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Abstract

A new nonparametric estimate of a convex regression function is proposed and its stochastic
properties are studied. The method starts with an unconstrained estimate of the derivative of
the regression function, which is firstly isotonized and then integrated. We prove asymptotic
normality of the new estimate and show that it is first order asymptotically equivalent to the
initial unconstrained estimate if the regression function is in fact convex. If convexity is not
present the method estimates a convex function whose derivative has the same L

p-norm as the
derivative of the (non-convex) underlying regression function. The finite sample properties of
the new estimate are investigated by means of a simulation study and the application of the
new method is demonstrated in two data examples.

AMS Subject classification: 62G05, 62G07
Keywords and Phrases: nonparametric regression, order restricted inference, convexity, Nadaraya-
Watson estimate, nondecreasing rearrangement

1 Introduction

The estimation of functions under shape restrictions is an important problem in the analysis of the
relationship among variables. In many settings experimenters are in the position of having strong
presumptions that these relationships satisfy certain qualitative restrictions such as monotonicity,
convexity or concavity. Typical examples appear in economics (indirect utility, production or cost
functions), medicine (dose response experiments) or biology (growth curves). Much effort has been
spent to the problem of estimating a monotone regression function using the least squares approach
[see e.g. Brunk (1955), Mukerjee (1988) among others and Barlow, Bartholomew, Bremner and
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Brunk (1972) or Robertsen, Wright and Dykstra (1988) for a summary of this work]. In the case
of concave (convex) regression a concave (convex) least squares estimate was first proposed by
Hildreth (1954) and its consistency was proved by Hanson and Pledger (1976). Some algorithms for
the calculation of the concave (convex) least squares estimate can be found in Wu (1982) and Fraser
and Massam (1989). Mammen (1991) derived the rate of convergence of a least squares estimator of a
convex or concave regression function and its derivative at a fixed point, while recently Groeneboom,
Jongblood and Wellner (2001) proved consistency and derived the asymptotic distribution of the
estimator at a fixed point of positive curvature.

In the present paper we propose an alternative estimate of a convex or concave regression function,
which is not based on the least squares technique and particularly attractive to users of conventional
smoothing methods. We will restrict ourselves to the case of convexity, but the case of concavity
will be obvious from our discussion (see also the second example in Section 5). On the one hand
our work is motivated by the fact that the commonly used least squares technique and also other
projection based techniques produce a rather unsmooth convex estimate, even if the underlying
regression function “is known” to be smooth. On the other hand we are interested in a simple
and computationally efficient convex estimate, because convex estimates of the regression function
are usually calculated by successive projections [see e.g. Dykstra (1983) or Han (1988)] and these
iterative procedures can be very slow in some cases.
The new estimate is obtained in several steps. We first estimate the derivative of the regression
function, which is isotonized in a second step to obtain a strictly isotone and smooth estimate of the
derivative of the regression function. In a final step this estimate is integrated to obtain a strictly
convex regression estimate, which is (at least) two times continuously differentiable. We prove
consistency and asymptotic normality of the new estimate with the common rates of convergence
in nonparametric regression. In particular first order asymptotic equivalence of the new convex
estimator to the unconstrained estimate is established, if the underlying regression is in fact convex.
Otherwise it is shown that the procedure proposed in this paper produces a convex curve, whose
derivative has for any p > 0 the same Lp-norm as the derivative of the given regression function.
Because of its simplicity the new method is particularly appealing to users of conventional kernel
methods if some prior knowledge regarding the smoothness of the regression function is available.
Our approach is carefully explained in Section 2, where we also study its main properties from an
asymptotic point of view. Some further properties of the new estimate are discussed in Section 3,
while the finite sample performance of the new method is investigated in Section 4 by means of a
simulation study. In Section 5 two data examples are investigated and the application of the new
procedure is illustrated. Finally, all proofs and technical details are deferred to an Appendix. It is
also remarkable that the procedure proposed in this paper is universally applicable to other problems
of convex or concave estimation (for example convex density or hazard rate estimation or the convex
estimation of a parametric curve). Whenever an unconstrained estimate of a convex (or concave)
curve in a particular estimation problem is available, and the method is applied to this preliminary
estimator, the resulting curve estimator is convex (or concave) and first order asymptotic equivalent
to the unconstrained preliminary estimate. However, for the sake of brevity and definiteness this
paper is restricted to the problem of estimating a nonparametric convex regression curve.
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2 Convex estimation

Consider the common nonparametric regression model

Yi = m (Xi) + σ (Xi) εi i = 1, . . . , n,(2.1)

where X1, . . . , Xn are i.i.d. random variables with density f : [0, 1] → R bounded away from zero
and ε1, . . . , εn are i.i.d. independent of X1, . . . , Xn with mean 0, variance 1 and existing fourth
moment. We assume that the variance function σ2 : [0, 1] → R

+ is continuous and that the density
and regression function are three times continuously differentiable. We note that m is strictly
convex if and only if its derivative m′ is strictly increasing. Therefore we first construct a strictly
isotone estimate of the derivative of the regression function which will be integrated in a second
step. For this purpose any unconstrained nonparametric estimate (kernel type, local polynomial,
series or spline estimator) of the regression function could be used. For the sake of definiteness
we consider the Nadaraya-Watson estimate and some remarks regarding a local linear estimate can
be found in Remark 2.3. To be precise let Kr denote a kernel of order three [see Gasser, Müller
and Mammitzsch (1985)] with compact support, say [−1, 1], which is three times continuously
differentiable with Lipschitz continuous third derivative and define the kernel estimator of the
derivative of order p ∈ N of the regression function as m̂(p)(x) = ∂p

∂xp m̂(x) where m̂ denotes the
Nadaraya-Watson estimate given by

m̂(x) =

∑n
i=1Kr(

x−Xi

hr
)Yi

∑n
i=1Kr(

x−Xi

hr
)

(2.2)

[see Nadaraya (1964) or Watson (1964)]. Here hr denotes a bandwidth converging to 0 with increas-
ing sample size and the kernel Kr has been appropriately modified in order to address for boundary
effects [see e.g. Müller (1985)]. Following Dette, Neumeyer and Pilz (2005) we consider a further
kernel, say Kd, with compact support which is two times continuously differentiable with second
derivative bounded away from zero and a bandwidth hd and define

ψ̂hd
(t) =

1

hd

∫ 1

0

∫ t

−∞

Kd

(

m̂′ (v) − u

hd

)

dudv(2.3)

as an estimate of the inverse function of m′, say (m′)−1 at the point t. Note that the function in (2.3)
is strictly increasing if hd is sufficiently small and consequently its inverse is a strictly isotone and
smooth estimate of the derivative of the regression function. Finally, the strictly convex estimate
of the regression function m is defined by

m̂C(x, u0) = m̂(u0) +

∫ x

u0

ψ̂−1
hd

(z)dz,(2.4)

where ψ̂−1
hd

denotes the inverse of the function ψ̂hd
and (at the moment) u0 ∈ (0, 1) is an arbitrary

point. The choice of u0 will be carefully discussed in Section 3. Note that the estimate m̂C is
obviously strictly convex because its derivative ψ̂−1

hd
is strictly increasing by our construction.

Before we study the main asymptotic properties of our method we will present an alternative inter-
pretation of our approach. The main idea is similar to the concept of nondecreasing rearrangements
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[see Ryff (1965, 1970) or Bennett and Sharpely (1988)]. To be precise let g be a continous function
with domain [0, 1] and range R(g) ⊆ R. We define an operator ψ on C([0, 1]), which maps the
function g to the function

ψ(g) :

{

R(g) → [0, 1]

t → ψ(g)(t) =
∫

[0,1]
I{g(x) ≤ t}dx .(2.5)

Obviously, we have for a strictly isotone function g

ψ(g) = g−1 on R(g),(2.6)

On the other hand, the function ψ(g) is always isotone independently if the function g possesses
this property. In the following we denote by ψ−1(g) the inverse of the function ψ(g), then it follows
by similar arguments as given in Birke and Dette (2005) that for any continuous function g the
identity

∫

[0,1]

|g(x)|pdx =

∫

[0,1]

|ψ−1(g)(x)|pdx(2.7)

holds for all p ∈ (0,∞]. In other words: the function ψ−1(g) is increasing on the domain of g, has
the same Lp-norm as the function g and coincides with g if this function is itself strictly increasing.
In this sense the function ψ−1(g) can be considered as a monotone approximation of the function
g. Note that the function ψ−1(g) is not necessarily differentiable. However, smoothing can easily
be accomplished by replacing ψ in (2.5) by the operator ψhd

(g) : R → R defined by

ψhd
(g)(t) =

1

hd

∫

[0,1]

∫ t

−∞

Kd

(g(x) − u

hd

)

dudx,(2.8)

where hd denotes a further bandwidth, which converges to 0 sufficiently fast. The function ψhd
(g)

is obviously differentiable and a standard calculation shows ψhd
(g) = ψ(g) + o(1). In the present

context we apply this concept to the function m′ and denote by ψ−1
hd

(g) the inverse of the function

ψhd
(g). Note that ψhd

(m̂′) = ψ̂hd
corresponds to the estimate (2.3) and that heuristically (if m′ is

strictly increasing)

ψ̂hd
− (m′)−1 = ψhd

(m̂′) − ψ(m′) ≈ ψhd
(m̂′) − ψhd

(m′)(2.9)

≈ ∂

∂λ
ψhd

(m′ + λ(m̂′ −m′))|λ=0 ≈ −
(m̂′ −m′

m′′

)

◦ (m′)−1

Applying this heuristic argument a second time [basically replacing ψ̂hd
by ψ̂−1

hd
and m′ by (m′)−1]

yields

ψ̂−1
hd

−m′ ≈ −
( ψ̂hd

− (m′)−1

((m′)−1)′

)

◦m′ ≈ m̂′ −m′,

where we used the representation (2.9) for the last approximation. Finally, we obtain from (2.10)
for the convex estimate in (2.4)

m̂C(x, u0) −m(x) = m̂(u0) −m(u0) +

∫ x

u0

(

ψ̂−1
hd

(z) −m′(z)
)

dz

≈ m̂(x) −m(x).
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Therefore, if the regression function m is strictly convex, we expect that the new convex estimate
m̂C exhibits the same asymptotic behaviour as the unconstrained Nadaraya-Watson estimate of the
regression function.
A detailed proof of such a statement is substantially more complicated and presented in the Ap-
pendix. For this purpose we require the following basic assumptions regarding the smoothing
parameters in the estimates. The bandwidths hd and hr in the estimates (2.2) and (2.3) have to
satisfy

hd, hr → 0(2.11.a)

nhd, nhr → ∞(2.11.b)

hd/h
3/2
r → 0(2.11.c)

nh7
r = O (1)(2.11.d)

(log h−1
r )3/2/nh4

rh
2
d = o (1)(2.11.e)

if the sample size n converges to infinity. Our main results make the heuristic arguments of the
previous paragraph precise.

Theorem 2.1. Assume that the assumptions stated at the beginning of Section 2 and in (2.11.a)-
(2.11.e) are satisfied. If the regression function m in (2.1) is strictly convex, then we have for any
x ∈ (0, 1) with m

′′

(x) > 0 and any u0 ∈ (0, 1)

m̂C (x, u0) −m (x) = m̂ (x) −m (x) + op

(

1√
nhr

)

(2.12)

Corollary 2.2. If the assumptions of Theorem 2.1 are satisfied, then
√

nhr (m̂C (x, u0) −m (x) − bn (x))
D→ N (0, γ (x))(2.13)

for any x, u0 ∈ (0, 1), where the asymptotic bias and variance are given by

bn (x) = h3
rκ3 (Kr)

(mf)(3) −mf (3)

f
(x) + o

(

h3
r

)

,

γ (x) =

∫ 1

−1

K2
r (y) dy

(σ2

f

)

(x) ,

respectively and κ3(Kr) = 1/3!
∫ 1

−1
u3Kr(u)du.

Remark 2.3. Note that Theorem 2.1 and Corollary 2.2 show that the convex estimate m̂C(x, u0)
is first order asymptotic equivalent to the preliminary unconstrained Nadaraya-Watson estimate m̂
[see e.g. Härdle (1991)].
Moreover, a careful inspection of the proofs in the appendix shows that similar results can be
derived, if alternative smoothing procedures are used as preliminary estimate. For example if m̂′ is
the derivative of a local polynomial estimate [see Fan and Gijbels (1996)] the asymptotic statement
(2.13) is still true, where the bias has to be replaced by

b̃n(x) = h3
rκ3(Kr)m

(3)(x) + o(h3
r)
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3 Further discussion

In this section we briefly discuss the choice of the initial point u0 ∈ (0, 1) which is crucial for
the performance of the proposed procedure. For the sake of a transparent presentation we begin
with the deterministic case, where the estimators in (2.4) have been replaced by their deterministic
counterparts. The transfer to the estimates considered in Section 2 will be obvious from our
discussion and is briefly mentioned at the end of this section.
Recall the definition of the function ψ and ψhd

in (2.5) and (2.8), respectively, and note that any
function of the form

mC(x, u0) = m(u0) +

∫ x

u0

ψ−1
hd

(m′)(t)dt(3.1)

is strictly convex. Moreover, if m′ is strictly increasing (in other words m is strictly convex) and
hd → 0 we have ψ−1

hd
(m′) → m′ and as a consequence

mC(x, u0) −→
hd→0

m(x) for all x, u0 ∈ (0, 1).(3.2)

In this case the choice of the point u0 is irrelevant, provided that hd is sufficiently small. On
the other hand, it is also important to discuss the impact of the choice of u0 in the case, where
m is not convex, because in applications the preliminary estimate m̂ will rarely be convex (or
its derivative m̂′ isotone). If m is not convex each function mC(·, u0) with u0 ∈ (0, 1) defines a
“convex rearrangement” of the function m(·) whose derivative has approximately (if hd → 0) the
same Lp-norm as the initial unconstrained function m. We will discuss further properties of this
rearrangement in the following.

Example 3.1. In order to fix ideas we have illustrated the situation for the function

m(x) =
1

2
+

1

2
(2x− 1)3 x ∈ [0, 1](3.3)

in Figure 1, which is obviously neither convex nor concave. In this case we calculate the limit of
(3.1) as hd → 0, that is

m̄C(x, u0) = m(u0) +

∫ x

u0

ψ−1(m′)(t)dt.(3.4)

We have

ψ(m′)(t) =

√

t

3
; t ∈ [0, 3],

which gives ψ−1(m′)(t) = 3t2 and

m̄C(x, u0) = m(u0) +

∫ x

u0

ψ−1(m′)(t)dt(3.5)

=
1

2
+

1

2
(2u0 − 1)3 − u3

0 + x3

as convex rearrangement of the function m. In Figure 1 we display several of these functions and
our basic function m defined by (3.3). Note that the derivatives of the functions m̄C(x, u0) and
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Figure 1: The function m defined in (3.3) (solid line) and several convex rearrangements m̄C(·, u0)
defined by (3.4) with u0 = 0, 0.25, 0.5 and 0.75 (dashed lines). The dotted line corresponds to the
best L2-approximation of the function m by the class {m̄C(x, u0)|u0 ∈ [0, 1]} defined in (3.5).

m(x) are given by 3x2 and 3(2x− 1)2, respectively, and that both functions have for all p > 0 the
same Lp-norm on the interval [0, 1].

If m is not strictly convex, an appropriate convex approximation of the function m by elements of
the form (3.1) is now determined by minimizing the L2-norm

Φ(u0) =

∫ 1

0

(m(x) −mC(x, u0))
2dx(3.6)

over the interval (0, 1). Our main result of this section characterizes the solution of this approxima-
tion problem.

Theorem 3.2. Let Ψhd
denote any function with (Ψhd

)′ = ψ−1
hd

(m′). A point u∗0 ∈ (0, 1) minimizes
the function Φ defined in (3.6) if and only if

m(u∗0) − Ψhd
(u∗0) =

∫ 1

0

(m(u) − Ψhd
(u))du.(3.7)

Moreover, we have for any u∗
0 minimizing (3.6)

mC(x, u∗0) =

∫ 1

0

mC(x, u)du.(3.8)

In other words: the function on the right hand side of (3.8) is of the form (3.1) and minimizes the
L2-distance in (3.6).
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Example 3.3. In the situation considered in Example 3.1 we have Ψhd
→ Ψ if hd → 0, where

Ψ′ = ψ−1(m′), that is

m(u) − Ψ(u) =
1

2
+

1

2
(2u− 1)3 − u3,

∫ 1

0

(m(u) − Ψ(u))du =
1

4
.

The solutions of the analogue of equation (3.7) in the interval (0, 1) are given by

u∗0,1 ≈ 0.103741; u∗0,2 ≈ 0.638824,

and both points correspond to the best L2-approximation of the function (3.3) by elements of the
form (3.5); i.e.

m̄C(x, u∗0,j) =

∫ 1

0

m̄C(x, u)du =
1

4
+ x3.

The application of Theorem 3.2 for the construction of a convex estimator of the form (2.4) with
minimal L2-distance to the initial unconstrained estimate m̂ is now straightforward. Note that it
is not necessary to calculate the solution of the sample analogue of (3.7). The representation (3.8)
can be applied directly and

m̂C(x) :=

∫ 1

0

m̂C(x, u0)du0(3.9)

yields the convex estimate, which has minimal L2-distance to the unconstrained regression estimate
m̂ in the class

{m̂C(x, u0) | u0 ∈ (0, 1)}
defined by (2.4). We finally remark that the computational effort for the numerical evaluation of
the integral in (3.9) can be decreased observing the relation

m̂C(x, u0) = m̂(x) + m̂(u0) − m̂C(u0, x),

which is obvious from the representation (2.4).

4 Finite sample properties

In this section we briefly illustrate the finite sample properties of the convex estimate of the regres-
sion function by means of a simulation study. For this purpose we consider three examples

m(x) = e3(x−1),(4.1)

m(x) =
16

9
(x− 1

4
)2,(4.2)

m(x) =











−4x + 1 if 0 ≤ x ≤ 1
4

0 if 1
4
≤ x ≤ 3

4

4x− 3 if 3
4
≤ x ≤ 1.

(4.3)
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Figure 2: The regression functions (4.1) (left part), (4.2) (middle part) and (4.3) (right part) and
five convex estimates from different simulation runs. The sample size is n = 100 and the standard
deviation is σ = 0.1.

Note that all functions are convex but in contrast to the functions in (4.1) and (4.2) the function in
(4.3) does not satisfy the assumptions required for the asymptotic theory in Section 2. The errors
in the regression model (2.1) are assumed to be normal and homoscedastic with standard deviation
σ = 0.1, while a uniform design was simulated for the explanatory variables. We used a sample of
n = 100 observations to estimate the regression function. In the following σ̂2 denotes the estimator
of the integrated variance proposed by Rice (1984). For the preliminary (unconstrained) estimate
of m′ the derivative of the local linear estimate was used in order to address for boundary effects.
The bandwidth hr in this estimate was chosen by

hr =
( σ̂2

n

)1/7

(4.4)

which is proportional to the asymptotical optimal bandwidth for a three times continuously dif-
ferentiable regression and density function while the bandwidth hd for the density step is given
by

hd = h8/5
r .(4.5)

The kernels Kd and Kr are both chosen as Epanechnikov kernel. For the selection of the point u0 we
used the best L2-approximation proposed in Section 3, where the integral in (3.9) is approximated
by a Riemann sum. In Figure 2 we display for each regression function five typical estimates
obtained from different simulation runs. We observe a reasonable performance of the estimates for
the regression functions (4.1) and (4.2). In example (4.3) the estimate does not precisely reproduce
the true function at points where the regression function is not differentiable, but in the regions
where the derivative is two times differentiable the estimates are again very reliable.
In the second part of this simulation study we investigate the mean squared error, bias and variance
of the convex estimator proposed in this paper. For this we consider again the three regression
functions in (4.1) - (4.3) and calculate by 2000 simulation runs the curves for the mean squared
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Figure 3: Simulated variance, squared bias and mean squared error of the convex estimator m̂C

(solid line) and the local linear estimate m̂ (dashed line). The sample size is n = 100, the standard
deviation is σ = 0.1, while the regression functions are given by (4.1) (upper panel), (4.2) (middle
panel) and (4.3) (lower panel), respectively.
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error, squared bias and variance. The results are depicted in Figure 3 for all three cases under
consideration. In this figure the local linear (unconstrained) estimate is represented by the dashed
line, while the new convex estimate m̂C is depicted by the solid line. As predicted by the asymptotic
theory only small differences between the unconstrained and convex estimates are observed. In the
situation of example (4.1) we see that the squared bias of the local linear estimate m̂ is smaller if
x ∈ [0.4, 0.9] while it is larger if x ∈ [0.1, 0.4]. Both estimates show a similar behaviour with respect
to the variance criterion, where there are slight advantages for the convex estimate in the interior
of the design space. The mean squared error is dominated by the bias and smaller for the local
linear estimate in most parts of the interval [0, 1] [see the first line in Figure 3].
For the regression function (4.2) we observe from the middle line of Figure 3 that the local linear
estimate yields a smaller (squared) bias than the convex estimate m̂C if x < 0.6, while the converse
is true if x ∈ [0.6, 0.9]. The variance of the convex estimate is slightly smaller than the variance of
the local linear estimate. Because the variance of both estimates is very similar, a comparison of
the mean squared error curves shows some advantages for the constrained estimate if x > 0.6 and
a smaller mean squared error of the local linear estimate if x < 0.6. Again the bias dominates the
mean squared error. For the regression function (4.3) the situation is slightly different. Here both
estimates have a similar variance, but there are some (small) advantages for the convex estimate
in a neighbourhood of points, where the regression function is not differentiable [see the left lower
panel in Figure 3]. The squared bias curves of both estimates are very similar. Again the squared
bias of the local linear estimate is larger at points where the derivative of the regression function is
discontinuous. In these regions the mean squared error is dominated by the squared bias, which is
reflected in the right panel of the third line of Figure 3.
Note that in these examples the bias dominates the variance. A partial explanation of this obser-
vation stems from the fact that the variance of the errors of the simulated observations is rather
small, namely σ2 = 0.01. In order to compare the unconstrained and convex estimate in the case
of a larger variance we present in Figure 4 the simulated variance, squared bias and mean squared
error curves for the functions (4.1) - (4.3), where the simulated observations have variance σ2 = 1.
In example (4.3) the squared bias and variance are of the same size and there are no substantial
visual differences compared to the case considered in Figure 3 [see the last lines in Figure 3 and
4]. However, in example (4.1) and (4.2) the situation is different and the variance dominates the
squared bias. In these two examples the variance curves of both estimates show a similar behaviour
with small advantages for the convex estimate [see the left panel in the first and second line of Figure
4], while the squared bias of the local linear estimate is larger than that of the constrained estimate
[see the middle panels]. As a consequence the mean squared error of the new convex estimate is
usually smaller than the mean squared error of the local linear estimate [see the right panel in the
first and second line of Figure 4].
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Figure 4: Simulated variance, squared bias and mean squared error of the convex estimator m̂C

(solid line) and the local linear estimate m̂ (dashed line). The sample size is n = 100, the standard
deviation is σ = 1, while the regression functions are given by (4.1) (upper panel), (4.2) (middle
panel) and (4.3) (lower panel), respectively.
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Figure 5: The local linear estimate (dotted line) and new convex estimate (solid line) of the call
pricing function of three DAX options considered as a function of the strike price. Left panel:
February 9, 2004, expiration time 494 days; middle panel: January 2, 2004, expiration time 14
days; right panel: January 2, 2004; expiration time 168 days.

5 Examples

5.1 Estimation of a convex option pricing function

The call pricing function of a European option, say C, at time t usually depends on the underlying
asset price at date t, say St, the strike price X, the time to expiration τ, the deterministic risk free
interest rate rt,τ and the correspondend dividend yield δt,τ of the asset. More precisely, this function
is given by

C(St, X, τ, rt,τ , δt,τ ) = e−rt,τ

∫

∞

0

max{ST −X, 0}p∗(ST | St, τ, rt,τ , δt,τ )dST ,

where T = τ + t is the expiration date and p∗ denotes the state-price density, which is also called
risk neutral density [see e.g. Black and Scholes (1973), or Cox, Ingersoll and Ross (1985)]. By
taking derivatives of C with respect to X it was pointed out by Äıt-Sahalia and Duarte (2003) that
the function C must be decreasing and convex in X in order to rule out arbitrage opportunities.
In particular, any local non-convexity of the call pricing function implies negative state prices,
violating the no-arbitrage principle.
We will now illustrate a possible application of the proposed procedure and construct a convex
estimate of the function C considered as a function of the strike price X. For this we analyze data
from a DAX-option, which was kindly provided by K. Pilz (Sal. Oppenheim Bank). The data shows
for a particular day the strike price of the option, expiration time, volatility, call price and closing
price of the DAX. We construct a convex estimate of the call pricing function as a function of X. As
preliminary estimate m̂′ we use the derivative of a local linear estimator with bandwidth hr chosen
by least squares cross validation. The bandwidth hd is chosen as hd = h

8/5
r and its influence is less
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Figure 6: Left panel: The local linear estimate m̂ (dotted line) and convex estimate m̂C (solid line)
of the dry weight (in milligrams) of the eye lense as a function of the age (in days) estimated from 71
free-living wild rabbits. Right panel: the derivative m̂′ of the local linear estimator and its antitone
estimate ψ̃−1

hd
defined by (5.1).

crucial. In Figure 5 we show the local linear and the new convex estimate of the call pricing function
of a DAX option as a function of the strike price for 3 representative cases. The left part of Figure
5 corresponds to the price at February 9, 2004, where the expiration time is 494 days. Similarly,
the middle and right panel of Figure 5 correspond to call option prices at January 2, 2004, where
expiration time is 14 and 168 days, respectively. We observe that in all cases a similar picture. The
unconstrained estimate m̂ of the pricing function is convex and also decreasing as a function of the
strike price X. For this reason the convex estimate m̂C essentially coincides with the local linear
estimate, which is definitely a desirable property of the new procedure. If the resulting convex
estimate m̂C would not be decreasing it could be easily monotonized by the method described in
Dette, Neumeyer and Pilz (2005).

5.2 Rabbits data

In the previous example the local linear estimate was already convex and the new convex estimate
basically reproduced the unconstrained estimate. We now consider a situation, where the local
linear estimate does not satisfy the constraints of convexity or concavity. For this we use an example
considered by Dudzinsky and Mykytowycz (1961), who analyzed the relation between age and eye
lens weight for rabbits in Australia. In this study, the dry weight of the eye lens was measured (in
milligrams) for 71 free-living wild rabbits of known age (measured in days). A detailed description
of the experiment and the data can be found in http://www.statsci.org/data/oz/rabbit.html. The
data was analyzed by Ratkowski (1983) using the nonlinear growth model

m(x) = a e−b/(x+c), x > 0,

14



which is obviously concave with respect to the variable x. In the left panel of Figure 6 we display a
local linear estimate and its “concave” rearrangement. A concave estimate is obtained by replacing
the statistic ψ̂−1

hd
in (2.4) by ψ̃−1

hd
, where

ψ̃hd
(t) =

1

hd

∫ 1

0

∫

∞

t

Kd

(

m̂′ (v) − u

hd

)

dudv(5.1)

(note that ψ̃−1
hd

is an antitone estimate of m′). The bandwidth for the unconstrained estimate is
again chosen by least square cross-validation while the bandwidth hd in the monotonizing procedure
is given by hd = h

8/5
r . We observe that the local linear estimate of the regression function is not

concave if the age of the rabbits is larger than 400 days. Therefore a monotonization of the derivative
is performed. The derivative of the local linear estimate and its antitone rearrangement ψ̃hd

are
depicted in the right panel of Figure 6. The new method yields a concave estimate, which fits the
data adequately and preserves the features of the unconstrained local linear estimate in regions
where this is already concave.

6 Appendix: Proofs

Note that the estimate ψ̂−1
hd

in the integral of (2.4) is obtained as the inverse of the estimate ψ̂hd

defined in (2.3). It was shown in Dette, Neumeyer and Pilz (2005) that the operator, which maps a
function onto its quantile (at a certain point) is two times Gatéaux differentiable. In order to make
the present paper self-contained we recall this result at the beginning of the proof.
Consider a fixed point t ∈ R, and let M denote the set of all functions H ∈ C2[0, 1] with positive
derivative on the interval [0, 1], which contain t in the interior of their image, i.e. t ∈ intH([0, 1]).
Consider the functional

φ :

{

M → [0, 1]

H → H−1(t)

and define for H1, H2 ∈ M the function

Q :

{

[0, 1] → R

λ → φ(H1 + λ(H2 −H1)).
(6.1)

Note that in the case of existence Q′(0) is the Gatéaux derivative of the functional φ at H1 in the
direction of H2−H1. The following result shows that this derivative exists and also gives the second
derivative.

Lemma A.1. The mapping Q : [0, 1] → R defined by (6.1) is two times continuously differentiable
with

Q′(λ) = − (H2 −H1)

h1 + λ(h2 − h1)
◦ (H1 + λ(H2 −H1))

−1(t),(6.2)

Q′′(λ) = Q′(λ)
{ −2(h2 − h1)

h1 + λ(h2 − h1)
+

(H2 −H1)(h
′
1 + λ(h′2 − h′1))

{h1 + λ(h2 − h1)}2

}

◦Q(λ),(6.3)
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where h1, h2 denote the derivatives of the functions H1, H2, respectively.

6.1 Proof of Theorem 2.1.

By an application of Lemma A.1 we obtain for some λ∗ ∈ [0, 1]

ψ̂−1
hd

(t) −m′ (t) = An (t) +
1

2
Bn,λ∗ (t) ,(6.4)

where

An (t) = − ψ̂hd
−m′−1

(

m′−1
)′

◦m′ (t) ,(6.5)

m′−1 denotes the inverse of the (strictly increasing) function m′ and

Bn,λ∗ (t) =
2(ψ̂hd

−m′−1)(ψ̂hd
−m′−1)′

{

(m′−1 + λ∗(ψ̂hd
−m′−1))′

}2 ◦ (m′−1
+ λ∗(ψ̂hd

−m′−1
)−1 (t)(6.6)

−(ψ̂hd
−m′−1)2(m′−1 + λ∗(ψ̂hd

−m′−1))′′
{

(m′−1 + λ∗(ψ̂hd
−m′−1))′

}3 ◦ (m′−1
+ λ∗(ψ̂hd

−m′−1
))−1 (t) .

This yields for the estimate m̂C in (2.4) the representation

m̂C (x, u0) −m (x) =

∫ x

u0

(

ψ̂−1
hd

(z) −m′ (z)
)

dz + (m̂ (u0) −m (u0))(6.7)

=

∫ x

u0

An (z) dz +
1

2

∫ x

u0

Bn,λ∗ (z) dz + (m̂ (u0) −m (u0))

for some λ∗ ∈ [0, 1]. We now treat the two terms in this expansion separately.

Lemma A.2. If the assumptions of Theorem 2.1 are satisfied, we have

∫ x

u0

An(z)dz + m̂(u0) −m(u0) = (m̂−m) (x) + op(
1√
nhr

)

Lemma A.3. If the assumptions of Theorem 2.1 are satisfied we have

∫ x

u0

Bn,λ∗ (z) dz = op(
1√
nhr

)

The proof of Lemma A.2 and A.3 is complicated and given below. The assertion of Theorem 2.1
now follows from (6.7), Lemma A.2 and A.3. 2
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6.2 Proof of Lemma A.2.

Without loss of generality we assume 0 < u0 < x < 1; the opposite case is treated by exactly the
same arguments. Recalling the definition of An(t) in (6.5) we have

∫ x

u0

An (z) dz = An,1(x) + An,2(x),(6.8)

where

An,1 (x) = −
∫ m′(x)

m′(u0)

(ψ̂hd
(t) − ψhd

(t))dt,

(6.9)

An,2 (x) = −
∫ m′(x)

m′(u0)

(ψhd
(t) −m′−1

(t))dt,

and the non-random quantity ψhd
is given by

ψhd
(t) =

1

hd

∫ 1

0

∫ t

−∞

Kd

(

m′ (v) − u

hd

)

dudv

Using the definition of ψ̂hd
in (2.3) we derive for the first term the decomposition

An,1 (x) =
{

−
∫ m′(x)

m′(u0)

[ 1

hd

∫ 1

0

∫ t

−∞

Kd

(m̂′ (v) − u

hd

)

dudv

− 1

hd

∫ 1

0

∫ t

−∞

Kd

(m′ (v) − u

hd

)

dudv
]

dt
}

= ∆(1)
n (x) +

1

2
∆(2)

n (x) ,(6.10)

where

∆(1)
n (x) = − 1

h2
d

∫ m′(x)

m′(u0)

∫ 1

0

∫ t

−∞

K ′

d

(m′ (v) − u

hd

)

du (m̂′ (v) −m′ (v)) dvdt(6.11)

=
1

hd

∫ m′(x)

m′(u0)

∫ 1

0

Kd

(m′ (v) − t

hd

)

(m̂′ (v) −m′ (v)) dvdt,

∆(2)
n (x) = − 1

h3
d

∫ m′(x)

m′(u0)

∫ 1

0

∫ t

−∞

K ′′

d

(ξ (u, v) − u

hd

)

du (m̂′ (v) −m′ (v))
2
dvdt,(6.12)

and |ξ (u, v) −m′ (v)| < |m̂′ (v) −m′ (v)|. For the first term (6.11) we have (observing that the
inequality 0 < u0 < x < 1 implies m′(u0) < m′(x))

∆(1)
n (x) =

1

hd

∫ 1

0

∫ m′(x)

m′(u0)

Kd

(m′ (v) − t

hd

)

dt (m̂ (v) −m (v))′ dv
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=

∫ 1

0

∫

m′(v)−m′(u0)
hd

m′(v)−m′(x)
hd

Kd (t) dt (m̂ (v) −m (v))′ dv

=

∫ m′−1(m′(x)−hd)

m′−1(m′(u0)+hd)

∫ 1

−1

Kd (t) dt (m̂ (v) −m (v))′ dv

+

∫ m′−1(m′(u0)+hd)

0

∫
m′(v)−m′(u0)

hd

−1

Kd (t) dt (m̂ (v) −m (v))′ dv

+

∫ 1

m′−1(m′(x)−hd)

∫ 1

m′(v)−m′(x)
hd

Kd (t) dt (m̂ (v) −m (v))′ dv

= ∆(1.1)
n (x) + ∆(1.2)

n (x) + ∆(1.3)
n (x) ,(6.13)

where the last line defines the terms ∆
(1.j)
n (j = 1, 2, 3), m̂(x) denotes the Nadaraya-Watson estimate

of the regression function defined in (2.2) and we have used the fact that our construction is based on
m̂′(x) = ∂

∂x
m̂(x) as an estimate for the derivative of the regression function. A tedious calculation

yields

∆(1.1)
n (x) = (m̂−m) (m′−1

(m′ (x) − hd)) − (m̂−m) (m′−1
(m′ (u0) + hd))(6.14)

= (m̂−m) (x) − hd(m
′−1

)′ (m′ (x)) (m̂−m)′ (x) +
h2

d

2
((m̂−m) ◦m′−1

)′′ (ζx)

− (m̂−m) (u0) − hd(m
′−1

)′ (m′ (u0)) (m̂−m)′ (u0) −
h2

d

2
((m̂−m) ◦m′−1

)′′ (ζu) ,

where |ζz −m′ (z)| ≤ hd if z = x or z = u0. Similarly, we obtain for sufficiently small hd

∆(1.2)
n (x) = hd

∫ 1

−1

(m′−1
)′ (m′ (u0) + hdv)

∫ v

−1

Kd (t) dt (m̂−m)′ (m′−1
(m′ (u0) + hdv))dv(6.15)

= hd

∫ 1

−1

Kd (t)

∫ 1

t

(m′−1
)′ (m′ (u0) + hdv) (m̂−m)′ (m′−1

(m′ (u0) + hdv))dvdt

=

∫ 1

−1

Kd (t)

∫ m′−1(m′(u0)+hd)

m′−1(m′(u0)+hdt)

(m̂−m)′ (v) dvdt

=

∫ 1

−1

Kd (t)
[

(m̂−m) (m′−1
(m′ (u0) + hd)) − (m̂−m) (m′−1

(m′ (u0) + hdt))
]

dt

= (m̂−m) (u0) + hd(m
′−1

)′ (m′ (u0)) (m̂−m)′ (u0) +
h2

d

2
((m̂−m) ◦m′−1

)′′ (ζu)

−
∫ 1

−1

Kd (t)
{

(m̂−m) (u0) + hdt(m
′−1

)′ (m′ (u0)) (m̂−m)′ (u0)

+
h2

dt
2

2
((m̂−m) ◦m′−1

)′′(ζu,t)
}

dt

= hd(m
′−1

)′ (m′ (u0)) (m̂−m)′ (u0) +
h2

d

2
((m̂−m) ◦m′−1

)′′ (ζu)
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+h2
d

∫ 1

−1

Kd (t) t2((m̂−m) ◦m′−1
)′′ (ζu,t) dt,

where |ζu −m′ (u0)| ≤ hd, |ζu,t −m′ (u0)| ≤ hd |t| ≤ hd. The remaining term in (6.13) is estimated
similarly, that is

∆(1.3)
n (x) =

h2
d

2

∫ 1

−1

Kd (t) t2((m̂−m) ◦m′−1
)′′ (ζx,t) + hd(m

′−1
)′ (m′ (x)) (m̂−m)′ (x)(6.16)

−h
2
d

2
((m̂−m) ◦m′−1

)′′ (ζx)

where |ζx −m′ (x)| ≤ hd, |ζx,t −m′ (x)| ≤ hd |t| ≤ hd.

Observing (6.13), (6.14), (6.15) and (6.16) we therefore obtain

∆(1)
n (x) = (m̂−m) (x) − (m̂−m)(u0)(6.17)

+
h2

d

2

∫ 1

−1

Kd (t) t2((m̂−m) ◦m′−1
)′′ (ζu,t) dt

−h
2
d

2

∫ 1

−1

Kd (t) t2((m̂−m) ◦m′−1
)′′ (ζx,t) dt

= −(m̂−m)(u0) + (m̂−m) (x) + o

(

1√
nhr

)

,

where the second equality follows by the estimate

sup
u

∣

∣m̂(k) (u) −m(k) (u)
∣

∣ = O
(( log h−1

r

nh2k+1
r

)1/2)

, k = 1, 2;(6.18)

which can be shown by simmilar methods as in Mack and Silverman (1982) and assumption (2.11.e).

We now derive an estimate for the second term ∆
(2)
n (x) in (6.10). For this we note that a tedious

calculation yields
∆(2)

n (x) = ∆(2.1)
n (x) (1 + op (1)) ,(6.19)

where

∆(2.1)
n (x) =

1

h2
d

∫ m′(x)

m′(u0)

∫ 1

0

K ′

d

(m′ (v) − t

hd

)

(m̂′ (v) −m′ (v))
2
dvdt(6.20)

= − 1

hd

∫ 1

0

∫
m′(v)−m′(x)

hd

m′(v)−m′(u0)
hd

K ′

d (t) dt (m̂′ (v) −m′ (v))
2
dv

= − 1

hd

∫ 1

0

[

Kd

(m′ (v) −m′ (x)

hd

)

−Kd

(m′ (v) −m′ (u0)

hd

)]

(m̂′ (v) −m′ (v))
2
dv

= −
∫ 1

−1

Kd (v) (m′−1
)′ (m′ (x) + hdv) (m̂′ −m′)

2
(m′−1

(m′ (x) + hdv))dv

+

∫ 1

−1

Kd (v) (m′−1
)′ (m′ (u0) + hdv) (m̂′ −m′)

2
(m′−1

(m′ (u0) + hdv))dv
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Observing that with the assumptions (2.11.a), (2.11.b) and (2.11.d) for the bandwidth hr the mean
squared error between the derivative of the Nadaraya-Watson estimate and the derivative of the

regression function is of order O
(

1
nh3

r

)

we therefore obtain

E
∣

∣∆(2.1)
n (x)

∣

∣ = O

(

1

nh3
r

)

.(6.21)

Finally, for the term An,2(x) in (6.9) it follows that

An,2(x) = −h2
d

{

κ2 (Kd)

(

1

m′′ (x)
− 1

m′′ (u0)

)

+ o (1)

}

,

which implies
√

nhrAn,2(x) = −h
2
d

h3
r

√

nh7
rO (1) = o (1)(6.22)

Now a combination of (6.8), (6.10), (6.13), (6.17), (6.19), (6.21) and (6.22) yields the assertion of
Lemma A.1.

2

6.3 Proof of Lemma A.3.

Recalling the definition of Bn,λ∗ in (6.6) we obtain

∫ x

u0

Bn,λ∗ (z) dz =

∫ x

u0

Bn,0(z)dz(1 + op(1)) =
{

2B(1)
n (x) −B(2)

n (x)
}

(1 + op(1)),(6.23)

where

B(1)
n (x) =

∫ m′(x)

m′(u0)

(ψ̂hd
−m′−1)(ψ̂hd

−m′−1)′

(m′−1)′
(t)dt,(6.24)

B(2)
n (x) =

∫ m′(x)

m′(u0)

(ψ̂hd
−m′−1)2(m′−1)′′

{(m′−1)′}2
(t)dt.(6.25)

We now prove that the expressions
√
nhrB

(i)
n (i = 1, 2) converge to 0 in L1. For this we exemplarily

consider the term B
(1)
n , the second term is treated by exactly the same arguments. Note that

B(1)
n (x) = B(1.1)

n (x) +B(1.2)
n (x) +B(1.3)

n (x) +B(1.4)
n (x) ,(6.26)

where

B(1.1)
n (x) =

∫ m′(x)

m′(u0)

(ψ̂hd
− ψhd

)(ψ̂hd
− ψhd

)′

(m′−1)′
(t)dt,(6.27)

B(1.2)
n (x) =

∫ m′(x)

m′(u0)

(ψhd
−m′−1)(ψ̂hd

− ψhd
)′

(m′−1)′
(t)dt,(6.28)
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B(1.3)
n (x) =

∫ m′(x)

m′(u0)

(ψ̂hd
− ψhd

)(ψhd
−m′−1)′

(m′−1)′
(t)dt,(6.29)

B(1.4)
n (x) =

∫ m′(x)

m′(u0)

(ψhd
−m′−1)(ψhd

−m′−1)′

(m′−1)′
(t)dt.(6.30)

For the term B
(1.1)
n (x) we derive the further decomposition

B(1.1)
n (x) =

{

B(1.1.1)
n (x) −B(1.1.2)

n (x) −B(1.1.3)
n (x) +B(1.1.4)

n (x)
}

(1 + op(1))(6.31)

with

B(1.1.1)
n (x) =

1

h3
d

∫ m′(x)

m′(u0)

1
(

m′−1
)′

(t)

{

∫ 1

0

Kd

(m′ (v) − t

hd

)

(m̂′ −m′) (v) dv
}

(6.32)

×
{

∫ 1

0

K ′

d

(m′ (w) − t

hd

)

(m̂′ −m′) (w) dw
}

dt,

B(1.1.2)
n (x) =

1

2h4
d

∫ m′(x)

m′(u0)

1
(

m′−1
)′

(t)

{

∫ 1

0

Kd

(m′ (v) − t

hd

)

(m̂′ −m′) (v) dv
}

(6.33)

×
{

∫ 1

0

K ′′

d

(m′ (w) − t

hd

)

(m̂′ −m′)
2
(w) dw

}

dt,

B(1.1.3)
n (x) =

1

2h4
d

∫ m′(x)

m′(u0)

1
(

m′−1
)′

(t)

{

∫ 1

0

K ′

d

(m′ (v) − t

hd

)

(m̂′ −m′) (v) dv
}

(6.34)

×
{

(

∫ 1

0

K ′

d

(m′ (w) − t

hd

)

(m̂′ −m′)
2
(w) dw

}

dt,

B(1.1.4)
n (x) =

1

4h5
d

∫ m′(x)

m′(u0)

1
(

m′−1
)′

(t)

{

∫ 1

0

K ′

d

(m′ (v) − t

hd

)

(m̂′ −m′)
2
(v) dv

}

(6.35)

×
{

∫ 1

0

K ′′

d

(m′ (w) − t

hd

)

(m̂′ −m′)
2
(w) dw

}

dt.

A tedious calculation yields for sufficiently small hd

B(1.1.1)
n (x) =

1

hd

∫ m′(x)

m′(u0)

1
(

m′−1
)′

(t)

{

∫ 1

−1

Kd (v) (m′−1
)′ (t+ hdv) (m̂′ −m′) (m′−1

(t+ hdv))dv
}

×
{

∫ 1

−1

K ′

d (w) (m′−1
)′ (t+ hdw) (m̂′ −m′) (m′−1

(t+ hdw))dw
}

dt

=

∫ m′(x)

m′(u0)

1
(

m′−1
)′

(t)

(
∫ 1

−1

Kd (v)
{

(m′−1
)′[(m̂′ −m′) ◦m′−1

] (t)

+ hdv
[

(m′−1
)′′[(m̂′ −m′) ◦m′−1

] + (m′−1
)′

2
[(m̂′′ −m′′) ◦m′−1

]
]

(ξv,t)
}

dv
)

×
(

∫ 1

−1

wK ′

d (w)
[

(m′−1
)′′[(m̂′ −m′)] ◦m′−1

+ (m′−1
)′

2
[(m̂′′ −m′′)] ◦m′−1

]

(ξw,t) dw

)

dt

21



=

∫ m′(x)

m′(u0)

(m̂′ −m′) ◦m′−1
(t)

∫ 1

−1

wK ′

d (w) (m′−1
)′′[(m̂′ −m′) ◦m′−1

] (ξw,t) dwdt

− 1

2m′′
(m̂′ −m′)

2
(z)

∣

∣

∣

x

u0

− 1

2

∫ x

u0

m′′′

m′′ 2
(m̂′ −m′)

2
(z) dz

+ hdλ

∫ m′(x)

m′(u0)

(m̂′ −m′) ◦m′−1
(t)

∫ 1

−1

w2K ′

d (w)

×
[

2(m′−1
)′′(m′−1

)′[(m̂′′ −m′′) ◦m′−1] + (m′−1)′
3
[(m̂′′′ −m′′′) ◦m′−1]

]

(ξ̃w,t)dwdt

+ hd

∫ m′(x)

m′(u0)

1
(

m′−1
)′

(t)

(

∫ 1

−1

vKd (v)
[

(m′−1
)′′[(m̂′ −m′) ◦m′−1

]

+ (m′−1
)′

2
[(m̂′′ −m′′) ◦m′−1

]
]

(ξv,t) dv
)

×
(

∫ 1

−1

wK ′

d (w)
[

(m′−1
)′′[(m̂′ −m′) ◦m′−1

] + (m′−1
)′

2
[(m̂′′ −m′′) ◦m′−1

]
]

(ξw,t) dw
)

dt ,

where we used the fact that
∫ 1

−1

K ′

d(u)du = 0 ,

∫ 1

−1

uK ′

d(u)du = −1

at several places. Using the estimate (6.18) this gives for the expectation

E
∣

∣B(1.1.1)
n (x)

∣

∣ ≤ O

(

log h−1
r

nh3
r

)

+O

(

hd log h−1
r

nh4
r

)

+O

(

hd log h−1
r

nh5
r

)

= O
( log h−1

r

nh3
r

)

+O
(hd log h−1

r

nh5
r

)

= o
( 1√

nhr

)

,

where we have used assumptions (2.11.d) and (2.11.e) for the last estimate. The other terms in
(6.26) are treated similarly, that is

E
∣

∣

∣
B(1.1.2)

n (x)
∣

∣

∣
≤ 1

hd

[

O
(((log h−1

r )3/2

n3/2h
9/2
r

)

+O
((log h−1

r )3/2

n3/2h
11/2
r

)]

= o
( 1√

nhr

)

,

E
∣

∣

∣
B(1.1.3)

n (x)
∣

∣

∣
≤

[

O
(( log h−1

r

nh3
r

)1/2)

+O
(( log h−1

r

nh5
r

)1/2)][

O
( log h−1

r

nh3
r

)

+O
( log h−1

r

nh4
r

)]

= O
((log h−1

r )3/2

nh6
r

√
nhr

)

= o
( 1√

nhr

)

E
∣

∣

∣
B(1.1.4)

n (x)
∣

∣

∣
≤ 1

h2
d

(

O
( log h−1

r

nh3
r

)

+O
( log h−1

r

nh4
r

))

O
( log h−1

r

nh3
r

)

= o
( 1√

nhr

)

.

Furthermore it can be shown by similar methods as used above that

B(1.i)
n (x) = o

(

1√
nhr

)

for i = 2, 3, 4 and the assertion of Lemma A.3 follows.
2
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6.4 Proof of Theorem 3.2.

Note that the function
∆(x) := m(x) − Ψhd(x)

is continuous and consequently there exists at least one solution of equation (3.7). Moreover,
observing the definition (3.1) and the fact Ψ′

hd
= ψ−1

hd
(m′) we have

mC(x, u0) = m(u0) − Ψhd
(u0) + Ψhd

(x)

which gives

min
u0∈[0,1]

∫ 1

0

(mC(x, u0) −m(x))2dx = min
u0∈[0,1]

∫ 1

0

(∆(u0) − ∆(x))2dx,(6.36)

= min
g∈G

∫ 1

0

(g − ∆(x))2dx,

where the set G is defined by G = ∆([0, 1]). Now

arg ming∈R

∫ 1

0

(g − ∆(x))2dx =

∫ 1

0

∆(x)dx

and by the first part of the proof there exists at least one point u∗
0 ∈ [0, 1] such that

∫ 1

0

∆(x)dx = ∆(u∗0).(6.37)

Consequently, we obtain from (6.36)

arg minu0∈[0,1]

∫ 1

0

(mC(x, u0) −m(x))2dx = u∗0(6.38)

for any point satisfying (6.37), which proves the first part of the assertion. For a proof of the
remaining part we note that we obtain for any u∗

0 satisfying (6.38) [or equivalently (3.7) or (6.37)]

mC(x, u∗0) = m(u∗0) +

∫ x

u0

ψ−1
hd

(m′)(t)dt

= m(u∗0) − Ψhd
(u∗0) + Ψhd

(x)

=

∫ 1

0

[m(u) − Ψhd
(u) + Ψhd

(x)]du

=

∫ 1

0

mC(x, u)du ,

which completes the proof of Theorem 3.2. 2

23



Acknowledgements. The authors are grateful to Isolde Gottschlich who typed numerous versions
of this paper with considerable technical expertise and to K. Pilz for useful discussions, computa-
tional assistance and for providing the DAX data used in Section 5.1. The work of the authors
was supported by the Sonderforschungsbereich 475, Komplexitätsreduktion in multivariaten Daten-
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