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Abstract

One serious problem in deep-hole drilling is the formation of a
dynamic disturbance called spiralling which causes holes with several
lobes. Since such lobes are a severe impairment of the bore hole the
formation of spiralling has to be prevented. Gessesse et al. (1994)
explain spiralling by the coincidence of bending modes and multiples
of the rotary frequency. They derive this from an elaborate finite
elements model of the process.

In online measurements we detected slowly changing frequency
patterns similar to those calculated by Gessesse et al. We therefore
propose a method to estimate the parameters determining the change
of frequencies over time from spectrogram data. This allows to sim-
plify significantly the usage of the explanation of spiralling in practice
because the finite elements model has to be correctly modified for
each machine and tool assembly while the statistical method uses ob-
servable measurements. Estimating the variation of the frequencies
as good as possible opens up the opportunity to prevent spiralling by
e.g. changing the rotary frequency.

1 Introduction

The work presented in this paper has been carried out as part of a project
aimed at modelling the BTA deep hole drilling process, with special empha-
sis on dynamic aspects. The longterm goal is online-prediction of dynamic
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Figure 1: BTA deep hole drilling, working principle (VDI,1974).

disturbances which in future may be used as a basis for intelligent control of
the process.

Deep hole drilling methods are used for producing holes with a high
length-to-diameter ratio, good surface finish and straightness. For drilling
holes with a diameter of 20 mm and above, the BTA (Boring and Trepan-
ning Association) deep hole machining principle is usually employed (see
VDI, 1974). The working principle is illustrated in Fig. 1.

For obtaining a low deviation of the bore hole center axis from the ideal
straight line, which is an important objective for machining holes with a high
length to diameter ratio, deep hole drilling tools use the bore hole wall section
machined in the immediate past as a guiding surface. This is achieved by an
asymmetric cutting edge arrangement in combination with guiding pads on
the circumference of the tool. The high surface finish of the bore hole wall
is a side effect of the guiding action.

When drilling with standard twist drills, chip removal becomes more and
more unreliable with increasing drilling depth. This sooner or later leads to
process failure. To solve this problem, deep hole drilling tools feature forced
chip removal through high cooling lubricant flow rates via low restriction
passages. In the case of BTA deep hole drilling, oil is supplied around the
outside of the boring bar and the chips are transported away through the
internal volume of the tube.

Machining of bore holes with a high length to diameter ratio necessitates
slender tool-boring bar assemblies. These components therefore have low
dynamic stiffness properties which in turn can be the cause of dynamic dis-



Figure 2: Radial chatter marks on the bottom of the bore hole (left) and
effects of spiralling on the bore hole wall (right).

turbances such as chatter vibration and spiralling. Whereas chatter mainly
leads to increased tool wear along with marks on the generally discarded
bottom of the bore hole, spiralling causes a multi-lobe shaped deviation of
the cross section of the hole from absolute roundness often constituting a
significant impairment of the workpiece. The effects of these disturbances on
the workpiece can be seen in Fig. 2.

As the deep drilling process is often used during the last production phases
of expensive workpieces, process reliability is of prime importance. To achieve
an optimal process design with the aim of reducing the risk of workpiece
damage, a detailed analysis of the process dynamics is necessary.

In this paper we focus on spiralling which can be observed to occur either
reproducibly at a certain drilling depth and fixed machining parameters or at
random drilling depths. Gessesse et al. (1994) have modelled the process with
finite elements and derived from this model that a reason for the reproducible
occurence of spiralling is the intersection of changing bending modes and
uneven multiples of the rotational frequency. They have shown in some
experiments that this actually was a good prediction of spiralling.

We observed the movement of the bending modes in online measurements
of the bending moment of the boring bar and in measurements of the lateral
acceleration of the boring bar. In Raabe et al. (2004) we estimated the time-
variation of bending eigenfrequencies by quadratic regression of spectrogram
data on time. Here we propose a method to estimate the course of the
frequencies based on the measurements in the framework of a mechanical
model.

This paper continues with a description of the mechanical model in section
2. Then section 3 introduces our criterion for parameter selection before some
results are presented in section 4. The paper concludes in a summary given
in section 5.
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Figure 3: Components of the discretized analogous model.

2 Mechanical Model

To express the connection between the machine parameters and the time-
variation of the bending eigenfrequencies (abbreviated BEF) from a mechan-
ical point of view we propose a discretized analogous model (see Gross et al.
(2002a)). For this purpose we reduce the BTA system to its most important
components (see Fig. 3).

The black dots in fig 3 indicate that for our model we subdivide the bar
into n segments — called elements — of equal length [ = L/n, mass m = M/n
and stiffness k¥ = K - [?(1,...,n)'(1,...,n), where L, M and K denote the
corresponding values of the whole bar. The number n is called the number
of Degrees of Freedom. The stiffness influences of the damper, the oil supply
and the workpiece to the boring bar are called kg,pp, kseq and kepg. In
contrast to [, m and k the latter three parameters are not known. With
these terms the equation of movement of the system can be expressed by:

[M{#} + [K]{z} = {0}

with the mass-matrix [M],«, = m - I,«, and the stiffness-matrix
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Figure 4: (a) Example of a bending eigenmode. (b) Example of a changing
BEM during the drilling process. The position s of the seal changes from
value 9 at the beginning (cp. (a)) to 6 while the positions d and n of the
influences of damper and workpiece stay the same.

+houpp{eat{ea}’ + ksca{esHes} + kena{en}{en}', (1)

where d and s represent the numbers of the elements the damper resp.
the oil supply device rest on counted from the left. Now determining the
BEFs w and bending eigenmodes (BEMs) # of the system means solving the
following eigenvalue-problem (compare Gross et al. (2002b)):

(1] = w? [M]) {@}e™ = {0}. (2)

A BEM is the shape with which the bar oscillates with the corresponding
BEF. Each BEM is represented by the vector # containing the deviations
from the baseline in x-direction for each segment end (compare Fig. 4 (a)).

Now the time-variation of the BEMs and BEFs becomes clear when look-
ing at what happens during the drilling process. The boring bar is fixed on
the left side and when the process starts the workpiece is rotated and moved
towards the bar. While the damper always stays on the same position d the
seal of the oil supply moves in front of the workpiece with the same speed
(see Fig. 4 (b)). So s decreases and the stiffness matrix [K| changes. Note
that even though the workpiece also moves, k.4 is always added to the nth
element of the “base” matrix in the first row of the definition of Eq. 1. This
is because the workpiece always affects the end of the bar.

As mentioned above the stiffness parameters kg, kseqr and kepq are not
known. But in early experiments it turned out that the higher the value is
chosen for k.,q —i.e. the end of the bar nearly can not oscillate — the better
is the model fit. So ke, from now is fixed to a high value (10'"N/m) and the
remaining free parameters are kg, and kgeqr-
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Figure 5: (a) Spectrogram of the acceleration signal. (b) Computed course
of bending eigenfrequencies.

3 Criterion

In this section we describe how the two free parameters are estimated. For the
fitting we use the data obtained from the acceleration sensor. This sensor
is placed between the damper and the final position of the seal. For this
reason we except only those BEFs to be prominent in this signal whose
corresponding BEMs have a bulge at this position. Computing BEFs and
BEMs for a variety of plausible stiffness parameters it shows that these are
the second and the third BEF where by definition the lowest BEF is the first
one. However, higher BEFs are neglected since the corresponding amplitudes
decrease w.r.t. higher frequencies.

Figure 5 (a) shows the spectrogram of the acceleration signal of one of
our experiments. Comparing it to a course of the first four BEFs (Fig. 5
(b)) computed by solving Eq. 2 with L = 334cm and M = 26kg (known
from our settings), some example parameters kg, = 3.51 - 10°N/m and
Esewr = 1.053 - 10’N/m and n = 334 some similarities can be seen. So we
recognize the (mirrored) U-Shape of the third (second) BEF.

We also see that the first and fourth computed BEFs nearly don’t change.
Looking at the corresponding BEMs one would see that they have a bulge
between damper and clamped end. Because the damper is expected to have
a quite high stiffness, moving the seal does not affect this mode. On the other
hand the bar nearly doesn’t oscillate in the area where the signal is measured
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Figure 6: (a) Spectrogram with computed bending eigenfrequencies
(b) Weighting scheme, notice the bandwidth v

with these two frequencies. So they are not reflected in the spectrogram.

However, in the spectrogram there seem to exist some time-constant fre-
quencies with high amplitudes, for example one at about 60H z. But for the
given reasons we don’t assume them to reflect BEF's. It is more plausible that
they are due to the machine drive and so are negligible for our investigations.

So our choice of a criterion for any given lAcsupp and k.. is based on the
concordance of the course of the resulting second and third BEF and the
spectrogram. Its construction is described in the following.

Let w;(t) == wj(t; l%supp, l%seal),j = 2,3, be the two interesting BEF courses.
Remember these courses are stepfunctions (cp. Fig. 6 (a), for better illustra-
tion with a smaller value of n).

Let now

fcj (t): Cj = argmini (|fz - (‘D](t”) 7j - 2: 37

be the Fourier frequencies next to the computed BEFs at each time.
Then the criterion to be maximized is
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where a;; denotes the amplitude of Fourier frequency k at time ¢, T' is the
set of all #T time-points periodograms are computed for, v is a pre-defined

even bandwidth parameter and w; := 2”;—24‘” are linear weights as illustrated

in Fig. 6 (b).

The aim underlying the construction of m is to prefer a choice of kgypp
and k., which leads to BEFs meeting the area of high amplitudes as well
as possible. The amplitudes are transformed as a consequence of the fact
that the periodogram ordinates of White Noise are y?-distributed (see Theis
(2003)). 1In this case by taking the 4" root a symmetric distribution is
obtained.

4 Results

Figure 7 shows an example fit after maximizing m by the optimization
method of Nelder and Mead (1965). The technical settings are the same
as in the previous section, v = 50 was chosen for the bandwidth. Some ex-
periments with different choices of v between 15 and 100 showed that this
parameter seems not to affect the results.

The optimal parameters are l%supp = 2.252 - 10°N/m and k,eq = 1.037 -
10°’N/m. The levels of these values are plausible from a technical point of
view. Also their relation to each other is as expected since the damper is
known to have a much higher stiffness influence than the seal.

Especially the higher third BEF fits the spectrogram quite well. A little
bit different is the situation for the second one. Here the computed course
seems to border the lower area of high amplitudes from above. The reason
for the apparently unfavorable fit of the lower course of BEFs could be a the
non-consideration of an important parameter. For example in some of our
experiments we observed that the damper left its initial position d during the
process. Since d is a very sensitive parameter in our model its time-variety
should be taken into account in further investigations. Anyway we consider
our assumption of seeing the bending eigenfrequencies in the acceleration
signal confirmed.
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Figure 7: Fitted bending eigenfrequency courses.

5 Summary and Outlook

By the discretized analogous model we established a connection between
measured data and the mechanics of the BTA system. The stiffness influences
of the damper and the oil-supply-device have been identified to be the most
important factors. Although further improvements are possible, we think the
signal of the acceleration sensor is appropriate to estimate the time-variation
of the BEFs.

One item of future work will be the consideration of further parameters
like a variable damper or the implementation of a frequency response func-
tion. Improvements are also possible for the estimation procedure by taking
the distribution of the periodograms into account.

The main goal of our investigations is the prevention of spiralling. So
once the estimation of the BEF's is established, the next step will be online-
estimation and connected to it the implementation of control charts. Then,
when one BEF runs into danger to meet the rotational frequency or one of
its uneven multiples, it maybe varied to avoid the intersection.
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