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Abstract

We investigate optimal designs for discriminating between exponential regression mod-
els of different complexity, which are widely used in the biological sciences; see, e.g.,
Landaw (1995) or Gibaldi and Perrier (1982). We discuss different approaches for the
construction of appropriate optimality criteria, and find sharper upper bounds on the
number of support points of locally optimal discrimination designs than those given by
Caratheodory’s Theorem. These results greatly facilitate the numerical construction of
optimal designs. Various examples of optimal designs are then presented and compared
to different other designs. Moreover, to protect the experiment against misspecifications
of the nonlinear model parameters, we adapt the design criteria such that the result-
ing designs are robust with respect to such misspecifications and, again, provide several
examples, which demonstrate the advantages of our approach.
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1 Introduction

In the biological and chemical sciences, the expected response of an experiment at some exper-
imental condition x is commonly modeled as a function in x depending nonlinearly on some
unknown parameters. An important class within the nonlinear regression models are exponen-
tial models of the form

ηk(x, θ) =
k∑

i=1

aie
−λix, k ≥ 1, x ∈ [0,∞), (1)

which have applications in chemical kinetics [see Gibaldi and Perrier (1982)] (in particular
toxicokinetic experiments [see Becka, Bolt and Urfer (1992, 1993)]) or microbiology [see Al-
varez et al. (2003), who used a model of type (1) to describe Escherichia coli inactivation by
pulsed electric fields]. Landaw (1985) fitted an exponential model to describe open, noncyclic
k-compartmental systems. It is well known that statistical inference can be improved consid-
erably by choosing appropriate experimental conditions, at which the observations are taken
and many authors have contributed articles on designing experiments optimally for nonlinear
regression models [see, e.g., Melas (1978), Ford, Torsney and Wu (1992), Chaloner (1993),
Dette and Biedermann (2003), Biedermann and Dette (2005) among many others]. As optimal
designs with respect to classical optimality criteria such as D-, c- or E-optimality depend on
the nonlinear model parameters they are termed ”locally” optimal. Most authors provide such
locally optimal designs in the sense of Chernoff (1953) assuming that a good initial guess for
the true parameters will be available. Some more recent articles, however, pursue Bayesian or
maximin approaches, which are more robust against misspecifications of the unknown param-
eters. Locally optimal designs for model (1) have already been discussed in a few articles [see
Ermakov and Melas (1995), Dette, Melas and Wong (2005) and Dette, Melas and Pepelyshev
(2004b) where the properties of locally D- and E-optimal designs are investigated].
In all the articles cited above the authors assume that the model under consideration is already
known except for the values of the unknown parameters. So they deal with optimality criteria
that are efficient for parameter estimation within a fixed model. In many applications, however,
the form of the regression function will not be known exactly, i.e. the experimenter will have
to decide among a set of competing classes of functions, which of them describes the data
most adequately. The design problem for discrimination between competing nonlinear models,
however, has found much less attention in the literature than problems for parameter estimation
[see, e.g., Atkinson and Fedorov (1975) or Dette, Melas and Wong (2004)]. In the case of linear
models optimal designs for model discrimination have been discussed by several authors. Stigler
(1971) and Studden (1982) considered designs which are on the one hand efficient for estimating
the parameters in a given polynomial regression model and on the other hand allow to test this
model against a polynomial of higher degree. Läuter (1974) proposed designs which are optimal
for a given class of models, and this approach was successfully applied by Dette (1990, 1994a),
Zen and Tsai (2002) and Tsai and Zen (2004) to the class of polynomial models. Furthermore,
the class of trigonometric regression models has been considered by Zen and Tsai (2004).
The goal of this article is to find designs that are efficient for discriminating between models
of the form (1) where the value of k, i.e. the number of exponential terms contributing to the
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model, is not fixed in advance. If for example a small model (small k) proves to be appropriate
the number of parameters to be estimated will also be small so that estimation will be more
efficient. Thus either experimental costs can be reduced without losing precision in estimation
by carrying out less runs, or the precision of the estimation will increase (for a fixed number of
runs).
The article at hand is organized as follows. Section 2 proposes several different optimality
criteria that are suitable for finding discrimination designs for models of the form (1) with
different degrees. In Section 3, we present some analytical results, which facilitate the numerical
construction of locally optimal designs substantially. In particular, we derive explicit bounds
on the number of support points of the locally optimal designs with respect to the optimality
criteria introduced in Section 2. Various examples of optimal designs are displayed in Section 4,
where we also investigate their performance compared to different uniform designs and designs,
which are optimal for parameter estimation in the largest model. Furthermore, emphasis in this
section will be on robust designs with respect to misspecifications of the unknown parameters
and their performance. For this purpose we determine maximin optimal designs, and compare
their performance with the locally optimal designs. The proofs of our results, finally, are
deferred to an appendix.

2 Optimality Criteria

We consider an experiment with N independent observations Yi, i = 1, . . . , N , at experimental
conditions xi, which are modeled by

Yi = ηk(xi, θ) + εi, i = 1, . . . , N, (2)

where the errors εi are assumed i.i.d. with zero expectation and finite common variance, and
the regression function ηk(x, θ) is of the form (1) for some parameter k ≥ 1. By θ we will
denote the vector of unknown parameters in (1), i.e. θ = (a1, λ1, . . . , ak, λk)

T . Without loss of
generality we assume that aj 6= 0, j = 1, . . . , k and 0 < λ1 < . . . < λk.
An approximate design

ξ =

(
x1 . . . xn

w1 . . . wn

)
is a probability measure with finite support, i.e. the observations are taken at the support
points xi of the measure proportional to the corresponding masses wi. In practice, a rounding
procedure is applied to obtain the sample sizes Ni ≈ wiN at the experimental conditions
xi, i = 1, . . . , n, subject to N1 + . . . + Nn = N . An optimal rounding procedure is described
in Pukelsheim and Rieder (1992). In the following, we will therefore restrict ourselves to the
analysis and calculation of approximate designs to avoid the problems of discrete optimization.
For the model described in (2), under some assumptions of regularity [see Jennrich (1969)] the
least squares estimator is asymptotically unbiased with asymptotic covariance matrix propor-
tional to the inverse of

Mk(ξ, θ) =
n∑

i=1

wi fk(xi, θ)f
T
k (xi, θ) =

∫
fk(x, θ)f

T
k (x, θ) dξ(x) ∈ IR2k×2k, (3)
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where the vector fk(x, θ) is defined by

fk(x, θ) =
∂ηk(x, θ)

∂θ
= (e−λ1x,−a1xe

−λ1x, e−λ2x,−a2xe
−λ2x, . . . , e−λkx,−akxe

−λkx)T .

In design literature, the matrix Mk(ξ, θ) is referred to as the information matrix of the design
ξ, and an optimality criterion maximizes some (statistically meaningful) real-valued functional
of the information matrix over the class of approximate designs.
The goal of this article is to find optimal designs for discriminating between models of type
(2) with different numbers of exponential terms included in the regression function. Our main
interest in this problem stems from the fact that often the experimenter will not know in
advance, which value for k must be chosen to describe the data adequately. In the following,
we will introduce several optimality criteria that are appropriate for problems of this type.
We first consider the discrimination problem between two models ηs(x, θ) and ηk(x, θ), where
without loss of generality s < k. The benefits of this approach are obvious. If the smaller model
already describes the dependencies between response and explanatory variable sufficiently well,
the number of parameters to be estimated decreases, yielding more precision in the subsequent
estimation. If, however, the smaller model is not adequate for the data, fitting only the regres-
sion function ηs(x, θ) will lead to severe problems in the data analysis. Following Stigler (1971)
and Studden (1982), who considered polynomial regression models, a reasonable approach to
find optimal discrimination designs for this problem, is to use designs that are in some sense
optimal for estimating the 2(k − s) parameters from the k − s highest terms in (1), to check
if fitting these terms is actually necessary. An appropriate choice of optimality criterion is
therefore the D2(k−s)-criterion; see, e.g., Silvey (1980), i.e. we maximize the determinant of the
matrix

CAs,k
(ξ, θ) = (AT

s,kM
−
k (ξ, θ)As,k)

−1, AT
s,k = (0, I2(k−s)) ∈ IR2(k−s)×2k,

where M−
k (ξ, θ) denotes a generalized inverse of Mk(ξ, θ), since this matrix is not necessarily of

full rank. From Pukelsheim (1993), Sec. 3.11, it follows that for Mk(ξ, θ) with range(As,k) ⊂
range(Mk(ξ, θ)) the information matrix CAs,k

(ξ, θ) can be expressed as

CAs,k
(ξ, θ) = M22 −M21M

−
11M12, (4)

where M11, M12, M21 and M22 are defined by partitioning the information matrix Mk(ξ, θ)
into the block matrix

Mk(ξ, θ) =

(
M11 M12

M21 M22

)
, M11 ∈ IR2s×2s, M22 ∈ IR2(k−s)×2(k−s).

The design maximizing detCAs,k
(ξ, θ) will therefore referred to by locally optimal discrimination

design ηk vs ηs or, shortly, D2(k−s)-optimal design. Note that if Mk(ξ, θ) is nonsingular, the
determinant of CAs,k

(ξ, θ) can be expressed by

detCAs,k
(ξ, θ) =

detMk(ξ, θ)

detMs(ξ, θ)
.
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A more general criterion will be necessary if discrimination between more than two competing
models is required. Following Läuter (1974) we call a design ξ optimal discriminating design
for a class of models {η1, . . . , ηk} if ξ maximizes the weighted geometric mean

T (ξ, θ) =
k∑

l=1

βl ln detCAl−1,l
(ξ, θ) → max

ξ
,

where the constants βl are user-selected weights, chosen as a measure for the interest the
experimenter has in discriminating ηl vs ηl−1. This criterion simplifies to the D2(k−s)-criterion
when the weights βl, l = 1, . . . , k, are given by βk = βk−1 = . . . = βs+1 = 1, βs = βs−1 =
. . . = β1 = 0. For the choice βk = βk−1 = . . . = β1 = 1, moreover, we obtain as a special case
the D-criterion for model ηk. Another important special case of the criterion T (ξ, θ) arises for
weights βl that are inverse proportional to the maximal value of detCAl−1,l

(ξ, θ), l = 1, . . . , k.
T (ξ, θ) can then be interpreted as a weighted sum of D2(l−(l−1))-efficiencies, i.e. a weighted sum
of standardized optimality criteria, the use of which is recommended by Dette (1997). Optimal
discrimination designs for the class of polynomial regression models have been determined by
Dette (1990, 1994a) and Tsai and Zen (2002, 2004), whereas Zen and Tsai (2004) have found
results for the class of trigonometric regression models.
Optimal designs with respect to the criterion T (ξ, θ) for at least two positive weights βl > 0 are
multiple-objective or compound optimal designs. Another somewhat related approach would
be to consider constrained optimal designs, i.e. designs that maximize detCAl−1,l

(ξ, θ) for one
certain value of l ∈ {1, . . . , k} subject to the constraints that the D2(j−(j−1))-efficiencies attain
at least some values µj ≥ 0, j = 1, . . . , k, j 6= l. It was shown by Dette (1994b) that there
is a 1-1 correspondence between the constrained and the compound optimal designs. In the
following, we will therefore restrict ourselves to results on compound or T -optimal designs.
The last optimality criterion to be investigated in this study is motivated by the following idea.
To check if the last k−s exponential terms in model (1) are necessary to fit the data adequately,
one could think of performing a statistical test with the null hypothesis

H0 : as+1 = . . . = ak = 0,

or, equivalently, KT
s,kθ = 0 ∈ IRk−s for the matrix Ks,k ∈ IR2k×k−s, where the ith column of Ks,k

is given by the (2(s+ i)− 1)th unit vector of dimension 2k, against the alternative hypothesis

H1 : ∃ l ∈ {s+ 1, . . . , k} such that al 6= 0

or KT
s,kθ 6= 0 ∈ IRk−s. Under some assumptions of regularity, the noncentrality parameter of

the corresponding likelihood ratio test then depends on the underlying design ξ through the
matrix

(KT
s,kM

−
k (ξ, θ)Ks,k)

−1.

The power of this test can thus be increased by increasing the matrix (KT
s,kM

−
k (ξ, θ)Ks,k)

−1 in
the Loewner ordering [see Pukelsheim (1993), chapter 3], which motivates the function

Φ(ξ, θ) = det(KT
s,kM

−
k (ξ, θ)Ks,k)

−1 → max
ξ

(5)
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as an appropriate optimality criterion for model discrimination in the sense of testingH0 against
H1. Note that for information matrices Mk(ξ, θ) of full rank this optimality criterion simplifies
to

Φ(ξ, θ) =
detMk(ξ, θ)

detM[s+k](ξ, θ)
,

where the matrix M[s+k] ∈ IR(s+k)×(s+k) is obtained from Mk by deleting the (2(s + i) − 1)th

rows and columns, i = 1, . . . , k − s, in the information matrix Mk. From (5) it follows that
the optimality criterion Φ(ξ, θ) belongs to the class of DA-optimality criteria; see, e.g., Silvey
(1980), and is thus in some sense related to the D2(k−s)-criterion for discriminating between ηk

and ηs defined above. The Φ-optimal design is in this sense the D-optimal design for estimating
the subset {as+1, . . . , ak} of the full parameter vector θ.

All the optimality criteria introduced above are local criteria in the sense of Chernoff (1953),
i.e. the optimal designs with respect to these criteria will depend on the (unknown) nonlinear
model parameters λ1, . . . , λk. Application of the (locally) optimal designs with respect to these
criteria can therefore only be efficient if a good guess for the nonlinear parameters is available.
The locally optimal designs, however, provide a basis for the construction of designs, which are
more robust with respect to misspecifications of these parameters. Consider, for example, an
arbitrary local optimality criterion ψ(ξ, θ) and assume that the experimenter has at least some
knowledge about the parameter values. If sufficient information is available, a prior π on the
parameters λ1, . . . , λk can be specified. This approach leads to so-called Bayesian optimality
criteria; see, e.g., Chaloner (1993), where the criterion function ψ(ξ, θ) is integrated with respect
to the prior π, i.e. averaged over the most plausible parameter values. In this article, we
will adopt a different approach, which is based on the maximin concept, and only requires the
specification of a certain range for the unknown parameters. This seems to be the most realistic
scenario in many practical applications, in particular if the number of nonlinear parameters is
large. The optimality criteria are constructed as follows. Since the use of standardized criteria
is recommended to avoid different scalings; see Dette (1997), we protect the experiment against
the worst possible case by maximizing

ψ−∞(ξ) = min
θ∈Θ

ψ(ξ, θ)

ψ(ξ∗θ , θ)
, (6)

where Θ is the region of uncertainty for the unknown parameters, and by ξ∗θ the locally ψ-
optimal design for the parameter value θ is denoted. The maximization of (6) is thus equivalent
to maximizing the minimal ψ-efficiency, so that the resulting designs will either be referred to by
maximin ψ-efficient designs or by standardized maximin optimal designs. In the following, the
general notation ψ will be replaced by the respective criteria defined above. As an alternative
a Bayesian criterion with a non-informative prior could be used. However, it was indicated by
Braess and Dette (2005) that optimal designs with respect to maximin criteria usually advise
the experimenter to take observations at more different points than optimal designs with respect
to Bayesian criteria based on a non-informative prior. As we are interested in optimal designs
for model discrimination, optimal designs with a large number of support points are usually
preferable, which is our main reason for using the maximin approach.

6



3 Analytical results

Our first result yields a considerable simplification of the locally optimal design problems at
hand by stating an explicit relationship between locally optimal discrimination designs with
different parameters. This result holds true for all three local optimality criteria introduced
above. Since the locally optimal designs do only depend on the nonlinear parameters λi, i =
1. . . . , k, but not on the linear parameters ai, i = 1, . . . , k, they will be denoted by ξ∗λ with
λ = (λ1, . . . , λk)

T instead of ξ∗θ in what follows.

Lemma 3.1 Let ξ∗λ = {x∗i (λ); w∗i (λ); i = 1, . . . , n∗(λ)} be a locally T - or Φ-optimal discrimina-
tion design with respect to the parameter λ, where n∗(λ) denotes the number of support points
of ξ∗(λ), and x∗i (λ) are the support points with corresponding weights w∗i (λ). Then for any
positive constant γ > 0 the locally optimal discrimination design with respect to the parameter
γλ is given by

x∗i (γλ) =
1

γ
x∗i (λ), w∗i (γλ) = w∗i (λ).

As a consequence of Lemma 3.1, we can without loss of generality restrict ourselves to the
derivation of locally optimal designs where one component of the vector of unknown parameters
λ is set equal to one.
A further simplification can be achieved by the assertion of the following lemma, which gives the
value of one support point of an optimal design with respect to the criteria under consideration.

Lemma 3.2 Let ξ∗λ be a locally T - or Φ-optimal discrimination design with respect to the
parameter λ. Then the point zero is contained in the support of ξ∗λ.

From Caratheodory’s Theorem [see, e.g., Karlin and Studden (1966)], we obtain that the num-
ber of support points n∗(λ) of ξ∗λ with respect to any local discrimination criterion is bounded
by

2k − 2s ≤ n∗(λ) ≤ 2k(2k + 1)/2.

In the following theorem we will derive considerably sharper upper bounds for n∗(λ) to facilitate
the numerical calculation of optimal designs.

Theorem 3.1 Let ξ∗λ = {x∗i (λ); w∗i (λ); i = 1, . . . , n∗(λ)} be a locally T -optimal discrimination
design with respect to the parameter λ, where n∗(λ) denotes the number of support points of
ξ∗(λ). Then we obtain the following results.

1) For any value of λ the inequality n∗(λ) ≤ k(k + 1)/2 + 1 holds.

2) For parameters λ of a special form we even find a sharper upper bound. Define a class Λ of
vectors λ with components of the form

λi = (λi−1 + λi+1)/2, i = 2, . . . , k − 1. (7)

There exists a neighborhood U(Λ) of Λ such that for all λ ∈ U(Λ) the number of support points
n∗(λ) of the T -optimal design is at most 2k.
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We will now study another important property of the locally optimal designs with respect to
the T - and Φ-criterion. Consider that λ is in some neighborhood of the vector γ(1, . . . , 1)T

where γ > 0. As λ converges to γ(1, . . . , 1)T the information matrix Mk defined in (3) becomes
singular. The corresponding locally optimal designs, however, are still weakly convergent to
some limiting design. At the same time, the following theorem points out some connection
between the discrimination design problems for the model at hand and the corresponding
design problems in a heteroscedastic polynomial model. Define a regression model with iid
errors by

E[Y (x)] = η̃2k(x) =
2k∑
i=1

cix
i−1, V ar(Y (x)) = e2γx, γ > 0, (8)

where the value of γ is assumed to be known. The corresponding information matrix for the
estimation of the polynomial coefficients ci, i = 1, . . . , 2k, is then given by

M̃2k(ξ) =

∫
e−2γxf̃k(x)f̃

T
k (x) dξ(x), f̃T

k (x) = (1, x, . . . , x2k−1).

Theorem 3.2 Let λi = γ − δi, δi = riδ, i = 1, . . . , k, and ri ∈ IR \ {0} are fixed numbers
with ri 6= rj for i 6= j and r1 > r2 > . . . > rk, i.e. all components of the vector of nonlinear
parameters λ tend to γ for δ → 0. If an optimal design ξ with respect to one of the respective
criteria is supported on at least 2k points so that the information matrix Mk(ξ, θ) is non-singular
the following assertions hold.

1) If δ → 0, and λ is of the form described above, the locally optimal discrimination design
ηk vs ηs converges weakly to the corresponding optimal discrimination design η̃2k vs η̃2s for the
heteroscedastic polynomial regression model (8) with unknown parameters ci.

2) More general, under the same conditions, the T -optimal designs with respect to the criterion
T (., θ) converge weakly to the corresponding T -optimal design for model (8) if δ → 0.

3) For δ → 0 the Φ-optimal discrimination designs converge weakly to the discrimination design
for testing the hypothesis H0 : c2k−1 = c2k−3 = . . . = c2k−2s+1 = 0 in model (8) against the
alternative that at least one of this parameters is non-zero.

The restriction to non-singular information matrices in Theorem 3.2 does not mean a great
limitation for this result since for all examples in our numerical study given in the following
section – as well as for numerous other examples not displayed here for brevity – we found
that the optimal designs with respect to all criteria under consideration feature at least 2k
distinct points of support. Furthermore, it is reasonable to consider only designs with at least
2k different support points, because such designs can also be used for the subsequent data
analysis if the largest model ηk turns out to be the “true model”.

4 Numerical results

In this section we will apply the results obtained in the previous section to construct optimal
designs for all criteria under consideration numerically. All designs presented in this section have
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been carefully checked for optimality by the respective corresponding equivalence theorems. For
the sake of brevity, we restrict ourselves to the presentation of results for exponential models
with not more than six parameters, since these models are most widely used within the whole
class of models of type (1).

4.1 Locally optimal designs

As a first example we choose the discrimination problem between the models η3(x, θ) and
η2(x, θ), i.e. the question if the third term in model (1) is actually necessary to fit the data.
Table 1 displays several examples of optimal discrimination designs η3 vs η2. As a consequence
of Lemma 3.2 the point x1 = 0 is contained in the support of any locally optimal design ξ∗λ.
We will thus not present it explicitly in what follows. The weight corresponding to the largest
optimal support point will also be omitted for brevity.

Table 1: Selected locally D2(3−2)-optimal discrimination designs for the problem of discriminat-
ing between the exponential regression models η3 vs η2.

λ1 λ2 λ3 x2 x3 x4 x5 x6 w1 w2 w3 w4 w5 effD

1 0.2 1.5 0.329 1.276 2.74 5.60 13.75 0.100 0.196 0.174 0.167 0.183 0.96

1 0.2 5 0.156 0.547 1.48 4.06 12.14 0.173 0.270 0.200 0.175 0.108 0.89

1 0.5 1.5 0.288 1.135 2.47 4.57 9.11 0.088 0.172 0.158 0.143 0.166 0.92

1 0.5 5 0.146 0.518 1.30 3.14 7.58 0.159 0.258 0.186 0.164 0.117 0.93

1 0.8 1.5 0.257 1.025 2.26 4.06 7.58 0.078 0.154 0.148 0.137 0.158 0.89

1 0.8 5 0.138 0.494 1.18 2.68 6.11 0.147 0.248 0.178 0.160 0.124 0.94

For comparison, the following table (Table 2) shows the locally optimal designs for testing the
hypothesis H0 : a3 = 0 with respect to the same parameters λ1, λ2 and λ3. Tables 1 and 2

Table 2: Selected locally optimal discrimination designs for testing the hypothesis H0 : a3 = 0
in the exponential regression model η3.

λ1 λ2 λ3 x2 x3 x4 x5 x6 w1 w2 w3 w4 w5 effD

1 0.2 1.5 0.276 1.157 2.853 6.044 14.367 0.067 0.143 0.167 0.206 0.212 0.92

1 0.2 5 0.128 0.571 1.621 4.250 12.342 0.011 0.135 0.282 0.270 0.177 0.87

1 0.5 1.5 0.246 1.020 2.448 4.880 9.696 0.062 0.129 0.143 0.163 0.193 0.87

1 0.5 5 0.120 0.525 1.409 3.315 7.779 0.028 0.135 0.241 0.236 0.176 0.90

1 0.8 1.5 0.223 0.918 2.182 4.266 8.145 0.058 0.120 0.129 0.147 0.182 0.84

1 0.8 5 0.113 0.489 1.273 2.851 6.311 0.040 0.135 0.216 0.218 0.177 0.91
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also display the D-efficiency

effD(ξ) =

(
det(Mk(ξ, θ))

det(Mk(ξD, θ))

)1/(2k)

of the respective designs with respect to theD-optimal design ξD in the model ηk to evaluate how
the optimal discrimination design performs for estimating the model parameters if ηk has been
found to be the true model. This gives us the opportunity to compare the different optimality
criteria under consideration in this article. We find that the D2(3−2)-optimal designs have
somewhat higherD-efficiencies than the optimal designs for testing a3 = 0. TheD2(k−s)-optimal
designs therefore have a slight advantage over their competitors in the multiple-objective sense,
i.e. they are more efficient in the parameter estimation subsequent to the model discrimination
procedure. There is a heuristic explanation for this property. Note that the D2(k−s)-optimal
design is optimal for estimating the 2(k− s) parameters αk, . . . , αs+1 and λk, . . . , λs+1 in model
ηk, whereas the optimal design for testing αk = . . . = αs+1 = 0 in model ηk is in fact optimal
for estimating the k − s parameters αk, . . . , αs+1. A design, which is by the construction of its
optimality criterion optimal for estimating 2(k − s) parameters will thus be more efficient for
estimating 2k parameters compared with a design that is optimal for the estimation of k − s
parameters in the same model. It is therefore recommended to use the D2(k−s)-optimal design
if the data collected for discrimination between models ηk and ηs are also to be employed for
parameter estimation.
In the example λ = (1, 0.5, 1.5)T , part 2) of Theorem 3.1 applies so that the upper bound
for n∗(λ) in the design problem η3 vs η2 is given by 2k = 6. From Table 1 we obtain that
the optimal design attains this bound, i.e. the bound is sharp. It turns out that the other
optimal designs in the examples given in Table 1 are also supported at 6 points, i.e. the bound
k(k + 1)/2 + 1 = 7 from part 1) of Theorem 3.1 is not necessarily attained by the optimal
design. Since the two criteria under consideration are relatively similar the optimal designs
with respect to these criteria are also close. We further observe from Tables 1 and 2 that if
λ1 and λ2 are close the optimal support points are less spread on the real axis than for more
distant values λ1 and λ2 for both criteria.
From a heuristic point of view, it seems reasonable to use designs, which allocate equal weights
to some equidistant points on the real axis. In order to investigate the performance of such
uniform designs, we calculated several of their D2(3−2)-efficiencies, where the D2(k−s)-efficiency
effD2(k−s)

(ξ) of a design ξ is defined by

effD2(k−s)
(ξ) =

( det CAs,k
(ξ, θ)

det CAs,k
(ξ∗λ, θ)

)1/(2(k−s))

.

We choose as competing designs three different uniform distributions with their supports con-
taining the point zero, namely

1. the seven point design ξ7 allocating weight 1/7 to the points 0, 2, 4, 6, 8, 10, 12. This
design was chosen since the upper bound for the number of support points of the opti-
mal design for the problem under consideration is precisely given by seven. Often the
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experimenter does not want to take measurements at too many different experimental
conditions, so that ξ7 seems attractive from this point of view.

2. the design ξ16 assigning equal weight to the 16 points 0, 1, 2, . . . , 15, which is more spread
on the real axis than ξ7. This design could also be used for further model checks since it
contains significantly more different support points than the number of parameters to be
estimated in the largest model η3.

3. the uniform design ξ100 on the 100 points (n − 1)/10, n = 1, 2, . . . , 100, approximating
the uniform distribution on [0, 10].

The parameter combinations for this example are given by λ = (1, 0.5, 1.5)T representing the
situation of relatively “similar” exponential terms in model (1) and λ = (1, 0.2, 5)T representing
very “different” exponential terms. The D2(3−2)-efficiencies of the uniform designs defined above
given these parameter values for λ are shown in Table 3. For comparison, we also present the
D2(3−2)-efficiencies of the designs ξ∗3 , which are locally optimal for testing H0 : a3 = 0 in model
η3, as well as the D2(3−2)-efficiencies of the locally D- and E-optimal designs in the largest
model η3, ξD and ξE, respectively.

Table 3: Selected D2(3−2)-efficiencies of some uniform designs for the discrimination problem
η3 vs η2.

λ1 λ2 λ3 ξ7 ξ16 ξ100 ξ∗3 ξD ξE

1 0.5 1.5 0.004 0.198 0.560 0.897 0.88 0.90

1 0.2 5 ≈ 10−6 0.003 0.212 0.426 0.87 0.91

We learn from Table 3 that the different uniform designs under consideration will have a very
poor performance if applied to the problem at hand. Only the design ξ100 might yield reasonable
results for particular choices of λ, but it is not very attractive from a practical point of view
since it requires to take measurements at 100 different experimental conditions. The designs ξ∗3 ,
ξD and ξE, in contrast, are expected to show a good performance. The use of an optimal design
with respect to either one of the criteria defined in the previous section or a good criterion for
estimating the full parameter vector in the largest model under consideration is thus strongly
recommended.

We now turn to the discrimination problem between models η3 and η1. Several examples for this
problem are presented in Tables 4 and 5. For comparison, we also display the corresponding
D-efficiencies effD.
According to Lemma 3.2 the supports of the optimal designs again contain the point zero, but
it is allocated considerably less weight than in the previous examples. The highest optimal
support point, however, is given much more weight than before, particularly for the designs,
which are optimal for testing the hypothesis H0 : a2 = a3 = 0. Moreover, we can see from
Tables 4 and 5 that for these design problems the optimal designs are also supported at exactly

11



Table 4: Selected locally optimal discrimination designs for the problem η3 vs η1.

λ1 λ2 λ3 x2 x3 x4 x5 x6 w1 w2 w3 w4 w5 effD

1 0.2 1.5 0.374 1.312 3.033 5.769 11.921 0.066 0.127 0.109 0.199 0.249 0.892

1 0.2 5 0.166 0.574 1.751 4.185 10.104 0.102 0.146 0.133 0.130 0.239 0.939

1 0.5 1.5 0.340 1.135 2.600 4.662 8.177 0.073 0.134 0.117 0.181 0.245 0.909

1 0.5 5 0.159 0.538 1.471 3.274 6.468 0.107 0.148 0.146 0.130 0.219 0.951

1 0.8 1.5 0.311 1.008 2.302 4.082 6.896 0.079 0.139 0.124 0.170 0.239 0.922

1 0.8 5 0.151 0.507 1.301 2.808 5.279 0.110 0.150 0.155 0.133 0.203 0.959

Table 5: Selected locally optimal discrimination designs for testing the hypothesis H0 : a2 =
a3 = 0 in model η3.

λ1 λ2 λ3 x2 x3 x4 x5 x6 w1 w2 w3 w4 w5 effD

1 0.2 1.5 0.301 1.273 3.161 5.749 13.272 0.045 0.099 0.127 0.186 0.206 0.812

1 0.2 5 0.118 0.607 1.800 3.907 11.558 0.005 0.087 0.196 0.203 0.219 0.593

1 0.5 1.5 0.272 1.128 2.668 4.809 8.866 0.050 0.107 0.126 0.154 0.171 0.807

1 0.5 5 0.124 0.576 1.544 3.166 7.166 0.011 0.089 0.187 0.187 0.178 0.656

1 0.8 1.5 0.247 1.016 2.362 4.257 7.434 0.053 0.110 0.124 0.142 0.163 0.803

1 0.8 5 0.122 0.542 1.387 2.762 5.787 0.018 0.092 0.175 0.177 0.169 0.710

2k = 6 points. We observed this for numerous other examples, which are not displayed here
for the sake of brevity.

In the next examples we are interested in designs, which are good for discriminating between
models η3 and η2 on the one hand, and η2 and η1 on the other hand. Table 6 displays optimal
discriminating designs with respect to the prior β3 = 2/3 and β2 = 1/3, i.e. the discrimination
between the models η3 vs η2 is assumed twice as important as the problem η2 vs η1. In Table
7 we show the same examples with more emphasis placed on the discrimination problem η2 vs
η1.
As expected, the T -optimal designs presented in Tables 6 and 7 are located in some sense
between the “pure” optimal designs for optimality criterion given in Tables 1 and 4. The
designs from Table 6 are “closer” to the corresponding designs in Table 1, whereas the designs
from Table 7 are “closer” to their counterparts in Table 4, which is in line with intuition.

4.2 Maximin optimal designs

In the last paragraph of this section, we will consider the problem of robustness of designs
with respect to the choice of the initial parameters. The designs presented above are all locally
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Table 6: Selected locally T -optimal discrimination designs for the problems η3 vs η2 (weight
β3 = 2/3) and η2 vs η1 (weight β2 = 1/3).

λ1 λ2 λ3 x2 x3 x4 x5 x6 w1 w2 w3 w4 w5 effD

1 0.2 1.5 0.355 1.306 2.915 5.732 12.550 0.078 0.151 0.132 0.187 0.232 0.935

1 0.2 5 0.163 0.565 1.677 4.248 10.503 0.128 0.189 0.157 0.152 0.195 0.983

1 0.5 1.5 0.318 1.142 2.555 4.621 8.534 0.078 0.147 0.132 0.167 0.219 0.926

1 0.5 5 0.154 0.531 1.418 3.288 6.768 0.125 0.187 0.159 0.146 0.189 0.980

1 0.8 1.5 0.288 1.017 2.295 4.064 7.160 0.078 0.144 0.134 0.159 0.209 0.921

1 0.8 5 0.147 0.503 1.261 2.808 5.531 0.123 0.185 0.161 0.145 0.183 0.978

Table 7: Selected locally T -optimal discrimination designs for the problems η3 vs η2 (weight
β3 = 1/3) and η2 vs η1 (weight β2 = 2/3).

λ1 λ2 λ3 x2 x3 x4 x5 x6 w1 w2 w3 w4 w5 effD

1 0.2 1.5 0.401 1.300 3.191 5.757 11.248 0.054 0.101 0.086 0.215 0.250 0.819

1 0.2 5 0.169 0.585 1.783 4.087 9.857 0.076 0.101 0.109 0.098 0.288 0.836

1 0.5 1.5 0.374 1.114 2.650 4.721 7.728 0.068 0.122 0.099 0.200 0.265 0.872

1 0.5 5 0.163 0.548 1.506 3.194 6.225 0.088 0.107 0.136 0.107 0.243 0.883

1 0.8 1.5 0.345 0.994 2.296 4.122 6.557 0.080 0.136 0.110 0.183 0.270 0.903

1 0.8 5 0.157 0.511 1.340 2.742 5.049 0.098 0.122 0.152 0.116 0.213 0.909

optimal, i.e. optimal with respect to one particular parameter λ. If not even the number k
of exponential terms in model (1) is known then presumably less knowledge will be available
about the values of the model parameters. We will therefore also present some examples of
optimal discrimination designs in the case that only some range for each nonlinear parameter
can be given in advance of the experiment. As a first example, we consider the problem of
designing an experiment for discriminating between models η2 and η1 adopting the maximin
approach described in (6). The criterion function ψ−∞(ξ) is thus given by

ψ−∞(ξ) = min
θ∈Θ

det CA1,2(ξ, θ)

det CA1,2(ξ
∗
θ , θ))

.

Some selected examples of optimal designs with respect to this standardized maximin criterion
are given in Table 8. The indices l and u denote the lower and upper boundaries, respectively,
for the interval, in which a parameter λi, i = 1, 2, is assumed to lie. The right column in
Table 8 shows the minimal efficiency of the maximin optimal design in the rectangular region
[λ1(l), λ1(u)] × [λ2(l), λ2(u)]. We observe that the maximin optimal designs yield reasonable
efficiencies over a broad range of the parameter space. Even for the large parameter range of
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Table 8: Selected standardized maximin optimal discrimination designs for the problem η2 vs
η1.

λ1(l) λ1(u) λ2(l) λ2(u) x1 x2 x3 x4 x5 w1 w2 w3 w4 w5 min eff

0.8 1 1.1 1.3 0 0.47 1.78 4.08 – 0.12 0.23 0.22 0.44 – 0.9665

0.6 1 1.1 1.5 0 0.48 1.76 4.21 – 0.13 0.24 0.23 0.40 – 0.8658

0.4 1 1.1 1.7 0 0.46 1.46 3.17 5.94 0.14 0.22 0.19 0.25 0.20 0.7739

0.2 1 1.1 1.9 0 0.48 1.50 3.41 7.22 0.15 0.22 0.19 0.27 0.17 0.7194

[0.2, 1] × [1.1, 1.9] corresponding to a high uncertainty with respect to the model parameters
the efficiency is about 72%.
From Theorem 3.1 we conclude that locally optimal designs for the problem η2 vs η1 have at most
k(k+1)/2+1 = 4 support points. For the maximin optimal designs this is in general not true.
Table 8 shows that for relatively small parameter regions Θ the standardized maximin optimal
designs are also supported at four points, whereas for larger regions, i.e. more uncertainty
about the actual position of the parameters, more than four support points are necessary. This
phenomenon is widely observed in the Literature as far as Bayesian or maximin optimal design
problems are concerned. For a theoretical explanation we refer to Braess and Dette (2005).

As a second example we finally consider the problem of discriminating between models η3 and
η2. Some selected standardized maximin optimal designs for this problem are displayed in Table
9, where the parameter regions Θ are specified by

Θ1 = [0.6, 0.8]× [1.1, 1.3]× [1.6, 1.8]

Θ2 = [0.8, 1]× [1.1, 1.3]× [1.4, 1.6]

Θ3 = [0.6, 0.9]× [1, 1.4]× [1.5, 1.8].

Table 9: Selected standardized maximin optimal discrimination designs for the problem η3 vs
η2. (It is not necessary to show the weight w7 of the optimal design with respect to Θ3 since
w7 = 1−

∑6
i=1wi.)

Θ x1 x2 x3 x4 x5 x6 x7 w1 w2 w3 w4 w5 w6 min eff

Θ1 0 0.24 0.94 2.07 3.82 7.18 – 0.083 0.162 0.153 0.144 0.166 0.293 0.923

Θ2 0 0.24 0.94 2.09 3.77 6.76 – 0.070 0.142 0.141 0.140 0.165 0.342 0.932

Θ3 0 0.24 0.93 2.03 3.66 5.18 7.23 0.081 0.157 0.146 0.142 0.145 0.069 0.817

Again, we observe that for larger parameter regions Θ the number of support points of the
standardized maximin optimal design increases. Moreover, even in the case of three unknown
parameters the maximin optimal designs yield reasonable efficiencies over the different param-
eter spaces.
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5 Appendix

5.1 Proof of Lemma 3.1

Note that for each choice of γ > 0 and each design ξ = (x1, . . . , xl, w1, . . . , wl) we obtain

Mk(x1, . . . , xl, w1, . . . , wl, λ) = BTMk(x1/γ, . . . , xl/γ, w1, . . . , wl, γ · λ)B

where B = diag(1, γ, . . . , 1, γ) ∈ IR2k×2k. The assertion of the lemma then follows from elemen-
tary properties of determinants and matrix inversion. 2

5.2 Proof of Lemma 3.2

We consider a design of the form

ξh =

(
x1 + h . . . xn + h
w1 . . . wn

)
with h ≥ 0. The determinant of the Fisher information of such a design can be expressed as

detMl(ξh, θ) = e−4(λ1+...+λl)h detMl(ξ0, θ).

Now it is obvious that the discrimination criteria considered in this article are decreasing with
respect to h. So for each design with minimal support point greater than zero we can find a
better design with respect to the optimality criteria, where the minimal support point is equal
to zero. Consequently, the minimal support point of an optimal design must be equal to zero.

5.3 Proof of Theorem 3.1

One of the basic tools for research in the field of optimal experimental design are equivalence
theorems; see, for example, Kiefer (1974). As we will need the equivalence theorem with respect
to the T -optimal design criterion for the proof of Theorem 3.1, it will be stated below. It is given
here in the (simpler) form for designs with at least 2k support points (so that the information
matrix Mk of the largest model under consideration is invertible) since this form serves our
purpose best.

Theorem 5.1 A design ξ∗ with at least 2k support points is an optimal design for discrimi-
nating the class {η1, . . . , ηk} with respect to the prior {β1, . . . , βk} if and only if the following
inequality holds.

ψ(x) =
k∑

l=1

βl

(
fT

l (x, θ)M−1
l (ξ∗, θ)fl(x, θ)− fT

l−1(x, θ)M
−1
l−1(ξ

∗, θ)fl−1(x, θ)
)
− 2

k∑
l=1

βl ≤ 0 (9)

Moreover, there is equality in (9) for any support point of the optimal design ξ∗.
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Since the criterion for discrimination between models ηk and ηs is a special case of the compound
criterion T (ξ) the corresponding equivalence theorem is obtained from Theorem 5.1 with βl = 1
for l > s and βl = 0 otherwise.

For the proof of Theorem 3.1 we will also need the following auxiliary lemma.

Lemma 5.1 Consider the regression model η̄k(x, β) =
∑k

i=1(β2i−1e
−λix + β2ie

−(λi+∆)x), where
β1, . . . , β2k are unknown parameters and λ1, . . . , λk and ∆ are known values such that 0 < ∆ <
mini,j |λi−λj|. Then the number n of support points of the T -optimal discrimination design in
this model is bounded by n ≤ k(k + 1)/2 + 1. If additionally λ is in a neighborhood U(Λ) of a
class Λ as defined in (7) an upper bound is given by n ≤ 2k.

Proof of Lemma 5.1. We assume that the optimal design is supported at n different points
x∗1, . . . , x

∗
n. Denote by ψ̄(x) the directional derivative from the equivalence theorem for model

η̄k. It then follows that the following equations hold

ψ̄(x∗i ) = 0, i = 1, . . . , n, ψ̄′(x∗i ) = 0, i = 2, . . . , n− 1, (10)

i.e. the function ψ̄(x) has at least 2n − 2 roots counting multiplicities. We consider the set
{λi + λj}i,j=1,...,k and refer to its different elements by u1, . . . , ur (without loss of generality
u1 < . . . < ur). Obviously, r ≤ k(k + 1)/2 and for λ ∈ Λ in the sense of (7) we obtain
r = 2k − 1. The function ψ̄(x) can be rewritten as a sum of 2r + 2 functions as follows.

ψ̄(x) =
2r+1∑
i=1

ḡi(x)− ḡ0(x),

where

ḡ0(x) ≡ 2
k∑

l=1

βl,

ḡ1(x) = cle
−u1x,

ḡ2(x) = −b1e−(ul+∆)x,

ḡ2l+1(x) = a1e
−(ul+2∆)x + cle

−ul+1x, l = 1, . . . , r − 1,

ḡ2l(x) = −b1e−(ul+∆)x, l = 2, . . . , r,

ḡ2r+1(x) = ar+1e
−(ur+∆)x.

In the following we will show that the coefficients of these functions are all positive, i.e. al, bl
and cl > 0. It is then easy to see that the 2r+2 functions ḡ0(x), . . . , ḡ2r+1(x) form a Tchebycheff
system; see Karlin and Studden (1966). The function ψ̄(x) can thus have at most 2r+ 1 roots.
Since it follows from (10) that the number of roots is at least 2n− 2 we receive the inequality
2n− 2 ≤ 2r + 1 which implies n ≤ r + 3/2. Plugging in the upper bounds for r derived above
we obtain that n ≤ k(k + 1)/2 + 1 for general λ. If λ ∈ Λ of the form (7) we get the bound
n ≤ 2k. From continuity considerations it then follows that this bound is also valid in some
neighborhood of Λ.
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It remains to show that al > 0, bl > 0 and cl > 0 for all l. For simplicity we assume that
βk = 1, βk−1 = . . . = β1 = 0. (Otherwise we will simply have a sum of similar terms.) Note
that the function from the equivalence theorem

ψ̄(x) = f̄T
k (x)M̄−1

k (ξ∗)f̄k(x)− f̄T
k−1(x)M̄

−1
k−1(ξ

∗)f̄k−1(x)− 2

can be rewritten in the form

ψ̄(x) = f̄T
k (x)Af̄T

k (x)− 2, where A = M̄−1
k (ξ∗)−

(
M̄−1

k−1 0
0 0

)
.

The first goal is to show that sign(A) = (−1)i+j. For this we divide the matrices M̄k and A
into blocks of the same length

M̄k(ξ) =

M11 M12

M21 M22

 , A =

M−1
11 M12P

−1M21M
−1
11 −M−1

11 M12P
−1

−P−1M21M
−1
11 M−1

11

 (11)

with M11 = M̄k−1(ξ). The representation of the matrix A follows from the inversion formula
for block matrices, where P = M22 − M21M

−1
11 M12 is the Schur complement of M11. As a

consequence of Karlin and Studden (1966), p. 9, and the Cauchy-Binet formula we find that
sign(M̄−1

k ) = (−1)i+j or, in other words,

JM̄kJ >c 0,

where J = diag{+1,−1, . . . ,+1,−1} ∈ IR2k×2k, and the notation ’>c 0’ means that all entries
of a matrix are greater than 0. From the representation of A in (11) we conclude that

JA22J >c 0, JA12J = −JM−1
11 M12P

−1J >c 0 and JA21J >c 0.

Furthermore, from a straightforward but tedious calculation it follows that

JA11J = JM−1
11 M12P

−1PP−1M21M
−1
11 J >c 0

and consequently the result JAJ >c 0 holds for the matrix A. It can therefore easily be checked
that al > 0, bl > 0 and cl > 0 in the expressions for gi(x). 2

The same assertion as in Lemma 5.1 remains to be proven for models of the form (1) to obtain
the results of Theorem 3.1.

Proof of Theorem 3.1. We denote by n∗(λ) the number of distinct support points x∗1, . . . , x
∗
n∗(λ)

of the optimal design ξ∗. Then it follows from the equivalence theorem that the following equa-
tions hold

ψ(x∗i ) = 0, i = 1, . . . , n∗(λ), ψ′(x∗i ) = 0, i = 2, . . . , n∗(λ)− 1.

The directional derivative ψ(x) has therefore at least 2n∗(λ)−2 roots (counting multiplicities).
Using the equalities

lim
∆→0

LT f̄k(x) = fk(x), lim
∆→0

LTM̄lL = Ml, l = 1, . . . , k, lim
∆→0

LTM̄kL

LTM̄sL
=
Mk

Ms

,

17



where

L = diag{L0, . . . , L0}, L0 =

(
1 −1/∆
0 1/∆

)
,

we receive that
ψ(x) = lim

∆→0
ψ̄(x).

Due to continuity the number of roots of the function ψ(x) as the limit of the sequence ψ̄(x)
with respect to ∆ → 0 cannot be larger than the number of roots of ψ̄(x) for some fixed value
of ∆. From Lemma 5.1 it then follows that for general λ we obtain the upper bound for the
number of support points of the optimal design as

n∗(λ) ≤ k(k + 1)/2 + 1.

For λ in a class Λ as defined in (7) we even get n∗(λ) ≤ 2k. By continuity, again we get that
the bound n∗(λ) ≤ 2k is still valid for values of λ in some neighborhood U(Λ) of Λ. 2

5.4 Proof of Theorem 3.2

The proof is similar to the proofs in Dette, Melas and Pepelyshev (2004a) for more general
nonlinear models, so that we give only a sketch including the most important steps. By a
Taylor expansion of the vector fk(x) we obtain the representation

fk(x) = Lkf̃k(x) +H(δ),

where H(δ) =
(
o(δ2k−1), o(δ2k−2), . . . , o(δ2k−1), o(δ2k−2)

)T
, f̃k(x) = (1, x, x2, . . . , x2k−1)T e−γx,

Lk =



1 δ1
δ2
1

2!

δ3
1

3!
. . .

δ2k−1
1

(2k−1)!

0 1 δ1
δ2
1

2!
. . .

δ2k−2
1

(2k−2)!

...
...

...
...

...
...

1 δk
δ2
k

2!

δ3
k

3!
. . .

δ2k−1
k

(2k−1)!

0 1 δk
δ2
k

2!
. . .

δ2k−2
k

(2k−2)!


and detLk is proportional to

∏
i<j(δi − δj)

4; see Melas (1978). Consequently the information
matrix in the general exponential regression model (1) satisfies

M−1
k (ξ) = L−1

k

T
M̃−1

2k (ξ)L−1
k + o(δ4k−2),

where M̃2k(ξ) denotes the information matrix for the parameter vector in the regression model
η̃2k(x) defined in (8). For δ → 0 we obtain

detAT
s,kM

−1
k (ξ, θ)As,k =

detMk(ξ, θ)

detMs(ξ, θ)
∼ (detLk)

2

(detLs)2
· det M̃2k(ξ)

det M̃2s(ξ)
,
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which proves the first assertion of Theorem 3.2 since the D2(k−s)-criterion minimizes the ex-
pression detAT

s,kM
−1
k (ξ, θ)As,k.

For the T -optimal design we use a similar argument and rewrite the criterion in the form

k∏
l=1

(
detMk(ξ, θ)

detMs(ξ, θ)

)βl

→ max
ξ
.

Consequently

arg max
ξ

k∑
l=1

βl ln
detMl(ξ, θ)

detMl−1(ξ, θ)
∼ arg max

ξ

k∑
l=1

βl ln
det M̃2l(ξ)

det M̃2l−2(ξ)
.

To prove part 3 of Theorem 3.2 we denote by L[s+k] the (s + k) × (s + k) matrix, which is
obtained from Lk by deleting the (2(s+ i)− 1)th rows and columns for i = 1, . . . , k − s. Then
we have for δ → 0

Φ(ξ) ∼ (detLk)
2

(detL[s+k])2
· det M̃2k(ξ)

det M̃s+k(ξ)
,

which completes the proof of the theorem. 2
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