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Abstract

Recently, Dette, Neumeyer and Pilz (2005a) proposed a new monotone estima-

tor for strictly increasing nonparametric regression functions and proved asymptotic

normality. We explain two modifications of their method that can be used to obtain

monotone versions of any nonparametric function estimators, for instance estimators of

densities, variance functions or hazard rates. The method is appealing to practitioners

because they can use their favorite method of function estimation (kernel smoothing,

wavelets, orthogonal series,. . . ) and obtain a monotone estimator that inherits desir-

able properties of the original estimator. In particular, we show that both monotone

estimators share the same rates of uniform convergence (almost sure or in probability)

as the original estimator.
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1 Introduction

During the last decades much effort has been devoted to the problem of estimating monotone

functions. Estimating a monotone density function was considered by Grenander (1956),

Groeneboom (1985), Groeneboom and Lopuhaä (1993), Datta (1995), Cheng, Gasser und

Hall (1999), and van der Vaart and van der Laan (2003), among others. Even more literature

can be found about estimating increasing regression functions, starting with Brunk (1958),

Barlow, Bartholomew, Bremmer and Brunk (1972), Mukerjee (1988), Mammen (1991), Ram-

say (1988), and Hall and Huang (2001), among many others; see Gijbels (2003) for a good

and recent review. Uniform consistency of Brunk’s estimator was shown by Wright (1979)

and Smythe (1980). For censored data Huang and Zhang (1994) and Huang and Wellner

(1995) consider estimators for a monotone density and monotone hazard rate. For monotone

estimators of a hazard rate see also Mukerjee and Wang (1993) and Hall, Huang, Gifford

and Gijbels (2001).

Appealing to users of common kernel methods is a new method proposed by Dette, Neumeyer

and Pilz (2005a) for nonparametric regression functions and by Dette and Pilz (2004) for

variance functions in nonparametric regression models. The considered estimator is easy to
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implement, is based on kernel estimators, and, in contrast to many other procedures, does

not require any optimization over function spaces. To obtain a monotone estimator for a

strictly increasing function g (here g : [0, 1] → R denotes the regression or variance function),

the method consists of first monotonicitly estimating the distribution function of g(U), i. e.

h(t) = P (g(U) ≤ t), by a kernel method, where U is uniformly distributed in [0, 1]. The

first step uses a (not necessarily increasing) kernel estimator ĝ for g. More precisely, the

estimator for h is an integrated kernel density estimator,

ĥ(t) =

∫ t

−∞

1

N

N
∑

i=1

1

a
k
(x − ĝ( i

N
)

a

)

dx,(1.1)

where k denotes a density function, a = aN = o(1) a sequence of bandwidths and N converges

to infinity. Noting that h(t) = g−1(t), an increasing estimator for g is then obtained by

inversion of ĥ. Asymptotic normality of the constrained estimator is shown in Dette et al.

(2005a) and Dette and Pilz (2004). A further application of the method can be found in

Dette, Neumeyer and Pilz (2005b) where an increasing estimator for the dose response curve

in binomial regression is proposed.

An alternative method to obtain the estimator for g−1 is mentioned but not further developed

in the aforementioned references, namely using

ĥ(t) =

∫ 1

0

I{ĝ(x) ≤ t} dx(1.2)

(where I denotes the indicator function) as an estimator for
∫ 1

0
I{g(x) ≤ t} dx = g−1(t)

(where g is increasing). Note that Dette et al.’s (2005a) proof for the asymptotic distribution

of ĥ defined in (1.1) and its inverse is not easily generalized to obtain asymptotic results

about the estimator based on (1.2). The approach to use the inverse ĥ−1 as an estimator for

g, where ĥ is defined in (1.2) is related to nondecreasing rearrangements of data considered

by Ryff (1965,1970), and is in principle similar to Polonik’s (1995,1998) work, who constructs

estimators for a density f from the identity

f(x) =

∫ ∞

0

I{f(x) ≥ t} dt.

The density contour clusters {x : f(x) ≥ t} are estimated by the so-called excess mass

approach. By choosing the class of sets appropriately, for example, monotone density esti-

mators are obtained. In this case the estimator coincides with Grenander’s (1956) estimator.

In a more general context, Polonik (1995) shows L1-consistency of the obtained estimators.

The approach is related to the estimation of density level sets, see Tsybakov (1997), among

others.

In the paper at hand properties of the two methods [using the inverse of (1.1) or (1.2),

respectively, as a monotone estimator of g] will be compared. Both methods are not restricted

to monotone estimation of regression or variance functions, neither to the case of kernel

2



or local linear estimators used in the first step. These restricted cases were considered

in Dette et al. (2005a,b) to prove asymptotic normality of the new estimators and first

order equivalence to the unconstrained estimator. In these references it was also crucial to

assume the function g to be strictly increasing with positive derivative. Here we consider

the general case to modify any function estimator (using kernels, local polynomials, nearest-

neighbors, wavelets, splines, orthogonal series, . . . ) for any function (density, regression

function, variance function, hazard function, . . . ) with compact support (or support bounded

on one side) to obtain a monotone (either nondecreasing or strictly increasing) estimator.

The estimators do not need to be based on an independent and identically distributed sample

but can be based on dependent observations such as time series, or on censored observations.

Also the original estimators are not supposed to be nonparametric but can be either non-,

semi- or parametric. We only assume knowledge about uniform consistency of the original

estimator used in the first step.

Both procedures [based on (1.1) and (1.2)] to obtain monotone versions of any function

estimator are explained in detail in Section 2. We will show that the monotone modifications

of the estimator share the same rates of uniform convergence (almost sure or in probability)

as the original unconstrained estimator, see Section 3. Some examples of applications are

also given in Section 3 and the details of the proofs are deferred to Section 4.

2 Monotone modifications of function estimators

We explain in the following the method to obtain a monotone modification of any function

estimator ĝ of an unknown function g, where g is (not necessarily strictly) increasing. We

restrict ourselves first to the case of a compact support of the target function g. Only for

the ease of presentation this support is assumed to be [0, 1]. Changes in the methods for

noncompact supports will be discussed at the end of Section 3.

For any Lebesgue–measurable function f : [a, b] → R we define a function Φ(f) : R → R by

Φ(f)(z) =

∫ b

a

I{f(x) ≤ z} dx + a, z ∈ R.

For a strictly increasing function f , the function Φ(f)I[f(a),f(b)] is just the inverse f−1. Is

f increasing, but not strictly, then Φ(f)I[f(a),f(b)] is the generalized inverse f−1(t) = inf{u |

f(u) > t} that may have jump points when f has constant parts. Whether f is increasing

or not, Φ(f) is always increasing. Also, Φ(f) is Lebesgue–measurable. Now for a Lebesgue–

measurable function h : [0, 1] → R we define an increasing modification hI : [0, 1] → R

by

hI = Φ
(

Φ(h)I[h(0),h(1)]

)

I[0,1].

Then, for any (not necessarily strictly) increasing function g : [0, 1] → R, we have gI = g
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and for an estimator ĝ : [0, 1] → R for g, we call

ĝI = Φ
(

Φ(ĝ)I[ĝ(0),ĝ(1)]

)

I[0,1]

an isotone modification of ĝ. We will show in Section 3 that the monotone estimator ĝI

shares the same rates of uniform convergence to g as ĝ.

A modification of the presented method uses a smooth approximation of the indicator func-

tion. To this end, let k denote a density function, K(y) =
∫ y

−∞
k(u) du the primitive of k,

and an a sequence of positive bandwidths converging to zero for increasing sample size. For

any estimator ĝ : [0, 1] → R for g we define

Ψ(ĝ)(y) =

∫ 1

0

K
(y − ĝ(x)

an

)

dx

and an increasing modification ĝSI of ĝ by

ĝSI = Φ
(

Ψ(ĝ)I[ĝ(0),ĝ(1)]

)

I[0,1].

This estimator will be strictly increasing (except for small areas at the boundaries) whenever

K is strictly increasing.

Both methods are appealing because every practitioner can use his or her favorite method of

function estimation like wavelets or orthogonal series and will obtain an increasing estimator

that shares the same rate of uniform consistency and also shares a lot of desirable properties of

the original estimator because the new estimator will coincide with the original estimator on

every intervall where the unconstrained estimator already is nondecreasing and the endpoints

are singletons (compare Figure 2). Which of the two methods to apply depends on the

requirements one has for the estimator. When using the first method there is no need for the

choice of a bandwidth. Also, flat parts of g are better reflected (we obtain a nondecreasing,

not a strictly increasing estimator). But the estimator ĝI may be not differentiable in some

points. With the smooth modification of the method we can obtain strictly increasing and

smooth estimators ĝSI.

The following figures show the monotone modifications hI and hSI for a monotone (Figure

1) and a not everywhere monotone function h (Figure 2).

We will also give asymptotic results for discrete versions, ĝI,d = Φ(Φ̃(ĝ)I[ĝ(0),ĝ(1)])I[0,1] and

ĝSI,d = Φ(Ψ̃(ĝ)I[ĝ(0),ĝ(1)])I[0,1] where the integrals in the definitions of ĝI and ĝIS are approx-

imated by Riemann sums, i. e.

Φ̃(g)(y) =
1

N

N
∑

i=1

I{ĝ(
i

N
) ≤ y}

Ψ̃(g)(y) =
1

N

N
∑

i=1

K
(y − ĝ( i

N
)

a

)

.

For the estimator ĝSI,d of a strictly increasing regression function Dette et al. (2005a) showed

asymptotic normality under some regularity assumptions. One could also consider estimators
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Φ̃(Φ̃(ĝ)I[ĝ(0),ĝ(1)])I[0,1] and Φ̃(Ψ̃(ĝ)I[ĝ(0),ĝ(1)])I[0,1] but for the second “inversion” a discretization

is not expedient as Φ̃(ĝ) and Ψ̃(ĝ) are already monotone and for a monotone function h we

have just Φ(h) = inf{u | h(u) > ·}.
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Figure 1: The two graphics show isotone modifications of the nondecreasing function h(x) =

0.25 − 4(x − 0.25)2I{0 ≤ x ≤ 0.25} + 4(x − 0.5)2I{0.5 ≤ x ≤ 1} (solid line). hI in the left

panel is identical to h, the dotted line in the right panel is hSI for the Epanechnikov–kernel

k(x) = 0.75(1 − x2)I{−1 ≤ x ≤ 1} and bandwidth a = 0.2. The dashed curves are Φ(h) in

the left panel and Ψ(h) in the right panel.
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Figure 2: The two graphics show monotone modifications of the not monotone function

h(x) = 5x3 + 4x − 8x2 (solid line). The dotted lines are hI in the left panel and hSI

in the right panel. For the calculation of hSI we used the Epanechnikov–kernel k(x) =

0.75(1 − x2)I{−1 ≤ x ≤ 1} and bandwidth a = 0.2. The dashed curves are Φ(h) in the left

panel and Ψ(h) in the right panel.
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3 Main results and applications

In this section we give conditions under which the increasing versions of function estimators

share the same rate of uniform convergence as the original estimator. Let in the following

||h||∞ = supz∈[0,1] |h(z)| denote the supremum norm of a function h : [0, 1] → R.

Theorem 3.1 (a) Let g : [0, 1] → R be an increasing function and ĝ : [0, 1] → R an

estimator for g. Then there exists a constant c such that for the isotone modification ĝI of

ĝ it holds that

||ĝI − g||∞ ≤ c||ĝ − g||∞.

(b) Let g : [0, 1] → R be a strictly increasing twice differentiable function with bounded

second derivative such that the first derivative is bounded away from zero. Let ĝ : [0, 1] → R

be an estimator for g. Let k denote a symmetric density function with compact support and

two bounded derivatives. Let an = o(1) denote a sequence of positive bandwidths. Then there

exists a constant c such that for the strictly increasing modification ĝSI of ĝ it holds that

||ĝSI − g||∞ ≤ c
(

||ĝ − g||∞ +
1

an
||ĝ − g||2∞ +

1

a3
n

||ĝ − g||3∞ + a2
n

)

.

The constant c in Theorem 3.1 obtained in the proof is not claimed to be the best possible.

In special cases (for example estimating a regression function by kernel methods) it might

be possible to obtain sharper bounds, but our results are valid very general and the given

proof is uncomplicated. In the situation of Theorem 3.1 (a) we obtain uniform consistency

of the estimator ĝI whenever ||ĝ − g||∞ = o(1) is known. Also, when rates of convergence

are known for the original estimator, i. e. ||ĝ− g||∞ = O(cn) for n → ∞ a.s. (in probability),

then the same holds for ĝI , i. e.

||ĝI − g||∞ = O(cn) for n → ∞ a.s. (in probability).

The estimator ĝI based on the indicator method works better to estimate constant functions

resp. nondecreasing functions with flat parts. Moreover, there is no need for choosing a

bandwidth an when using this estimator.

In contrast, in the situation of Theorem 3.1 (b) uniform consistency of the estimator ĝSI can

only be obtained from rates of the uniform convergence of ĝ and by choosing the bandwidth

an accordingly. When it is known that ||ĝ − g||∞ = O(cn) for n → ∞ a.s. (in probability),

then it holds that

||ĝSI − g||∞ = O
(

cn +
c2
n

an
+

c3
n

a3
n

+ a2
n

)

for n → ∞ a.s. (in probability).

When a sequence of bandwidths an is chosen that satisfies cn = O(a
5/3
n ) and an = O(c

1/2
n )

we obtain the same rate O(cn) for the uniform convergence of the strictly increasing version.

For the discrete versions we have the following asymptotic results.
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Theorem 3.2 (a) Let g : [0, 1] → R be a strictly increasing differentiable function such that

the first derivative is bounded away from zero and let ĝ : [0, 1] → R be an estimator for g.

Then there exists a constant c such that for the isotone modification ĝI,d of ĝ it holds that

||ĝI,d − g||∞ ≤ c
(

||ĝ − g||∞ +
1

N

)

.

(b) Let g : [0, 1] → R be an strictly increasing twice differentiable function with bounded

second derivative such that the first derivative is bounded away from zero. Let ĝ : [0, 1] → R

an estimator for g. Let k denote a symmetric density function with compact support and

two bounded derivatives. Let an = o(1) denote a sequence of positive bandwidths. Then there

exists a constant c such that for the strictly increasing modification ĝSI,d of ĝ it holds that

||ĝSI,d − g||∞ ≤ c
(

||ĝ − g||∞(1 +
1

Nan
) +

1

an
||ĝ − g||2∞(1 +

1

Na2
n

) +
1

a3
n

||ĝ − g||3∞

+
1

N
+

1

N2an

+
1

N3a3
n

+ a2
n

)

.

There are plenty of applications and we only mention a few. Whenever we have knowledge

about uniform consistency of a function estimate and a monotone uniformly consistent esti-

mator is desired it is sensible to use one of the above methods. For example, uniform almost

sure consistency of kernel density estimators was shown by Silverman (1978), Devroye and

Wagner (1978) and Stute (1982), among others. For kernel regression estimators correspond-

ing results can be found in Mack and Silverman (1982), see also Einmahl and Mason (2000).

Rates of uniform almost sure convergence for variance function estimators in nonparametric

regression models are a by-product of Akritas and Van Keilegom (2001). Further, there

is a vast literature about uniform consistency of wavelet estimators for densities and re-

gression functions based on iid or time series or censored data, respectively, see, e. g., Masry

(1997), Massiani (2003), Zhang, Sha and Cheng (1999) or Xue (2002). Corresponding results

about orthogonal series estimators can be found in publications by Chen (1981), Györfi and

Walk (1996), Newey (1997) and de Jong (2002). Moreover, strong uniform consistency of

k-nearest neighbor estimators for regression and density functions based on iid or dependent

data is considered by Devroye and Wagner (1977), Mack (1983), and Qin and Cheng (1994).

Uniform consistency for different estimators of hazard rates is shown by Zhang (1996) and

Collomb, Hassani, Sarda and Vieu (1985). For each of the proposed estimators our method

yields a monotone version that shares the same rate of uniform convergence.

For example, let m denote the isotone regression function in a nonparametric regression

model

Yi = m(Xi) + εi, i = 1, . . . , n

with independent observations and univariate covariates Xi ∈ [0, 1]. Let m̂ denote the

common kernel regression estimator (Nadaraya, 1964; Watson, 1964),

m̂(x) =

∑n
i=1 κ(x−Xi

hn
)Yi

∑n
i=1 κ(x−Xi

hn
)

,
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where κ denotes a kernel function and hn a sequence of positive bandwidths converging to

zero. Under common regularity assumptions (see Mack and Silverman, 1982) it holds that

||m̂ − m||∞ = O(cn) for n → ∞ a.s., where cn =

√

log h−1
n

nhn

.

We obtain an isotone modification of the kernel estimator m̂, namely m̂I . This estimator

fulfills ||m̂I − m||∞ = O(cn) for n → ∞ a.s. For the smooth version m̂SI we obtain ||m̂SI −

m||∞ = O(cn) for n → ∞ a.s. when a sequence of bandwidths an is chosen that fulfills

nhna4
n/ log h−1

n = O(1) and log h−1
n /(nhna

10/3
n ) = O(1). For the common choice hn = Cn−1/5,

for instance, an = hn is a possible choice. Note that Birke and Dette (2005) show a rate for

uniform convergence of m̂−1
SI as a by-product.

Masry (1997) considers d–dimensional wavelet density estimators f̂ on compact sets D for

strongly mixing stationary processes and densities f in certain Besov spaces Bspq. For sim-

plicity we assume D = [0, 1] and consider the one-dimensional case d = 1. For example,

under certain assumptions in Corollary 1, Masry (1997) obtains the uniform rate of conver-

gence

||f̂ − f ||∞ = O
(( log n

n

)
s

1+2s

)

for n → ∞ a.s.

for f ∈ Bs∞∞. The wavelet estimator f̂ can be modified to obtain increasing (or, analogously,

decreasing) estimators f̂I and f̂SI such that

||f̂I − f ||∞ = O
(( log n

n

)
s

1+2s

)

and ||f̂SI − f ||∞ = O
(( log n

n

)
s

1+2s

)

for n → ∞ a.s.

where for f̂SI a bandwidth an is used such that na
4+2/s
n / log n = O(1) and log n/(na

2/3+5/(3s)
n ) =

O(1). For example, an = Cn−1/5 is a possible choice for s = 2.

Finally, we consider how the assumption of the compact support of the target function

can be weakened. For instance, often densities are assumed to be increasing on (−∞, 0]

(respectively decreasing on [0,∞)) and also hazard rates are often defined on [0,∞). We

will describe in the following how the proposed methods are applicable when an increasing

function h : (−∞, 0] → R has to be estimated. Assume there is an estimator ĥ : (−∞, 0] → R

available such that

sup
z∈(−∞,0]

|ĥ(z) − h(z)| = O(cn).

Because log : (0, 1] → (−∞, 0] is continuous we have for g = h ◦ log, ĝ = ĥ ◦ log that

||ĝ − g||∞ = O(cn) and from the results of Sections 2 and 3 we obtain a monotone version

of ĝ, i. e. ĝI, such that ||ĝI − g||∞ = O(cn). A monotone estimator for h is defined by

ĥI = ĝI ◦ exp : (−∞, 0] → R and it holds that

sup
z∈(−∞,0]

|ĥI(z) − h(z)| = ||ĝI − g||∞ = O(cn).
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4 Proofs

4.1 Proof of Theorem 3.1 (a).

For increasing g we have g = gI and, hence,

||ĝI − g||∞ = sup
z∈[0,1]

∣

∣

∣

∫ ĝ(1)

ĝ(0)

I
{

∫ 1

0
I{ĝ(t) ≤ x} dt ≤ z

}

dx + ĝ(0)

−

∫ g(1)

g(0)

I
{

∫ 1

0
I{g(t) ≤ x} dt ≤ z

}

dx − g(0)
∣

∣

∣

≤ 2|ĝ(0) − g(0)| + |ĝ(1) − g(1)|+ rn

where

rn = sup
z∈[0,1]

∣

∣

∣

∫ g(1)

g(0)

(

I
{

∫ 1

0
I{ĝ(t) ≤ x} dt ≤ z

}

− I
{

∫ 1

0
I{g(t) ≤ x} dt ≤ z

})

dx
∣

∣

∣

≤ sup
z∈[0,1]

∫ g(1)

g(0)

I
{

∫ 1

0
I{ĝ(t) ≤ x} dt ≤ z and

∫ 1

0
I{g(t) ≤ x} dt > z

}

dx

+ sup
z∈[0,1]

∫ g(1)

g(0)

I
{

∫ 1

0
I{ĝ(t) ≤ x} dt > z and

∫ 1

0
I{g(t) ≤ x} dt ≤ z

}

dx.

Both summands are bounded in the very same way and we therefore restrict to the first one

in the following, i. e.

sup
z∈[0,1]

∫ g(1)

g(0)

I
{

∫ 1

0
I{g(t) ≤ x − (ĝ(t) − g(t))} dt ≤ z <

∫ 1

0
I{g(t) ≤ x} dt

}

dx

≤ sup
z∈[0,1]

∫ g(1)

g(0)

I
{

∫ 1

0
I{g(t) ≤ x − ||ĝ − g||∞} dt ≤ z <

∫ 1

0
I{g(t) ≤ x} dt

}

dx

= sup
z∈[0,1]

∫ g(1)

g(0)

I
{

g−1(x − ||ĝ − g||∞) ≤ z < g−1(x)
}

dx

≤ sup
z∈[0,1]

∫ g(1)

g(0)

I
{

g(z) ≤ x ≤ g(z) + ||ĝ − g||∞

}

dx

= sup
z∈[0,1]

(

I
{

g(z) + ||ĝ − g||∞ ≤ g(1)
}

||ĝ − g||∞ + I
{

g(z) + ||ĝ − g||∞ > g(1)
}

(g(1) − g(z))
)

≤ ||ĝ − g||∞.

Altogether we obtain

||ĝI − g||∞ ≤ 2|ĝ(0) − g(0)| + |ĝ(1) − g(1)| + 2||ĝ − g||∞ ≤ 5||ĝ − g||∞.

2
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4.2 Proof of Theorem 3.1 (b).

For the proof of Theorem 3.1 (b) we first show that the following Proposition is valid.

Proposition 4.1 Let g : [0, 1] → R be a strictly increasing twice differentiable function

with bounded second derivative such that the first derivative is bounded away from zero.

Let ĝ : [0, 1] → R be an estimator for g. Let k denote a symmetric density function with

compact support and two bounded derivatives and let an = o(1) denote a sequence of positive

bandwidths. Then there exists a constant C such that

sup
y∈(g(0),g(1))

|Ψ(ĝ)(y) − g−1(y)| ≤ C
(

||ĝ − g||∞ +
1

an
||ĝ − g||2∞ +

1

a3
n

||ĝ − g||3∞ + a2
n

)

Proof of Proposition 4.1. During the proof we assume the support of k to be [−1, 1].

Note that then K(z) = 0 for z ≤ −1 and K(z) = 1 for z ≥ 1. For every fixed y ∈ (g(0), g(1))

we have

|Ψ(ĝ)(y) − g−1(y)| ≤
∣

∣

∣

∫ 1

0

[

K
(y − ĝ(x)

an

)

− K
(y − g(x)

an

)]

dx
∣

∣

∣
(4.1)

+
∣

∣

∣

∫ 1

0

K
(y − g(x)

an

)

dx − g−1(y)
∣

∣

∣
.

The first term on the right hand side of (4.1) is estimated by a Taylor expansion,

∣

∣

∣

∫ 1

0

[

K
(y − ĝ(x)

an

)

− K
(y − g(x)

an

)]

dx
∣

∣

∣

≤
∣

∣

∣

∫ 1

0

1

an
k
(y − g(x)

an

)

(ĝ(x) − g(x)) dx
∣

∣

∣

+
∣

∣

∣

∫ 1

0

1

a2
n

k′
(y − g(x)

an

)

(ĝ(x) − g(x))2 dx
∣

∣

∣
+ sup

u∈IR
|k′′(u)|

1

a3
n

||ĝ − g||3∞

≤ C1||ĝ − g||∞ + C2
1

an
||ĝ − g||2∞ + C3

1

a3
n

||ĝ − g||3∞

for some constants C1, C2, C3, where the last line follows by a replacement of variables,

z = (y − g(x))/an, in the integrals. By a change of the variable and integration by parts we

obtain that the second term on the right hand side of (4.1) is bounded by

∣

∣

∣

∫ g−1(y−an)

0

K
(y − g(x)

an

)

dx +

∫ g−1(y+an)

g−1(y−an)

K
(y − g(x)

an

)

dx − g−1(y)
∣

∣

∣

≤
∣

∣

∣
g−1(y − an) −

∫ 1

−1

K(z)
∂

∂z
g−1(y − anz) dz − g−1(y)

∣

∣

∣

=
∣

∣

∣
g−1(y − an) − K(z)g−1(y − anz)

∣

∣

∣

z=1

z=−1
+

∫ 1

−1

k(z)g−1(y − anz) dz − g−1(y)
∣

∣

∣

≤ a2
n sup

t
|(g−1)′′(t)|

∫

k(z)z2 dz ≤ C4a
2
n

for some constant C4. Collecting all bounds together the assertion follows. 2
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Proof of Theorem 3.1 (b). Denote Dn = C(||ĝ − g||∞ + 1
an
||ĝ − g||2∞ + 1

a3
n

||ĝ − g||3∞ + a2
n)

such that supy∈(g(0),g(1)) |Ψ(ĝ)(y) − g−1(y)| ≤ Dn from Proposition 4.1. Then from g =

Φ(g−1I[g(0),g(1)])I[0,1] it follows that

||ĝSI − g||∞ = sup
z∈[0,1]

∣

∣

∣

∫ ĝ(1)

ĝ(0)

I
{

Ψ(ĝ)(x) ≤ z
}

dx + ĝ(0) −

∫ g(1)

g(0)

I
{

g−1(x) ≤ z
}

dx − g(0)
∣

∣

∣

≤ 2|ĝ(0) − g(0)| + |ĝ(1) − g(1)| + rn

where

rn ≤ sup
z∈[0,1]

∫ g(1)

g(0)

I
{

Ψ(ĝ)(x) ≤ z < g−1(x)
}

dx + sup
z∈[0,1]

∫ g(1)

g(0)

I
{

g−1(x) ≤ z < Ψ(ĝ)(x)
}

dx.

Both summands are estimated in the very same way and by Proposition 4.1 the first one is

bounded by

sup
z∈[0,1]

∫ g(1)

g(0)

I
{

g−1(x) − Dn ≤ z < g−1(x)
}

dx ≤ sup
z∈[0,1]

|g(z + Dn) − g(z)| ≤ ||g′||∞Dn.

The assertion follows collecting all bounds together. 2

4.3 Proof of Theorem 3.2 (a).

For the proof of Theorem 3.2 (a) we first show that the following Proposition is valid.

Proposition 4.2 Let g : [0, 1] → R be a strictly increasing differentiable function such that

the first derivative is bounded away from zero, and ĝ : [0, 1] → R an estimator for g. Then

there exists a constant C such that

sup
y∈(g(0),g(1))

|Φ̃(ĝ)(y) − g−1(y)| ≤ C
(

||ĝ − g||∞ +
1

N

)

.

Proof of Proposition 4.2. We consider the following decomposition,

Φ̃(g)(y)− g−1(y) =
1

N

N
∑

i=1

[

I{ĝ(
i

N
) ≤ y} − I{g(

i

N
) ≤ y}

]

(4.2)

+
N

∑

i=1

∫ i

N

i−1

N

[

I{g(
i

N
) ≤ y} − I{g(x) ≤ y} dx

]

+

∫ 1

0

I{g(x) ≤ y} dx − g−1(y).

Because g is increasing, the last line vanishes. The absolute value of the second term on the

right hand side of (4.2) can be bounded, for all y ∈ (g(0), g(1)), by

N
∑

i=1

∫ i

N

i−1

N

I{g(x) ≤ y < g(
i

N
)} dx ≤

N
∑

i=1

∫ i

N

i−1

N

I{g(
i − 1

N
) ≤ y ≤ g(

i

N
)} dx

≤

N
∑

i=1

1

N
I{g−1(y) ≤

i

N
≤ g−1(y) +

1

N
} dx ≤

2

N
.

11



A bound for the absolute value of the first term on the right hand side of (4.2) is given by

1

N

N
∑

i=1

I{ĝ(
i

N
) ≤ y ≤ g(

i

N
)} +

1

N

N
∑

i=1

I{g(
i

N
) ≤ y ≤ ĝ(

i

N
)}

and we only consider the second term in the following. It is bounded by

1

N

N
∑

i=1

I{g(
i

N
) ≤ y ≤ g(

i

N
) + ||ĝ − g||∞} ≤

1

N

N
∑

i=1

I{g−1(y − ||ĝ − g||∞) ≤
i

N
≤ g−1(y)}

≤ 2
(

g−1(y) − g−1(y − ||ĝ − g||∞)
)

≤ 2||
1

g′
||∞||ĝ − g||∞

for all y such that y − ||ĝ − g||∞ ≥ g(0). Otherwise we estimate

sup
y∈[g(0),g(0)+||ĝ−g||∞]

1

N

N
∑

i=1

I{g(
i

N
) ≤ y ≤ g(

i

N
) + ||ĝ − g||∞}

≤
1

N
]{i | g(

i

N
) ≤ g(0) + ||ĝ − g||∞}

≤ 2g−1(g(0) + ||ĝ − g||∞) ≤ 2||
1

g′
||∞||ĝ − g||∞

and the assertion of the Proposition follows. 2

Proof of Theorem 3.2 (a). Theorem 3.2 (a) follows from Proposition 4.2 in the same way

as Theorem 3.1 (b) is deduced from Proposition 4.1. 2

4.4 Proof of Theorem 3.2 (b).

For the proof of Theorem 3.2 (b) we first show that the following Proposition is valid.

Proposition 4.3 Let g : [0, 1] → R be a strictly increasing twice differentiable function

with bounded second derivative such that the first derivative is bounded away from zero.

Let ĝ : [0, 1] → R be an estimator for g. Let k denote a symmetric density function with

compact support and two bounded derivatives and let an = o(1) denote a sequence of positive

bandwidths. Then there exists a constant C such that

sup
y∈(g(0),g(1))

|Ψ̃(ĝ)(y) − g−1(y)| ≤ C
(

||ĝ − g||∞(1 +
1

Nan

) +
1

an

||ĝ − g||2∞(1 +
1

Na2
n

)

+
1

a3
n

||ĝ − g||3∞ +
1

N
+

1

N2an

+
1

N3a3
n

+ a2
n

)

Proof of Proposition 4.3. We have

|Ψ̃(ĝ)(y) − Ψ(ĝ)(y)| =
∣

∣

∣

1

N

N
∑

i=1

[

K
(y − ĝ( i

N
)

an

)

− K
(y − g( i

N
)

an

)]

(4.3)

+

N
∑

i=1

∫ i

N

i−1

N

[

K
(y − g( i

N
)

an

)

− K
(y − g(x)

an

)]

dx
∣

∣

∣

12



and by a Taylor expansion the first term on the right hand side of (4.3) is bounded by

∣

∣

∣

1

N

N
∑

i=1

1

an
k
(y − g( i

N
)

an

)

(g(
i

N
) − ĝ(

i

N
))

∣

∣

∣

+
∣

∣

∣

1

N

N
∑

i=1

1

a2
n

k′
(y − g( i

N
)

an

)

(g(
i

N
) − ĝ(

i

N
))2

∣

∣

∣
+ sup

u∈IR
|k′′(u)|

1

a3
n

||ĝ − g||3∞

≤ ||ĝ − g||∞

∫

1

an
k
(y − g(x)

an

)

dx +
1

an
||ĝ − g||2∞

∫

1

an

∣

∣

∣
k′

(y − g(x)

an

)
∣

∣

∣
dx

+ ||ĝ − g||∞

N
∑

i=1

∫ i/N

(i−1)/N

1

an

∣

∣

∣
k
(y − g( i

N
)

an

)

− k
(y − g(x)

an

)
∣

∣

∣
dx

+
1

a2
n

||ĝ − g||2∞

N
∑

i=1

∫ i/N

(i−1)/N

∣

∣

∣
k′

(y − g( i
N

)

an

)

− k′
(y − g(x)

an

)
∣

∣

∣
dx

+ sup
u∈IR

|k′′(u)|
1

a3
n

||ĝ − g||3∞

≤ C1

(

||ĝ − g||∞(1 +
1

Nan
+

1

N2a3
n

) +
1

an
||ĝ − g||2∞(1 +

1

Na2
n

) +
1

a3
n

||ĝ − g||3∞

)

for some constant C1, where the last inequality follows by similar calculations as in the

argumentation for the second term on the right hand side of (4.3). This one is bounded by

∣

∣

∣

N
∑

i=1

∫ i

N

i−1

N

1

an
k
(y − g(x)

an

)

(g(
i

N
) − g(x)) dx

∣

∣

∣

+
∣

∣

∣

N
∑

i=1

∫ i

N

i−1

N

1

a2
n

k′
(y − g(x)

an

)

(g(
i

N
) − g(x))2 dx

∣

∣

∣

+
1

a3
n

sup
u∈IR

|k′′(u)|

N
∑

i=1

∫ i

N

i−1

N

|g(
i

N
) − g(x)|3 dx

≤ ||g′||∞
1

N

∫ 1

0

1

an

k
(y − g(x)

an

)

dx + (||g′||∞
1

N
)2

∫ 1

0

1

a2
n

∣

∣

∣
k′

(y − g(x)

an

)
∣

∣

∣
dx

+ sup
u∈IR

|k′′(u)|(||g′||∞
1

anN
)3

≤ C2

( 1

N
+

1

N2an

+
1

N3a3
n

)

for some constant C2 uniformly with respect to y, where the last line follows from a change

of variable z = (y − g(x))/an in the integrals and because g−1 is bounded. The assertion

now follows by Proposition 4.1. 2

Proof of Theorem 3.2 (b). Theorem 3.2 (b) follows from Proposition 4.3 in the same

way as Theorem 3.1 (b) is deduced from Proposition 4.1. 2
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par méthode d’ondelettes. (French) [Rate of almost sure uniform convergence of the

linear wavelet density estimator]. C. R. Math. Acad. Sci. Paris 337, 67–70.

E. Masry (1997). Multivariate probability density estimation by wavelet methods: strong

consistency and rates for stationary time series. Stoch. Process. Appl. 67, 177–193.

H. Mukerjee (1988). Monotone nonparametric regression. Ann. Statist. 16, 741–750.

H. Mukerjee and J-L. Wang (1993). Nonparametric maximum likelihood estimation of

an increasing hazard rate for uncertain cause-of-death data. Scandinavian Journal of

Statistics 20, 17–33.

É. A. Nadaraya (1964). On non–parametric estimates of density functions and regression

curves. J. Probab. Appl. 10, 186–190.

W. Newey (1997). Convergence rates and asymptotic normality for series estimators. J.

Econometrics 79, 147–168.

W. Polonik (1995). Density estimation under qualitative assumptions in higher dimen-

sions. J. Multivariate Anal. 55, 61–81.

W. Polonik (1998). The silhouette, concentration functions and ML-density estimation

under order restrictions. Ann. Statist. 26, 1857–1877.

G. S. Qin, P. Cheng (1994). Strong uniform consistency of k-nearest neighbor regression

function estimators. Sci. China Ser. A 37, 1032–1040.

J. O. Ramsay (1988). Monotone regression splines in action (with discussion). Statistical

Science, 3, 425–441.

J. V. Ryff (1965). Orbits of L1-functions under doubly stochastic transformations. Trans.

Americ. Math. Soc. 117, 92-100.

J. V. Ryff (1970). Measure preserving transformations and rearrangements. J. Math.

Anal. Appl. 31, 449-458.

B. W. Silverman (1978). Weak and strong uniform consistency of the kernel estimate of

a density and its derivatives. Ann. Statist. 6, 177–184.

16



R. T. Smythe (1980). Maxima of partial sums and a monotone regression estimator. Ann.

Probab. 8, 630–635.

W. Stute (1982). A law of the logarithm for kernel density estimators. Ann. Probab. 10,

414–422.

A. B. Tsybakov (1997). On nonparametric estimation of density level sets. Ann. Statist.

25, 948–969.

A. W. van der Vaart and M. J. van der Laan (2003). Smooth estimation of a mono-

tone density. Statistics 37, 189–203.

G. S. Watson (1964). Smooth Regression Analysis. Sankhya A 26, 359–372.

F. T. Wright (1979) A strong law for variables indexed by a partially ordered set with ap-

plications to isotone regression. Ann. Probab. 7, 109–127.

L. G. Xue (2002). Strong uniform convergence rates of wavelet estimates of regression

function under complete and censored data. Acta Math. Appl. Sin. 25, 430–438.

B. Zhang (1996). A note on strong uniform consistency of kernel estimators of hazard

functions under random censorship. Lifetime data: models in reliability and survival

analysis. (Cambridge, MA, 1994), 395–399, Kluwer Acad. Publ., Dordrecht, 1996.

S. L. Zhang, Q. Y. Sha, M. Y. Cheng (1999). Uniform strong consistency of nonlinear

wavelet estimates of regression functions. Chinese J. Appl. Probab. Statist. 15,

375–380.

17


