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Abstract

In this paper we study the connection between matrix measures and random walks with
a tridiagonal block transition matrix. We derive sufficient conditions such that the blocks
of the n-step transition matrix of the Markov chain can be represented as integrals with
respect to a matrix valued spectral measure. Several stochastic properties of the processes
are characterized by means of this matrix measure. In many cases this measure is supported
in the interval [−1, 1]. The results are illustrated by several examples including random walks
on a grid and the embedded chain of a queuing system.
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1 Introduction

Consider a homogeneous Markov chain with state space

Cd = {(i, j) ∈ N0 × N | 1 ≤ j ≤ d}(1.1)
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and block tridiagonal transition matrix

P =

⎛
⎜⎜⎜⎝

B0 A0 0
CT

1 B1 A1

CT
2 B2 A2

0
. . .

. . .
. . .

⎞
⎟⎟⎟⎠ ,(1.2)

where d ∈ N, A0, A1, . . . , B0, B1, . . . , C1, C2, . . . are d × d matrices containing the probabilities of
one-step transitions (here and throughout this paper CT denotes the transpose of the matrix C).
If the one-step transition matrix is represented by

P = (Pii′)i,i′=0,1,...(1.3)

with d × d block matrices Pii′ , the probability of going in one step from state (i, j) to (i′, j′) is
given by the element in the position (j, j′) of the matrix Pii′. Some illustrative examples will be
given below. Block tridiagonal matrices of the form (1.2) typically appear in the analysis of the
embedded Markov chains of continuous-time Markov processes with state space (1.1) and block
tridiagonal infinitesimal generator [see e.g. the monographs of Neuts (1981) and Neuts (1989) or
the recent work of Marek (2003) and Dayar and Quessette (2002) among many others] and these
models have significant applications in the performance evalutation of communication systems [see
e.g. Ost (2001)].

Matrices of the form (1.2) are also closely related to a sequence of matrix polynomials recursively
defined by

xQn(x) = AnQn+1(x) +BnQn(x) + CT
nQn−1(x), n ∈ N0,(1.4)

where Q−1(x) = 0 and Q0(x) = Id denotes the d × d identity matrix. If An = Cn+1 and Bn is
symmetric it follows that there exists a matrix measure Σ = {σij}i,j=1,...,d on the real line (here σij

are signed measures such that for any Borel set A ⊂ R the matrix Σ(A) is nonnegative definite),
such that the polynomials Qj(x) are orthonormal with respect to a left inner product, i.e.

〈Qi, Qj〉 =

∫
R

Qi(x)dΣ(x)QT
j (x) = δijId(1.5)

[see e.g. Sinap and Van Assche (1996), or Duran (1995)]. In recent years several authors have
studied properties of matrix orthonormal polynomials [see e.g. Rodman (1990), Duran and Van
Assche (1995), Duran (1996, 1999), Dette and Studden (2001) among many others].

In the present paper we are interested in the relation between Markov chains with state space Cd

defined in (1.1) and block tridiagonal transition matrix (1.2) and the polynomials Qj(x) defined
by the recursive relation (1.4). In the case d = 1 this problem has been studied extensively in
the literature [see Karlin and McGregor (1959), Whitehurst (1982), Woess (1985), Van Doorn and
Schrijner (1993, 1995), Dette (1996) among many others], but the case d > 1 is more difficult,
because in this case a system of matrix polynomials {Qj(x)}j≥0 satisfying a recurrence relation of
the form (1.4) is not necessarily orthogonal with respect to an inner product induced by a matrix
measure. In Section 2 we characterize the transition matrices of the form (1.2) such that there
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exists an integral representation for the corresponding n-step transition probabilities in terms of
the matrix measure and corresponding orthogonal matrix polynomials, i.e.

P n
ij =

(∫
xnQi(x)dΣ(x)QT

j (x)
)(∫

Qj(x)dΣ(x)QT
j (x)

)−1

,

where P n
ij denotes the d × d block of the n-step transition matrix P n in the position (i, j). In

other words: the element in the position (k, l) in the expression on the right hand side is an
integral representation for the probability of going in n steps from state (i, k) to (j, l). We also
derive a sufficient condition such that the spectral (matrix) measure Σ (if it exists) is supported
on the interval [−1, 1]. In Section 3 we discuss several illustrative examples where this condition is
satisfied including some examples from queuing theory. Section 4 continues our more theoretical
discussion and some consequences of the integral representation are derived. In particular we
present a characterization of recurrence by properties of the blocks of the transition matrix, which
generalizes the classical characterization of recurrence of a birth and death chain [see Karlin and
Taylor (1975)].

2 Random walk matrix polynomials

A matrix measure Σ is a d× d matrix Σ = {σij}i,j=1,...,d of finite signed measures σij on the Borel
field of the real line R or of an appropriate subset. It will be assumed here that for each Borel set
A ⊂ R the matrix Σ(A) = {σij(A)}i,j=1,...,d is symmetric and nonnegative definite, i.e. Σ(A) ≥ 0.
The moments of the matrix measure Σ are given by the d× d matrices

Sk =

∫
tkdΣ(t) k = 0, 1, · · · ,(2.1)

and only measures for which all relevant moments exist will be considered throughout this paper.
Let Ai (i = 0, . . . , n) denote d × d matrices, then a matrix polynomial is defined by P (t) =∑n

i=0Ait
i. The inner product of two matrix polynomials, say P and Q, is defined by

〈P,Q〉 =

∫
P (t)Σ(dt)QT (t) ,(2.2)

where QT (t) denotes the transpose of the matrix Q(t). Sinap and Van Assche (1996) call this
the ’left’ inner product. Orthogonal polynomials are defined by orthogonalizing the sequence
Ip, tIp, t

2Ip, · · · with respect to the above inner product. If S0, S1, . . . is a given sequence of matrices
such that the block Hankel matrices

H2m =

⎛
⎜⎝

S0 · · · Sm
...

...
Sm . . . S2m

⎞
⎟⎠(2.3)

are positive definite, it is well known [see e.g. Marcellán and Sansigre (1993)] that a matrix
measure Σ with moments Sj (j ∈ N0) and a corresponding infinite sequence of orthogonal matrix
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polynomials with respect to dΣ(x) exist. Moreover, these matrix polynomials satisfy a three term
recurrence relation.

Let {Qj(x)}j≥0 denote a sequence of matrix polynomials defined by the recurrence relationship
(1.4), where the matrices Cj (j ∈ N), Aj (j ∈ N0) in (1.2) are assumed to be non-singular. The
following results characterizes the existence of a matrix measure Σ such that the polynomials
Qj(x) are orthogonal with respect to dΣ(x) in the sense (2.2).

Theorem 2.1. Assume that the matrices An (n ∈ N0) and Cn (n ∈ N) in the one-step transition
matrix (1.2) are non-singular. There exists a matrix measure Σ on the real line with positive
definite Hankel matrices H2m (m ∈ N0) such that the polynomials {Qn(x)}n∈N0 defined by (1.4)
are orthogonal with respect to the measure dΣ(x) if and only if there exists a sequence of non-
singular matrices {Rn}n∈N0 such that the following relations are satisfied

RnBnR
−1
n is symmetric ∀ n ∈ N0,

(2.4)

RT
nRn = C−1

n · · ·C−1
1 (RT

0R0)A0 · · ·An−1 ∀ n ∈ N.

Proof. Assume that the polynomials {Qn(x)}n∈N0 are orthogonal with respect to the measure
dΣ(x), that is ∫

R

Qi(x)dΣ(x)QT
j (x) = 0,(2.5)

whenever i 	= j and ∫
R

Qi(x)dΣ(x)QT
i (x) = Fi > 0 (i ∈ N0),(2.6)

where we use the notation Fi > 0 for a positive definite matrix Fi ∈ Rd×d (the fact that the matrix
Fi is positive definite follows from a straightforward calculation using the assumption that H2m is

positive definite for all m ∈ N0). Define Rn = F
−1/2
n and Q̃n(x) = RnQn(x), then it is easy to see

that the polynomials {Q̃n(x)}n∈N0 are orthonormal with respect to the measure dΣ(x). Therefore
it follows from Sinap and Van Assche (1996) that there exist d×d non-singular matrices {Dn}n∈N

and symmetric matrices {En}n∈N0 such that the recurrence relation

xQ̃n(x) = Dn+1Q̃n+1(x) + EnQ̃n(x) +DT
n Q̃n−1(x)(2.7)

is satisfied for all n ∈ N0, (Q̃−1(x) = 0, Q̃0(x) = R0). On the other hand we obtain from (1.4) and
the representation Q̃n(x) = RnQn(x) the recurrence relation

xQ̃n(x) = RnAnR
−1
n+1Q̃n+1(x) +RnBnR

−1
n Q̃n(x) +RnC

T
nR

−1
n−1Q̃n−1(x),(2.8)

and a comparison of (2.7) and (2.8) yields

Dn+1 = RnAnR
−1
n+1, En = RnBnR

−1
n , DT

n = RnC
T
nR

−1
n−1,(2.9)
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where the matrix En is symmetric. Now a straightforward calculation gives

RnAnR
−1
n+1 = (Rn+1C

T
n+1R

−1
n )T = (RT

n )−1Cn+1R
T
n+1,

or equivalently
RT

n+1Rn+1 = C−1
n+1(R

T
nRn)An.

This yields by an induction argument

RT
nRn = C−1

n · · ·C−1
1 RT

0R0A0 · · ·An−1, n ∈ N

and proves the first part of Theorem 3.1.

For the converse assume that the relations in (2.4) are satisfied and consider the polynomials
Q̃n(x) = RnQn(x). These polynomials satisfy the recurrence relation (2.8) and from (2.4) it follows
that the matrices

En = RnBnR
−1
n

are symmetric (n ∈ N0), while

Dn+1 = RnAnR
−1
n+1 = (Rn+1C

T
n+1R

−1
n )T

by the second assumption in (2.4). Therefore the recurrence relation for the polynomials Q̃n(x)
is of the form (2.7) and by the discussion following Theorem 3.1 in Sinap and van Assche (1996)
these polynomials are orthonormal with respect to a matrix measure dΣ(x). This also implies the
orthogonality of the polynomials Qn(x) = R−1

n Q̃n(x) with respect to the measure dΣ(x).

Because the polynomials Q
n
(t) = R−1

0 D1 . . .DnQ̃n(t) have leading coefficient Id we obtain that
the matrix

〈Q
n
, Q

n
〉 =

∫
Q

n
(t)dΣ(t)QT

n
(t) = R−1

0 D1 . . . DnD
T
n . . .D

T
1 (RT

0 )−1(2.10)

is non-singular. On the other hand it follows from Dette and Studden (2001) that the left hand
side of (2.10) is equal to the Schur complement, say S2n − S−

2n, of S2n in H2n. Because the matrix
H2n is positive definite if and only if H2n−2 and the Schur complement of S2n in H2n are positive
definite it follows by an induction argument that all Hankel matrices obtained from the moments
of the matrix measure Σ are positive definite. �

Remark 2.2. Throughout this paper a matrix measure Σ with corresponding orthogonal matrix
polynomialsQi(x) is called a random walk matrix measure or spectral measure and the polynomials
Qi(x) will be called random walk matrix polynomials if the assumptions of Theorem 2.1 are
satisfied. Because the polynomials Q̃i(x) = RiQi(x) defined in the proof of Theorem 2.1 are
orthonormal with respect to the measure dΣ(x) it follows that

Id = 〈Q̃0, Q̃0〉 =

∫
Q̃0(x)dΣ(x)Q̃T

0 = R0S0R
T
0 ,(2.11)

or equivalently

R−1
0 ((RT

0 )−1) = (RT
0R0)

−1 = S0,(2.12)
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where S0 is the 0th moment of the matrix measure Σ [see (2.1)]. We finally note that the ma-
trices Rn in Theorem 2.1 are not unique. If {Rn}n∈N0 is a sequence of matrices satisfying (2.4),
these relations are also fulfilled for the sequence {R̃n}n∈N0 = {UnRn}n∈N0 where Un (n ∈ N0) are
arbitrary orthogonal matrices.

Before we present some examples, where the conditions of Theorem 2.1 are satisfied we derive some
consequences of the existence of a random walk measure. For this let Q(x) = (QT

0 (x), QT
1 (x), . . .)T

denote the vector of matrix polynomials defined by the recursion relation (1.4), then it is easy to
see that the recurrence relation (1.4) is equivalent to

xQ(x) = PQ(x),(2.13)

which gives (by iteration)

xnQ(x) = P nQ(x).(2.14)

Therefore ∫
xnQ(x)dΣ(x)QT

j (x) = P n

∫
Q(x)dΣ(x)QT

j (x),(2.15)

and from the orthogonality of the random walk polynomials we obtain the representation

P n
ij =

(∫
xnQi(x)dΣ(x)QT

j (x)
)(∫

Qj(x)dΣ(x)QT
j (x)

)−1

(2.16)

for the block in the position (i, j) of the n-step transition matrix P n.

Theorem 2.3. If the assumptions of Theorem 2.1 are satisfied, the block P n
ij in the position (i, j)

of the n-step transition matrix P n of the random walk can be represented in the form (2.16), where
Σ denotes a random walk measure corresponding to the one-step transition matrix P .

Remark 2.4. Note that the random walk measure is not necessarily uniquely determined by the
random walk on the grid Cd. However, using the case i = j = 0 in (2.16) it follows for the moments
of the random walk measure

P n
00 = SnS

−1
0 (n ∈ N0),(2.17)

where P n
00 is the first block in the n-step transition matrix of the random walk. Therefore the

moments of a random walk measure are essentially uniquely determined. In the following we will
derive a sufficient condition such that the random walk measure (if it exists) is supported on the
interval [−1, 1]. In this case the measure is determined by its moments.

Theorem 2.5. Assume that the conditions of Theorem 2.1 are satisfied and define the block
diagonal matrix R = diag (R0, R1, R2, . . .). If the matrix R is symmetric and the matrix

P̃ = RTPR−1(2.18)
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has non-negative entries then the random walk matrix measure Σ = {σij}i,j=1,...,d corresponding to
the polynomials in (1.4) is supported on the interval [−1, 1], that is

supp(σij) ⊂ [−1, 1] ∀ i, j = 1, . . . , d.

Proof. Note that the matrix in (2.18) is symmetric (because the assumptions of Theorem 2.1
are satisfied) and that the entries of P̃ are non-negative, by the assumptions of the theorem.
According to Schur’s test [see Halmos and Sunder (1978), Theorem 5.2 ] it follows that

‖P̃‖2 ≤ 1,(2.19)

if we can find two vectors, say v, w, with positive components such that

P̃ v ≤ w and P̃w ≤ v

(where the symbol ≤ means here inequality in each component). If

R = diag (R0, R1, . . .)

denotes the infinite dimensional diagonal block matrix with d × d blocks from Theorem 2.1 we
obtain from the representation (2.18) with v = w = R1 (here 1 denotes the infinite dimensional
vector with all elements equal to one) that

P̃ v = P̃R1 = RTP1 ≤ RT 1,

which shows that (2.19) is indeed satisfied. Now let

Πj = C−1
j . . . C−1

1 RT
0R0A0 . . . Aj−1 = RT

j Rj ,

and consider the inner product

〈x, y〉Π =
∞∑

j=0

xT
j Πjyj

[with x = (xT
0 , x

T
1 , . . .); y = (yT

0 , y
T
1 , . . .); xj ∈ Rd, yj ∈ Rd] and its corresponding norm, say ‖ · ‖Π.

Define

�∞ = {x = (xT
0 , x

T
1 , . . .) | ‖x‖2

Π =
∞∑
i=0

xT
i Πixi <∞}.

From the definition of P and Πj it is easy to see that ΠiPij = P T
jiΠj (for all i, j ∈ N0), which

implies that P is a selfadjoint operator with respect to the inner product 〈·, ·〉Π. Moreover, we
have for any x

‖Px‖Π = xTP TΠPx = xTRT P̃ T P̃Rx = ‖P̃Rx‖2

≤ ‖P̃‖2‖Rx‖2 ≤ xTRTRx = xT Πx = ‖x‖Π,

where we used the representation Π = RTR and (2.19). Consequently, ‖P‖Π ≤ 1, which proves
the theorem. �

7



We note that there are many examples, where the assumptions of Theorem 2.5 are satisfied and
we conjecture in fact that a random walk measure is always supported in the interval [−1, 1]. In
the case d = 1 this property holds because in this case the assumptions of the Theorem 2.1 and 2.5
are obviously satisfied. This was shown before by Karlin and McGregor (1959), and an alternative
proof can be found in Dette and Studden (1997), Chap. 8.

Our next result gives a relation between the Stieltjes transforms of two random walk measures,
say Σ and Σ̃, where only the matrices B0 and B̃0 differ in the corresponding one-step transition
matrices P and P̃ .

Theorem 2.6. Consider the one-step transition matrix P in (1.2) and the matrix

P̃ =

⎛
⎜⎜⎜⎝

B̃0 A0 0
CT

1 B1 A1

CT
2 B2 A2

0
. . .

. . .
. . .

⎞
⎟⎟⎟⎠ ,(2.20)

and assume that there exists a random walk measure Σ corresponding to the one-step transition
matrix P such that the matrix R0B̃0R

−1
0 is symmetric, where R0 is a matrix such that (2.4) is

satisfied. Then there exists also a random walk measure Σ̃ corresponding to the matrix P̃ . If Σ
and Σ̃ are determinate, then the Stieltjes transforms of both matrix measures are related by

∫
dΣ(t)

z − t
=
{(∫ dΣ̃(t)

z − t

)−1

− S−1
0 (B0 − B̃0)

}−1

.(2.21)

Proof. Because the matrix R0B̃0R
−1
0 is symmetric and the matrices P and P̃ differ only by the

element in the first block, the sequence of matrices R0, R1, . . . can be used to symmetrize the
matrices P and P̃ simultaneously [see the proof of Theorem 2.1]. Consequently, there exists a
random walk measure corresponding to the random walk with one-step transition matrix P̃ . Let
{Qn(x)}n∈N0 denote the system of matrix orthogonal polynomials defined by the recursive relation
(1.4) and define {Q̃n(x)}n∈N0 by the same recursion, where the matrix B0 has been replaced by
B̃0. A straightforward calculation shows that the difference polynomials

Rj(x) = Q̃j(x) −Qj(x)

also satisfy the recursion (1.4) with initial conditions R0(x) = 0, R1(x) = A−1
0 (B0 − B̃0). In partic-

ular these polynomials are “proportional” to the first associated orthogonal matrix polynomials

Q(1)
n (x) =

∫
Qn(x) −Qn(t)

x− t
dΣ(t) (n ∈ N0),(2.22)

that is

Rn(x) = Q(1)
n (x)RT

0R0(B0 − B̃0).(2.23)
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Recall from the proof of Theorem 2.1 that the systems of polynomials {RnQn(x)R−1
0 }n∈N0 and

{RnQ̃n(x)R−1
0 }n∈N0 are orthonormal with respect to the random walk measures dμ(x) = R0dΣ(x)RT

0

and dμ̃ = R0dΣ̃(x)RT
0 , respectively, and that μ and μ̃ are determinate. Therefore we obtain from

Markov’s theorem for matrix orthogonal polynomials [see Duran (1996)] that

∫
dΣ̃(t)

z − t
= R−1

0

∫
dμ̃(t)

z − t
(RT

0 )−1(2.24)

= lim
n→∞

R−1
0 (RnQ̃n(z)R−1

0 )−1(RnQ̃
(1)
n (z)RT

0 )(RT
0 )−1

= lim
n→∞

(Q̃n(z))−1Q̃(1)
n (z)

= lim
n→∞

{Qn(z) +Q(1)
n (z)RT

0 R0(B0 − B̃0)}−1Q(1)
n (z)

= lim
n→∞

{{(Qn(z))−1Q(1)
n (z)}−1 +RT

0R0(B0 − B̃0)}−1

= lim
n→∞

{RT
0 {(RnQn(z)R−1

0 )−1RnQ
(1)
n (z)RT

0 }−1R0 +RT
0R0(B − B̃0)}−1

=
{
RT

0

(∫ dμ(t)

z − t

)−1

R0 +RT
0 R0(B0 − B̃0)

}−1

=
{(∫ dΣ(t)

z − t

)−1

+RT
0R0(B0 − B̃0)

}−1

=
{(∫ dΣ(t)

z − t

)−1

+ S−1
0 (B0 − B̃0)

}−1

,

where Q̃
(1)
n (x) denotes the first associated orthogonal matrix polynomial obtained by the analogue

of (2.22) from Q̃n(x) and we have used the fact that Q̃
(1)
n (x) = Q

(1)
n (x) for the third equality (note

that this identity is obvious from the definition of P and P̃ in (1.2) and (2.20), respectively).

�

3 Examples

In this section we present several examples where the conditions of Theorem 2.1 are satisfied.

3.1 Random walks on the integers

Consider the classical random walk on Z [see e.g. Feller (1950)] with one-step up-, down- and
holding transition probabilities pi, qi and ri (respectively), where pi + qi + ri ≤ 1; i ∈ Z. By the
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one-to-one mapping

ψ :

⎧⎨
⎩

Z → C2

i →
{

(i, 1) if i ∈ N0

(−i− 1, 2) else

this process can be interpreted as a process on the grid C2, where transitions from the first to the
second row are only possible if the process is in state (0, 1). The transition matrix of this process
is given by (1.2) with 2 × 2 blocks

B0 =

(
r0 q0
p−1 r−1

)
; Bn =

(
rn 0
0 r−n−1

)
(3.1)

An =

(
pn 0
0 q−n−1

)
; CT

n =

(
qn 0
0 p−n−1

)
.(3.2)

It is easy to see that the conditions of Theorem 2.1 are satisfied with the matrices

R0 =

(
1 0
0

√
q0

p−1

)
; Rn =

⎛
⎝
√

p0...pn−1

q1...qn
0

0
√

q0q−1...q−n

p−1p−2...p−n−1

⎞
⎠ ,(3.3)

and consequently there exist a random walk matrix measure corresponding to this process, say Σ,
which is supported in the interval [−1, 1] (see Theorem 2.5). For the calculation of the Stieltjes
transform of this measure we use Theorem 2.6 and obtain

Φ(z) =

∫
dΣ(t)

z − t
=
{

Φ̃−1(z) −RT
0 R0(B0 − B̃0)

}−1

.(3.4)

Here Φ̃ is the Stieltjes transform of a random walk measure Σ̃ with transition matrix (1.2), where
the matrix B0 in (3.1) has been replaced by

B̃0 =

(
r0 0
0 r−1

)
,

and the matrix B0 − B̃0 is given by

B0 − B̃0 =

(
0 q0
p−1 0

)
.

Note that the matrix Φ̃ is diagonal and if Φ̃+ and Φ̃− denote the corresponding diagonal elements,
we obtain from (3.4) the representation

Φ(z) =

∫
dΣ(t)

z − t
=

(
1/Φ̃+(z) −q0
−q0 1/Φ̃−(z)

)−1

=
1

1 − q2
0Φ̃

+(z)Φ̃−(z)

(
Φ̃+(z) q0Φ̃

−(z)Φ̃+(z)
q0Φ

−(z)Φ̃+(z) Φ̃−(z)

)
.
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In particular for the classical random walk (pi = p, qi = q, ri = 0 ∀ i ∈ Z) we have

Φ̃+(z) = −z −
√
z2 − 4pq

2pq
; Φ̃−(z) =

p

q
Φ+(z),

and a straightforward calculation gives the result

Φ(z) =

⎛
⎝ −1√

z2−4pq

1
2q

(
1 − z√

z2−4pq

)
1
2q

(
1 − z√

z2−4pq

)
p
q

−1√
z2−4pq

⎞
⎠ ,

which was also obtained by Karlin and McGregor (1959) by a probabilistic argument.

3.2 An example from queuing theory

In a recent paper Dayar and Quessette (2002) considered a system of two independent queues,
where queue 1 is an M/M/1 and queue 2 is an M/M/1/d− 1. Both queues have a Poisson arrival
process with rate λi (i = 1, 2) and exponential service distributions with rates μi (i = 1, 2). It is
easy to see that the embedded random walk corresponding to the quasi birth and death process
representing the length of queue 1 (which is unbounded) and the length of queue 2 (which varies
between 0, 1, . . . , d− 1) has a one step transition matrix of the form (1.2), where the blocks Bi, Ai

and Ci are given by

B0 =

⎛
⎜⎜⎜⎜⎜⎝

0 λ2

λ1+λ2
μ2

γ−μ1
0 λ2

γ−μ1

. . .
. . .

. . .
μ2

γ−μ1
0 λ2

γ−μ1
μ2

λ1+μ2
0

⎞
⎟⎟⎟⎟⎟⎠ , Bi =

⎛
⎜⎜⎜⎜⎜⎝

0 λ2

γ−μ2
μ2

γ
0 λ2

γ
. . .

. . .
. . .

μ2

γ
0 λ2

γ
μ2

γ−λ2
0

⎞
⎟⎟⎟⎟⎟⎠ ,(3.5)

(i ≥ 1),

A0 =

⎛
⎜⎜⎜⎜⎜⎝

λ1

λ1+λ2
λ1

γ−μ1

. . .
λ1

γ−μ1
λ1

λ1+μ2

⎞
⎟⎟⎟⎟⎟⎠ , Ai =

⎛
⎜⎜⎜⎜⎜⎝

λ1

γ−μ2
λ1

γ
. . .

λ1

γ
λ1

γ−λ2

⎞
⎟⎟⎟⎟⎟⎠ ,(3.6)

(i ≥ 1) and

Ci =

⎛
⎜⎜⎜⎜⎜⎝

μ1

γ−μ2
μ1

γ
. . .

μ1

γ
μ1

γ−λ2

⎞
⎟⎟⎟⎟⎟⎠ , (i ≥ 1)(3.7)
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respectively, and γ = λ1 + λ2 + μ1 + μ2, λ1 < μ1. A straightforward calculation shows that the
assumptions of Theorem 2.1 are satisfied, where the matrices R� are diagonal and given by

R0 = diag
(√(λ1 + λ2)μ2√

(γ − μ1)λ2

, 1,

√
λ2√
μ2
,
λ2

μ2
, . . . , (

√
λ2√
μ2

)d−3,

√
(λ1 + μ2)λ

d−2
2√

(γ − μ1)μ
d−2
2

)
,

R1 = diag
(√λ1(γ − μ2)μ2√

λ2(γ − μ1)μ1

,

√
γλ1√

(γ − μ1)μ1

, . . . ,

√
γλ1λ

d−3
2√

(γ − μ1)μ1μ
d−3
2

,

√
λ1(γ − λ2)λ

d−2
2√

(γ − μ1)μ1μ
d−2
2

)

Ri = (

√
λ1

μ1

)i−1R1, i ≥ 2.

It also follows from Theorem 2.5 that the corresponding random walk matrix measure is supported
in the interval [−1, 1].

3.3 The simple random walk on the grid

Consider the random walk on the grid Cd, where the probabilities of going from state (i, j) to
(i, j + 1), (i, j − 1), (i− 1, j), (i+ 1, j) are given by u, v, �, r, respectively, where u+ v + �+ r = 1.
In this case it follows that Ai = rId (i ≥ 0), Ci = �Id (i ≥ 1),

Bi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 u
v 0 u

v 0 u
. . .

. . .
. . .

v 0 u
v 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, i ≥ 0,

and it is easy to see that the conditions of Theorem 2.1 are satisfied with

R0 = diag(1,

√
u

v
,

√
u2

v2
, ...,

√
ud−1

vd−1
), Ri = (

√
r

�
)iR0, i ≥ 1.

It now follows from Theorem 2.5 that the corresponding random walk matrix measure is supported
in the interval [−1, 1]. For the identification of the Stieltjes transform of the spectral measure
we note that the orthonormal polynomials defined by (2.7) have constant coefficients given by
D = Dn =

√
r�Id,

E = En =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
√
vu√

vu 0
√
vu√

vu 0
√
vu

. . .
. . .

. . .√
vu 0

√
vu√

vu 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.(3.8)
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Therefore it follows from the work of Duran (1999) that the Stieltjes transform of the random
walk measure is given by∫

dΣ(t)

z − t
=

1

2r�

{
zId −E −

{
(zId − E)2 − 4r�Id

}1/2}
.

From the same reference we obtain that the support of the random walk measure is given by the
set

supp(Σ) = {x ∈ R | xId −E has an eigenvalue in [−2
√
r�, 2

√
r�]}.(3.9)

It is well known [see Basilevsky (1983)] that the eigenvalues of the matrix E in (3.8) are given by

2
√
uv cos(

jπ

d+ 1
) , j = 1, . . . , d,

with corresponding normalized eigenvectors

xj =

√
2

d+ 1

(
sin(�

πj

d+ 1
)
)d

�=1
.

Therefore it follows from (3.9) that

supp(Σ) =
[
−2

√
r�+ 2

√
uv cos(

πd

d+ 1
), 2

√
r�+ 2

√
uv cos(

π

d+ 1
)
]

(note that supp(Σ) ⊂ [−1, 1]). For the calculation of the random walk measure we determine the
spectral decomposition of the matrix

−H(x) = 4Id −D−1/2(xId − E)D−1(xId −E)D−1/2

=
1

r�

{
4r�Id − (xId −E)2

}
.

The eigenvalues of this matrix are given by

λj(x) =
1

r�

{
4r�− (x− 2

√
vu cos(

πj

d+ 1
))2
}
,

and by the results in Duran (1999) the weight of the matrix measure is given by

dΣ(x) =
1

2π
√
r�
UΛ(x)UTdx,

where the matrix Λ(x) is defined by

Λ(x) =
{

diag(max(λ1(x), 0), . . . ,max(λd(x), 0))
}1/2

,

and the elements of the matrix U = {uj�}j,�=1,...,d are given by

uj� =

√
2

d+ 1
sin(�

jπ

d+ 1
).
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3.4 A random walk on a graph

Consider a graph with d rays which are connected at one point, the origin. On each ray the
probability of moving away from the origin is p and moving in one step towards to the origin is q,
where p+ q = 1. From the origin the probability of going to the ith ray is di > 0 (i = 1, . . . , d) [see
Figure 1, where the case d = 4 is illustrated]. It is easy to see that this process corresponds to a

�
�

�
�

��

�
�

�
�

��

�
�

�
�

��

�
�

�
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��

����

���
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� �

� ���
���

���
���

���
���

���
��� p

pp

p

q

q

q

q

1

23

4

Figure 1: A random walk on a graph

random walk on the grid Cd with block tridiagonal transition matrix P in (1.2), where Bi = 0 if
i ≥ 1, Ci = qId ∀ i ≥ 1, A0 = diag (d1, p, . . . , p) , Ai = pId ∀ i ≥ 1, and

B0 =

⎛
⎜⎜⎜⎝

0 d2 · · · · · · dd

q 0 · · · · · · 0
...

...
...

q 0 · · · · · · 0

⎞
⎟⎟⎟⎠ ,

where
∑d

i=1 di = 1. Moreover, this matrix clearly satisfies the assumptions of Theorem 2.1 with

R0 = diag

(
1,

√
d2

q
, ...,

√
dd

q

)
, R1 = diag

(√
d1

q
,

√
d2p

q2
, . . . ,

√
ddp

q2

)
, Ri =

(√
p

q

)i−1

R1, i ≥ 2.

By an application of Theorem 2.6 and the inversion formula for Stieltjes transforms we obtain for
the corresponding random walk measure

dΣ(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a(x) b2(x) b3(x) . . . bd(x)
b2(x) f2(x) e2,3(x) . . . e2,d(x)
b3(x) e2,3(x) f3(x) . . . e3,d(x)

...
...

...
...

bd−1(x) e2,d−1(x) e3,d−1(x) . . . ed−1,d(x)
bd(x) e2,d(x) e3,d(x) . . . fd(x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
dx,
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where functions a, bi, ek,� and fk are given by

a(x) =
(
∑d

i=2 d
2
id1 + d2

1q − (d1 − p)x2)
√

4pq − x2

2pπ((
∑d

i=2 d
2
i + d1q)2 − (

∑d
i=2 d

2
i + (d1 − p)q)x2)

,

bk(x) = − dkx
√

4pq − x2

2π((
∑d

i=2 d
2
i + d1q)2 − (

∑d
i=2 d

2
i + (d1 − p)q)x2)

, k = 2, . . . , d,

ek,�(x) =
dkd�

√
4pq − x2(px2 −∑d

i=2 d
2
jd1 − d2

1q)

2π(d2
1q − (d1 − p)x2)((

∑d
i=2 d

2
i + d1q)2 − (

∑d
i=2 d

2
i + (d1 − p)q)x2)

,

k = 2, . . . , d− 1, � = 3, . . . , d,

fk(x) =
(d1(

∑d
i=2 d

2
i + d1q)(

∑d
i=2,i�=k d

2
i + d1q)

√
4pq − x2

2π(d2
1q − (d1 − p)x2)((

∑d
i=2 d

2
i + d1q)2 − (

∑d
i=2 d

2
i + (d1 − p)q)x2)

+
−((

∑d
i=2 d

2
i (d1 − p) +

∑d
i=2,i�=k d

2
i p + d1(d1 − p)q)x2)

√
4pq − x2

2π(d2
1q − (d1 − p)x2)((

∑d
i=2 d

2
i + d1q)2 − (

∑d
i=2 d

2
i + (d1 − p)q)x2)

,

k = 2, . . . d.

Note that the random walk measure is supported in the interval [−2
√
pq, 2

√
pq].

4 Further discussion

In the present section we derive further consequences of the existence of a random walk measure
corresponding to the transition matrix (1.2). Throughout this section we assume that the condi-
tions of Theorem 2.1 are satisfied and that the corresponding random walk measure is supported
in the interval [−1, 1].

4.1 Recurrence

We denote by

Hij(z) =

∞∑
n=0

(P n
ij)z

n =
(∫ Qi(x)dΣ(x)QT

j (x)

1 − xz

)(∫
Qj(x)dΣ(x)QT

j (x)
)−1

(4.1)

the (matrix) generating function of the block (i, j), where the last identity follows from Theorem
2.3 and Lebesgue’s Theorem. Therefore we obtain that a state (i, �) ∈ Cd is recurrent if and only
if

∞∑
n=0

eT
� P

n
iie� = lim

z→1
eT

� Hii(z)e�
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(4.2)

= eT
�

(∫ Qi(x)dΣ(x)QT
i (x)

1 − x

)(∫
Qi(x)dΣ(x)QT

i (x)
)−1

e� = ∞,

where eT
� = (0, . . . , 0, 1, 0, . . .0)T denotes the �th unit vector in Rd. We summarize this observation

in the following Lemma.

Corollary 4.1. Assume that the conditions of Theorem 2.1 are satisfied for the transition matrix
P in (1.2) corresponding to a random walk on Cd and that the corresponding spectral measure is
supported in the interval [−1, 1]. A state (i, �) ∈ Cd is recurrent if and only if condition (4.2) is
satisfied. Moreover, if the random walk is irreducible it is recurrent if and only if the condition

eT
j

∫ 1

−1

dΣ(x)

1 − x
S−1

0 ej = ∞(4.3)

is satisfied for some j ∈ {1, . . . , d} (in this case it is satisfied for any j ∈ {1, . . . , d}).

Corollary 4.2. Assume that the conditions of Theorem 2.1 are satisfied for the matrix P in (1.2)
corresponding to an irreducible random walk on Cd and that the corresponding spectral measure is
supported in the interval [−1, 1]. The random walk is positive recurrent if and only if one of the
measures dτ�(x) = eT

� dΣ(x)S−1
0 e� (� = 1, . . . , d) has a jump at the point 1. In this case all measures

dτ�(x) (� = 1, . . . , d) have a jump at the point 1.

Proof. Let dτ�(x) = eT
� dΣ(x)S−1

0 e�, then the probability of returning from state (0, �) to (0, �) in
k steps is given by

αk = eT
� (P k

00)e� = eT
�

∫ 1

−1

xkdΣ(x)S−1
0 e� =

∫ 1

−1

xkdτ�(x).

The random walk is positive recurrent if and only if α = limk→∞ αk exists and is positive. Con-
sidering the sequence α2n it follows by the dominated convergence theorem that this is the case if
and only if τ� has a jump at x = −1 or x = 1. If τ� has no jump at x = 1 we obtain

τ�(−1) = lim
n→∞

{
−
∫ 1

−1

x2n+1dτ�(x) +

∫ 1

−1−
x2n+1dτ�(x)

}
= − lim

n→∞
P 2n+1

00 ≤ 0

and consequently τ� has no jump at x = −1. Therefore the random walk is positive recurrent if
and only if τ� has a jump at x = 1.

�

Remark 4.3. For an irreducible random walk with a random walk measure Σ satisfying S0 = Id
the properties of recurrence and positive recurrence are characterized by the diagonal elements of
the corresponding random walk measure Σ .
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4.2 Canonical moments and random walk measures

In this section we will represent the Stieltjes transform of a random walk matrix measure Σ which is
supported in the interval [−1, 1] in terms of its canonical moments, which were recently introduced
by Dette and Studden (2001) in the context of matrix measures. We will use this representation
to derive a characterization of recurrence of the process in terms of blocks of the matrix P.

Theorem 4.4. The Stieltjes transform of a random walk measure Σ which is supported in the
interval [−1, 1] has the following continued fraction expansions∫

dΣ(x)

z − x
= lim

n→∞
S

1/2
0

{
zId + Id − 2ζT

1 −
{
zId + Id − 2ζT

2 − 2ζT
3 −

{
zId + Id − 2ζT

4 − 2ζT
5 . . .

. . .−
{
zId + Id − 2ζT

2n − 2ζT
2n+1

}−1

4ζT
2nζ

T
2n−1

}−1

. . . 4ζT
4 ζ

T
3

}−1

4ζT
2 ζ

T
1

}−1

S
1/2
0

= lim
n→∞

S
1/2
0

{
(z + 1)Id −

{
Id −

{
(z + 1)Id −

. . .−
{

(z + 1)Id − 2ζT
2n+1

}−1

2ζT
2n

}−1

. . .
}−1

2ζT
2

}−1

2ζT
1

}−1

S
1/2
0 ,

where the quantities ζj ∈ Rd×d are defined by ζ0 = 0, ζ1 = U1, ζj = Vj−1Uj if j ≥ 2 and
the sequences {Uj} and {Vj} are the canonical moments of the random walk measure Σ. The
convergence is uniform on compact subsets of C with positive distance from the interval [−1, 1].
In particular the following representation holds

∫
dΣ(x)

1 − x
=

1

2
S

1/2
0

[
Id +

∞∑
l=1

(V T
1 )−1 . . . (V T

l )−1UT
l ...U

T
1

]
S

1/2
0 .(4.4)

Proof. Let P n(t) denote the nth monic orthogonal polynomial with respect to the matrix measure
dΣ(t), then it follows from Dette and Studden (2001) that P n(t) can be calculated recursively as

P n+1(t) =
{

(t+ 1)Id − 2ζT
2n+1 − 2ζT

2n

}
P n(t) − 4ζT

2nζ
T
2n−1P n−1(t),(4.5)

where P 0(t) = Id, P−1(t) = 0, the quantities ζj ∈ Rd×d are defined by ζ0 = 0, ζ1 = U1, ζj = Vj−1Uj

if j ≥ 2 and the sequences {Uj} and {Vj} are the canonical moments of the random walk measure
Σ. Note that Dette and Studden (2001) define the canonical moments for matrix measures on
the interval [0, 1], but the canonical moments are invariant with respect to transformations of
the measure. More precisely, it can be shown that measures related by an affine transformation
t → a + (b − a)t (a, b ∈ R, a < b) have the same canonical moments. The results for the
corresponding orthogonal polynomials can also easily be extended to matrix measures on the
interval [−1, 1]. The quantities

Δ2n :=< P n, P n >= 22n(S0ζ1...ζ2n)T(4.6)
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are positive definite [see Dette and Studden (2001)] and consequently the polynomials

Pn(z) = Δ
−1/2
2n P n(z)

are orthonormal with respect to the measure dΣ(x). Now a straightforward calculation shows that
these polynomials satisfy the recurrence relation

tPk(t) = Ak+1Pk+1(t) +BkPk(t) + AT
kPk−1(t), k = 0, 1, ...(4.7)

with initial conditions
P−1(t) = 0, P0(t) = S

−1/2
0(4.8)

and coefficients

An+1 = Δ
−1/2
2n Δ

1/2
2n+2,(4.9)

Bn = −Δ
−1/2
2n (Id − 2ζT

2n − 2ζT
2n+1)Δ

1/2
2n ,(4.10)

AT
n = 4Δ

−1/2
2n ζT

2nζ
T
2n−1Δ

1/2
2n−2(4.11)

(note that the matrix Δ2n = 4Δ2n−2ζ2n−1ζ2n is symmetric and therefore the two representations

in (4.9) and (4.11) for the matrix An are in fact identical). If P
(1)
n (z) denotes the first associated

orthogonal polynomial corresponding to Pn(z) we obtain from Zygmunt (2002) the representation

Fn(z) = (Pn+1(z))
−1P

(1)
n+1(z) = S0{zId −B0 − A1{zId − B1 −A2{zId − B2 − . . .(4.12)

. . .− An{zId − Bn}−1AT
n}−1 . . . AT

1 }−1.

Now a straightforward application of (4.9) - (4.11) yields

Fn(z) = S
1/2
0 [zId + Id − 2ζT

1 − [zId + Id − 2ζT
2 − 2ζT

3 − [zId + Id − 2ζT
4 − 2ζT

5 . . .(4.13)

. . .− [zId + Id − 2ζT
2n − 2ζT

2n+1]
−14ζT

2nζ
T
2n−1]

−1 . . . 4ζT
4 ζ

T
3 ]−14ζT

2 ζ
T
1 ]−1S

1/2
0 ,

and an iterative application of the matrix identity

Id + A−1B = (Id − (B + A)−1B)−1

and Markov’s theorem [see Duran (1996)] give∫
dΣ(x)

z − x
= lim

n→∞
S

1/2
0

{
(z + 1)Id −

{
Id −

{
(z + 1)Id −

. . .−
{

(z + 1)Id − 2ζT
2n+1

}−1

2ζT
2n

}−1

. . .
}−1

2ζT
2

}−1

2ζT
1

}−1

S
1/2
0

(note that this transformation is essentially a contraction). This proves the first part of the
theorem. For the second part we put z = 1 and use formula (1.3) in Fair (1971) to obtain∫

dΣ(x)

1 − x
= lim

n→∞
1

2
S

1/2
0

{
Id −

{
Id −

{
Id − . . .−

{
Id − ζT

2n+1

}−1

ζT
2n

}−1

. . .
}−1

ζT
1

}−1

S
1/2
0(4.14)

= lim
n→∞

1

2
S

1/2
0

n+1∑
j=0

X−1
j+1ζ

T
j Xj−1X

−1
j ζT

j−1Xj−2X
−1
j−1 . . .X1X

−1
2 ζT

1 S
1/2
0 ,
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where X0 = Id, X1 = Id,

Xn+1 = Xn − ζT
nXn−1 (n ≥ 1).

Now a straightforward induction argument shows that Xn+1 = V T
n ...V

T
1 and (4.14) reduces to

(4.4), which proves the remaining assertion of the theorem.

�

Our next result generalizes the famous characterization of recurrence in an irreducible birth and
death chain to the matrix case.

Theorem 4.5. Assume that the conditions of Theorem 2.1 are satisfied for the transition matrix
of a random walk and that the corresponding spectral measure is supported in the interval [−1, 1].
The state (0, �) is recurrent if and only if

eT
� S

1/2
0

∞∑
i=0

T−1
i+1A

−1
i CT

i Ti−1T
−1
i A−1

i−1C
T
i−1Ti−2T

−1
i−1 . . . T1T

−1
2 A−1

1 CT
1 T0T

−1
1 A−1

0 T0S
−1/2
0 e� = ∞,

where Ti = Qi(1) (i ∈ N0) and Qi(x) denotes the ith random walk polynomial defined by (1.4). In
particular, an irreducible random walk on the grid Cd is recurrent if and only if one of the diagonal
elements of the matrix

S
1/2
0

∞∑
i=0

T−1
i+1A

−1
i CT

i Ti−1T
−1
i A−1

i−1C
T
i−1Ti−2T

−1
i−1 . . . T1T

−1
2 A−1

1 CT
1 T0T

−1
1 A−1

0 T0S
−1/2
0

is infinite (in this case all diagonal elements of this matrix have this property).

Proof. A combination of Corollary 4.1 and Theorem 4.4 shows that the state (0, �) is recurrent
if and only if

t =
1

2
eT

� S
1/2
0 [Id +

∞∑
j=1

(V T
j )−1...(V T

l )−1UT
j . . . U

T
1 ]S

−1/2
0 e� = ∞,(4.15)

where U1, U2, . . . are the canonical moments of the random walk measure Σ and Vj = Id−Uj (j ≥ 1).
In the following we express the right hand side in terms of the blocks of the one-step transition
matrix P corresponding to the random walk. For this consider the recurrence relation (1.4) and
define Tn = Qn(1). Note that the polynomials Q

n
(t) = A0 . . . An−1Qn(t) are monic and satisfy the

recurrence relation

Q
n+1

(t) = tQ
n
(t) − A0 . . . An−1BnA

−1
n−1 . . . A

−1
0 Q

n
(t)

− A0 . . . An−1C
T
nA

−1
n−2 . . . A

−1
0 Q

n−1
(t).

Therefore a comparison with (4.5) yields

A0 . . . An−1BnA
−1
n−1 . . . A

−1
0 = −Id + 2ζT

2n + 2ζT
2n+1(4.16)

A0 . . . An−1C
T
nAn−2 . . . A0 = 4ζT

2nζ
T
2n−1.
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Using these representations and the fact UkVk = VkUk [see Dette and Studden (2001), Theorem
2.7] it is easy to see that

Tn = Qn(1) = 2nA−1
n−1 . . . A

−1
0 V T

2n−1V
T
2n−2 . . . V

T
1 ,

and it follows from the same reference that these matrices are non-singular for all n ∈ N0. Therefore
we can define

Q̂n(x) = T−1
n Qn(x),(4.17)

and it is easy to see that these polynomials satisfy the recurrence relation

xQ̂n(x) = ÂnQ̂n+1(x) + B̂nQ̂n(x) + ĈT
n Q̂n−1(x),(4.18)

where

Ân = T−1
n AnTn+1, B̂n = T−1

n BnTn, ĈT
n = T−1

n CT
n Tn−1(4.19)

(note that Ân + B̂n + ĈT
n = Id). Combining (4.16) with (4.19) we obtain

Â0 . . . Ân−1B̂nÂ
−1
n−1 . . . Â

−1
0 = −Id + 2ζT

2n + 2ζT
2n+1,

Â0 . . . Ân−1Ĉ
T
n Â

−1
n−2 . . . Â

−1
0 = 4ζT

2nζ
T
2n−1,

and by an induction argument (noting that Ân + B̂n + ĈT
n = Id) it follows that

2UT
2nU

T
2n−1 = Â0 . . . Ân−1Ĉ

T
n Â

−1
n−1 . . . Â

−1
0 ,

2V T
2n+1V

T
2n = Â0 . . . Ân−1ÂnÂ

−1
n−1 . . . Â

−1
0 .

Finally, we obtain for the left hand side of (4.15)

t =
1

2
eT

� S
1/2
0

∞∑
j=0

{
(V T

1 )−1 . . . (V T
2j )

−1UT
2j . . . U

T
1 + (V T

1 )−1 . . . (V T
2j+1)

−1UT
2j+1 . . . U

T
1

}
S
−1/2
0 e�

= eT
� S

1/2
0

∞∑
j=0

Â−1
j ĈT

j Â
−1
j−1 . . . Â

−1
1 ĈT

1 Â
−1
0 S

−1/2
0 e�

= eT
� S

1/2
0

∞∑
j=0

T−1
j+1A

−1
j CT

j Tj−1T
−1
j A−1

j−1C
T
j−1Tj−2T

−1
j−1 . . . T1T

−1
2 A−1

1 CT
1 T0T

−1
1 A−1

0 T0S
−1/2
0 e�

with T� = Q�(1) (� ∈ N0), which proves the assertion of the theorem.

�

Remark 4.6. It is interesting to note the condition in Theorem 4.5 simplifies substantially if the
matrices Ti, Ai, Ci are communicating. In this case a irreducible random walk is recurrent if and
only if

eT
� S

1/2
0

∞∑
i=0

T−1
i+1T

−1
i (C1 . . . Ci)

T (A0 . . . Ai)
−1S

−1/2
0 e� = ∞
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for some � ∈ {1, . . . , d}.

Example 4.7. Consider the random walk on the graph introduced in Section 3.4. By Corollary
4.1 the state (0, 1) (which corresponds to the origin) is recurrent if and only if

∞ = eT
1

(∫ dΣ(x)

1 − x

)(∫
dΣ(x)

)−1

e1 =

∫ 2
√

pq

2
√

pq

a(x)

1 − x
dx

where the functions a is defined in Section 3.4 and we have used the fact that
∫
dΣ(x) = S0 =

(RT
0R0)

−1 [see Remark 2.2]. Because the support of the spectral measure is given by the interval
[−√

4pq,−√
4pq] it follows that the condition p = q = 1

2
is necessary for the recurrence of the

random walk. Now a straightforward calculation shows that the state (0, 1) (i.e. the center of the
graph) is recurrent if and only if the condition 2

∑d
i=2 d

2
i =

∑d
i=2 di is satisfied (in all other cases

the integral is finite).
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