
; i = 1, . . . , p,(4.10)

then there exists a unique trigonometric polynomial of the form (4.5) which is determined
by (4.8) and

ϕ(xi, ϑ) =
fk(xi)

|fk(xi)|
; i = 1, . . . , p.(4.11)
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Proof. We only prove case (a), the other cases are shown exactly in the same way. Recall
that in this case k = 2`, ` = bk+1

2
c and p is odd which obviously implies p ≥ 3. We define the

(p − 1) × (p − 1)-matrix

B =























cos(`x1) cos(3`x1) . . . cos((2p − 3)`x1)
...

...
...

...

cos(`x p−1

2

) cos(3`x p−1

2

) · · · cos((2p − 3)`x p−1

2

)

−` sin(`x1) −3` sin(3`x1) · · · −(2p − 3)` sin((2p − 3)`x1)
...

...
...

...

−` sin(`x p−1

2

) −3` sin(3`x p−1

2

) · · · −(2p − 3)` sin((2p − 3)`x p−1

2

)























(4.12)

and the vector

e =
( cos(`x1)

| cos(`x1)|
, . . . ,

cos(`x p−1

2

)

| cos(`x p−1

2

)| , 0, . . . , 0
)T

∈ R
p−1.(4.13)

Observing the fact that

xi + xp−i =
π

`
i = 1, . . . ,

p − 1

2

[by definition (4.6)] and the identities

cos((2j − 1)`(x − π

`
)) = − cos((2j − 1)`x),

sin((2j − 1)`(x − π

`
)) = − sin((2j − 1)`x),

it follows that the system of equations in (4.7) and (4.8) for an arbitrary trigonometric polynomial
of the form

ϕ(x, ϑ) =

p−1
∑

j=1

ϑ2`(2j−1)f2`(2j−1)(x) =

p−1
∑

j=1

ϑ2`(2j−1) cos((2j − 1)`x)

is equivalent to the system

Bϑ = e.(4.14)

Therefore the assertion in part (a) of Lemma 4.1 follows, if it can be shown that the matrix B is
non-singular. For this purpose consider for s ∈ N the matrix

A =













cos x1 cos(3x1) . . . cos((4s − 1)x1)

cos x2 cos(3x2) . . . cos((4s − 1)x2)
...

...
...

...

cos x2s cos(3x2s) . . . cos((4s − 1)x2s)













= (u1, . . . , u2s) ∈ R
2s×2s,

where x1 < x2 < . . . < x2s are arbitrary numbers and the vector u` is defined by

u` = (cos((2` − 1)x1), . . . , cos((2` − 1)x2s))
T ; ` = 1, . . . , 2s.
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Let U2`−1(x) = sin(2` arccosx)/ sin(arccos x) denote the (2` − 1)th Chebyshev polynomial of the
second kind [see Szegö (1975)]. Observing the identity

∑̀

j=1

cos((2j − 1)x) =
1

2

sin(2`x)

sin x
=

1

2
U2`−1(z)

with z = cos x [see Jolley (1961), formula 420] it follows that

det A = det(u1, u1 + u2, u1 + u2 + u3, . . . , u1 + . . . + u2s)

=
(1

2

)2s

det
(

U2j−1(zi)
)2s

i,j=1

where zi = cos xi (i = 1, . . . , 2s). It is well known that the leading coefficient of Uj(x) is 2j [see
Szegö (1975)], and we obtain (using the Vandermonde determinant formula)

det A = (
1

2
)2s2

�
2s
j=1

(2j−1) det(z2j−1
i )2s

i,j=1

= 22s(2s−1)
2s
∏

i=1

cos xi

∏

1≤i<j≤2s

(cos2 xj − cos2 xi).

Subtracting the ith row of the matrix A from the (i + 1)th row (i = 1, . . . , s) it follows that the
determinant of the matrix B defined by (4.12) (with s = p−1

2
) can be obtained as

det B = lim
xi+s→xi;i=1,...,s

det A
∏s

i=1(xi+s − xi)

= −22s(2s−1)
s

∏

i=1

(cos2 xi sin 2xi)
∏

1≤i<j≤s

(cos2 xi − cos2 xj)
4.

Finally, if s = p−1
2

and the points x1, . . . , x p−1

2

are given by (4.6), then it follows that xj ∈ (0, π
2
)

(j = 1, . . . , p−1
2

), which implies det B 6= 0. This proves the assertion of Lemma 4.1. 2

Theorem 4.2. Assume that m > 2. For any k such that 1 ≤ b k+1
2
c ≤ m

3
the trigonometric

polynomial defined by Lemma 4.1 is a solution of the extremal problem (1.2). Moreover, the
constant cm,∞ in the equivalent problem (1.3) depends only on p and is given by

cm,∞ =
{2

p
cot

( π

2p

)}−1

,

where p is defined by (4.1).

Proof. Again we restrict ourselves to the case (4.2) where k = 2` and p is odd. We consider the
trigonometric polynomial ϕ̂(x) = ϕ(x, ϑ̂) defined by the first part of Lemma 4.1 and show that

|ϕ(x, ϑ̂)| ≤ 1 ∀ x ∈ [−1, 1].(4.15)
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Figure 4.1: The function Q̄ defined in (4.17) for p = 5 (left panel) and p = 7 (right panel), which
is considered in the proof of Theorem 4.2.

For this we introduce the function

Q(x) = ϕ(x, ϑ̂) + cos(2p`x),(4.16)

and note that it follows from the representation (4.5) that

Q(x) = Q(`u) = ϕ̄(u) + cos(2pu) =: Q̄(u)(4.17)

where u = `x and the function ϕ̄ is defined by

ϕ̄(u) =

p−1
∑

j=1

ϑ2`(2j−1) cos((2j − 1)u).

Similarly, define ui = `xi (i = 1, . . . , p − 1), where xi is given by (4.6), note that

ui =
2i − 1

2p
π; i = 1, . . . ,

p − 1

2
,

and that u1, . . . , u p−1

2

∈ (0, π
2
) are roots of trigonometric polynomial Q̄(u) with at least multiplicity

two, by Lemma 4.1. Moreover, ϕ̄(u) changes in the interval [u p−1

2

, π
2
] from 1 to 0, while − cos(2pu)

changes in the interval [up−1,
p−1

p
π] = [2p−3

2p
π, p−1

p
π] from 1 to −1 and in the interval [ p−1

2p
π, π

2
] from

−1 to 1 (note that p is odd). Therefore there exists at least one more root of the trigonometric
polynomial Q̄(u) in the interval (u p−1

2

, π
2
). A similar argument shows that Q̄(u) has at least p roots

in the interval (π
2
, π) (counted with multiplicities). Therefore the polynomial Q̄(u) has at least

2p roots in the interval (0, π). A typical behaviour of Q̄(u) is depicted in Figure 4.1 for the case
p = 5 and p = 7. As a consequence we obtain that |ϕ̄(u)| ≤ 1 ∀ u ∈ [0, π] because otherwise the
polynomial Q̄(u) would have at least 2p + 1 roots which is impossible. By symmetry it follows
that ‖ϕ̄‖∞ ≤ 1 and we also have ‖ϕ̂‖∞ ≤ 1.
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We now use Theorem 2.1 to prove that the trigonometric polynomial ϕ̂ is a solution of the extremal
problem (1.5). For this we consider the points

xi =
(

2i − 1 + 2b i − 1

p − 1
+

1

2
c
) π

2p`
i = 1, . . . , n = `(p − 1)

where n = `(p − 1), and
xn+j = −xj j = 1, . . . , n.

Define N = 2n and the weights A1, . . . , AN by

Aj =
1

p`
cos(`xj) j = 1, . . . , N.

With these notations it follows for i = 2s, s ∈ {0, . . . , m}\{`} that

N
∑

j=1

Ajf2s(xj) =
2

p`

(p−1)`
∑

j=1

cos(`xj) cos(sxj)

=
2

p`

p`
∑

j=1

cos
(

`
2j − 1

2p`
π
)

cos
(

s
2j − 1

2p`
π
)

= 0,

where we have used the identity
q

∑

j=1

cos
(

`
2j − 1

2q
π
)

cos
(

s
2j − 1

2q
π
)

= 0 if s 6= `

[see Rivlin (1974), Exercise 1.5.26]. On the other hand we obtain

N
∑

j=1

Ajf2`(tj) =
2

p`

p`
∑

j=1

cos2
(

`
2j − 1

2pl
π
)

= 1 +
1

p`

p`
∑

j=1

cos
(

`
2j − 1

p`
π
)

= 1 +
1

2

sin(2`π)

sin(π/p)
= 1,

[see Jolley (1961), formula 420] and by symmetry (using the fact that Aj+n = Aj)

N
∑

j=1

Ajf2s−1(xj) =
N

∑

j=1

Aj sin(sxj) = 0, s ∈ {1, . . . , m}.

This shows that conditions (i) - (iii) of Theorem 2.1 are satisfied and consequently the trigono-
metric polynomial ϕ̂(x) = ϕ(x, ϑ̂) is a solution of the extremal problem (1.5). For the calculation
of the value ϑ̂2` corresponding to function cos(`x) in the trigonometric polynomial ϕ̂(x) we use
the representation (2.3) in Theorem 2.1 and obtain

ϑ̂2` =

N
∑

j=1

|Aj| =
1

p`

N
∑

j=1

| cos `xj| =
2

p`

`(p−1)
∑

j=1

| cos `xj|

=
2

p`

p`
∑

j=1

∣

∣

∣
cos

(2j − 1

2p
π
)∣

∣

∣
=

4

p

p−1

2
∑

j=1

cos
(2j − 1

2p
π
)

=
2

p
cot

( π

2p

)

,

10



where the last line follows again from formula 420 in Jolley (1961). This completes the proof of
Theorem 4.2.

2

Remark 4.3. Note that it follows from the proof of Theorem 4.2 that the extremal polynomial
defined by (4.5) has 2`(p − 1) extremal points, if condition (4.2) or (4.3) is satisfied, while there
are 2`(p − 1) + 3 extremal points in the case (4.4). Moreover, it follows from the representation
(4.10) that the points −π and π are extremal points if condition (4.4) is satisfied. In the two other
cases the boundary points of the interval [−π, π] are not extremal points.

Remark 4.4. It is interesting to note that Theorem 3.1 is contained in Theorem 4.2 (note that
our proof does not require the condition 1 ≤ b k+1

2
c ≤ m

3
. To see this note in the case ` > m

3
we

have p = bm+3`
2`

c = 2, by an elementary calculation, and therefore the polynomial in (4.5) reduces
to cos(`t) or sin(`t) corresponding to the case k = 2` and k = 2` − 1, respectively. In order
to emphasize the different structure of the solution of the extremal problem (1.2) in the cases
1 ≤ bk+1

2
c ≤ m

3
and m

3
< bk+1

2
c ≤ m both scenarios are presented in different sections.

Remark 4.5. The extremal polynomial in Theorem 4.2 can be represented explicitly as

ϕ̂(x) =

n
∑

j=1

sign(fk(xj))`jk(x),(4.18)

where the functions `jk(t) are defined as

`jk(x) =
∏

i6=j

( fk(x) − fk(xi)

fk(xj) − fk(xi)

)si

{aj(fk(x) − fk(xj)) + 1}

with
aj = −

∑

i6=j

si

fk(xi) − fk(xj)

and s1 = . . . = sn = 2, n = p−1, if (4.2) or (4.3) holds and s1 = sn = 1, s2 = . . . = sn−1 = 2, n = p,
if (4.4) holds. This follows by a tedious calculation showing that the function on the right hand
side of (4.18) satisfies the conditions (4.7) and (4.8) which determine the extremal polynomial of
the form (4.5) uniquely.

Remark 4.6. Note that by Theorem 4.2 the optimal constant in (1.3) is given by

ck,m,∞ =

{

{2
p
cot( π

2p
)}−1 if 1 ≤ bk+1

2
c ≤ m

3

1 else
.

Therefore if m → ∞ it follows for any fixed k ∈ N that

lim
m→∞

ck,m,∞ = lim
p→∞

{2

p
cot

( π

2p

)}−1

=
π

4
.

In other words the optimal constant ck,m,∞ in the extremal problem (1.5) exhibits the same
asymptotic behaviour as the optimal constants cm,p in the extremal problem (1.4) [see Marshall
and Ganzburg (1999)].
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Figure 4.2: The solution of the extreml problem (1.2) in the case m = 6. The left part of the figure
shows the extremal polynomials for k = 1 (dotted line) and k = 3 (solid line), while the right part
displays the solution for k = 2 (dotted line) and k = 4 (solid line).

Example 4.7. Consider the case m = 6, where Theorem 4.2 can be applied for the cases
k = 1, 2, 3, 4. If ` = 1 we have p = 4, and the trigonometric polynomial in (4.5) is given by

ϕ(t) =

√

3 +
√

2

2

(

sin t +
8 − 5

√
2

4
sin(3t) +

3
√

2 − 4

4
sin(5t)

)

,(4.19)

ϕ(t) =

√

3 +
√

2

2

(

− cos t +
8 − 5

√
2

4
cos(3t) − 3

√
2 − 4

4
cos(5t)

)

(4.20)

corresponding to the cases k = 1 and k = 2, respectively. If ` = 2 the solution of the extremal
problem (1.2) is simpler and given by

ϕ(t) =

√
3

2

(

sin(2t) +
1

6
sin(6t)

)

(4.21)

ϕ(t) =

√
3

2

(

cos(2t) − 1

6
cos(6t)

)

(4.22)

corresponding to the cases k = 3 and k = 4, respectively. These polynomials are depicted in
Figure 4.2. In all other cases the solution of the extremal problem (1.2) is given in Theorem 3.1.

5 Uniqueness and examples

In the present section we will demonstrate that the solution of the extremal problem (1.2) [or
equivalently (1.3) or (1.5)] is not necessarily unique. Our first result characterizes the set of all
extremal polynomials.

Theorem 5.1. Let ϕ̂(x) denote the extremal polynomial described in Theorem 3.1 or 4.2 and define
{x1, . . . , xN} as the set of all extremal points of ϕ̂(x). An arbitrary trigonometric polynomial ϕ(x)
with ‖ϕ‖∞ ≤ 1 is a solution of the extremal problem (1.2) if and only if it can be represented as

ϕ(x) = ϕ̂(x) + γQ(x).(5.1)

12



Here γ is a real constant and Q(x) is a trigonometric polynomial with roots x1, . . . , xN , where the
multiplicity of a root xi is two whenever |xi| 6= π.

Proof. Assume that ϕ is a solution of the extremal problem (1.2), such that it has the same
coefficient ϑk as ϕ̂. Then the trigonometric polynomial

ϕ̃(x) =
1

2
(ϕ(x) + ϕ̂(x))

is also a solution of the extremal problem (1.2) because it has the same coefficient of ϑk and
satisfies ‖ϕ̃‖∞ ≤ 1. If x̃1, . . . , x̃Ñ are the extremal points of ϕ̃, then it follows from the inequality

|ϕ̃(x)| ≤ 1

2
{|ϕ(x)| + |ϕ̂(x)|} ≤ 1

that
{x̃1, . . . , x̃Ñ} ⊂ {x1, . . . , xN}.

Moreover, x̃1, . . . , x̃N are also extremal points of the trigonometric polynomial ϕ(x), by the same
argument. Note that {f0, . . . , f2m} is a Chebyshev system on the interval [−π, π) and that N ≤
2m < 2m + 1. As a consequence there exists a unique solution A1, . . . , AN of the system of
equations (ii) and (iii) in Theorem 2.1, which implies

{x̃1, . . . , x̃N} = {x1, . . . , xN}.

Consequently, we obtain ϕ̃(xj) = ϕ̂(xj) = sign(Aj), j = 1, . . . , N, and the function

ϕ̃(x) − ϕ̂(x) =
1

2
(ϕ(x) − ϕ̂(x))

has roots at the points x1, . . . , xN , where the multiplicity of a root xi is (at least) two, whenever
|xi| 6= π. Therefore the polynomial ϕ can be written in the form (5.1), which proves the first part
of the assertion.
The converse part of the assertion can be proved in a similar way and is omitted for the sake of
brevity.

2

Example 5.2. Assume that m
3

< ` = bk+1
2
c ≤ m

2
, then, if k = 2` is even, by Theorem 3.1 the

polynomial ϕ̂(x) = cos(`x) is a solution of the extremal problem (1.2) and the extremal points
are given by x∗

j = (j − ` − 1)π/` (j = 1, . . . , 2`). These points are roots of multiplicity 2 of the
polynomial Q(x) = 1 − cos(2`x) and a further extremal polynomial is of the form

ϕγ(x) = cos(`x) + γ(1 − cos(2`x)),(5.2)

where the constant γ is chosen such that ‖ϕγ‖∞ = 1. By a substitution of u = cos(`x) it is easy
to see that the possible range for γ is the interval [− 1

4
, 1

4
]. Extremal polynomials of the form (5.2)

for various values of ` and γ are depicted in Figure 5.1 in the case ` = 2 and ` = 5 (note that the
solution of the extremal problem (1.2) depends only on m by the inequality m

3
< ` ≤ m

2
).

13
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Figure 5.1: Various solutions of the form (5.2) for the extremal problem (1.2) with k = 2`. Solid
lines γ = 0; dashed lines: γ = 1/4; dotted lines: γ = −1/4. The left part of the figure corresponds
to the case ` = 2, while the right part represents the case ` = 5.

It can be shown by similar arguments that in the case k = 2` − 1; m/3 ≤ ` ≤ m/2 trigonometric
polynomials of the form

ϕγ(x) = sin(`x) + γ(1 + cos(2`x)); γ ∈
[

−1

4
,
1

4

]

(5.3)

are solutions of the extremal problem (1.2), and some representative examples are depicted in
Figure 5.2 (in the case ` = 2 and ` = 5).

Example 5.3. Assume that 1 ≤ ` = b k+1
2
c ≤ m

3
and that either k = 2`− 1 and m+3`

2`
is an integer

or that k = 2` and m+3`
2`

is odd. If m+3`
2`

is an integer we obtain that 2p− 3 = m
`

and consequently
the trigonometric polynomial in (4.5) is of degree m. In this case it follows from Remark 4.3 that
the polynomial Q in Theorem 5.1 must have 2`(p−1) = m+ ` roots with multiplicity no less than
2 and its degree must be larger than m. As a consequence, there exists a unique solution of the
extremal problem (1.2) in this case.
On the other hand, if m+3`

2`
is not an integer, we obtain m+3`

2`
− 1 < p < m+3`

2`
or equivalently

m − 2` < `(2p − 3) < m. Because the degree of the polynomial in (4.5) is `(2p − 3) < m there
exists more than one solution of the extremal problem (1.2). To be more specific consider the case
m even k = 2` and assume that p is odd, then the extremal polynomial ϕ̂ from Lemma 4.1 is of
the form

ϕ̂(x) =

p−1
∑

j=1

ϑj cos(`(2j − 1)x)(5.4)

Let Q denote the positive trigonometric polynomial, which has precisely roots of multiplicity
two at the extreme points of ϕ̂. Because k = 2` and p is odd it follows from Remark 4.3 that
the extreme points are not located at the boundary of the interval [−π, π] and by the above
discussion the degree of Q is not larger than m. By Theorem 5.1 the trigonometric polynomial

14
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Figure 5.2: Various solutions of the form (5.3) for the extremal problem (1.2) with k = 2` − 1.
Solid lines γ = 0; dashed lines: γ = 1/4; dotted lines: γ = −1/4. The left part of the figure
corresponds to the case ` = 2, while the right part represents the case ` = 5.

ϕγ(x) = ϕ̂(x)+γQ(x) is a solution of the extremal problem (1.2) if and only if ‖ϕγ‖∞ ≤ 1. In order
to derive conditions on the parameter γ such that this inequality is satisfied let x̄1, . . . , x̄N1

denote
the extreme points of ϕ̂(x) located in the interval [0, π) with ϕ̂(xj) = 1, define the trigonometric
polynomial

U(x) =

N1
∏

j=1

(cos x − cos x̄j)
2,(5.5)

and consider the functions

H1(x) =
ϕ̂(x) − 1

U(x)
; H2(x) =

Q(x)

U(x)
.(5.6)

Note that H1 and H2 are trigonometric polynomials and that the function H2 is nonnegative. The
inequality ‖ϕγ‖∞ ≤ 1 is obviously equivalent to the inequalities

ϕ̂(x) − 1 + γQ(x) = (H1(x) + γH2(x))U(x) ≤ 0(5.7)

ϕ̂(x) + 1 + γQ(x) ≥ 0(5.8)

for all x ∈ [−π, π]. We consider the case (5.7) in more detail, the second case is treated similarly
by an appropriate modification of the definition of the functions H1 and H2. Because U(x) is a
positive function it follows that H1(x) is nonpositive and (5.7) is equivalent to the inequality

H1(x) + γH2(x) ≤ 0(5.9)

for all x ∈ [−π, π]. Define

γ̄ = min
{

−H1(x)

H2(x)
| x ∈ [−π, π]

}

,
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and note that γ̄ > 0, then it is easy to see that (5.9) is satisfied if and only if γ ≤ γ̄. Similarly,
it can be shown that (5.8) holds if and only if γ ≥ −γ̄. Consequently, the polynomial ϕγ(x) =
ϕ̂(x) + γQ(x) constructed in this way is a solution of the extremal problem (1.2) if and only if
|γ| ≤ γ̄.
As a concrete example consider the case m = 4, k = 2` = 2, where p = 3 and the extremal
polynomial defined in (4.5) is given by

ϕ̂(x) =
2√
3

{

cos x − cos(3x)

6

}

.

The extremal points of ϕ̂ are − 5π
6

,−π
6
, π

6
, 5π

6
and polynomial Q is calculated as

Q(x) = 16(cos2 x − 3

4
)2 = 2 cos(4x) − 4 cos(2x) + 3

(note that cos(π
6
) = − cos(5

6
π) =

√
3

2
). The polynomial U is given by U(x) = (cos x −

√
3

2
)2, which

yields

H2(x) = 16
(

cos x +

√
3

2

)2

,

H1(x) = −4

3

(

1 +
cos x√

3

)

,

and for γ̄ the expression

γ̄ = min
{ 1 + (cos x)/

√
3

12(cosx +
√

3/2)2

∣

∣

∣
x ∈ [−π, π]

}

= 1 − 5

9

√
3.

Several solutions of the extremal problem (1.2) are depicted in Figure 5.3.

Example 5.4. If ` > m
2
, the solution of the extremal problem (1.2) is given by ϕ̂(x) = cos(`x) if

k = 2` and by ϕ̂(x) = sin(`x) if k = 2` − 1. In the second case the corresponding polynomial Q
must have (at least) 2 · 2` > 2m roots (counted with multiplicities), while in the first case there
are 2`− 1 roots with multiplicity two (corresponding to the extreme points in the interval (−π, π)
and one root at the point π, which gives (counted with multiplicities) 2(2` − 1) + 1 > 2m roots
for the polynomial Q. In both cases the polynomial Q would not be a trigonometric polynomial
of degree m and therefore the solution of the extremal problem is unique if ` > m

2
.

We conclude this paper summarizing the discussion presented in the previous examples.

Theorem 5.5. The solution of the extremal problem (1.2) is unique if one of the following
conditions is satisfied

(a) bk+1
2
c ≥ m

2

(b) 1 ≤ bk+1
2
c ≤ m

3
, k is even, m+3`

2`
∈ N and is odd

(c) 1 ≤ bk+1
2
c ≤ m

3
k is odd, m+3`

2`
∈ N
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Figure 5.3: Various solutions of the form (5.1) of the extremal problem (1.2) for m = 4 and k = 2
(` = 1). Solid line γ = 0; dashed line: γ = −1 + 5

9

√
3; dotted lines: γ = 1 − 5

9

√
3.

In all other cases, the solution of the extremal problem (1.2) is not unique.
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