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Abstract

The aim of this paper is to show that existing estimators for the error distribution in

nonparametric regression models can be improved when additional information about the

distribution is included by the empirical likelihood method. The weak convergence of the

resulting new estimator to a Gaussian process is shown and the performance is investigated

by comparison of asymptotic mean squared errors and by means of a simulation study. As

a by-product of our proofs we obtain stochastic expansions for smooth linear estimators

based on residuals from the nonparametric regression model.
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1 Introduction

Since a few decades in statistical research nonparametric regression models have been investi-

gated intensively. We consider such a model,

Yi = m(Xi) + εi (i = 1, . . . , n),
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with independent observations (X1, Y1), . . . , (Xn, Yn) and centered, unobserved, independent

and identically distributed errors ε1, . . . , εn (independent from the design points X1, . . . , Xn).

In the last decades research focused mainly on nonparametric estimation of the regression

function m and variance σ2 = E[ε2
1] and corresponding hypotheses tests. Since a few years

only there exist results on estimation of the distribution of the unobserved errors ε1, . . . , εn.

For example, consistent estimators for the regression function and error distribution can be

used to evaluate prediction intervals for future observations at some point x [see Akritas and

Van Keilegom (2001)]. Further the empirical distribution function of estimated errors recently

turned out to be valuable for goodness-of-fit tests concerning the regression or variance function,

see Van Keilegom, González Manteiga and Sánchez Sellero (2004) and Dette and Van Keilegom

(2005), or for testing the equality of regression functions in a two–sample problem, see Pardo-

Fernández, Van Keilegom and González-Manteiga (2004) and Neumeyer and Dette (2005). We

denote by Fn the (not available) empirical distribution function of unobserved errors. Classical

results by Donsker (1952) show weak convergence of the empirical process
√

n(Fn − F ) to a

Brownian bridge B with covariance structure

Cov(B(y), B(z)) = F (y ∧ z) − F (y)F (z).(1.1)

Now, let F̂n denote the empirical distribution function of nonparametrically estimated residuals,

i.e.

F̂n(y) =
1

n

n∑
i=1

I{ε̂i ≤ y}, y ∈ R,(1.2)

where the residuals are defined as ε̂i = Yi − m̂(Xi), and m̂ denotes the Nadaraya–Watson

estimator for the regression function m. The asymptotic behavior of F̂n has been investigated

by Akritas and Van Keilegom (2001) and Cheng (2002). A smooth version of F̂n was considered

by Müller, Schick and Wefelmeyer (2004c). Cheng (2004), Qin (1996), and Qin, Shi and

Chai (1996) propose corresponding error density estimators. In the heteroscedastic model

considered by Akritas and Van Keilegom (2001) the regression and variance function are defined

as L-functionals depending on some score function J . Slight adaptations of Akritas and Van

Keilegom’s (2001) arguments for a homoscedastic regression model and score function J ≡ 1

show under some regularity assumptions (that are valid under the assumptions stated in section

2 of the presented paper) that the process
√

n(F̂n(·)−F (·)−b(·)) converges weakly to a Gaussian

process G with covariance structure

Cov(G(y), G(z)) = F (y ∧ z) − F (y)F (z)(1.3)

+ E[ε2
1]f(y)f(z) + E[ε1I{ε1 ≤ y}]f(z) + E[ε1I{ε1 ≤ z}]f(y),
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where f denotes the error density and the bias term is defined as

b(y) = h2f(y)
1

2

∫
K(u)u2 du

∫
((mfX)′′(x) − (mf ′′

X)(x)) dx.(1.4)

Here K denotes a kernel function and h a bandwidth used for the construction of the kernel

estimator m̂ and fX denotes the density of the design points. We give a short derivation of

this result in appendix A. One notices that the covariance structure of the asymptotic process

G given in (1.3) differs from the covariance structure of the asymptotic process B, see (1.1).

For Gaussian errors considering nonparametric residuals instead of true errors even results in

a uniformly smaller asymptotic variance,

Var(G(y)) ≤ Var(B(y)) ∀y ∈ R,

but the estimation is biased then. We want to investigate whether the estimation of the

error distribution can further be improved in terms of mean squared error when additional

information is used. Our most important example for additional information is the centeredness

of the errors, i. e. E[ε1] = 0, that is required by the model but is not explicitely used in the

estimation F̂n. Further examples for additional information are a known variance or median.

Improvements of the estimator by including additional information could be obtained by the

Empirical Likelihood method that was introduced by Owen (1988, 2001) and further developed

by Hall and LaScala (1990), DiCiccio, Hall and Romano (1989, 1991), DiCiccio and Romano

(1989), Hall (1990), Kitamura (1997), Einmahl and McKeague (2003), among many others. Qin

and Lawless (1994) and Zhang (1997) considered the problem of estimating the distribution of

an (observed) iid-sample ε1, . . . , εn when auxiliary information is available in terms of

E[g(ε1)] =

∫
g(y) dF (y) = 0,

where g = (g1, . . . , gk)
T : R → Rk is a known function such that E[g2

j (ε1)] < ∞ (j = 1, . . . , k).

This could be, for example, g(ε) = ε for the model assumption of centered errors, g(ε) =

(ε, ε2 − σ2)T for centered errors with a known variance σ2 or g(ε) = I{ε ≤ q} − 1
2

for a priori

information about the median q. The empirical likelihood estimator for the error distribution

is

F̃n(y) =

n∑
i=1

piI{εi ≤ y}, y ∈ R,(1.5)

where the weights pi ∈ (0, 1) are chosen such that the empirical likelihood

n∏
i=1

pi(1.6)
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is maximized under the constraints

n∑
i=1

pi = 1,

∫
g(y) dF̃n(y) =

n∑
i=1

pig(εi) = 0.(1.7)

Qin and Lawless (1994) and Zhang (1997) showed that in this setting the obtained empirical

likelihood estimator has a uniformly smaller asymptotic variance than the empirical distribution

function. For empirical likelihood and moment restrictions see also Kitamura (2001), Kitamura,

Tripathi, Ahn (2004), and Bonnal and Renault (2004), among others.

The empirical likelihood method was applied in the context of estimation of the error distri-

bution in linear models with fixed design and homoscedastic errors by Nagel (2002) using the

additional information E[ε1] = 0, i. e. g(ε) = ε, that is available from the model. In this

context it depends on the method of parameter estimation whether the empirical likelihood

method yields a smaller asymptotic variance than the empirical distribution function based

on parametric residuals. A comprehensive study of the residual based empirical distribution

functions in the linear model can be found in Koul (2002). Estimators for the error distribution

in AR(1)-models including the centeredness assumption were considered by Genz (2004).

In the presented paper we propose a residual based empirical likelihood method for the error

distribution in nonparametric regression models when auxiliary information is available. We

develop asymptotic expansions for the empirical likelihood estimator, F n, in our context and

prove weak convergence of the process
√

n(Fn(·)−F (·)− b(·)) to a Gaussian process G, where

b denotes a bias term. We compare the resulting asymptotic mean squared error of the new

estimator,
Var(G(y))

n
+ b

2
(y),

with the analogous term for the residual based empirical distribution function, Var(G(y))/n +

b2(y) defined in (1.3) and (1.4), in some examples. In the especially interesting case of g(ε) = ε

(i. e. including the model assumption of centered errors explicitely into the estimation) we

obtain asymptotically the same variances but a considerable reduction of bias.

As a by-product of our proofs we regain asymptotic expansions for smooth linear statistics

1

n

n∑
i=1

g(ε̂i)

in a similar homoscedastic setting considered by Müller, Schick and Wefelmeyer (2004a) and

prove analogous results for heteroscedastic models.

The paper is organized as follows. In section 2 we describe our (homoscedastic) model and ex-

plain regularity assumptions needed to obtain the main asymptotic results presented in section
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3. In section 4 we consider the analogous procedures in a heteroscedastic setting. In section 5

some examples are illustrated in order to discuss the results and in section 6 a simulation study

is presented. The proofs are deferred to an appendix.

2 Model and assumptions

We first consider a nonparametric homoscedastic regression model with independent observa-

tions

Yi = m(Xi) + εi, i = 1, . . . , n,(2.1)

under the following assumptions.

(M1) The univariate design points X1, . . . , Xn are independent and identically distributed with

distribution function FX on compact support, say [0, 1]. FX has a twice continuously

differentiable density fX , such that infx∈[0,1] fX(x) > 0. The regression function m is

twice continuously differentiable in (0, 1) with bounded derivatives.

(M2) The errors ε1, . . . , εn are independent and identically distributed with distribution func-

tion F . They are centered, E[ε1] = 0, with variance σ2 = Var(ε1) ∈ (0,∞), and indepen-

dent from the design points. F is continuously differentiable with bounded, everywhere

positive density f .

(M3) There exist constants γ, C and β > 0 such that for all z ∈ R with |z| ≤ γ

|F (y + z) − F (y) − zf(y)| ≤ C|z|1+β.

Note that assumption (M3) is satisfied with β = 1 under the stronger assumption that f is

continuously differentiable with supy∈R
|f ′(y)| < ∞.

In order to estimate the distribution F of the unobserved errors, one builds nonparametric

residuals

ε̂i = Yi − m̂(Xi), i = 1, . . . , n,

where m̂(x) denotes the Nadaraya-Watson estimator [Nadaraya (1964), Watson (1964)] for

m(x), that is

m̂(x) =
1

n

n∑
i=1

1

h
K

(Xi − x

h

)
Yi

1

f̂X(x)
(2.2)
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with the kernel density estimator for fX(x),

f̂X(x) =
1

n

n∑
i=1

1

h
K

(Xi − x

h

)
.(2.3)

For the kernel estimators we need the following assumptions.

(K) Let K denote a symmetric density with compact support and
∫

uK(u) du = 0.

(H) Let h = hn be a sequence of bandwidths such that nh4 = O(1), nh3+2α(log(h−1))−1 → ∞
(for some α > 0) and nβh1+β(log(h−1))−1−β → ∞ (where β is defined in assumption

(M3)) for n → ∞.

Note that the last bandwidth condition can be omitted when 1+β
β

≤ 3 + 2α. This is always

valid for β ≥ 1
2
. The constant α has only relevance in the technics of the proof and can be

chosen arbitrarily small.

We denote by F̂n the empirical distribution function based on residuals ε̂1, . . . , ε̂n defined in

(1.2). Assumptions (M1), (M2), (M3), (K) and (H) were already imposed by Akritas and Van

Keilegom (2001) to show weak convergence of the residual based empirical process,
√

n(F̂n −
F − b) [where the bias b is defined in (1.4)].

We further assume that additional information about the error distribution is available. This

auxiliary information is given in terms of assumption (A).

(A) E[g(ε1)] =
∫

g(y)f(y) dy = 0, where g = (g1, . . . , gk)
T : R → Rk is a known function such

that E[g2
j (ε1)] < ∞ for j = 1, . . . , k.

Example 2.1 The most important example to consider is g(ε) = ε because the centeredness

of the errors is a given model assumption. Further a priori information, for instance, of a zero

median can be described by the function g(ε) = I{ε ≤ 0} − 1/2. When can be assumed, for

example, that the variance is known and the third moment is zero one would define g(ε) =

(ε, ε2 − σ2, ε3)T .

Throughout the paper the following assumptions on the function g are only assumed to be valid

when stated explicitely.

(G1) We assume that gj is continuously differentiable and there exist constants γ, C and β > 0

such that
∣∣∣
∫ (

gj(y + z) − gj(y) − zg′
j(y)

)
f(y) dy

∣∣∣ ≤ C|z|1+β

for all z ∈ R with |z| ≤ γ, j = 1, . . . , k. Moreover, let E[|g′
j(ε1)|] < ∞, j = 1, . . . , k.
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[Without restriction we use the same constants γ, C and β as in assumption (M3).]

(G2) There exist constants δ, C such that for some positive κ < 2(1 + α)
(
E

[
sup

z,z̃∈R:|z|≤δ,
|z̃|≤δ,|z−z̃|≤ξ

(gj(ε1 + z) − gj(ε1 + z̃))2
])1/2

≤ Cξ1/κ

(where α is defined in assumption (H)), j = 1, . . . , k.

Note that (G2) is, for example, satisfied for κ = 1 by Taylor’s expansion when gj is continu-

ously differentiable and E[supz∈R:|z|≤δ(g
′
j(ε1 + z))2] < ∞ (j = 1, . . . , k). Then κ = 1 < 2(1 + α)

is always valid (α > 0). The smoothness assumptions (G1) and (G2) are similar to the as-

sumptions imposed by Müller, Schick and Wefelmeyer (2004a, Assumption 1, p. 79, and 2004b,

Assumption B1, p. 536) to obtain asymptotic results about smooth linear estimators based on

nonparametric residuals, compare the discussion of the assumptions given there [Müller, Schick

and Wefelmeyer (2004a, section 3)]. Note also that either with assumption (G2) or for the

indicator function g(ε) = I{ε ≤ a} − b it follows

∃δ > 0 such that E
[

sup
y∈R:|y|≤δ

(gj(ε1 + y) − gj(ε1))
2
]

< ∞ ∀j = 1, . . . , k(2.4)

and this condition will be used repeatedly during the proof.

Example 2.2 Functions g(ε) = εk − c corresponding to moment assumptions fulfill assump-

tions (G1) and (G2) when E[ε2k
1 ] < ∞. The same is valid for polynomials, for example,

g(ε) = ε4 − cε2, to account for a relation between second and fourth moment.

Remark 2.3 Assumptions (G1) and (G2) are mainly imposed to obtain stochastic expansions

of 1
n

∑n
i=1 g(ε̂i). In addition to smooth functions g satisfying (G1) and (G2) or indicator func-

tions g(ε) = I{ε ≤ a} − b the theory can be developed for every function g, such that an

expansion 1
n

∑n
i=1 g(ε̂i) = 1

n

∑n
i=1(g(εi) + h(εi)) + oP ( 1√

n
) is valid with some weak assumptions

on the function h (compare Lemma B.1 (ii), (iii) in the appendix).

We further need the following assumptions to assure a unique solution in the maximization of

the empirical likelihood.

(S1) We assume that min1≤i≤n gj(ε̂i) < 0 < max1≤i≤n gj(ε̂i) for all j = 1, . . . , k.

(S2) We assume that Σ = E[g(ε1)g(ε1)
T ] and

∑n
i=1 g(ε̂i)g(ε̂i)

T are positive definite.

Note that assumption (S1) is valid in probability for an increasing sample size because of

assumption (A) when the residuals ε̂i are replaced by the true errors εi. Further, the first

assumption of (S2) with Lemma B.1 (v) (in the appendix) implies the second assumption of

(S2) for increasing sample size, in probability.
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3 Main asymptotic results

The motivation of the empirical likelihood method is as explained in the introduction [compare

(1.5)–(1.7)]. The estimator for the error distribution is

F n(y) =
n∑

i=1

piI{ε̂i ≤ y},

where the weights pi ∈ (0, 1) are chosen such that
∏n

i=1 pi is maximized under the constraints

n∑
i=1

pi = 1,

n∑
i=1

pig(ε̂i) = 0.

Analogously to Qin and Lawless (1994) we obtain the estimator

Fn(y) =
1

n

n∑
i=1

1

1 + η̂T
n g(ε̂i)

I{ε̂i ≤ y},(3.1)

where η̂n is defined as solution of the equation

n∑
i=1

g(ε̂i)

1 + η̂T
n g(ε̂i)

= 0(3.2)

while for all i = 1, . . . , n it holds that 1 + η̂T
n g(ε̂i) > 1

n
. The following two propositions give

stochastic expansions for the solution η̂n as well as for the distribution estimator F n.

Proposition 3.1 Under model (2.1) and assumptions (M1), (M2), (M3), (K), (H), (A), (S1),

(S2) and with either g(ε) = I{ε ≤ a} − b or g satisfying (G1), (G2) we have the expansion

η̂n = Σ−1 1

n

n∑
i=1

g(ε̂i) + oP (
1√
n

).

Proposition 3.2 Under model (2.1) and assumptions (M1), (M2), (M3), (K), (H), (A), (S1),

(S2) and with either g(ε) = I{ε ≤ a} − b or g satisfying (G1), (G2) we have uniformly with

respect to y ∈ R,

F n(y) = F̂n(y) − U(y)T η̂n + oP (
1√
n

),

where F̂n denotes the residual based empirical distribution function defined in (1.2) and U(y) =

E[g(ε1)I{ε1 ≤ y}].

We state our main results for two different cases of additional information in the Theorems

3.3 and 3.7, namely smooth functions g that satisfy assumptions (G1) and (G2) resp. indicator

functions that give quantile informations.
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Theorem 3.3 Under model (2.1) and assumptions (M1), (M2), (M3), (K), (H), (A), (G1),

(G2), (S1) and (S2) we have uniformly in y ∈ R the expansion

F n(y) = b(y) +
1

n

n∑
i=1

[
I{εi ≤ y} + f(y)εi − U(y)T Σ−1(g(εi) − E[g′(ε1)]εi)

]
+ oP (

1√
n

)

where the bias term is defined as b(y) = h2B(f(y) + U(y)TΣ−1E[g′(ε1)]) with

B =
1

2

∫
K(u)u2 du

∫
((mfX)′′(x) − mf ′′

X(x)) dx,

and U(y), Σ are defined in Proposition 3.2 and assumption (S2), respectively. The process√
n(Fn(·) − F (·) − b(·)) converges weakly to a centered Gaussian process G with covariance

structure

Cov(G(y), G(z)) = F (y ∧ z) − F (y)F (z) + f(y)f(z)σ2

+f(y)E[ε1I{ε1 ≤ z}] + f(z)E[ε1I{ε1 ≤ y}]
+U(y)T Σ−1

(
Σ − E[g′(ε1)]E[ε1g

T (ε1)]

−E[ε1g(ε1)]E[g′(ε1)]
T + E[g′(ε1)]σ

2E[g′(ε1)]
T
)
Σ−1U(z)

−UT (y)Σ−1
(
U(z) − E[g′(ε1)]E[ε1I{ε1 ≤ z}]

)

−UT (z)Σ−1
(
U(y) − E[g′(ε1)]E[ε1I{ε1 ≤ y}]

)

−
(
f(z)U(y)T + f(y)U(z)T

)
Σ−1

(
E[ε1g(ε1)] − E[g′(ε1)]σ

2
)
.

The proof of Theorem 3.3 is given in appendix C. It is not true that for all distributions

uniformly in y the asymptotic variance of the empirical likelihood estimator is smaller than the

asymptotic variance of the residual based empirical distribution function as it is the case for

an observed iid-sample ε1, . . . , εn. Different functions g and underlying distributions F have to

be investigated. Also, bias and variance have to be taken into account simultaneously for the

comparison as we will do in the discussion of the asymptotic results in section 5.

Remark 3.4 Note that under a stronger bandwidth condition nh4 = o(1) the bias term b(y)

in Theorem 3.3 is negligible. It can be seen from the expansion stated in the Theorem that

incorporating the auxiliary information about the error distribution does not lead to a smaller

asymptotic variance in the case g(ε) = E[g′(ε)]ε because then F n = F̂n + oP (n−1/2). Then,

using the auxiliary information that the errors are centered, that is g(ε) = ε, does not change

the variance asymptotically. A heuristic explanation for this phenomenon was given by Müller,

Schick and Wefelmeyer (2004a) in the similar context of linear smooth residual based estimators
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by the statement that the mean zero information is already used for estimating ε̂i. However,

the bias terms of order h2 should also be taken into account under the less restrictive bandwidth

condition nh4 = O(1). The bias changes from b(y) defined in (1.4) to b(y) when using empirical

likelihood and the latter term can be considerably smaller as will be discussed in section 5.

Corollary 3.5 Under the assumptions of Theorem 3.3 we have Var(G(y)) = Var(G(y)) for all

y ∈ R if and only if g(ε) = cε for some c ∈ R.

Remark 3.6 As a by-product of the proof of Theorem 3.3 we obtain the following asymptotic

expansion for smooth linear estimators based on nonparametric residuals,

1

n

n∑
i=1

g(ε̂i) =
1

n

n∑
i=1

(g(εi) − E[g′(ε1)]εi) − h2E[g′(ε1)]B + oP (
1√
n

)

where B is defined in Theorem 3.3 [compare Lemma B.1 (ii) in the appendix]. This completes

results given by Müller, Schick and Wefelmeyer (2004a, 2004b), who considered more restrictive

bandwidth conditions to neglect the bias and used a leave-one-out local polynomial estimator

for the regression function.

Next we state our asymptotic results for indicator functions g that include additional informa-

tion about quantiles. The proof of Theorem 3.7 is given in appendix C.

Theorem 3.7 Under model (2.1) and assumptions (M1), (M2), (M3), (K), (H), (A), (S1)

and (S2) where g(ε) = I{ε ≤ a} − b for some constants a and b = F (a) �∈ {0, 1} (k = 1) we

have uniformly in y ∈ R the expansion

F n(y) = b(y) +
1

n

n∑
i=1

[
I{εi ≤ y} + f(y)εi − U(y)

1

b(1 − b)
(I{εi ≤ a} − b + f(a)εi)

]
+ oP (

1√
n

)

where the bias term is b(y) = h2B(f(y) − Σ−1U(y)f(a)) with B defined in Theorem 3.3.

The process
√

n(F n(·) − F (·) − b(·)) converges weakly to a centered Gaussian process G with

covariance structure

Cov(G(y), G(z)) = F (y ∧ z) − F (y)F (z) + f(y)f(z)σ2

+f(y)E[ε1I{ε1 ≤ z}] + f(z)E[ε1I{ε1 ≤ y}]
+(b(1 − b))−2U(z)U(y)

(
b(1 − b) + 2f(a)E[ε1I{ε1 ≤ a}] + f 2(a)σ2

)

−(b(1 − b))−1U(z)
(
F (a ∧ y) − bF (y) + f(a)E[ε1I{ε1 ≤ y}]

)

−(b(1 − b))−1U(y)
(
F (a ∧ z) − bF (z) + f(a)E[ε1I{ε1 ≤ z}

)

−(b(1 − b))−1
(
f(z)U(y) + f(y)U(z)

)(
E[ε1I{ε1 ≤ a}] + f(a)σ2

)
.
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Remark 3.8 For the ease of presentation we stated results for k-dimensional smooth functions

g in Theorem 3.3 and for one dimensional indicator functions in Theorem 3.7. Results can

straightforwardly be generalized to k-dimensional vectors g of indicator functions for including

information about k quantiles, or vectors with some smooth components and some indicator

function components. Further, results can be generalized for all information functions g with

expansions similar to those given in Lemma B.1 (ii) or (iii).

4 The heteroscedastic case

In this section we consider a nonparametric heteroscedastic regression model with independent

observations

Yi = m(Xi) + σ(Xi)εi, i = 1, . . . , n,(4.1)

under assumptions (M1) from section 3 and (M) stated below. Assumption (M) is somewhat

stronger than (M2), (M3) for the homoscedastic model, but was already needed to obtain

Akritas and Van Keilegom’s (2001) result in the heteroscedastic setting.

(M) The variance function σ2 is bounded and twice continuously differentiable with bounded

derivatives in (0, 1) such that infx∈[0,1] σ
2(x) > 0. The errors ε1, . . . , εn are independent

and identically distributed with distribution function F . They are centered, E[ε1] = 0,

with variance Var(ε1) = 1 and existing fourth moment, and independent from the design

points. F is twice continuously differentiable with everywhere positive density f such

that supy∈R
|yf(y)| < ∞, supy∈R

|y2f ′(y)| < ∞.

We are going to investigate whether the empirical distribution function F̂n [defined in (1.2)] of

estimated residuals

ε̂i =
Yi − m̂(Xi)

σ̂(Xi)
(4.2)

[with variance estimator σ̂2 defined below in (4.3)] can be improved by including additional

information about the error distribution F . For the sake of brevity we restrict ourselves to the

case of smooth information functions g satisfying assumptions (A), (S1), (S2) and the modified

assumptions (G1’), (G2’) stated below.

(G1’) We assume that gj is continuously differentiable and there exist constants γ, C and β > 0

such that
∣∣∣
∫ (

gj(y + z1 + yz2) − gj(y) − g′
j(y)(z1 + yz2)

)
f(y) dy

∣∣∣ ≤ C

∫
|z1 + yz2|1+βf(y) dy
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for all z1, z2 ∈ R with |z1|, |z2| ≤ γ, j = 1, . . . , k. Moreover, let E[|g′
j(ε1)|] < ∞,

E[|ε1g
′
j(ε1)|] < ∞ for j = 1, . . . , k, and E[|ε1|1+β] < ∞.

(G2’) There exist constants δ, C such that for some positive κ < 2(1 + α) (j = 1, . . . , k)

(
E

[
sup

|z1|≤δ,|z̃1|≤δ,|z2|≤δ,|z̃2|≤δ
|z1−z̃1|≤ξ,|z2−z̃2|≤ξ

(gj(ε1 + z1 + ε1z2) − gj(ε1 + z̃1 + ε1z̃2))
2
])1/2

≤ Cξ1/κ

(where α is defined in assumption (H)).

Our main interest lies in the information given by the model that the errors are centered and

have variance one, i. e. g(ε) = (ε, ε2 − 1)T . The residuals ε̂i defined in (4.2) are built with

use of the Nadaraya–Watson estimator for m defined in (2.2) and the corresponding variance

estimator,

σ̂2(x) =
1

n

n∑
i=1

1

h
K

(Xi − x

h

)
(Yi − m̂(x))2 1

f̂X(x)
,(4.3)

where the kernel density estimator f̂X is defined in (2.3) and we assume that (K) and (H) [with

β from assumption (G1’)] are valid. Under the stated assumptions, Akritas and Van Keilegom’s

(2001) results show that the process
√

n(F̂n(·) − F (·) − b(·)) converges weakly to a Gaussian

process G with covariance structure

Cov(G(y), G(z)) = F (y ∧ z) − F (y)F (z)(4.4)

+ f(y)f(z) + E[ε1I{ε1 ≤ y}]f(z) + E[ε1I{ε1 ≤ z}]f(y)

+
1

2
yf(y)E[(ε2

1 − 1)I{ε1 ≤ z}] +
1

2
zf(z)E[(ε2

1 − 1)I{ε1 ≤ y}]

+
1

2
yf(y)f(z)E[ε3

1] +
1

2
f(y)zf(z)E[ε3

1] +
1

4
yf(y)zf(z)Var(ε2

1),

where the bias term is defined as b(y) = h2(f(y)B1 + yf(y)B2) and

B1 =
1

2

∫
K(u)u2 du

∫
1

σ(x)
((mfX)′′(x) − (mf ′′

X)(x)) dx(4.5)

B2 =
1

2

∫
K(u)u2 du

∫
1

2σ2(x)

(
(σ2fX)′′(x) − (σ2f ′′

X)(x) + 2(m′(x))2fX(x)
)

dx(4.6)

[see appendix A]. With use of the now differently defined residuals ε̂i [see (4.2)] the empirical

likelihood estimator F n is defined as in (3.1) and under the stated assumptions Propositions 3.1

and 3.2 are valid as well [see appendix D]. The main difference to the results in the homoscedastic

model arises from a different expansion for linear functionals of the residuals as was given in

Remark 3.6 for the homoscedastic case. We formulate the following Proposition that generalizes

results by Müller, Schick and Wefelmeyer (2004a) for the heteroscedastic case.

12



Proposition 4.1 Assume model (4.1) is valid under assumptions (M), (M1), (G1’), (G2’),

(K), (H) and (A). Then, for j = 1, . . . , k,

1

n

n∑
i=1

gj(ε̂i) =
1

n

n∑
i=1

(
gj(εi) − E[g′

j(ε1)]εi − 1

2
E[ε1g

′
j(ε1)](ε

2
i − 1)

)

− h2E[g′
j(ε1)]B1 − h2E[ε1g

′
j(ε1)]B2 + oP (n−1/2),

where B1 and B2 are defined in (4.5) and (4.6), respectively.

The proof of this Proposition is given in appendix D. Combining Propositions 3.1, 3.2 and 4.1

we obtain the main result of this section.

Theorem 4.2 Under model (4.1) and assumptions (M), (M1), (K), (H), (A), (G1’), (G2’),

(S1) and (S2) we have uniformly in y ∈ R the expansion

Fn(y) = b(y) +
1

n

n∑
i=1

[
I{εi ≤ y} + f(y)εi +

1

2
yf(y)(ε2

i − 1)

− U(y)TΣ−1
(
g(εi) − E[g′(ε1)]εi − 1

2
E[ε1g

′(ε1)](ε
2
i − 1)

)]
+ oP (

1√
n

)

where the bias term is

b(y) = h2
{(

f(y) + U(y)TΣ−1E[g′(ε1)]
)
B1 +

(
yf(y) + U(y)T Σ−1E[ε1g

′(ε1)]
)
B2

}

with B1 and B2 defined in (4.5) and (4.6), respectively. The process
√

n(F n(·) − F (·) − b(·))
converges weakly to a centered Gaussian process G with covariance structure

Cov(G(y), G(z))

= Cov(G(y), G(z)) + U(y)T Σ−1
(
Σ − E[g′(ε1)]E[ε1g

T (ε1)]

−E[ε1g(ε1)]E[g′(ε1)]
T + E[g′(ε1)]σ

2E[g′(ε1)]
T
)
Σ−1U(z)

−1

2

(
U(y)TΣ−1zf(z) + U(z)T Σ−1yf(y)

)(
E[g(ε1)(ε

2
1 − 1)] − E[g′(ε1)]E[ε1(ε

2
1 − 1)]

)

−U(y)T Σ−1
(
U(z) − E[g′(ε1)]E[ε1I{ε1 ≤ z}] + f(z)E[ε1g(ε1)] − f(z)σ2E[g′(ε1)]

)

−U(z)T Σ−1
(
U(y) − E[g′(ε1)]E[ε1I{ε1 ≤ y}] + f(y)E[ε1g(ε1)] − f(y)σ2E[g′(ε1)]

)

+
1

4
UT (y)Σ−1E[ε1g

′(ε1)]E[(ε2
1 − 1)2]E[ε1g

′(ε1)]
T Σ−1U(z)

−1

2
UT (y)Σ−1

(
E[g(ε1)(ε

2
1 − 1)] − E[g′(ε1)]E[ε1(ε

2
1 − 1)]

)
ET [ε1g

′(ε1)]Σ
−1U(z)

−1

2
UT (z)Σ−1

(
E[g(ε1)(ε

2
1 − 1)] − E[g′(ε1)]E[ε1(ε

2
1 − 1)]

)
ET [ε1g

′(ε1)]Σ
−1U(y)

13



+
1

4

(
UT (y)Σ−1zf(z) + UT (z)Σ−1yf(y)

)
E[ε1g

′(ε1)]E[(ε2
1 − 1)2]

+
1

2
UT (y)Σ−1E[ε1g

′(ε1)]
(
E[(ε2

1 − 1)I{ε1 ≤ z}] + f(z)E[ε3
1]

)

+
1

2
UT (z)Σ−1E[ε1g

′(ε1)]
(
E[(ε2

1 − 1)I{ε1 ≤ y}] + f(y)E[ε3
1]
)
.

with Cov(G(y), G(z)) from (4.4).

The example g(ε) = (ε, ε2 − 1)T to include the model assumptions explicitly in the estimation

is considered in the next section in Example 5.6. A sketch of the proof of Theorem 4.2 is given

in appendix D.

5 Discussion of the asymptotic results

In this section we compare the asymptotic mean squared error of the residual based empirical

distribution function F̂n with the mean squared error of the empirical likelihood estimator F n.

We concentrate on the homoscedastic model first. Here we have

mse(y) =
1

n
Var(G(y)) + b2(y)

=
1

n

(
F (y)(1 − F (y)) + σ2f 2(y) + 2f(y)E[ε1I{ε1 ≤ y}]

)

+ h4f 2(y)B2

[see (1.3), (1.4) in the introduction and B defined in Theorem 3.3]. First we consider the case

of a smooth function g in the situation of Theorem 3.3. For the mean squared error of the new

estimator we have

mse(y) =
1

n
Var(G(y)) + b

2
(y)

=
1

n

(
F (y)(1− F (y)) + σ2f 2(y) + 2f(y)E[ε1I{ε1 ≤ y}] + W (y)

)

+ h4
(
f(y) + U(y)T Σ−1E[g′(ε1)]

)2

B2

where

W (y) = UT (y)Σ−1{Σ − E[g′(ε1)]E[ε1g
T (ε1)] − E[ε1g(ε1)]E

T [g′(ε1)]

+ σ2E[g′(ε1)]E
T [g′(ε1)]}Σ−1U(y) − 2UT (y)Σ−1{U(y) − E[g′(ε1)]E[ε1I{ε1 ≤ y}]}

− 2f(y)UT (y)Σ−1{E[ε1g(ε1)] − E[g′(ε1)]σ
2}.

For the comparison we assume for the bandwidth used for both estimators that h = cn−1/4

for some constant c > 0 (such that h4 = c4

n
) and consider different examples of functions g

14



and distributions F . For the figures shown below we multiply the curves with n, hence, they

are independent of the sample size. The value of B depends on the regression function, the

design density and the choice of the kernel. We set c4B2 = 1 for the curves shown below. It is

clear that the influence the bias has on the mean squared error changes with this constant and,

hence, changes with the underlying regression function and the choice of kernel and bandwidth.

Example 5.1 The most important example is to include the moment assumption of centered

residuals into the estimation. In the case g(ε) = ε the asymptotic variance of both estimators is

the same (compare Remark 3.4 and Corollary 3.5) and therefore it is sufficient to compare the

bias terms. We have Σ = E[ε2
1] = σ2 and g′ ≡ 1 and therefore b(y) = h2B(f(y)+ 1

σ2 U(y)) where

U(y) = E[ε1I{ε1 ≤ y}] ≤ 0 for all y ∈ R. For example in the case of normally distributed

errors we obtain U(y) = −σ2f(y) and therefore b(y) = 0 whereas b(y) = h2Bf(y) �= 0 for all

y ∈ R (when B �= 0). In this case the first order bias term cancels completely by the use of the

empirical likelihood method. Also for examples of other distributions the new bias term can

be considerably smaller. Figure 1 below shows curves for the squared bias, the variance and

the mean squared error for normal distribution, student’s t-distribution with three degrees of

freedom and the double exponential distribution with density

f(x) =
1

γ
exp

(
− x − q

γ

)
× exp

(
− exp

(
− x − q

γ

))

for γ = 3 and q = −γc such that the expectation γc + q vanishes, where c = 0.5772 approx-

imately, as skew distribution example (with E[ε3
1] �= 0). We observe a bias reduction for all

three example distributions.

INCLUDE FIGURE 1 HERE.

Example 5.2 In the case g(ε) = ε2 − σ2 for known variance σ2 we have E[g′(ε1)] = 0 and

therefore both estimators have the same bias b(y) = b(y). The new variance is

Var(G(y)) = F (y)(1− F (y)) + f 2(y)σ2 + 2f(y)E[ε1I{ε1 ≤ y}]
−U2(y)Σ−1 − 2f(y)U(y)Σ−1E[ε3

1].

For all distributions with vanishing third moment the new variance is uniformly smaller than

Var(G(y)) and we obtain an improved estimator. In particular, for normally distributed errors

we have

Var(G(y)) = Var(G(y)) − 1

2
y2f 2(y).

15



Figure 2 below shows squared bias, variance and mean squared error curves for normal dis-

tribution, student’s t-distribution with five degrees of freedom and the double exponential

distribution defined in Example 5.1.

INCLUDE FIGURE 2 HERE.

Example 5.3 The results obtained in Example 5.2 for a known variance can further be im-

proved by including the information that the errors are centered and defining g(ε) = (ε, ε2 −
σ2)T . Denoting µ3 = E[ε3

1], µ4 = E[(ε2
1 − σ2)2] and U1(y) = E[ε1I{ε1 ≤ y}], U2(y) =

E[(ε2
1 − σ2)I{ε1 ≤ y}] we obtain

Var(G(y)) = F (y)(1 − F (y)) + f 2(y)σ2 + 2f(y)E[ε1I{ε1 ≤ y}]
+

1

(σ2µ4 − µ2
3)

2

(
U2

1 (y)µ4µ
2
3 + U2

2 (y)(2σ2µ3 − σ4µ4)

− 2U1(y)U2(y)µ3
3

)
+

2

σ2µ4 − µ2
3

f(y)
(
U1(y)µ2

3 − U2(y)µ3σ
2
)

= Var(G(y)) − U2
2 (y)

1

µ4

where the last line only holds for distributions with vanishing third moment. In this case the

variance reduces to the variance in Example 5.2. For the bias term we have

b(y) = h2B
(
f(y) +

1

σ2µ4 − µ2
3

(U1(y)µ4 − U2(y)µ3)
)
.

For distributions with µ3 = 0 the bias is the same as in Example 5.1; in particular, it is

zero for normal distributions. For all distributions with vanishing third moment we therefore

obtain an estimator with both smaller bias and smaller asymptotic variance. Figure 3 shows

the corresponding squared bias, variance and mse curves for normal distribution, student’s

t-distribution with five degrees of freedom and double exponential distribution. For all three

distributions we observe a considerably smaller mean squared error compared to Example 5.2.

INCLUDE FIGURE 3 HERE.

Next, we consider an example corresponding to additional information about quantiles accord-

ing to Theorem 3.7.

Example 5.4 For g(ε) = I{ε ≤ a} − b we obtain for distributions with zero median (a =

0, b = 0.5) the variance

Var(G(y)) = F (y)(1− F (y)) + f 2(y)σ2 + 2f(y)E[ε1I{ε1 ≤ y}]
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+4
[
4U2(y){1

4
+ 2f(0)E[ε1I{ε1 ≤ 0}] + f 2(0)σ2}

−2U(y)(F (0 ∧ y) − 1

2
F (y) + f(0)E[ε1I{ε1 ≤ y}])

−2f(y)U(y){E[ε1I{ε1 ≤ 0}] + f(0)σ2}
]

with U(y) = F (0 ∧ y) − 1
2
F (y) ∈ [0, 0.25] for all y ∈ R. The bias is

b(y) = h2B(f(y) − 4U(y)f(0)) = h2B(f(y) − 4[F (0 ∧ y) − 1

2
F (y)]f(0)).

Figure 4 below shows curves for the squared bias, the variance and the mean squared error for

normal distribution, student’s t-distribution with three degrees of freedom (both with a = 0

and b = 0.5) and double exponential distribution (with a = 0 and b = 0.570371).

INCLUDE FIGURE 4 HERE.

Example 5.5 We investigate in this example whether including the centeredness information

gives better results compared to Example 5.4, that is, we consider g(ε) = (ε, I{ε ≤ 0}−F (0))T ,

where F (0) is known. This situation is not covered by Theorems 3.3 and 3.7, but results can

be derived in a complete analogous way. We obtain for the asymptotic variance,

Var(G(y)) = Var(G(y)) + V 2(y)Var(G(0)) − 2V (y)Cov(G(y), G(0))

where Var(G(y)) is defined in (1.3),

V (y) =
σ2U2(y) − U1(0)U1(y)

σ2F (0)(1 − F (0)) − U2
1 (0)

and U1(y) = E[ε1I{ε1 ≤ y}], U2(y) = E[(I{ε1 ≤ 0} − F (0))I{ε1 ≤ y}] = F (y ∧ 0)− F (0)F (y).

For the bias we have

b(y) = h2B
(
f(y) +

U1(y){F (0)(1− F (0)) + U1(0)f(0)} − U2(y){U1(0) + σ2f(0)}
σ2F (0)(1 − F (0)) − U2

1 (0)

)

For standard normally distributed errors we have again b(y) = 0. Figure 5 below shows curves

for the squared bias, the variance and the mean squared error for normal distribution, student’s

t-distribution with three degrees of freedom and the double exponential distribution. We obtain

uniformly smaller mse’s for F n compared with Example 5.4.

INCLUDE FIGURE 5 HERE.

Finally, we consider one example for the heteroscedastic model.
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Example 5.6 We consider the information function g(ε) = (ε, ε2 − 1)T to include the model

assumption of centered errors with unit variance into the error distribution estimation. This

is comparable to Example 5.1 in the homoscedastic setting and analogously the asymptotic

variance curves of F̂n and F n coincide whereas the new estimator has a smaller bias. In Figure

6 the squared bias, variance and mse curves are displayed for normal, student’s t-distribution

with five degrees of freedom and double exponential distribution (all distributions standardized

such that they are centered with unit variance).

INCLUDE FIGURE 6 HERE.

6 Small sample performance

In this section we compare the performances of the two distribution estimators for finite sam-

ples by means of a simulation study. We concentrate on the homoscedastic model (2.1) with

regression function m(x) = 3x2 and uniformly in [0, 1] distributed design points. As error

distributions we use the three different distributions already considered in section 5, namely

standard normal distribution, student’s t-distribution and the double exponential distribution.

For the regression estimator we use the standard normal kernel and we consider bandwidths

h = c/n1/4 according to the theoretical bandwidth conditions, for different suitable values of

the constant c between 0.1 and 3. Displayed in Figures 7 and 8 are values of the mean inte-

grated squared error E[
∫

(Gn(y) − F (y))2dy] for Gn = F̂n and Gn = F n, estimated from 1000

replications, where the integral is approximated using 100 grid points in an appropriate inter-

val chosen as [−3, 3] for the normal distribution, [−4, 4] for the t-distribution and [−7, 7] for

the double exponential distribution. For calculating η̂n defined in (3.2) we used the Bisection

method for one-dimensional g and the multivariate Newton Raphson procedure otherwise [both

described in Press, Teukolsky, Vetterling and Flannery (2002), p. 357 and p. 383].

For Example 5.1, i. e. including the centeredness information, results are displayed in Figure

7. The sample size is n = 50 in the left column and n = 100 in the right column. In the first

row the error distribution is standard normal. The solid curve (curve 1) displays the mean

integrated squared error, or MISE, for the residual based empirical distribution function F̂n,

whereas the dashed curve (curve 2) displays the corresponding results for the new estimator

F n. We always obtain better results, i. e. a smaller MISE, for the new estimator, although

for some choices of bandwidths the values are very close. For the symmetric distributions it

is interesting to see the effect that for an increasing bandwidth the difference between the

performances of the two estimators increases. This is according to the theory because for an

18



increasing bandwidth the effect of the bias on the MISE increases and in this example the new

estimator has a considerably smaller asymptotic bias. The results displayed in the second and

third row of Figure 7 correspond to the student’s t-distribution with three degrees of freedom

and the double exponential distribution, respectively. We obtain a smaller MISE for the new

estimator in all cases.

INCLUDE FIGURE 7 HERE.

In Figure 8 the MISE curves for Example 5.3 are displayed in the left panel, where the sample

size is n = 100 and we consider standard normal, t5 and double exponential distribution. For

standard normally and t–distributed errors the empirical likelihood methods yields a great

improvement in terms of MISE. For double exponential distribution the new estimator has a

smaller MISE only for bandwidth constants greater than c = 0.5 and for this distribution larger

bandwidths should be recommended. In the right panel of Figure 8 results for Example 5.5 for

sample size n = 50 and normal, t3 and double exponential distribution are shown. In all cases

the new estimator has a smaller MISE.

INCLUDE FIGURE 8 HERE.

We also implemented an approximation of η̂n from the asymptotic expansion given in Proposi-

tion 3.2, where only the dominating term is used. In most cases this gave even better results,

but it failed to work in Example 5.3. Therefore, the results are not displayed and we do rec-

ommend to use the Bisection or Newton Raphson procedure to obtain η̂n instead of using the

approximation.
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A Appendix: Akritas and Van Keilegom’s process

The homoscedastic model

We give a short derivation of the results stated in the introduction, in particular (1.4) and (1.3).

From the proof of Theorem 1 by Akritas and Van Keilegom (2001, p. 555) it follows that in

the case of homoscedasticity (where no estimation of a variance function σ is needed) and for

score function J = I[0, 1] the function ϕ defined in Theorem 1 (p. 552) has the form

ϕ(x, z, y) = −f(y)

∫
(I{z ≤ v} − F (v|x)) dv.

Here, F (v|x) = F (v − m(x)) is the conditional distribution of Yi given Xi = x and we obtain

ϕ(x, z, y) = −f(y)
(∫ ∞

z

(1 − F (v|x)) dv −
∫ z

−∞
F (v|x) dv

)

= −f(y)(m(x) − z).

Therefore, ϕ(Xi, Yi, y) = f(y)εi and (1.3) follows from Theorem 2 by Akritas and Van Keilegom

(2001, p. 552). The bias formula (1.4) is deduced from the bias of the Nadaraya–Watson

[Nadaraya (1964), Watson (1964)] regression estimator and the expansion

F̂n(y) − F (y) = Fn(y) − F (y) + f(y)

∫
(m̂(x) − m(x))fX(x) dx + oP (n−1/2)

where Fn denotes the empirical distribution function of the true errors [see p. 555 of Akritas

and Van Keilegom (2001)].

The heteroscedastic model

In the heteroscedastic model (4.1) the function ϕ from Theorem 1 by Akritas and Van Keilegom

(2001) is equal to

ϕ(x, z, y) = − f(y)

σ2(x)

(
σ(x)(m(x) − z) − ym2(x) + ym(x)z +

1

2
σ2(x)y +

1

2
m2(x)y − 1

2
yz2

)

and this yields ϕ(Xi, Yi, y) = f(y)(εi +
y
2
(ε2

i − 1)). The bias b(y) is deduced from the expansion

F̂n(y) − F (y) = Fn(y) − F (y) + f(y)

∫
m̂(x) − m(x)

σ(x)
fX(x) dx

+ yf(y)

∫
σ̂(x) − σ(x)

σ(x)
fX(x) dx + oP (n−1/2)

= Fn(y) − F (y) + f(y)

∫
m̂(x) − m(x)

σ(x)
fX(x) dx

+ yf(y)

∫
σ̂2(x) − σ2(x)

2σ2(x)
fX(x) dx + oP (n−1/2)
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[compare p. 555, 564, Akritas and Van Keilegom (2001)] by inserting the definitions of m̂ in

(2.2) and σ̂2 in (4.3).

B Appendix: Auxiliary results

Lemma B.1 Assume model (2.1) with assumptions (M1), (M2), (K), (H) and (A).

(i) With either g(ε) = I{ε ≤ a} − b for some constants a and b (k = 1) or g satisfying (G1)

and (G2) we have maxi=1,...,n |gj(ε̂i)| = oP (
√

n) (j = 1, . . . , k).

(ii) Under the additional assumptions (G1), (G2) we have the expansion 1
n

∑n
i=1 gj(ε̂i) =

1
n

∑n
i=1(gj(εi) − E[g′

j(ε1)]εi) − h2E[g′
j(ε1)]B + oP ( 1√

n
) (j = 1, . . . , k) where B is defined

in Theorem 3.3.

(iii) For g(ε) = I{ε ≤ a} − b for some constants a and b (k = 1) we have the expansion
1
n

∑n
i=1 g(ε̂i) = 1

n

∑n
i=1 g(εi) + f(a)εi + h2f(a)B + oP ( 1√

n
) where B is defined in Theorem

3.3.

(iv) With either g(ε) = I{ε ≤ a} − b for some constants a and b (k = 1) or g satisfying (G1)

and (G2) we have 1
n

∑n
i=1(gj(ε̂i) − gj(εi))

2 = oP (1) (j = 1, . . . , k).

(v) With either g(ε) = I{ε ≤ a} − b for some constants a and b (k = 1) or g satisfying (G1)

and (G2) we have 1
n

∑n
i=1 g(ε̂i)g

T (ε̂i) = Σ + oP (1).

Proof. (i). Under the assumptions, condition (2.4) is valid. We have from the triangle

inequality

max
i=1,...,n

|gj(ε̂i)| ≤ max
i=1,...,n

|gj(ε̂i) − gj(εi)| + max
i=1,...,n

|gj(εi)|(B.1)

and consider the second term on the right hand side first. For every ε > 0 one obtains

P
(

max
i=1,...,n

|gj(εi)| > ε
√

n
)

≤ nE[I{|gj(ε1)| > ε
√

n}](B.2)

≤ 1

ε2
E

[
|gj(ε1)|2I{|gj(ε1)|2 ≥ ε2n}

]
= o(1)

with the assumption E[g2
j (ε1)] < ∞. For the first term on the right hand side of (B.1) we

further have

P
(

max
i=1,...,n

|gj(ε̂i) − gj(εi)| > ε
√

n
)

≤ P
(

max
i=1,...,n

|gj(ε̂i) − gj(εi)| > ε
√

n, max
i=1,...,n

|εi − ε̂i| ≤ δ
)

+ P
(

max
i=1,...,n

|εi − ε̂i| > δ
)
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[with δ from condition (2.4)]. The last probability converges to zero because

max
i=1,...,n

|εi − ε̂i| ≤ sup
x∈[0,1]

|m̂(x) − m(x)| = o(1)(B.3)

almost surely by assumptions (M1), (M2), (K) and (H). Furthermore we have

P
(

max
i=1,...,n

|gj(ε̂i) − gj(εi)| > ε
√

n, max
i=1,...,n

|εi − ε̂i| ≤ δ
)

≤ P
(

max
i=1,...,n

|hj(εi)| > ε
√

n
)

where hj(x) = supy∈R:|y|≤δ |gj(x + y)− gj(x)|. Analogous to argumentation (B.2) we obtain the

assertion from (2.4), that is E[h2
j (ε1)] < ∞.

(ii). This statement corresponds to Theorem 2 by Müller, Schick and Wefelmeyer (2004a)

when using a leave-one-out local polynomial estimator for the regression function. We present

a different proof nevertheless because some arguments of the proof are used to show (iv) and

(v). Our proof uses some ideas of the proof of Lemma 1, Akritas and Van Keilegom (2001).

First, we show weak convergence of the empirical process

Gn(g̃j) =
1√
n

n∑
i=1

(
g̃j(εi, Xi) −

∫ ∫
g̃j(y, x)f(y)fX(x) dy dx

)
(B.4)

indexed by functions g̃j ∈ Gj , where

Gj =
{
g̃j : R × [0, 1] → R, g̃j(ε, x) = gj(ε + h(x)) − gj(ε)

∣∣∣ h ∈ H
}

.(B.5)

The smooth function class H = C1+α
δ [0, 1] is defined in van der Vaart and Wellner (1996, p.

154) [see also the proof of Lemma D.1: all continuous functions h : [0, 1] → IR that fulfill (D.1)

build the class C1+α
ρ [0, 1]]. Note that for n → ∞ the function m− m̂ is an element of C1+α

δ [0, 1]

with probability one [confer Akritas and Van Keilegom (2001)] and that

1

n

n∑
i=1

gj(ε̂i) =
1

n

n∑
i=1

gj(εi + (m − m̂)(Xi)).

The function class Gj has a square integrable envelope by (2.4) because supx∈[0,1] |h(x)| ≤ δ for

h ∈ H. In order to show that Gj is Donsker we prove that the bracketing integral is finite, i. e.
∫ ∞

0

√
log N[ ](ξ,Gj, L2(P )) dξ < ∞,(B.6)

where P denotes the distribution of (ε1, X1). Let ξ > 0 and define ξ̃ = (ξ/(2C))κ with constant

C defined in assumption (G2). We have from Theorem 2.7.1 in van der Vaart and Wellner

(1996, p. 155) for the covering numbers of H with respect to the supremum norm,

log N(ξ̃,H, || · ||∞) ≤ Kξ−κ/(1+α)(B.7)

22



for some constant K. Further, for ξ̃ ≥ δ the covering number is one, choosing the center h1 ≡ 0

and noting that supx∈[0,1] |h(x)| ≤ δ for h ∈ H. Let h1, . . . , hλ [λ = N(ξ̃,H, || · ||∞)] denote the

centers of a covering for H with radius ξ̃ with respect to the supremum norm. Let h ∈ H and

||h − hi||∞ < ξ̃. Then a bracket for g̃j(ε, h) = gj(ε + h(x)) − gj(ε) is given by

[
gj(ε + hi(x)) − gj(ε) − g̃∗

j (ε, x) , gj(ε + hi(x)) − gj(ε) + g̃∗
j (ε, x)

]

where g̃∗
j (ε, x) = sup |gj(ε + z) − gj(ε + z̃)| and the supremum is built over |z| ≤ δ, |z̃| ≤

δ, |z − z̃| ≤ ξ̃. The bracket has L2(P ) length less or equal to ξ by assumption (G2). We have

N[ ](ξ,Gj, L2(P )) = λ brackets and (B.6) follows from (B.7) and the assumption κ
2(1+α)

< 1 [the

integral only has to be evaluated in (0, 2Cδ1/κ)].

We have shown weak convergence of the process Gn(g̃j) defined in (B.4) and insert the random

function ĝj(ε, x) = gj(ε + (m − m̂)(x)) − gj(ε) now. We have

∫
ĝ2

j dP =

∫ ∫ (
gj(y + (m − m̂)(x)) − gj(y)

)2

fX(x)f(y) dx dy = oP (1)(B.8)

by the dominated convergence theorem using (2.4) and the convergence∫
(gj (y + (m − m̂)(x)) − gj(y))2fX(x) dx −→ 0 for each fixed y (follows by Taylor’s expan-

sion and the almost sure uniform convergence of m̂ − m to zero, because g′
j is continuous and

therefore bounded in a neighbourhood of the fixed y). By (B.8), applying Lemma 19.24 of van

der Vaart (1998, p. 280) we obtain

Gn(ĝj) =
1√
n

n∑
i=1

(
gj(εi + (m − m̂)(Xi)) − gj(εi)

−
∫ ∫

(gj (y + (m − m̂)(x)) − gj(y))fX(x)f(y) dx dy
)

= oP (1).

By assumptions (G1) and (H) using supx∈[0,1] |m̂(x)−m(x)| = O((n−1h−1 log h−1)1/2) a.s. [confer

Prop. 3, Akritas and Van Keilegom (2001)] we obtain the expansion

1√
n

n∑
i=1

gj(εi + (m − m̂)(Xi)) =
1√
n

n∑
i=1

gj(εi)

+
√

n

∫
(m − m̂)(x)fX(x) dx

∫
g′

j(y)f(y) dy + oP (1).

The assertion now follows by inserting the definition of m̂ in (2.2) and tedious but simple

calculations of expectations and variances using assumptions (K) and (H).

(iii). This follows like Theorem 1 of Akritas and Van Keilegom (2001) in a homoscedastic

model, compare appendix A.
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(iv). The proof uses results from the proofs of (ii) and (iii). The function class Gj defined in

(B.5) is Donsker (in either case for g) and therefore G2
j is Glivenko–Cantelli class in probability

[van der Vaart and Wellner (1996, p. 194, Lemma 2.10.14) ]. We obtain

sup
h∈H

∣∣∣ 1
n

n∑
i=1

(
gj(εi + h(Xi)) − gj(εi)

)2

−
∫ ∫ (

gj(y + h(x)) − gj(y)
)2

fX(x)f(y) dx dy
∣∣∣ = op(1)

and therefore

1

n

n∑
i=1

(
gj(εi + (m − m̂)(Xi)) − gj(εi)

)2

=

∫ ∫ (
gj(y + (m − m̂)(x)) − gj(y)

)2

fX(x)f(y) dx dy + oP (1).

The assertion follows from (B.8) in the case of a smooth function g and the analogous statement

for the indicator function g(ε) = I{ε ≤ a} − b. The latter is obtained by

∫ ∫
(g (y + (m − m̂)(x)) − g(y))2fX(x)f(y) dx dy =

∫
|F (a + (m̂ − m)(x)) − F (a)|fX(x) dx,

assumption (M3) and supx∈[0,1] |m̂(x) − m(x)| = o(1) almost surely.

(v). For j, 
 ∈ {1, . . . , k} we have to show that

1

n

n∑
i=1

gj(ε̂i)g�(ε̂i) =

∫
gj(y)g�(y)f(y) dy + oP (1).

The proof is similar to the proof of (iv). The function classes

G̃j = {(ε, x) �→ gj(ε + h(x)) | h ∈ H}

are Donsker (j = 1, . . . , k) (where H = C1+α
δ [0, 1]). From van der Vaart and Wellner (1996, p.

204, Problem 8) follows that G̃jG̃� is Glivenko–Cantelli class in probability. From this follows

sup
h∈H

∣∣∣ 1
n

n∑
i=1

gj(εi + h(Xi))g�(εi + h(Xi)) − E[gj(ε1 + h(X1))g�(ε1 + h(X1))]
∣∣∣ = oP (1)

and therefore we have with ε̂i = εi + (m − m̂)(Xi)

∣∣∣ 1
n

n∑
i=1

gj(ε̂i)g�(ε̂i) −
∫ ∫

gj (y + (m − m̂)(x)) g� (y + (m − m̂)(x)) fX(x)f(y) dx dy
∣∣∣ = oP (1).

From supx∈[0,1] |m̂(x)−m(x)| = o(1) almost surely we obtain the assertion similar to (B.8) and

the considerations at the end of the proof of (iv). �
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Lemma B.2 Under assumptions (M1), (M2), (K), (H), (A), (S1) and (S2) we have

(i) ||η̂n|| = OP (1/
√

n)

(ii) max
i=1,...,n

∣∣∣ 1

1 + η̂T
n g(ε̂i)

∣∣∣ = OP (1).

Proof. (i). η̂n is the solution of equation (3.2). From this we obtain the estimation

0 =
∣∣∣
∣∣∣ 1
n

n∑
i=1

g(ε̂i)

1 + η̂T
n g(ε̂i)

∣∣∣
∣∣∣

=
∣∣∣
∣∣∣ 1
n

n∑
i=1

g(ε̂i) − 1

n

n∑
i=1

η̂T
n g(ε̂i)

g(ε̂i)

1 + η̂T
n g(ε̂i)

∣∣∣
∣∣∣

≥ ||η̂n|| 1
n

n∑
i=1

||g(ε̂i)||2 1

1 + ||η̂n|| max
j=1,...,k

max
i=1,...,n

|gj(ε̂i)| −
∣∣∣
∣∣∣ 1
n

n∑
i=1

g(ε̂i)
∣∣∣
∣∣∣

and it follows that

||η̂n|| ≤
∣∣∣
∣∣∣ 1
n

n∑
i=1

g(ε̂i)
∣∣∣
∣∣∣
( 1

n

n∑
i=1

||g(ε̂i)||2 −
∣∣∣
∣∣∣ 1
n

n∑
i=1

g(ε̂i)
∣∣∣
∣∣∣ max

j=1,...,k
max

i=1,...,n
|gj(ε̂i)|

)−1

.

Now from Lemma B.1 (iv) we have that 1
n

∑n
i=1 ||g(ε̂i)||2 = 1

n

∑n
i=1 g2

1(ε̂i)+. . .+g2
k(ε̂i) converges

in probability to E[g2
1(ε1)+ . . .+ g2

k(ε1)] > 0 by assumption (S2). From Lemma B.1 (i) and (ii)

resp. (iii) follows the assertion.

(ii). In order to prove the assertion we show max1≤i≤n |1−(1+ η̂T
n g(ε̂i))

−1| = oP (1). By Lemma

B.1(i) and Lemma B.2(i) we have P (||η̂n||max1≤i≤n,1≤j≤k |gj(ε̂i)| ≥ 1) = o(1) and, further, for

all ε > 0,

P
(

max
1≤i≤n

∣∣∣ η̂T
n g(ε̂i)

1 + η̂T
n g(ε̂i)

∣∣∣ > ε , ||η̂n|| max
1≤i≤n,1≤j≤k

|gj(ε̂i)| < 1
)

≤ P
( ||η̂n||max1≤i≤n,1≤j≤k |g(ε̂i)|

1 − ||η̂n||max1≤i≤n,1≤j≤k |g(ε̂i)| > ε
)

= P
(
||η̂n|| max

1≤i≤n,1≤j≤k
|g(ε̂i)| >

ε

1 + ε

)
= o(1).

�

Lemma B.3 Under model (2.1) and assumptions (M1), (M2), (M3), (K), (H) and (A) we

have sup
y∈R

1

n

n∑
i=1

|I{ε̂i ≤ y} − I{εi ≤ y}| = oP (1).

Proof. The assertion is shown in two steps. The first step consists in showing 1
n

∑n
i=1 |I{ε̂i ≤

y} − I{εi ≤ y}| = oP (1) for fixed y ∈ R. To this end note that |I{εi ≤ y} − I{ε̂i ≤ y}| ≤
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I{y − τ < εi ≤ y + τ} for τ > 0 for all i = 1, . . . , n, y ∈ R whenever max1≤i≤n |ε̂i − εi| ≤ τ .

Hence, for any ε > 0 we have

P
(1

n

n∑
i=1

|I{ε̂i ≤ y} − I{εi ≤ y}| > ε
)

≤ P
(∣∣∣ 1

n

n∑
i=1

I{y − τ < εi ≤ y + τ} − (F (y + τ) − F (y − τ))
∣∣∣ > ε/2

)
(B.9)

+ P (|F (y + τ) − F (y − τ)| > ε/2) + P (max
1≤i≤n

|ε̂i − εi| > τ).(B.10)

The term (B.9) converges to zero almost surely according to the strong law of large numbers.

Because F is continuous the first term in term (B.10) is equal to zero for some sufficiently small

τ . The second term in (B.10) converges to zero because of (B.3).

After showing the assertion for fixed y we include the supremum by a standard argument.

The distribution function F is continued with F (−∞) := 0, F (∞) := 1. Then the real line is

segmented into −∞ = y0 < y1 < . . . < yN−1 < yN = ∞ such that |F (yk) − F (yk−1)| < ε/2 for

k = 1, . . . , N . For each y exists a k ∈ {1, . . . , N} such that y ∈ [yk−1, yk). The assertion follows

using |I{εi ≤ y} − I{ε̂i ≤ y}| ≤ |I{ε̂i ≤ yk} − I{εi ≤ yk−1}| + |I{ε̂i ≤ yk−1} − I{εi ≤ yk}| for

an estimation of 1
n

∑n
i=1 |I{εi ≤ y} − I{ε̂i ≤ y}| through expressions with fixed yk, 1 ≤ k ≤ N,

using the first part of the proof. �

C Appendix: Proofs of main results

Proof of Proposition 3.1

η̂n is a solution of equation (3.2) and this yields

0 =
1

n

n∑
i=1

g(ε̂i) − 1

n

n∑
i=1

g(ε̂i)g(ε̂i)
T η̂n +

1

n

n∑
i=1

(η̂T
n g(ε̂i))

2 g(ε̂i)

1 + η̂T
n g(ε̂i)

.(C.1)

The last term can be estimated as follows,

∣∣∣
∣∣∣ 1
n

n∑
i=1

(η̂T
n g(ε̂i))

2 g(ε̂i)

1 + η̂T
n g(ε̂i)

∣∣∣
∣∣∣

≤ ||η̂n||2 1

n

n∑
i=1

||g(ε̂i)||2 max
j=1,...,k

max
i=1,...,n

|gj(ε̂i)| max
i=1,...,n

∣∣∣ 1

1 + η̂T
n g(ε̂i)

∣∣∣ = oP (
1√
n

)

using Lemma B.2 (i), (ii), Lemma B.1 (i) and (v). In the second term of (C.1) we can replace
1
n

∑n
i=1 g(ε̂i)g(ε̂i)

T by Σ according to Lemma B.1, (v). The assertion follows by isolating η̂n. �
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Proof of Proposition 3.2

We use the following expansion similar to the beginning of the proof of Prop. 3.1,

F n(y) − F̂n(y) = −1

n

n∑
i=1

η̂T
n g(ε̂i)

(
1 − η̂T

n g(ε̂i) +
(η̂T

n g(ε̂i))
2

1 + η̂T
n g(ε̂i)

)
I{ε̂i ≤ y}.

To prove the assertion of the Proposition we have to show uniformly with respect to y ∈ R

1

n

n∑
i=1

g(ε̂i)I{ε̂i ≤ y} = U(y) + oP (1)(C.2)

1

n

n∑
i=1

(η̂T
n g(ε̂i))

2I{ε̂i ≤ y} = oP (
1√
n

)(C.3)

1

n

n∑
i=1

(η̂T
n g(ε̂i))

3

1 + η̂T
n g(ε̂i)

I{ε̂i ≤ y} = oP (
1√
n

).(C.4)

To show (C.2) we use the expansion 1
n

∑n
i=1 g(ε̂i)I{ε̂i ≤ y} = An(y) + Bn(y) + Cn(y), where

An(y) =
1

n

n∑
i=1

g(εi)I{εi ≤ y}

Bn(y) =
1

n

n∑
i=1

(g(ε̂i) − g(εi))I{ε̂i ≤ y}

Cn(y) =
1

n

n∑
i=1

g(εi)(I{ε̂i ≤ y} − I{εi ≤ y}).

An(y) converges uniformly to U(y) almost surely, because the class {ε �→ g(ε)I{ε ≤ y} | y ∈ R}
is VC-subgraph [see van der Vaart and Wellner (1996), Lemma 2.6.18 (vi), p. 147] and therefore

forms a Glivenko–Cantelli class. Further we have uniformly in y ∈ R

||Bn(y)|| ≤
(1

n

n∑
i=1

||g(ε̂i) − g(εi)||2
)1/2(1

n

n∑
i=1

I{ε̂i ≤ y}
)1/2

≤
(1

n

n∑
i=1

(g1(ε̂i) − g1(εi))
2 + . . . + (gk(ε̂i) − gk(εi))

2
)1/2

= oP (1)

by Lemma B.1 (v). Furthermore,

||Cn(y)|| ≤
(1

n

n∑
i=1

||g(εi)||2
)1/2(1

n

n∑
i=1

(I{ε̂i ≤ y} − I{εi ≤ y})2
)1/2

= OP (1)
(1

n

n∑
i=1

|I{ε̂i ≤ y} − I{εi ≤ y}|
)1/2

= oP (1)
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by Lemma B.3. The next assertion, (C.3), is valid because

1

n

n∑
i=1

(η̂T
n g(ε̂i))

2I{ε̂i ≤ y}

≤ ||η̂n||2 1

n

n∑
i=1

||g(ε̂i)g
T (ε̂i)|| = OP (n−1)OP (1) = oP (n−1/2)

according to Lemma B.1(iv) and Lemma B.2. The assertion (C.4) is valid because it holds that

| 1
n

n∑
i=1

(η̂T
n g(ε̂i))

3

1 + η̂T
n g(ε̂i)

I{ε̂i ≤ y}|

≤ ||η̂n||3 max
1≤i≤n,1≤j≤k

|gj(ε̂i)| max
1≤i≤n

∣∣∣ 1

1 + η̂T
n g(ε̂i)

∣∣∣ 1
n

n∑
i=1

||g(ε̂i)g
T (ε̂i)|| = oP (n−1)

using Lemma B.2 (i) and (ii), Lemma B.1 (i) and (v). �

Proof of Theorem 3.3

The expansion of the process follows from Propositions 3.2, 3.1 and Lemma B.1 (ii). Because

sums of Donsker classes are Donsker [van der Vaart and Wellner (1996), p. 192, Ex. 2.10.7.] we

only need to show that the following function classes F� (
 = 1, 2) are Donsker,

F1 = {ε �→ I{ε ≤ y} − F (y) | y ∈ R}
F2 = {ε �→ f(y)ε− U(y)TΣ−1(g(ε) − E[g′(ε1)]ε) | y ∈ R}.

F1 is Donsker by classical results. F2 is a subset of the at most (k+1)-dimensional vector space

{ε �→ c0ε +
∑k

j=1 cjhj(ε) | c0, . . . , ck ∈ R} (with hj(ε) = gj(ε) − E[g′
j(ε1)]ε) and is therefore

a VC-class [van der Vaart and Wellner (1996), p. 146, Lemma 2.6.15]. Pointwise separability

of F2 can be shown by a standard argument considering the countable subclass indexed by

rational y ∈ Q. Moreover, F2 has a square integrable envelope by assumptions (M2) and (A)

and is therefore Donsker [van der Vaart and Wellner (1996), p. 141].

For the calculation of the covariances denote Hi(y) := I{εi ≤ y}−F (y)+f(y)εi−U(y)T Σ−1(g(εi)−
E[g′(ε1)]εi) so that

√
n(F n(y) − F (y) − b(y)) = 1√

n

∑n
i=1 Hi(y) + op(1) and E[H1(y)] = 0. For

the covariance one obtains

Cov(
1√
n

n∑
i=1

Hi(y),
1√
n

n∑
j=1

Hj(z)) = E[H1(y)H1(z)]

= E[(I{ε1 ≤ y} − F (y))(I{ε1 ≤ z} − F (z))] + f(y)f(z)E[ε2
1]

+U(y)T Σ−1E[(g(ε1) − E[g′(ε1)]ε1)(g(ε1) − E[g′(ε1)]ε1)
T ]U(z)Σ−1
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+E[(I{ε1 ≤ y} − F (y))f(z)ε1] + E[(I{ε1 ≤ z} − F (z))f(y)ε1]

−E[(I{ε1 ≤ y} − F (y))U(z)T Σ−1(g(ε1) − E[g′(ε1)]ε1)]

−E[(I{ε1 ≤ z} − F (z))U(y)T Σ−1(g(ε1) − E[g′(ε1)]ε1)]

−E[f(y)ε1U(z)T Σ−1(g(ε1) − E[g′(ε1)]ε1)]

−E[f(z)ε1U(y)T Σ−1(g(ε1) − E[g′(ε1)]ε1)]

which coincides with the asserted asymptotic covariance in Theorem 3.3. �

Proof of Theorem 3.7

Using Propositions 3.2, 3.1 and Lemma B.1 (iii) the proof follows analogously to the proof of

Theorem 3.3. �

D Appendix: Proofs for the heteroscedastic model

Let K1, K2 > 0 denote constants such that 2K1 ≤ σ(x) ≤ K2/2 for all x ∈ [0, 1] and the

derivatives σ′ and σ′′ are also bounded by K2/2 according to assumption (M). Then it follows

that P (K1 ≤ σ̂(x) ≤ K2 for all x ∈ [0, 1]) converges to one. From the argumentation in Akritas

and Van Keilegom (2001) we have that m̂−m and σ̂−σ are elements of C1+α
ρ [0, 1] for all ρ > 0

for n → ∞ with probability one. A suitable choice of ρ yields that (m̂−m)/σ̂ and (σ̂−σ)/σ̂ are

elements of H = C1+α
δ [0, 1] with constant δ from assumption (G2’), for n → ∞ with probability

one. This is assured by the next Lemma and is needed in the proof of Proposition 4.1.

Lemma D.1 Let δ > 0 and K1, K2 > 0 such that s ∈ C1+α
K2

[0, 1] with infx∈[0,1] |s(x)| ≥ K1.

Then there exists some ρ > 0 such that h
s
∈ C1+α

δ [0, 1] for all h ∈ C1+α
ρ [0, 1].

Proof. Let h ∈ C1+α
ρ [0, 1]. Then from the definition of the function class we have that

max
(

sup
x∈[0,1]

|h(x)|, sup
x∈[0,1]

|h′(x)|
)

+ sup
x,y∈[0,1]

|h′(x) − h′(y)|
|x − y|α ≤ ρ(D.1)

[van der Vaart and Wellner (1996, p. 154)] and the analogous inequality for function s and

constant K2. From this and the boundedness of s by K1 from above it follows with technical

but straightforward estimations omitted for the sake of brevity that

max
(

sup
x∈[0,1]

∣∣∣h
s
(x)

∣∣∣, sup
x∈[0,1]

∣∣∣(h
s
)′(x)

∣∣∣
)

+ sup
x,y∈[0,1]

|(h
s
)′(x) − (h

s
)′(y)|

|x − y|α ≤ cρ

with some constant c only dependent on K1, K2. The assertion follows by the choice ρ = δ/c

from the definition of C1+α
δ [0, 1]. �
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Proof of Proposition 4.1

The proof follows the lines of the proof of Lemma B.1 (ii). The function classes Gj [compare

(B.5)] is now defined as

Gj =
{
g̃j : R × [0, 1] → R, g̃j(ε, x) = gj(ε + h1(x) + εh2(x)) − gj(ε)

∣∣∣ h1, h2 ∈ H
}
,

where H = C1+α
δ [0, 1] with constant δ from assumption (G2’). We show in the following

that Gj is Donsker. To this end let for ξ > 0, as in the proof of Lemma B.1 (ii), h1, . . . , hλ

[λ = N(ξ̃,H, || · ||∞)] denote the centers of a supremum-norm covering for H with radius

ξ̃ = (ξ/(2C))κ with constant C from assumption (G2’). Then we have N[ ](ξ,Gj, L2(P )) = λ2

brackets

[
gj(ε + h�(x) + εhk(x)) − gj(ε) − g̃∗

j (ε, x) , gj(ε + h�(x) + εhk(x)) − gj(ε) + g̃∗
j (ε, x)

]
,


, k ∈ {1, . . . , λ}, where g̃∗
j (ε, x) = sup |gj(ε + z1 + εz2)− gj(ε + z̃1 + εz̃2)| and the supremum is

built over |z1|, |z2|, |z̃1|, |z̃2| ≤ δ, |z1 − z̃1|, |z2 − z̃2| ≤ ξ̃. Each bracket has L2(P ) length less or

equal to ξ by assumption (G2’). The bracketing integral (B.6) is finite with the same reasoning

as in the proof of Lemma B.1 (ii).

Now, from Lemma D.1 we have that the probability that (m̂ − m)/σ̂ ∈ H and (σ̂ − σ)/σ̂ ∈ H
converges to one. The rest of the proof follows as the proof of Lemma B.1 (ii) leading to the

expansion

1

n

n∑
i=1

gj(ε̂i) =
1

n

n∑
i=1

gj

(
εi +

(m − m̂)(x)

σ̂(x)
+ εi

(σ − σ̂)(x)

σ̂(x)

)

=
1

n

n∑
i=1

gj(εi) + oP (n−1/2)

+

∫ ∫ (
gj

(
y +

(m − m̂)(x)

σ̂(x)
+ y

(σ − σ̂)(x)

σ̂(x)

)
− gj(y)

)
fX(x)f(y) dx dy.

By assumption (G1’) we further obtain

1

n

n∑
i=1

gj(ε̂i) =
1

n

n∑
i=1

gj(εi) +

∫ ∫
g′

j(y)
m(x) − m̂(x)

σ̂(x)
fX(x)f(y) dx dy

+

∫ ∫
g′

j(y)y
σ(x) − σ̂(x)

σ̂(x)
fX(x)f(y) dx dy + oP (n−1/2)

=
1

n

n∑
i=1

gj(εi) − E[g′
j(ε1)]

∫
m̂(x) − m(x)

σ(x)
fX(x) dx

− E[ε1g
′
j(ε1)]

∫
σ̂2(x) − σ2(x)

2σ2(x)
fX(x) dx + oP (n−1/2),
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where the last equality follows from the uniform almost sure convergence of σ̂ to σ with rate

O((n−1h−1 log h−1)1/2) [confer Prop. 3, Akritas and Van Keilegom (2001)], the bandwidth con-

ditions (H), and σ̂ − σ = (σ̂2 − σ2)/(2σ) − (σ̂ − σ)2/(2σ), where the last term results in a

negligible remainder. The rest of the proof follows by inserting the definitions of m̂ from (2.2),

σ̂2 from (4.3), and some straightforward calculations of expectations and variances. �

Proof of Theorem 4.2

The validity of Propositions 3.1 and 3.2 in the heteroscedastic model (4.1) under the assump-

tions of Theorem 4.2 can be shown following the steps of the proofs for the homoscedastic case.

To this end one shows that Lemmas B.1 (i), (vi), (v), B.2 and B.3 hold as well under these

assumptions. The proofs are analogous, using the following estimation for Lemmas B.1 (i) and

B.3 and noting that (G2) follows from (G2’). We have

max
i=1,...,n

|εi − ε̂i| ≤ sup
x∈[0,1]

|m̂(x) − m(x)

σ̂(x)
| + max

i=1,...,n
|εi| sup

x∈[0,1]

| σ̂(x) − σ(x)

σ̂(x)
| = oP (1)

where the last equality follows from maxi=1,...,n |εi| = oP (n1/4) under assumption (M), the uni-

form rates of convergence, supx∈[0,1] |m̂(x)−m(x)| = O((n−1h−1 log h−1)1/2) and supx∈[0,1] |σ̂(x)−
σ(x)| = O((n−1h−1 log h−1)1/2) a.s. [confer Prop. 3, Akritas and Van Keilegom (2001)], the

boundedness of σ from zero, and the bandwidth conditions (H).

The rest of the proof is exactly the same as the proof of Theorem 3.3. �
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Figure 1: The figure shows curves for squared bias, variance and mean squared error for Example

5.1, i. e. g(ε) = ε. The solid lines correspond to F̂n, the dashed lines to the new estimator F n.

The first row corresponds to standard normally distributed errors. Here, the dashed bias curve

vanishes. The second row shows results for student’s t-distributed errors with three degrees of

freedom. In the third row the errors are double exponentially distributed. In all three examples

the two variance curves are identical.

35



-3 -2 -1 1 2 3

0.05

0.1

0.15

0.2

0.25

-3 -2 -1 1 2 3

0.05

0.1

0.15

0.2

0.25

-3 -2 -1 1 2 3

0.05

0.1

0.15

0.2

0.25

-4 -2 2 4

0.05

0.1

0.15

0.2

0.25

-4 -2 2 4

0.05

0.1

0.15

0.2

0.25

-4 -2 2 4

0.05

0.1

0.15

0.2

0.25

Figure 2: The figure shows curves for squared bias, variance and mean squared error for Example

5.2, i. e. g(ε) = ε2 −σ2. The solid lines correspond to F̂n, the dashed lines to the new estimator

F n. In the first row the errors are standard normally distributed. In the second row the errors

are student’s t-distributed with five degrees of freedom. The third row displays results for the

double exponential distribution. The two bias curves are identical in all three examples.
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Figure 3: The figure shows curves for squared bias, variance and mean squared error for Example

5.3, i. e. g(ε) = (ε, ε2 − σ2)T . The solid lines correspond to F̂n, the dashed lines to the new

estimator F n. In the first row the errors are standard normally distributed and the dashed bias

curve is zero. In the second row results for student’s t-distributed errors with five degrees of

freedom are displayed, whereas in the third row the errors are double exponentially distributed.
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Figure 4: The figure shows curves for squared bias, variance and mean squared error for Example

5.4, i.e. g(ε) = I{ε ≤ 0} − b. The solid lines correspond to F̂n, the dashed lines to the new

estimator F n. The first row corresponds to standard normally distributed errors (b = 0.5), the

second row to student’s t-distributed errors with three degrees of freedom (b = 0.5). In the

third row we have double exponentially distributed errors (b = 0.570371).
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Figure 5: The figure shows curves for squared bias, variance and mean squared error for Example

5.5, i.e. g(ε) = (ε, I{ε ≤ 0} − b)T . The solid lines correspond to F̂n, the dashed lines to the

new estimator F n. The error distribution in the first row is standard normal (b = 0.5) and

the dashed bias curve vanishes. In the second row the error distribution is student’s t with

three degrees of freedom (b = 0.5), whereas in the third row the errors are double exponentially

distributed (b = 0.570371).
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Figure 6: The figure shows curves for squared bias, variance and mean squared error for Example

5.6, i.e. g(ε) = (ε, ε2 − 1)T in the heteroscedastic setting. The solid lines correspond to F̂n,

the dashed lines to the new estimator F n. The error distribution in the first row is standard

normal, in the second row standardized t-distribution with five degrees of freedom and the

standardized double exponential distribution in the last row. The two variance curves coincide

for all considered distributions. In the normal case the dashed bias curve vanishes.
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Figure 7: Example 5.1. The figure shows the MISE as a function of c, where for the bandwidth

it holds that h = c/n1/4. The sample size is n = 50 in the left panels and n = 100 in the right

panels. The error distribution is standard normal in the first row, t3 in the second, and double

exponential in the third row. The solid curves (curves 1) correspond to F̂n, whereas the dashed

curves (curves 2) correspond to F n.
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Figure 8: Examples 5.3 (left panel) and 5.5 (right panel). The figure shows the MISE as a

function of c, where for the bandwidth it holds that h = c/n1/4. The sample sizes are n = 100

in the left panel and n = 50 in the right panel. The error distribution is standard normal in

the first row, t5 resp. t3 in the left and right panel of the second row, and double exponential in

the third row. The solid curves (curves 1) correspond to F̂n, whereas the dashed curves (curves

2) correspond to F n.
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