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We propose weighted repeated median filters and smoothers for robust

non-parametric regression in general and for robust signal extraction from

time series in particular. The proposed methods allow to remove outlying

sequences and to preserve discontinuities (shifts) in the underlying regres-

sion function (the signal) in the presence of local linear trends. Suitable

weighting of the observations according to their distances in the design

space reduces the bias arising from non-linearities. It also allows to im-

prove the efficiency of (unweighted) repeated median filters using larger

bandwidths, keeping their properties for distinguishing between outlier

sequences and long-term shifts. Robust smoothers based on weighted L1-

regression are included for the reason of comparison.
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1 Introduction

When extracting a time-varying level (the signal) from noisy time series, we commonly

want to preserve relevant details such as monotonic trends and abrupt shifts, while

eliminating irrelevant spikes due to measurement errors. Robust filtering procedures

for detail-preserving signal extraction should also be fast and simple. Time series

filtering is a special case of non-parametric smoothing with a fixed design.

Standard median filters suggested by Tukey (1977) remove spikes and preserve shifts.

However, as reported e.g. by Davies, Fried and Gather (2004), they have difficulties if

the implicit assumption that the signal is constant within each window is not fulfilled.

These problems may be coped with by weighting the observations according to their

temporal distances to the current target point. While the median of observations

y1, . . . , yn minimizes the L1-distance (or least absolute deviation, LAD), the weighted
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median µ̂ (hereafter: WM) of y1, . . . , yn with positive weights w1, . . . , wn, which dates

back to Edgeworth (1887), minimizes the weighted L1-distance

µ̂ = argmin
µ

n
∑

i=1

wi · |yi − µ|. (1)

In time series filtering with data y1, . . . , yn measured at fixed design points x1, . . . , xn,

we choose the wi depending on the distances between the xi and the target point

x, wi = w(x − xi). Here, w is a weight function decreasing monotonically at both

sides from zero. Generally, locally weighted median smoothing, studied firstly by

Härdle and Gasser (1984), is an effective robust nonparametric method for estimating

the conditional median µ = g(x) of a response Y given a covariate x. The design

variables can represent something else than time, as e.g. in image restoration.

Weighted median filters are popular because of their flexibility. For a given minimal

length `+ 1 of signal details to be preserved one can select a WM filter with window

width larger than the 2`+1 necessary for a standard median filter. This allows more

efficient noise suppression (e.g. Yang, Yin, Gabbouj, Astola and Neuvo 1995).

Local linear fits are usually preferable to local constant fits (Fan, Hu and Truong

1994). Davies et al. (2004) suggest the repeated median (RM, Siegel 1982) for

the extraction of monotonic trends from time series. The repeated median estimate

(µ̃RM(x), β̃RM(x)) of the median and the slope at a target point x is

β̃RM(x) = medj=1,...,n

(

medi6=j
yi − yj
xi − xj

)

, (2)

µ̃RM(x) = med
(

y1 − (x1 − x)β̃RM(x), . . . , yn − (xn − x)β̃RM(x)
)

.

The repeated median inherits the optimal asymptotic 50% breakdown point of the

standard median. Instead of a constant level, it relies on a constant slope.

In this paper we combine the concepts of weighted and repeated medians, developing

robust nonparametric smoothers which adapt to monotonic trends. The resulting

weighted repeated median (WRM) filters allow for application of longer time windows

than ’standard’ repeated median filters, without being severely biased when the signal

slope varies over time. We consider two basic situations: In retrospective analysis we

approximate the signal at the window center by applying a symmetric weight function

putting more weight on central observations. In online analysis we approximate the

signal at the current time point without time delay, using half-sided monotonic kernels

giving largest weight to the most recent observations.

The paper is organized as follows. Section 2 reviews weighted medians and introduces

weighted repeated medians and weighted L1-regression. Section 3 derives analytical

properties of these methods. Section 4 reports results from simulations. Section 5

exemplifies the methods on some time series, followed by some conclusions.
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2 Robust smoothing and filtering

We start with alternative derivations of weighted medians. Weighted median filters

give less weight to remote observations, but do not explicitly consider trends. This

reduces problems due to trends, but does not overcome them completely. For further

improvement we apply regression techniques with weighting according to the temporal

distances. The advantages of local linear smoothers resulting from L2-regression as

compared to their local constant counterparts are well-known (Fan 1992, Hastie and

Loader 1993). However, robust methods are needed in the presence of outliers. We

review weighted L1-regression before introducing weighted repeated medians.

2.1 Alternative derivations of weighted medians

For non-negative integer valued weights w1, . . . , wn, a simple representation of the

weighted median of real numbers y1, . . . , yn is given by

µ̂ = med{w1 ¦ y1, . . . , wn ¦ yn} (3)

where w ¦ y denotes replication of y to obtain w identical copies of it.

Notation (3) can be used in an extended way also for positive real weights: Let

y(1) ≤ . . . ≤ y(n) denote the ordered observations and w(1), . . . , w(n) the corresponding

positive weights. Then the weighted median of y1, . . . , yn is µ̂ = y(k), where

k = max

{

h :
n
∑

i=h

w(i) ≥
1

2

n
∑

i=1

wi

}

. (4)

For example, the WM of 1, 2, 3, 7 with weights 0.1, 1.6, 1.4 and 0.5 is y(3) = 3, since

0.5 + 1.4 ≥ 3.6/2. Generally, (4) and (1) yield the same results. However, the whole

interval [y(k−1), . . . , y(k)] solves (1) whenever
∑n

i=k w(i) = 1
2

∑n
i=1 wi. The solution

y(k−1) would be obtained in (4) by summing from the bottom instead of from the top.

This ambiguity can be solved as usual by choosing the midpoint of the interval.

Two weighted medians with respective weights w1, . . . , wn and w′1, . . . , w
′
n are called

equivalent iff they give the same result for every sample. This is the case iff for every

subset of indexes I ⊂ {1, . . . , n} we have

∑

i∈I

wi ≥ 0.5
n
∑

i=1

wi ⇐⇒
∑

i∈I

w′i ≥ 0.5
n
∑

i=1

w′i .

For n = 3, the WM with weights (w1, w2, w3) = (2, 4, 3) is equivalent to the standard

median: crucial for this is that the weights are balanced, such that no subset of less

than b(n+1)/2c weights sums up to at least half the total mass. The WM is an order

statistic with its rank depending on the observations and the weights.
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2.2 Weighted median smoothing and filtering

Let y1, . . . , yN be observed at fixed design points x1 ≤ . . . ≤ xN under the model

Yi = g(xi) + ui + vi, i = 1, . . . , N, (5)

where ui is symmetric observational noise with mean zero and finite variance σ2, and vi
is impulsive noise from an outlier generating mechanism. The goal is to approximate

the signal g(x) for x ∈ [x1, xN ], representing the level of Y as a function of x. To

distinguish signal and noise we assume µ = g(x) to be smooth with infrequent shifts.

The observational noise is assumed to be rough and the number of subsequent spikes

to be small as compared to the durations between the shifts.

Fan and Hall (1994) and Wang and Scott (1994) propose local constant weighted

L1-estimates ĝ(x) based on the minimization (1),

ĝ(x) = argmin
µ

N
∑

i=1

wi(x)|yi − µ| = med{w1(x) ¦ y1, . . . , wN(x) ¦ yN}. (6)

In the context of nonparametric smoothing, the term weighted typically refers to locally

weighted, i.e. weighting is performed by means of a kernel K(·), which is a continuous

symmetric probability density. A common choice of the weights is

wi(x) =
1

Nh
K

(

xi − x

h

)

. (7)

In time series filtering, the design is usually equidistant, xi = i, i = 1, . . . , N . In

retrospective applications, when some delay is possible, we usually approximate the

level in the window center. We then apply bell-shaped weights which are symmetric

to the center and monotonically decreasing to both sides of it. Symmetric bell-shaped

weights can be obtained by means of symmetric unimodal kernels as in (7).

In online analysis, the target point x where we estimate the signal is at the end of

the window. Then we apply monotonically increasing weights, which can be derived

using half-sided bell-shaped kernels, see e.g. Einbeck and Kauermann (2003).

When using a kernel K with bounded support, say [−1, 1] for a symmetric and [−1, 0]
for a half-sided kernel, the WM smoother (6) with weights as in (7) becomes

ĝ(x) = argmin
µ

N
∑

i=1

wi(x) · 1{−m≤xi−x≤m̃}|yi − µ|, (8)

where m is the bandwidth. The symmetric kernels in retrospective analysis result in

m̃ = m > 0, while the half-sided kernels in online analysis give 0 = m̃ < m. For every

target point x ∈ [m+ 1;N − m̃] the window {xi : −m ≤ xi − x ≤ m̃} corresponding

to non-zero weights contains the same number of elements n = m+ m̃+1. We hence

obtain weighted median filters as special cases from weighted median smoothers.
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2.3 Weighted L1-regression

Fan et al. (1994) treat a robust nonparametric median smoother based on local

linear L1-regression. They show that the theoretical properties of local linear mean

estimators carry over to local linear median estimators. The local linear median at

point x is given by µ̂, where µ̂ and β̂ are the solutions of the weighted LAD problem

min!
N
∑

i=1

wi(x)|yi − µ− β(xi − x)| (9)

which means fitting a straight line to the data using an additional weight function.

Like for the median, the solution of weighted L1-regression is not unique in general.

In case of a fixed design, the weights w1(x), . . . , wN(x) are fixed and weighted L1-

regression minimizes the regression residuals w.r.t. a norm. Thus, if the solution is

not unique, the set of minimizing values is at least convex.

Several algorithms have been developed for L1-regression in particular and quantile re-

gression in general (Portnoy and Koenker 1997, Koenker 2005), which can be adapted

to weighted L1-regression since the ordinary L1-solution of the modified problem

min!
N
∑

i=1

|wi(x) · yi − wi(x) · µ− β · wi(x) · (xi − x)| (10)

with data (wi(x), wi(x) · xi, wi(x) · yi) is the same as the weighted L1-solution of the

original problem. We use an approximative L1-procedure, which offers simplicity and

increased robustness. Starting from the standard repeated median, the algorithm

iterates a finite number of steps between maximization of the objective function w.r.t.

µ given the current solution for β and vice versa.

2.4 Weighted repeated medians

Davies et al. (2004) investigate robust regression techniques like the standard repeated

median and L1-regression for delayed signal extraction from time series. Online ver-

sions of such procedures are compared by Gather et al. (2006). The repeated median

smoother (2) is found to be preferable to the inspected alternatives in both situa-

tions. In time series filtering, the setting n = 2m + 1, x1 = t −m, . . . , xn = t +m,

and x = t corresponds to the retrospective, symmetric situation, while n = m + 1,

x1 = t−m, . . . , xn = t, and x = t corresponds to the online, no delay version.

The resulting (standard) repeated median filters fit a linear trend µt+j = µt+jβt, j =

−m, . . . , m̃, to the data in each time window, where m̃ = m or m̃ = 0 depending on

the situation. The assumption of a locally constant signal underlying the standard

median is replaced by a locally linear trend with constant slope. This motivates us to

generalize the repeated median, permitting localization by weighting.



2 ROBUST SMOOTHING AND FILTERING 6

Consider a window of width n with observations (x1, y1), . . . , (xn, yn), where w.l.o.g.

the predictors are ordered such that x1 < . . . < xn. The weighted repeated median

(WRM) with two possibly different sets of weights wi, w̃i, i = 1, . . . , n, is given by

β̃WRM(x) = medj=1,...,nw̃j ¦
(

medi6=jw̃i ¦
yi − yj
xi − xj

)

, (11)

µ̃WRM(x) = med
(

w1 ¦
(

y1 − (x1 − x)β̃WRM(x)
)

, . . . ,

wn ¦
(

yn − (xn − x)β̃WRM(x)
))

, (12)

i.e. we weight the pairwise slopes in the inner median by a weight depending on the

position of xi, and in the outer median on the position of xj when estimating the

slope β(x). The set of weights w1, . . . , wn used for the level µ(x) can be identical

to w̃1, . . . , w̃n. Anyway, we choose both sets of weights wi and w̃i to be symmetric

bell-shaped in retrospective and to be monotonic in online applications.

We call two WRMs with weights w1, . . . , wn, w̃1, . . . , w̃n and w′1, . . . , w
′
n, w̃

′
1, . . . , w̃

′
n

equivalent if the slope and the level estimate are always identical. A necessary condi-

tion for this is the equivalence of the WMs corresponding to w1, . . . , wn and w
′
1, . . . , w

′
n:

if the slope estimates are identical, there are samples such that the WMs of the slope-

corrected observations are different otherwise. The following additional condition for

w̃1, . . . , w̃n and w̃′1, . . . , w̃
′
n guarantees the equivalence of WRMs:

The weighted medians corresponding to w̃1, . . . , w̃n and to w̃
′
1, . . . , w̃

′
n are equiv-

alent, and for each i ∈ {1, . . . , n} the weighted medians corresponding to

w̃1, . . . , w̃i−1, w̃i+1, . . . , w̃n and to w̃
′
1, . . . , w̃

′
i−1, w̃

′
i+1, . . . , w̃

′
n are also equivalent.

This condition is sufficient, not necessary. It is stricter than the equivalence of

the WMs corresponding to w̃1, . . . , w̃n and w̃′1, . . . , w̃
′
n: For n = 3, the WRM with

(w̃1, w̃2, w̃3) = (2, 4, 3) is not equivalent to the standard RM, although the WM is

equivalent to the standard median. For the sample (1, 0), (2, 1), (3, 5), the standard

RM slope is med(1.75, 2.5, 3.25) = 2.5, while for the WRM it is med(1, 4, 4) = 4.

In nonparametric regression, when approximating the regression function g at x given

N data points, it is natural to employ kernel weights wi = wi(x), w̃i = w̃i(x) as

defined in (7). The estimated regression function is then given by g̃(x) = µ̃WRM(x).

2.5 Alternative Approaches

There are locally weighted versions of more robust regression techniques: Equal

weighting results in the highest efficiency of weighted Theil-Sen estimators and the

highest asymptotic breakdown point of 29.3% among all efficiency-optimal weight-

ing schemes in the case of an equally spaced fixed design (Scholz 1978). Simpson

and Yohai (1998) discuss the stability of one-step GM estimators (including weighted

L1-regression) in approximately linear regression with a random design.
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3 Analytical properties

We analyze properties of the smoothers described above. Applying a kernel K with

bounded support and weights as in (7), for every target point x the subset W (x) of

design points with non-zero weights forms a window of subsequent points. We discuss

a single window of width n. Let y1, . . . , yn be the corresponding values of a response

observed at fixed x1 < . . . < xn. Denote the corresponding sets of strictly positive

weights by w1, . . . , wn and w̃1, . . . , w̃n, suppressing the dependence on x.

3.1 Equivariances

Equivariances guarantee that an estimate reacts as expected to systematic changes in

the data. Location equivariance means that adding a constant c changes the estimate

by c. Scale equivariance means that multiplying all of y1, . . . , yn by c changes the

estimate by the same factor. The level estimates obtained from weighted medians

and weighted repeated medians possess both these properties.

We also require that the quality of the smoothing does not depend on linear trends.

This can be guaranteed by applying regression equivariant estimators. When regress-

ing a variable y on a variate z ∈ R
d, regression equivariance means that adding a

vector multiple c′z of z to y for a c ∈ R
d changes the estimate by this vector c.

(Weighted) repeated medians for simple linear regression as defined here are equivari-

ant w.r.t. adding a vector multiple (a, b)zi = a+ bxi of zi = (1, xi)
′ to yi, i = 1, . . . , n.

A procedure for (weighted) L1-regression fulfills this equivariance if the initial estima-

tor, e.g. the repeated median, fulfills it since we just act on the residuals thereafter.

The performance of weighted medians depends on trends since they do not make use

of the covariate values x1, . . . , xn. They regress on a constant level only, i.e. z = 1,

so that regression and location equivariance coincide.

3.2 Removal of spiky noise

The removal of impulsive noise (spikes, outliers) and the preservation of relevant signal

details, in particular of long-term shifts, are essential properties of robust smoothers.

The performance of a regression method w.r.t. outliers can be measured by two related

quantities, the breakdown point and the exact fit point.

The asymptotic breakdown point of the standard median and repeated median is

50%. This asymptotic breakdown point is the limit of the finite sample replacement

breakdown point, which measures the minimal fraction of data which can drive an

estimate beyond all bounds when being set to arbitrary values (Donoho and Huber

1983). In the context of nonparametric smoothing by moving window techniques,

this corresponds to the minimal fraction of contamination within a window which can
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cause an arbitrarily large spike in the output. It is well known that for local fits based

on (weighted) least squares a single outlier can cause an arbitrarily large spike. See

Davies and Gather (2005) for a discussion of breakdown points.

Another popular quantity in signal extraction is the number of spikes a procedure

can remove completely from a prototype signal in noise-free conditions, where the

variance σ2 of the observational noise equals zero. When applying a regression func-

tional to a moving window assuming a locally linear signal trend, this number of

spikes corresponds to the exact fit point of the functional. The exact fit point is the

smallest fraction of observations which can cause an estimated regression hyperplane

to deviate from another hyperplane although all the remaining data points lie on that

hyperplane (Rousseeuw and Leroy 1987, Section 3.4). For regression and scale equiv-

ariant functionals the exact fit point is not smaller than the finite sample breakdown

point. Let bac be the largest integer not larger than a. The standard median fits a

constant exactly if less than b(n + 1)/2c out of n observations are distinct from it,

which equals its breakdown point. Up to b(n− 1)/2c subsequent spikes are removed

completely from a constant signal. In retrospective application, a shift from one con-

stant to another one is preserved exactly when applying an odd n = 2m+1. In online

application, the shift gets delayed by m time points then.

However, within a trend period a standard median cannot preserve exactly a shift into

the opposite direction, and a single spike causes smearing (e.g. Fried, Bernholt and

Gather 2006). This is an advantage of regression techniques: The removal of outliers

and the preservation of shifts does not depend on linear trends since the WRM and

weighted L1-regression are equivariant to them. The breakdown and the exact fit

point of the standard RM for fitting a straight line both equal bn/2c/n. Thus, the

standard RM can remove bn/2c − 1 subsequent spikes from a linear trend, which is

only slightly less than for the standard median when the signal is constant.

For the derivation of breakdown and exact fit points of robust weighted regression

methods, let zi ∈ R
d be fixed regressors, γ ∈ R

d the parameter to be estimated, and

yi = z′i · γ + ui, i = 1, . . . , n.

Weighted L1-regression can be analysed using results for standard L1-regression con-

sidering the modified problem (10). From He, Jureckova, Koenker and Portnoy (1990,

Theorem 5.3), Ellis and Morgenthaler (1992, Theorem 2.3) and Mizera and Müller

(1999, Theorem 2) we can conclude that the breakdown point and the exact fit

point of weighted L1-regression are identical and equal to k/n, where k = min |I|,
I ⊂ {1, . . . , n}, for which 0 6= γ̃ ∈ R

d exists such that
∑

i∈I

wi · |z′i · γ̃| ≥
∑

i/∈I

wi · |z′i · γ̃| . (13)

Since a WM regresses on a constant, zi ≡ 1, its breakdown and exact fit point is the

minimal fraction of weights which sum up to at least 0.5
∑n

i=1 wi. It is straightforward
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to show that a WM which is not equivalent to the standard median has breakdown

point smaller than the optimal value b(n+1)/2c/n of the latter. The loss in robustness

due to weighting will be the larger, the more the weights vary.

Calculating the numerical value of the breakdown and exact fit point of (weighted) L1-

regression is more difficult in case of d ≥ 2 since more directions need to be considered

then. An algorithmic solution is given by Giloni and Padberg (2004).

In the case of simple linear regression, yi = µ+ β(xi− x), we can derive simple upper

bounds, choosing the coordinate axis as directions γ̃ in (13): The breakdown point

of weighted L1-regression with weights w1, . . . , wn is not larger than min{kl, ks}/n,
where kl is the minimal cardinality of I ⊂ {1, . . . , n} such that

∑

i∈I

wi ≥
∑

i/∈I

wi

and ks is the minimal cardinality of I ⊂ {1, . . . , n} such that

∑

i∈I

wi|xi − x| ≥
∑

i/∈I

wi|xi − x| .

This upper bound is generally not strict as it only considers two directions: For

standard L1-regression and an equidistant, centered design the upper bound is

1 − 1/
√
2 = 29.3% asymptotically. However, from Ellis and Morgenthaler (1992,

Proposition 4.1) we derive that the asymptotic breakdown point of standard L1-

regression is smaller, namely at most 25%. Nevertheless, the simple upper bound is

attained by the approximative weighted L1-algorithm outlined in Section 2.3.

In case of n = 7 and an equidistant centered design, weighting allows to increase

the breakdown point of approximative L1-regression from 2/7 to 3/7 by choosing

wi = 1/
√

1 + |xi − x|. The terms wi and wi|xi − x| in the two restricting inequalities

are identical for these weights, except for the center, where xi = x.

Next we address breakdown and exact fit of weighted repeated medians.

Proposition 1 Let (µ̃, β̃) be a weighted repeated median of n observations with

weights w1, . . . , wn and w̃1, . . . , w̃n.

a) A lower bound for the breakdown and the exact fit point of (µ̃, β̃) is given by

min{ks, kl}/n, where ks is the minimal number of weights for which
∑ks

i=1 w̃[i] ≥
∑n

i=ks+2 w̃[i], with w̃[1] ≥ w̃[2] ≥ . . . ≥ w̃[n] denoting the ordered sequence of

weights, and kl is defined as the minimal number of weights w[1] ≥ w[2] ≥ . . . ≥
w[n] for which

∑kl

i=1 w[i] ≥
∑n

i=kl+1 w[i].

b) An upper bound for the exact fit and the breakdown point of (µ̃, β̃) is given by

min{k′s− 1, kl}/n, where kl is as in a) and k′s is the minimal number of weights

for which
∑k′

s

i=2 w̃[i] ≥
∑n

i=k′

s+1 w̃[i].
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c) The breakdown point and the exact fit point of (µ̃, β̃) do not exceed the bn/2c/n
value of the standard repeated median.

Proof of Proposition 1. Since for regression and scale equivariant functionals like

WRMs the exact fit point (EFP) is at least as large as the finite-sample breakdown

point (BP), it suffices to prove a) for the BP and b) for the EFP.

a) Less than k = min{ks, kl} modifications have bounded effect on the level and the

slope: When excluding an unmodified, ’clean’ observation yj, the sum of the weights

is still larger for the clean than for the modified observations. Hence, for every clean

yj the inner median in the slope corresponds to a clean pair and is bounded. The

WRM slope is bounded by the same quantity. The weighted majority of the slope

corrected yj and thus the WRM level is then also bounded.

b) Because of regression equivariance we may assume that all observations are zero,

and need to find k = min{k′s − 1, kl} substitutions causing the fit to deviate from

the horizontal axis. If k = k′s − 1, let the positions I = {i1, . . . , ik+1} correspond to

the largest weights w̃[1] ≥ . . . ≥ w̃[k+1]. Set the rightmost k of these observations,

i.e. with largest x, on an increasing line with slope b > 0 through the leftmost of

them. For each observation in I the total weight of the other observations in I is at

least the total weight of the unmodified zero observations. The corresponding inner

medians and the WRM slope is hence at least b/2. If k = kl, set the k observations

with largest wi to an arbitrary value M , obtaining a WRM level of at least M/2.

c) The standard RM has maximal BP among regression equivariant methods

including WRMs. Its EFP is maximal as it equals its upper bound, ks = k′s − 1. 2

The lower and the upper bound given in a) and b) are not always identical, consider

n = 5 and (w1, . . . , w5) = (w̃1, . . . , w̃5) = (1, 1, 1, 3, 2), for which ks = 1, but k′s = 3.

The next result shows that the lower bound is attained in the most relevant cases.

Proposition 2 The breakdown and the exact fit point of a weighted repeated median

with symmetric bell-shaped or monotonic weights equal min{ks, kl}/n.

Proof of Proposition 2. It is sufficient to prove that the EFP equals its lower bound.

We assume w.l.o.g. that all n observations equal zero and show that k = min{kl, ks}
modifications can make the WRM line deviate from the horizontal axis.

Symmetric bell-shaped weights and monotonic weights can be treated in the same

way. The k largest weights w̃j are at subsequent positions xi−k+1 < . . . < xi.

If ks ≤ kl, proceed as follows: If w̃1 + . . . + w̃i−k ≥ w̃i+1 + . . . + w̃n, set the k

observations at xi−k+1, . . . , xi to an increasing line with slope 1 through (xi−k, 0).

w̃i−k is the (k + 1)th largest w̃j then. The pairwise slope is 1 if both design points

are selected from xi−k, . . . , xi, it is strictly positive if one is from x1, . . . , xi−k−1 and

the other from xi−k+1, . . . , xi, and it is zero if both are from x1, . . . , xi−k, xi+1, . . . , xn.

The inner median corresponding to xi−k is strictly positive since the total weight of
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the modified is at least that of the unmodified observations. This also holds for those

at xi−k+1, . . . , xi since the pairwise slopes through x1, . . . , xi are larger than zero.

Since the total weight at xi−k, . . . , xi is larger than the rest, the WRM slope is larger

than zero and the WRM line deviates from the horizontal axis.

If w̃1 + . . . + w̃i−k < w̃i+1 + . . . + w̃n, set the observations at xi−k+1, . . . , xi to an

increasing line through (xi+1, 0) and use the same arguments as before interchanging

the role of x1, . . . , xi−k and xi+1, . . . , xn.

If kl < ks, set the k observations with largest wi to 1. From the proof of Proposi-

tion 1a) follows that the slope estimate is zero, but the level estimate is at least 0.5. 2

There are also WRMs which attain their respective upper bound, e.g. the one for

n = 5 mentioned above. The previous results allow to determine weighted L1- and

WRM filters which remove outlier patches up to a given length completely while

exactly preserving longer shifts under idealized conditions (σ2 = 0).

We consider two weighting schemes and an equidistant design x1 = 1, . . . , xn = n

latter on: The first scheme w
(1)
i (x) = 1 − [|x − xi|/(m + 1)]2, with x being the

target point, stems from the Epanechnikov kernel. The second one motivated by L1-

regression is w
(2)
i (x) = (1+ |x−xi|)−1/2. The Epanechnikov weights w(1) are flat close

to x and decay strongly away from it, while it is the other way round for w(2). The

standardized weighting schemes are compared in Figure 1.

Figure 1: Standardized symmetric bell-shaped weights w(1) obtained from the Epanech-

nikov kernel (◦), w(2) (O) and the uniform weights of the standard version (¤). The weights

w(1) are flat close to the target point, where xi − x = 0, and strongly decaying away from

it, while it is the other way round for w(2).
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Table 1 gives the minimal window widths n necessary to remove outlier patches of

different lengths for standard and weighted L1- and RM filtering. We observe that n

increases for the WRM as compared to the standard RM, while weighting allows to
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decrease n for online L1-filtering because of increased robustness. Nevertheless, L1-

regression does not achieve the optimal robustness of the standard RM when using

these weighting schemes and needs somewhat larger n. The second scheme affords

somewhat larger n in online, and slightly smaller n in retrospective RM filtering.

Table 1: Minimal window width n necessary to remove outlier patches of length ` in online

(left) and retrospective (right) application, L1- (top) and RM-regression (bottom).

` 1 2 3 4 5 6 1 2 3 4 5 6

standard L1 5 8 11 15 18 22 5 7 9 11 13 15

w
(1)
i (x) = 1− (|xi − x|/(m+ 1))2 4 7 10 12 15 18 5 7 9 11 15 17

w
(2)
i (x) = (1 + |xi − x|)−1/2 4 7 10 12 16 19 5 7 9 11 15 17

standard RM 4 6 8 10 12 14 5 7 9 11 13 15

w
(1)
i (x) = 1− (|xi − x|/(m+ 1))2 4 7 10 13 16 19 5 7 11 13 15 19

w
(2)
i (x) = (1 + |xi − x|)−1/2 4 7 11 14 17 21 5 7 9 13 15 19

3.3 Continuity

(Lipschitz) continuity guarantees local stability to small changes in the data due to

observational noise or rounding. Every WM is Lipschitz continuous with constant 1

as changing every observation by less than δ changes any order statistic at most by δ,

and a WM always corresponds to one of these. For fixed design, the slope estimate of

a WRM changes at most by 2δ/mini=1,...,n(xi−xi−1), so that the WRM level estimate

is Lipschitz continuous with constant 2max{|x1 − x|, |xn − x|}/mini=2,...,n(xi − xi−1)

since none of the slope corrected observations changes more.

4 Monte Carlo study

A common demand for robust filters discussed in Section 3.2 is that long-term shifts

should be preserved, while irrelevant sequences of spikes should be removed. We

compare the performance of the filters in simulations, concentrating on equidistant

designs as encountered in time series filtering. Data are generated from model (5)

with standard Gaussian white noise ui. The signal is a sine function, g(xi) = ν ·
0.5 · sin(i · π/100), i = 1, . . . , 100, where ν ∈ {0, 1, . . . , 20} determines the degree of

non-linearity (Figure 2). We treat a single window with target point x = 50.

A rule of thumb in intensive care says that five subsequent strongly deviant obser-

vations in hemodynamic time series point at a clinically relevant shift, while shorter

sequences are typically irrelevant (Imhoff et al. 2002). Accordingly, we fix window

widths with the aim of preserving shifts lasting at least ` = 5 observations.
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Figure 2: Senoidal signal µt = 5 · sin(t · π/100), t = 1, . . . , 100, overlaid by Gaussian white
noise with unit variance (left), and exemplary data window of width 21 used for online

approximation of the signal value (∗) at the target point t = 50 (right).
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4.1 Online signal extraction

We start with the online versions of the procedures, choosing suitable window widths

from Table 1. For the standard RM and L1-regression we select n = 11 and n = 15,

respectively. For the WRM with weights w(1) (w(2)) we use a larger n = 15 (n = 16),

while for L1-regression weighted by w(1) (w(2)) we choose n = 14 (n = 15).

Comparing the ability of the procedures to distinguish relevant from irrelevant devi-

ating sequences, we generate data resembling the intrusion of a shift into the window.

We simulate data as described above, adding the same constant c to an increasing

number of observations at the window end. In accordance to the above demands, up to

four shifted observations are regarded as outliers and should not affect the estimation,

while from five shifted observations on the shift should be reproduced.

Figure 3 compares the bias of the approximation of the non-shifted signal caused by

` = 1, 2, . . . , 11 shifted observations at time points t = 50, 49, . . . , 40, calculated from

2000 windows each. A curve would be optimal if it stayed at zero up to ` = 4, and

then increased abruptly to the added constant c representing the new level.

We observe that all versions of L1-regression have difficulties in distinguishing rele-

vant from irrelevant patterns. Although the widths are chosen to achieve adequate

breakdown and exact fit points, the versions which down-weight remote observations

are strongly influenced already by four shifted observations, particularly w(2). The

desired delay of tracking is only obtained for huge shifts, according to the breakdown

asymptotics. Standard L1-regression resists too many remote observations and nei-

ther tracks shifts properly, although n is at the lower limit for ` = 4 outliers, see
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Figure 3: Online application: Bias for the level (left) and the slope (right) due to an

increasing number of observations shifted by c = 10 (top), c = 100 (center) and c = 10000

(bottom) at the end of the window: RM (solid lines) and L1-regression (dashed), standard

version (¤), weights w(1) (o) and w(2) (O).
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Table 1, as opposed to the widths for the other methods. L1-regression is influenced

by leverage points, i.e. by the oldest observations in the online situation. Incom-

ing shifted observations are not in worst case positions. Rules for shift detection or

smaller widths were needed, but the latter increase all outlier effects. Additionally,

all versions of L1-regression overshoot the signal value after the shift.

The WRMs preserve the shifts better, obtaining the desired delay of tracking. Their

superiority is further increased when taking the variability of the estimates (not

shown) into account, which is for about four outlying observations much less than

for (weighted) L1-regression. The WRM with weights w(1) performs best for mod-

erate shifts, but it overshoots huge shifts. Weighting by w(2) preserves huge shifts

better.

For the slope, we would consider a bias curve as optimal if it stayed constantly at zero.

The results, depicted also in Figure 3, are similar as for the level. Weighting reduces

the bias of the RM, particularly for moderate shifts. For large shifts, the WRMs, in

particular with w(1), tend to be less biased than (weighted) L1-regression.

Figure 4 compares the efficiencies for Gaussian noise in dependence on the non-

linearity ν, in the absence of outliers and shifts. Because of the bias for ν 6= 0

we measure the efficiency by the percentage mean square error MSE as compared

to the standard RM, obtained from 10000 runs for each ν = 0, . . . , 20. Standard

L1-regression turns out to be more efficient than its weighted versions, although this

advantage decreases in ν due to a more increasing bias. For the RM, weighting and

the therefore possible larger n increase the efficiency, and even more so for the slope.

The Epanechnikov weights w(1) give the highest efficiencies for the WRM, but the

smallest for L1. The latter aspect can be due to the smaller n, and the former to the

fact that more observations close to the target x get large weights.

4.2 Retrospective signal extraction

We also compare the filters in the retrospective situation using symmetric bell-shaped

weights. Deviating from Table 1, we use n = 9 for standard RM and L1-regression.

Relevant shifts would be smoothed a lot otherwise. The widths in Table 1 do not guide

detail-preserving retrospective smoothing by the RM and L1. Table 1 corresponds to

the worst-case, but centric outliers affect the slope estimation only mildly and are not

worst-case. Accordingly, we use shorter windows corresponding to those necessary for

weighted medians with the respective weights.

Figure 5 depicts the results for a window centered at the target point x = 50 and an

outlier sequence at xi = 50, 51, . . ., i.e. just starting in the center, using n = 13 for

the RM and the L1 with either set of weights. All procedures reduce a shift at its

starting point, irrespective of its duration. The standard versions of the filters are
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Figure 4: Percent efficiency for the level relatively to the standard RM (top) and absolute

bias (bottom) in online (left) and retrospective (right) application in the case of Gaussian

noise as function of the amount of non-linearity ν: RM (solid lines) and L1-regression

(dashed lines), standard version (¤), weights w(1) (◦) and w(2) (O).
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sensitive to three or four outliers. The WRMs perform better in this respect and close

to the weighted L1-procedures for moderate outliers, but they resist too many huge

outliers delaying such shifts. When reducing the width to n = 11 for the WRMs to

overcome this delay, the WRMs are considerably more affected in case of three or four

moderately large outliers and close to the standard RM. L1-regression with weights

w(2) performs best, particularly for moderate outliers.

All procedures have good discriminatory power when the sequence is in the window

center at positions xi = 50, 49, 51, 48, 52, . . ., see also Figure 5. Up to four outliers are

dampened substantially, while the shift is preserved well from that on. The weighted

filters with n = 13 provide improved suppression of four centric outliers, with weighted

L1 being somewhat better than the WRMs.

L1 with weights w(2) offers also the best Gaussian efficiency, see Figure 4. In spite of

its slightly larger bias, it is somewhat more efficient than L1 with w(1), and quite a

bit more than the WRMs. The WRMs with n = 13 are somewhat more efficient for

the level than the standard L1 and RM, which are close to each other. For the slope,

the L1 (WRM) with w(2) reaches about 300% (220%) of the efficiency of the standard

RM. The WRMs with n = 11 (not shown here) are somewhat less efficient than the

standard RM for the level, but somewhat more for the slope.

5 Application to time series

For further comparison we apply the filters to some time series. The simulated data

depicted in Figure 6 are generated by overlaying a senoidal signal of length N = 250

with a shift by standard Gaussian white noise. A temporary shift of duration six is

inserted at xi = 70 to investigate the preservation of relevant patterns.

The online procedures are challenged by inserting irrelevant sequences of up to three

outliers of size ten. In view of the results from Section 4.1, we choose widths suitable

for removing ` = 5 outliers, i.e. n = 13 for the standard RM, n = 18 (n = 20) for the

WRM with weights w(1) (w(2)), n = 18 for standard L1, n = 17 (n = 18) for L1 with

weights w(1) (w(2)), see Table 1. Accordingly, all filters resist the irrelevant outliers

well, but delay the relevant shifts by five observations. As was to be expected, the

L1-filters overshoot the shifts, particularly the standard L1. The WRMs provide less

wiggly outcomes, with the WRM with weights w(1) performing best.

To further increase the challenge in the retrospective case, we replace up to four

subsequent observations by irrelevant outliers. The standard RM and L1 with n = 9,

the WRMs with n = 11 and the weighted L1 with n = 13 preserve the shift and the

temporary shift well. However, the standard RM and L1 are strongly affected by three

or four subsequent outliers, and the WRMs do only slightly better. The L1 weighted

by w(2) performs best and is only affected by the four outliers at xi = 40.
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Figure 5: Retrospective application: Bias for the level due to an increasing number of

observations shifted by c = 10 (top and bottom) and c = 1000 (center) starting in the

center (top and center) and right in the center (bottom): RM (solid lines) and L1-regression

(dashed lines), standard version (¤), weights w(1) (◦) and w(2) (O). WRM with width

n = 13 (left) and n = 11 (right).
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Figure 6: Online (top) and retrospective (bottom) L1 (left) and RM (right) filtering:

simulated time series +, underlying signal (bold dashed), standard (thin solid) and weighted

version (bold solid). Weight function w(1) is used in the online, w(2) in the retrospective

application.
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Figure 7: Online (top) and retrospective (bottom) L1 (left) and RM (right) filtering: time

series +, underlying signal (bold dashed), standard (thin solid) and weighted version (bold

solid). Weight function w(1) is used in the online, w(2) in the retrospective application.

0 50 100 150 200

80
90

10
0

11
0

12
0

13
0

time

va
lu

e

0 50 100 150 200

80
90

10
0

11
0

12
0

13
0

time

va
lu

e

0 50 100 150 200

80
90

10
0

11
0

12
0

13
0

time

va
lu

e

0 50 100 150 200

80
90

10
0

11
0

12
0

13
0

time

va
lu

e



6 CONCLUSIONS 21

We also consider real data representing the arterial pressures of patients in intensive

care, see Figures 7 and 8. The filters are applied using the same widths as before, but

increasing n to 13 for the retrospective WRMs. The online L1-filters again overshoot

the downward shift at xt = 100 in the first and the shifts in the second example,

particularly the standard L1. The standard RM is affected by some outliers occurring

at about xt = 70 in the first example. The online WRMs provide generally better

results. In retrospective application, the standard versions are more affected by the

outliers, particularly by the tripel at xi = 100. The weighted versions perform again

better and less wiggly.

6 Conclusions

We have investigated weighted repeated median and weighted L1-filters for robust

detail-preserving smoothing of noisy data with underlying trends. In case of the

repeated median, weighting the observations according to their distance in the de-

sign space improves the local adaption to nonlinear regression functions, allows to

use longer windows and increases efficiency as compared to the unweighted version,

retaining the suppression of outlying spikes and the preservation of relevant shifts.

Weighted repeated medians provide substantial benefits particularly in the challeng-

ing online situation. In case of L1-regression, weighting can increase the robustness

and the discrimination between sequences of relevant and irrelevant length. In retro-

spective application large efficiency gains are possible due to longer windows.

An open issue is the optimal choice of the weights under some error criterion. In

general, the most suitable choice of the filtering procedure is likely to depend on the

circumstances. Probably important aspects are the expected sizes of outliers and

shifts as well as the curvature of the regression function. Under the criteria inspected

here, the repeated median with Epanechnikov weights w(1) can be recommended for

online, and weighted L1-regression with w(2) for retrospective application.

These results rely on outlier patches being well separated. When such patches occur

close to each other, using a standard repeated median with a reasonable width may

still be the best decision since it can deal with the largest fraction of outliers.
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Figure 8: Online (top) and retrospective (bottom) L1 (left) and RM (right) filtering: time

series +, underlying signal (bold dashed), standard (thin solid) and weighted version (bold

solid). Weight function w(1) is used in the online, w(2) in the retrospective application.
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