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Abstract

In this paper a new test for the parametric form of the variance function in the common
nonparametric regression model is proposed which is applicable under very weak assumptions.
The new test is based on an empirical process formed from pseudo residuals, for which weak
convergence to a Gaussian process can be established. In the special case of testing for
homoscedasticity the limiting process is essentially a Brownian bridge, such that critical
values are easily available. The new procedure has three main advantages. First, in contrast
to many other methods proposed in the literature, it does not depend directly on a smoothing
parameter. Secondly, it can detect local alternatives converging to the null hypothesis at a
rate n~ /2. Thirdly, — in contrast to most of the currently available tests — it does not
require strong smoothness assumptions regarding the regression and variance function. We
also present a simulation study and compare the tests with the procedures which are currently
available for this problem and require the same minimal assumptions.
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1 Introduction

Consider the common nonparametric regression model with a fixed design
(11) }/i,n = m(tz,n) + U(ti,n)gi,na 1= 1, Lo, n

where 0 <t;, <t3, <...<t,, <1 denote the design points, m and o? are the regression and
variance function, respectively, and the errors €y 1, ..., €1, are independent identically distributed
with expectation Ele;,] = 0 and variance Vle;,] = 1. Additional information on the variance

2 such as homoscedasticity or a specific parametric form of o2 usually simplifies the

function o
analysis of the data substantially. Moreover, statistical inference incorporating such an additional
knowledge is also more efficient. On the other hand - if the assumption on the variance function
(i.e. homoscedasticity) is not satisfied - data analysis should address for heteroscedasticity in order
to obtain reliable results [see e.g. Leedan and Meer (2000)]. For these reasons many authors point
out that it is important to check an assumption on the parametric form of the variance function by
means of a goodness-of-fit test [see for example Carroll and Ruppert (1988), Cook and Weisberg
(1983) among others]. Most of the available literature for this problem concentrates on the problem
of testing for homoscedasticity. Tests based on a parametrically specified regression and variance
function and the assumption of a normal distribution for the errors have been studied by Davidan
and Carroll (1987) and Carroll and Ruppert (1988) using likelihood methods. Bickel (1978) and
Carroll and Ruppert (1981) propose a test for homoscedasticity which does not impose a normal
distribution for the errors but the regression function is still assumed to be linear, while Diblasi
and Bowman (1997) consider the nonparametric model (1.1) with a normal distributed error.

A test for homoscedasticity in a completely nonparametric regression model was first proposed
by Dette and Munk (1998). This test has the nice property that it does not depend on the
subjective choice of a smoothing parameter and requires rather weak assumptions regarding the
smoothness of the regression function. A disadvantage of the method is that it can only detect
local alternatives converging to the null hypothesis at a rate n='/%. More recently Zhu, Fujikoshi
and Naito (2001) [see also Zhu (2005); Chapter 7], Dette (2002) and Liero (2003) suggested test
procedures, which are based on residuals from a nonparametric fit. The two last named tests can
detect local alternatives converging to the null hypothesis at a rate (n\/ﬁ)_l/ 2 where h denotes a
bandwidth, while the rate for the test of Zhu et al. (2001) is n~%/2. A drawback of these methods
consists in the fact that the corresponding tests depend on the subjective choice of a smoothing
parameter, which can affect the results of the statistical analysis.

The present paper has three purposes. First, we are interested in a test which does not require
the specification of a smoothing parameter. Secondly, the new procedure should be able to de-

tect local alternatives at a rate n~—/2

. Thirdly, the new test should be applicable under minimal
smoothness assumptions on the variance and regression function. Moreover, in contrast to most
papers which concentrate on tests for homoscedasticity, we are also interested in a test for more

general hypotheses for the parametric form of the variance function, i.e.

(1.2) Hy: o*(t) = o*(t,0); Vtelo1].
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Here the form of the function o2(¢,0) € © C R? is known except for the d-dimensional parameter
6= (0,...,00)7 € © C R? (note that the hypothesis of homoscedasticity is obtained for d = 1
and o2(t,0) = 0).

In Section 2 we consider linear parametric classes for the function ¢2(-,6) and propose a stochas-
tic process which vanishes for all ¢ if and only if the null hypothesis in (1.2) is satisfied. We
prove weak convergence of this process to a Gaussian process, and as a consequence Kolmogorov-
Smirnov or Cramer-von-Mises type statistics can be constructed. In the special case of testing
for homoscedasticity the limit distribution is particularly simple and given by a scaled Brownian
bridge. The test is able to detect Pitman alternatives converging to the null hypothesis at a rate
n~2. Moreover, the asymptotic theory is applicable if the regression and variance function are
Lipschitz continuous of order v > 1/2, while the alternative procedures of Zhu et al. (2001),
Zhu (2005), Dette (2002) and Liero (2003) require Lipschitz continuity of order 1 or a two times
continuously differentiable regression function, respectively. For the sake of a transparent repre-
sentation we mainly concentrate on linear hypotheses and mention the extension of the procedure
to general hypotheses briefly in Section 3. In Section 4 we present a small simulation study and
compare the new test with the currently available procedures in the literature. For the problem
of testing homoscedasticity we use the approximation by a Brownian bridge to obtain critical
values, while for the general hypothesis of a parametric form a bootstrap procedure is proposed.
It is demonstrated by means of a simulation study that in many cases the new tests based on
the Cramér-von-Mises statistic yield a substantial improvement with respect to power. The case
of a random design is briefly discussed in Section 5, where we demonstrate that the correspond-
ing process has a different limit behaviour as in the case of a fixed design. Finally, some of the
technical arguments are deferred to an appendix.

2 An empirical process of pseudo residuals

Consider the nonparametric regression model (1.1) where the design points t;,, are defined by

i tin
2.1 = tydt, 1=1,...
(2.) - o -

[see Sacks and Ylvisaker (1970)] and f is a positive density on the interval [0, 1], which is Lipschitz
continuous of order y > 3, i.e. f € Lip, [0, 1]. Throughout this paper define m;(t) = E[e] ()], j =

2,
3,4, assume that for some v > %

(22) fa g,Mms, my € Llpw [07 1]

and that E[e},(t)] < mg < oo with a constant mg, which does not depend on the variable ¢. For
the sake of a transparent presentation we consider at the moment linear hypotheses of the form

d
(2.3) Hy:0®(t) =) 607 (1), for all t € [0,1],
j=1
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where 6y, ...,60;4 € R are unknown parameters and o7, ..., 02 are given linearly independent func-
tions satisfying

(2.4) ol € Lip,[0,1], j=1,...,d.

The general case of testing hypotheses of the form (1.2) will be briefly discussed in Section 3. In
order to construct a test for hypothesis (2.3) we introduce the function

(2.5) S, = /Ot <02 () — iajaf, () )f () da,

where ¢ € [0,1] and the vector @ = (ay, ..., aq)T is defined by

(2.6) a = arg min /01 <02 (x) — iﬁjajz (x) >2f (z) dx.

BelR

Note that the null hypothesis (2.3) is equivalent to S; = 0 for all ¢ € [0,1], and therefore an
appropriate estimate of the process S; will be the basic tool for the construction of the new test

statistic. In order to obtain such an estimate we note that it follows from standard Hilbert space
theory [see Achieser (1956)] that

(2.7) a=A"C,

where the elements of the matrix A = (a;;),; <, and the vector C' = (cy, . .. ,cq)" are defined by

1<i,
OJZ']' =
With the notation
t
(2.9 B = [ o) f (@) du,
0
t t T
(2.10) B, = (/ of (z) f (v) dz, .. .,/ o3 (x) f (v) dx)
0 0
we therefore obtain S; = B — Bfa = BY — BFA71C for the process in (2.5). The quantities

in this representation are now estimated as follows. Let (dy,...,d,)T denote a vector with real
components satisfying

(2.11) idi =0, idf =1
=0 =0
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Following Gasser, Sroka and Jennen-Steinmetz (1986) or Hall, Kay and Titterington (1990) we
define pseudo residuals

(2.12) Ry=>Y dYj j=r+1,...n

i=0
and an estimate of (2.7) by & = A~'C, where A = (Gij)1<ij<as C = (&4,...,¢9)" and the
elements in these matrices are given by
(213) dij = — ZU tkn tk n) , 0;

] =r+1
Finally, the quantities in (2.9) and (2.10) are estimated by
[nt] N I_ntJ
(2.14) t_n—r.z% Bl == Z" in), i=1,....d,
j=r

(note that a;; and B, are not random) and the sample version of the process S; is given by
(2.15) S, = BY - BI'A=1C,

where B, = (f?tl, ey Bf)T. The following result provides the asymptotic properties of the process
S, for an increasing sample size. The proof is complicated and therefore deferred to the Appendix.

Theorem 2.1. If the conditions (2.1), (2.2) and (2.4) are satisfied, then the process {\/n(S; —
St) hepo,1) converges weakly in D[0,1] to a Gaussian process with covariance kernel

(2.16) Kty ta) = VoS, 1,V

where the matrices Yy, 1, € RT2X+2) qnd V, € R¥*+2) gre defined by

V11 V12 W11 - Wid
V21 V22 W21 - W
(2.17) Yy = | w1 wor 211 -0z |,
Wig Wad Zd1 *°* Rdd
(2.18) Vo = (LIU), U=—(BFA™",BLA™)"

respectively, the elements of the matriz in (2.17) are given by
1
v = [ 5610 () lpny (97 () ds. 1<ij <2,
0

1
wy = / ()00 (5) 02 (5) Louy (5) f () ds,  1<i<21<j<d,



with 7,(s) = my (s) — 1+ 490,, and the quantity J, is defined by

(2.19) 5, = Z (%djdﬁm)z.

=1

Remark 2.2. It is easy to see that the matrix X, 4, in (2.17) is given by E[PP”], where the
random vector P is defined P = /7. (0)o2(U)(I{U < t1},....,1{U < t;},02(U),...,0c2(U))",
and the random variable U has density f.

Remark 2.3. The main idea of the proof of Theorem 2.1 is to use the Lipschitz continuity
of the regression function to derive an asymptotically equivalent representation for the process

{\/ﬁ(gt - St)}t6[0,1]> Le.

nt|

L n

N 1 t

(2.20) V(S — 8 = \/ﬁ{n — > Z—— > Bltin)Zin } + 0p(1)
j=r+1 j=r+1

uniformly with respect to t € [0, 1], where h is a deterministic function and the random variables
{Z;n|7=1,...,n;n € N} form a triangular array of rowwise (r + 1)-dependent centered random
variables. For the process on the right hand side of (2.20) we then prove tightness and convergence
of the finite dimensional distributions. The technical details can be found in the appendix.

Remark 2.4. As pointed out previously the null hypothesis (2.3) is equivalent to S; =0 V¢ €
[0, 1] and consequently rejecting (2.3) for large values of the Kolmogorov-Smirnov or Cramer von
Mises statistic

1
K,=+nsup |S)|, C,= n/ |S,2dF,(t)
0

t€(0,1]

yields a consistent test. Here F,(t) = + 1" | I{t;,, < t} is the empirical distribution function of
the design points. If (A (t)),cp,, denotes the limiting process in Theorem 2.1 it follows from the
Continuous Mapping Theorem

1
K, 2 sw 40 €02 [ A@PdR().
0

t€[0,1]
Remark 2.5. Define the (n — r) x d matrix

(2.21) X = (aj.’(tl-,n)> :_

and a vector R = (R%,,,..., R%)T of squared pseudo residuals, then it follows that the estimate
& of (2.7) is essentially the least squares estimate in the linear model E[R | t] = Xa, that is

(2.22) a=(XT"X)'XTR+ Op(%).



Example 2.6. In general the covariance structure of the limiting process is very complicated
as indicated by the following example, which considers the situation for d = 1. In this case the
matrix A in (2.7) is given by the scalar a;; = fol o (x) f(x)dx. Defining

B [yo¥(a) f(x) do

St1 = —

an fol ot (x) f(z) dx

)

it follows from Theorem 2.1 that the process {y/n(S; — St) brepo,) converges weakly to a Gaussian
process with covariance kernel

(2.23)k (b1, 1) = / (@0 (1) £ (@) do s ases / r(@)ot (1) 0t (x) f (x) da
_— / ()0t (2) 02 (2) f (2) dx — 51, / n(2)0 (2) 02 (2) f () d.

In the case of testing homoscedasticity (i.e. o3(t) = 1) we have s;; = F(t), where F is the
distribution of the design density, and (2.23) simplifies to

k(t,ty) = /01 ’ m(x)o? () f (z) do + F(tl)F(tg)/O 7.(x)o? (z) f (z) do
~F(t) [ nl@)t (@) f (@) de = F(t) [ @)t @) f (o) do

The following corollary is now obvious.

Corollary 2.7. Assume that the hypothesis of homoscedasticity Hy : 0?(t) = 01 has to be tested
(i.e. d=1,0%(t) = 1) and that additionally m4(t) = my is constant. If condition (2.1) and (2.2)
are satisfied, then under the null hypothesis of homoscedasticity the process {\/ﬁ(gt — S¢) hepo
converges weakly on D[0,1] to a scaled Brownian bridge in time F, where F is the distribution
function of the design density, i.e.

{(Vn(S; — S0 hep) = \/(m4 — 1+46,)03{B o F}icp,)

3 General hypotheses and local alternatives

3.1 Nonlinear hypotheses for the variance function

In this paragraph we briefly explain how the results have to be adapted if a general nonlinear
hypothesis of the form (1.2) has to be tested. For this purpose we assume that the parameter
space O is compact and that the infimum

(3.1) inf/O {o%(t) — o*(t,0)}2 f(t)dt

0cO
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is attained at a unique point, say 6y = (9§O), o 920))T, in the interior of ©. Observing the inter-
pretation of the estimate & in Remark 2.4, we define

n

&%e6 n i r Z (R?" — 0t 9>)

= arg min
i=r+1

2

>

(3.2)

as the nonlinear least squares estimate. Under some regularity assumptions [see Gallant (1987),
Chapter 4, or Seber and Wild (1989), p. 572-574] the sum of squares in (3.2) can be approximated

by
1

n—r

HT (I, — X(XTX)'XT)H + op(%),

where [, , is the (n — r) X (n — r) identity matrix, the components of the vector
H = (H1n,-..,Hyn)" are defined by

- 2
HJ n = (Z dia(tj*i,TL)Ejfi,n) - 0_2(]5]'7”’ 90) ; j =r+ 17 con
=0

and the matrix X is given by (2.21) with o3(t) = 5-0%(t,0)|p=0, ( = 1,...,d). Similarly, the
J
analogue of the process in (2.15) is given by

(33) gt - - ZU zn7

= Z {Hzn — =207 (tin, 0) lo=a, = 9)} + 0,(n1?),

Roughly speaking this means that the nonlinear case can be treated as the linear case, where
the variance function has to be replaced by ¢*(x) — 0*(z,6y) and the functions o3 are glven
by $5-02(x,0) lo—9, (j = 1,...,d). In particular we obtain with the notation S; = fo

J

0?(x,0y))dz the representation

|nt] d
(3.4) \/E(S't — St) = n\/ﬁ Z {Hz‘,n Z ai 2 zna |6 ) Oé]} + 019(1)7

where a; = 6, — 6 (j =1,...,d) and the vector a = (a1, ..., aq)7 satisfies
a=0—0=(X"X)"'X"TH.
From (2.21) and the condition

0= 8%]/0 (0*(z) — 0*(x,0))* f(2)dx - 2/0 o} (z)(0*(x) — o*(x,60)) f (x)dx

0=09



it follows that

Lyrx_i- O(l>
n An

Consequently the right hand side of (3.4) corresponds to the expression in (2.20) [see also the
representation (A.13) in the proof of Theorem 2.1 in the Appendix]. This means that the process
{\/n(S, — St) }epo,1) exhibits the same asymptotic behaviour as described in Theorem 2.1 for the
linear case, where the functions 0]2- have to be replaced by

j=1,...,d

0
2 _ 2 2 .
aj (t) - 80]'0- (ta 9) 9:907

3.2 Local alternatives

In this paragraph we briefly discuss the behaviour of the process {\/ﬁ(gt — St) bepo,n) in the case

of local alternatives 1
o2(t) = a*(t,0p) + —=h(t)
n

" v

Denote {A(t)}sc[0,1) as the limiting process in Theorem 2.1 and define

2

1 d
¥ =(1,...,7)" = arg min /0 <h2 (x) — Zﬁj%JQ(t,G)L_G ) f(z) dx,
=t Y

BeR

then it follows from the arguments given in the Appendix that the process {y/n(S; — St) hepo)
converges weakly to the process

A(t) + t h(x) — iwia%x,&) _ f(z) dx .
0 = 00, =0, t€[0,1]

This means that tests based on the process {y/n(S; — Si) heo,1) can detect local alternatives

converging to the null hypothesis at a rate n~'/2, whenever
0 0
h ¢ span{%JQ(-, ))o=pgs - - - » %02(~, 9)\9:90}.

4 Finite sample properties and a data example

In this section we illustrate the finite sample properties of the new test by means of a simulation
study. We first investigate the performance in the problem of testing for homoscedasticity and
also compare the new procedure with alternative tests for this problem.
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4.1 Testing for homoscedasticity

To our knowledge there exists only one test for the hypothesis of homoscedasticity which does
not depend on the subjective choice of a smoothing parameter and requires the same minimal
assumptions regarding the smoothness of the regression and variance functions. This test was
proposed by Dette and Munk (1998) and is based on an estimate of the L*—distance between
the variance function under the null hypothesis and alternative. Following these authors we
considered the problem of testing homoscedasticity in the nonparametric regression model (1.1)
with regression and variance function given by

(4.1) m(t) = 1+4sin(t); o(t) = ogexp(ct),
m(t) = 1+t o(t) = o[l + csin(10t)]?,
m(t) = 1+ o(t) = o[l + ct]?,

where 0 = 0.5,¢ = 0,0.5,1 and the case ¢ = 0 corresponds to the null hypothesis of homoscedas-
ticity [i.e. d = 1,0%(t) = 6,]. The design is uniform (i.e. f =1) and the random variables ¢; ,, have
a standard normal distribution. All rejection probabilities were calculated with 5000 simulation
runs. As pointed out in Section 2 rejecting the null hypothesis of homoscedasticity for large values
of the statistic fol Stzan(t) yields a consistent test (recall that F), denotes the empirical distrib-
ution function of the design points). It follows from Corollary 2.6 and the Continuous Mapping
Theorem that under the null hypothesis of homoscedasticity

1 1 1
C,=n / S2AE, (1) = (my — 1+ 45,)6> / BX(F()dF(t) = (m4 — 1 + 46,)6? / B2()dt,
0 0 0

where B denotes a standard Brownian bridge. If w, denotes the 1 — a quantile of the distribution
of the random variable fol B2(t)dt and my is an estimate of the fourth moment, then the test,
which rejects the hypothesis of homoscedasticity Hy : o2(t) = 6, if

1
(4.4) C,=n / S2AF, (1) > we (g — 1+ 46,)62,
0

has asymptotically level a. Note that the estimate of m4 depends on the choice of the difference
sequence d, . . ., d, for the calculation of the pseudo residuals R;,. For example, if r = 1 we have
dy = —d; = 1/\/5 and it is easy to see that

1 n 4
_ 2(n-1) Zj=2 ij
- 2
1 n
<2(n—_1) ijz R]2n>

is a consistent estimate of my4. The corresponding estimates for other cases can be obtained sim-

-3

ilarly. We first briefly investigate the impact of the choice of the order of the difference scheme
do, . ..,d, for the calculation of the pseudo residuals. As pointed out by Dette, Munk and Wag-
ner (1998), the sequence (dy,...,d,) could be chosen such that the bias of E[R?, ] ~ 0*(t;,) is

10



1
n—r

fol o%(z) f(z)dr is minimal. The lastnamed choice corresponds to the minimization of 6, with

diminished or such that the variance of the estimate

) R?vn of the integrated variance
respect to the difference sequence (dy, ..., d,) and the optimal weights for various values of r can
be found in Hall et al. (1990). However, it turns out that the bias has a substantial impact on the
approximation of the nominal level of the new test. As a consequence optimal difference sequences
as proposed by Hall et al. (1990) cannot be recommended for our test procedure (for the sake of
brevity these results are not presented). In Table 4.1 and 4.2 we display the level and power of
the new test for the difference sequence

O
](%;1/27 j=0,...,7,

T

(4.5) dj = (—1)

with r = 1 and r = 2, respectively, which was recommended for a uniform design by Dette et al.
(1998) in order to reduce the bias of a nonparametric variance estimator.

n = 50 n =100 n = 200

r=1] ¢ | 25% | 5% | 10% | 25% | 5% | 10% | 2.5% | 5% | 10%
0 | 0.050 | 0.080 | 0.131 | 0.033 | 0.061 | 0.115 | 0.029 | 0.057 | 0.104
(4.1) | 0.5 ] 0.171 | 0.245 | 0.357 | 0.256 | 0.361 | 0.490 | 0.504 | 0.628 | 0.743
1 ]0.413 | 0.543 | 0.695 | 0.743 | 0.842 | 0.919 | 0.980 | 0.992 | 0.997
0 | 0.050 | 0.078 | 0.130 | 0.036 | 0.061 | 0.114 | 0.025 | 0.051 | 0.106
(4.2) | 0.5 ]0.132 | 0.184 | 0.271 | 0.181 | 0.267 | 0.419 | 0.330 | 0.515 | 0.748
1 ]10.138 | 0.196 | 0.285 | 0.207 | 0.315 | 0.462 | 0.390 | 0.585 | 0.807
0 | 0.051 | 0.077 | 0.128 | 0.032 | 0.062 | 0.115 | 0.025 | 0.051 | 0.105
(4.3) | 0.5 ] 0.313 | 0.423 | 0.564 | 0.561 | 0.691 | 0.804 | 0.897 | 0.943 | 0.975
1 ]0.588 | 0.724 | 0.851 | 0.910 | 0.962 | 0.987 | 0.999 | 1.000 | 1.000

Table 4.1. Simulated rejection probabilities of the test (4.4) with a difference sequence of the form
(4.5) and r = 1. The case ¢ = 0 corresponds to the null hypothesis of homoscedasticity.
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n = 50 n = 100 n = 200

r=2| c | 25% | 5% 10% | 2.5% | 5% 10% | 2.5% | 5% 10%
0 |0.029 | 0.058 | 0.113 | 0.025 | 0.051 | 0.106 | 0.030 | 0.057 | 0.111
(4.1) | 0.5 ] 0.133 | 0.219 | 0.336 | 0.199 | 0.297 | 0.433 | 0.406 | 0.523 | 0.653
1 10354 | 0493 | 0.651 | 0.622 | 0.749 | 0.859 | 0.939 | 0.969 | 0.987
0 |0.027 | 0.058 | 0.110 | 0.024 | 0.053 | 0.101 | 0.024 | 0.050 | 0.099
(4.2) | 0.5 | 0.066 | 0.109 | 0.190 | 0.106 | 0.180 | 0.311 | 0.197 | 0.344 | 0.584
1 10.067 | 0.109 | 0.200 | 0.113 | 0.195 | 0.327 | 0.255 | 0.413 | 0.673
0 |0.032 | 0.061 | 0.115 | 0.027 | 0.053 | 0.104 | 0.028 | 0.052 | 0.102
(4.3) | 0.5 ] 0.242 | 0.365 | 0.531 | 0.457 | 0.595 | 0.726 | 0.795 | 0.880 | 0.937
1 10.482 | 0.643 | 0.802 | 0.831 | 0.922 | 0.968 | 0.995 | 0.998 | 1.000

Table 4.2. Simulated rejection probabilities of the test (4.4) with a difference sequence of the form
(4.5) with r = 2. The case ¢ = 0 corresponds to the null hypothesis of homoscedasticity.

n = 50 n = 100 n = 200

r=31] ¢ | 25% | 5% | 10% | 25% | 5% | 10% | 2.5% | 5% | 10%
0 |0.035 | 0.067 | 0.126 | 0.030 | 0.056 | 0.107 | 0.024 | 0.051 | 0.105
(4.1) | 0.5]0.122 | 0.199 | 0.312 | 0.178 | 0.276 | 0.407 | 0.355 | 0.473 | 0.600
1 10.294 | 0.434 | 0.608 | 0.536 | 0.674 | 0.806 | 0.900 | 0.951 | 0.976
0 |0.039 | 0.063 | 0.126 | 0.030 | 0.056 | 0.110 | 0.027 | 0.050 | 0.104
(4.2) | 0.5 ] 0.056 | 0.099 | 0.176 | 0.094 | 0.154 | 0.263 | 0.161 | 0.273 | 0.483
1 10.049 | 0.088 | 0.170 | 0.100 | 0.160 | 0.285 | 0.198 | 0.334 | 0.562
0 |0.036 | 0.066 | 0.125 | 0.032 | 0.056 | 0.118 | 0.024 | 0.050 | 0.104
(4.3) | 0.5]0.218 | 0.331 | 0.477 | 0.372 | 0.513 | 0.659 | 0.723 | 0.821 | 0.900
1 10.415 | 0.580 | 0.748 | 0.749 | 0.860 | 0.947 | 0.985 | 0.995 | 0.998

Table 4.2a. Simulated rejection probabilities of the test (4.4) with a difference sequence of the
form (4.5) with r = 3. The case ¢ = 0 corresponds to the null hypothesis of homoscedasticity.

We observe that the theoretical level is well approximated for sample sizes larger than n = 100.
If the sample size is smaller the approximation is less precise for difference sequences of order
r = 1 [see Table 4.1 with n = 50] but reasonable accurate for the case r = 2 [see Table 4.2].
On the other hand an increase of the order yields to some loss in power in the case r = 2. This
corresponds to the asymptotic theory, which indicates that a smaller value of , yields a more
powerful procedure. In particular, for r = 1,2 the values corresponding to the sequence (4.5) are
given by 6; = 1/4, 6, = 17/36, respectively. Based on an extensive study we recommend to use a
difference sequence of order r = 1 (in order to increase the power) and to use the bootstrap (as
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described in the following section) for sample sizes smaller than 50 (in order to obtain a reasonable
approximation of the nominal level.)

It is also of interest to compare these results with the corresponding rejection probabilities of
the test suggested by Dette and Munk (1998) which requires the same minimal assumptions as
the procedure proposed in this paper. The results in Table 4.1 are directly comparable with the
results of Table 1 in this reference. We observe that for model (4.1) and (4.3) the new test yields
substantially larger power than the test of Dette and Munk (1998). On the other hand, in model
(4.2) the procedure of Dette and Munk (1998) based on the L2-distance is substantially more
powerful for the sample sizes n = 50 and n = 100, while both tests are comparable for the sample
size n = 200 [see Table 4.1]. The reason for the difference between the asymptotic theory and the
empirical results for small sample sizes can be explained by the specific form of the function

(4.6) S, = /Ot(UZ(x) — Gp)dz = /Ot o*(z)dz —t/ol o*(x)dx

in model (4.2) which is depicted in Figure 4.1 for the case ¢ = 0.5 and ¢ = 1. We observe that it
is difficult to distinguish these functions from the line S; = 0. As a consequence the asymptotic
advantages of the new test with respect to Pitman alternatives are only visible for a large sample
size as n = 200. This effect is even more visible if the sample size is n = 400. For example if ¢ = 0.5
the rejection probabilities of the test of Dette and Munk (1998) are 0.810, 0.887, 0.951 while the
new test yields larger power, namely 0.898, 0.978, 0.997 at level 2.5%, 5% and 10%, respectively.

1.

©

1
. @
N = N B = )

Figure 4.1: The function S; defined in (4.6) for ¢ = 0.5 (solid line) and ¢ =1 (dotted line).

4.2 Testing for a parametric hypothesis

In this paragraph we consider the general hypothesis (1.2). We begin with a linear parametric
class of variance functions

(4.7) Hy:o*(t) = 1+ 0t

(0 € R). We simulated data according to the model

(4.8) mt) =1+t , o(t)=1+3t>+ 2.5csin(27t),

13



where the case ¢ = 0 corresponds to the null hypothesis and the choices ¢ = 0.5, 1 to two alterna-
tives. The errors are again standard normal distributed and the design is uniform. Because the
limit distribution provided by Theorem 2.1 is complicated we applied a bootstrap procedure to

obtain the critical values. More precisely, we calculated nonparametric residuals
j= Yo —lbin)
U(ti,n)

where
) =) Wilt,h)Y;, &°(t) =Y Wilt, h)(Y; —iltin))’
and W;(t, h) are the local linear weights defined by [see Fan and Gijbels (1996)]

(nh) " K (W (tin =) {Ana () = (tin =) Aua ()}
Ao () Ana (1) = A7, () ’

Wi(t, h) =

where

I < tim — - .
Amj ()%ZK< 7h ) (ti,n_')]a J 207172'
=1

The bandwidth A/ in these estimates was chosen by least squares cross validation. In a second step
we defined €7, ..., e} as a sample of i.i.d. observations with distribution function F. and generated
bootstrap data according to the model

[ 79

Y = ti(tin) + 0 (tin, 0)e"

where 02(-,6) is the estimate of the variance function under the null hypothesis (4.7). Finally,

the corresponding Cramér-von-Mises statistic, say C, is calculated from the bootstrap data. If

B bootstrap replications have been performed and Ox < < ™) denote the order statistics
of the calculated bootstrap sample, the null hypothesis (4.7) was rejected if C,, > C(1B0=)))
B = 100 bootstrap replications were performed to calculate the rejection probabilities and 1000
simulation runs were used for each scenario. The results are depicted in the first part of Table 4.4.
We observe a rather precise approximation of the nominal level and a reasonable power under the

alternatives.

n = 50 n =100 n = 200

c | 2.5% 5% | 10% | 2.5% 5% | 10% | 2.5% 5% | 10%
0 |0.023 | 0.060 | 0.102 | 0.023 | 0.057 | 0.116 | 0.023 | 0.051 | 0.114
(4.8) | 0.5 | 0.319 | 0.386 | 0.463 | 0.459 | 0.549 | 0.632 | 0.721 | 0.803 | 0.864
1 10659 | 0.718 | 0.774 | 0.888 | 0.922 | 0.948 | 0.988 | 0.993 | 0.997
0 |0.032 | 0.065 | 0.115 | 0.023 | 0.056 | 0.116 | 0.025 | 0.057 | 0.105
(4.9) | 0.5 | 0.191 | 0.281 | 0.357 | 0.268 | 0.362 | 0.445 | 0.426 | 0.546 | 0.640
1 | 0.403 | 0.511 | 0.603 | 0.504 | 0.608 | 0.711 | 0.892 | 0.939 | 0.968
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Table 4.4. Simulated rejection probabilities of the bootstrap test for the one-parametric hypothesis (4.7)
in the regression model (4.8) and (4.9).

We will conclude this section with an investigation of a nonlinear hypothesis for the variance function,
ie.

(4.9) o?(t,0) = e

(0 € R). We simulated data according to the model
(4.10) mt)=1+t , o2(t,60) = (1+ csin(2nt))e’,

where the case ¢ = 0 corresponds to the null hypothesis and the choices ¢ = 0.5,1 to two alternatives.
The errors are again standard normal distributed and the design is uniform. In the second part of Table
4.4 we display the corresponding rejection probabilities of the bootstrap test based on the procedure
described in section 3.1. We observe a precise approximation of the nominal level (similar as in the linear
case). Moreover, the alternatives are selected with reasonable power.

5 Random design

In this section we briefly discuss the behaviour of a corresponding stochastic process in the case of a
regression model with a random design, that is

(51) YZ:m(XZ)+0(XZ)51, 1=1,...,n,

where X1,..., X, are i.i.d. with positive density f on the interval [0, 1] and the random errors €1, ...¢,
have mean 0, variance 1 and are also i.i.d.. We denote by m;(z) = E[¢/|X = z] the jth conditional
moment of the errors and assume that mg(z) is bounded by some constant, say mg. We consider the
process {St}te[o,l] defined in (2.15) with the following modifications. The elements of the matrix A are
defined as in (2.13), where the fixed design points t;, have been replaced by the random variables X;.
Additionally, the statistics ¢;, E? , E; have been replaced by

n

R 1
(5.2) & = — > Ri*(X()
j=r+1
. 1 n
(5.3) BY = — > RI{X(;) <t}
j=r+1
. 1 <&
j=1

respectively, the pseudo residuals are defined by R; = Y. d;Ya J=r+1...n X, , X
and Aq,...,A, denote the order statistic and the anti ranks of X1,...,X,. It is easy to see that for
a fixed design the corresponding estimates in (5.2), (5.3), (5.4) and in (2.13) and (2.14) differ only by

a term of order 0p(n*1/ 2), and as a consequence for a fixed design the process S, with the estimates

=i

¢, BY and B! defined in (5.2), (5.3) and (5.4), respectively, exhibits the same asymptotic behaviour as
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described in Theorem 2.1. However, the following result shows that in the case of the random design the
stochastic process has a different asymptotic behaviour.

Theorem 5.1. Consider the nonparametric regression model (5.1) with a random design and the sto-
chastic process S; defined in (2.15), where ¢;, BS and Bff are defined in (5.2), (5.3) and (5.4), respectively.
If the conditions (2.1), (2.2), (2.4) and the conditions stated at the beginning of this section are satisfied,
then the process {/n(S; — St) }ieo) converges weakly in D[0,1] to a Gaussian process with covariance
kernel

(5.5) k(ti,ta) = VaXy, 4, Va

where the matriz Vo € R>*(@+2) s defined in (2.18), Sty 1y = Sty.4y + Pty 10, the matriz Xy, 4, is given in
(2.17),

U11 V12 Wi - Wid
Vg1 U2 W21 --- Waq
(5.6) Dy 4, = | W11 W2 211 - Zid
Wid Wid Zd1 *°° Zdd-

and the elements of the matrixz ®4, 4, are defined by

1
(5.7) Uij = /0 ot (5) onty) (5) f(s) ds — BBy, 1< j<2,
1
Wi; = / ot (s) sz (8) Ljo,t,) (8) f () ds — Bg% 1<:i<2,1<j<d,
0

1
= [ ORI ds—cey, 1<ij<d
0

Remark 5.2. It is easy to see that the matrix ®¢ 4, in (5.6) is the covariance matrix of the random
vector Q = o?(U)(I{U < t1}, I{U < t2},02(U),... ,afl(U))T), where the random variable U has density
f. Observing the definition of the vector P in Remark 2.2 we therefore obtain X, 4, = E[PPT]+ Var|[Q).
Comparing Theorem 2.1 and 5.1 we observe that in the case of a random design there appears the
additional term Va®;, 1, V4 in the covariance kernel of the limiting process. A similar phenomenon was
observed by Munk (2002) in the context of testing for the parametric form of the regression function.
However, our final result shows that in the context of testing for homoscedasticity the covariance kernel
of the limiting process in the case of a random design differs only by a factor from the kernel obtained
under the fixed design assumption.

Corollary 5.3. Consider the nonparametric regression model (5.1) with a random design and the sto-
chastic process S; defined in (2.15), where ¢&;, BS and Bg are defined in (5.2), (5.3) and (5.4), respectively.
Assume that the hypothesis of homoscedasticity Ho : a%(t) = 01 has to be tested (i.e. d = 1,0%(t) = 1) and
that additionally m4(t) = my is constant. If the conditions (2.1) and (2.2) and the conditions stated at
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the beginning of this section are satisfied, then under the null hypothesis of homoscedasticity the process
{V/n(S; — St) }iejo) converges weakly on DI0,1] to a scaled Brownian bridge in time F, where F' is the

distribution function of the random variables X;, i.e.

{\/E(St - St)}te[o,l] =1/ (ma + 46;) 9%{3 o F}tE[O,l]-

A Appendix

Proof of Theorem 2.1. For the sake of a transparent notation we omit the index n in this section,
whenever the dependence on n will be clear from the context. In particular we write ¢; and ¢; instead of
tjn and €; p, respectively. We define the random variables

,

(A1) L, = Zdja(tk,j)ﬂg,j s k=r4+1,...,n,
§=0

and analogues of the estimates E? and ¢; by

I_ntJ n

_ 1 1
(A.2) BY = Y12 &= > Lioi(ty).

n—r. n—r.
j=r+1 j=r+1
With the notation C = (C1,... ,Ed)T we introduce the stochastic process
(A.3) S;=BY - BIA-'C.

and obtain the following result which is proved at the end of this proof.

Lemma A.1. If the assumptions of Theorem 2.1 are satisfied, we have S, =8, + op(n_l/Q), uniformly
with respect to t € [0, 1].

It follows from this auxiliary result that the stochastic processes A,(t) = {v/n(S; — St) }tejo,) and
{An(t) }eo,1) = {v/n(St — St) }ejo,1) exhibit the same asymptotic behaviour. Consequently, the assertion
of Theorem 2.1 follows, if a corresponding statement for the process { A, (t)}:c[0,1) can be established.
For a proof of this property we introduce a further decomposition

(A.4) A, (t) = V(S — E[S]) + Vr(E[S)] — St) = A, (t) + By, (t),
where the last equality defines the processes A, (t) and B, (t). A simple calculation and the Lipschitz
continuity of ¢ show B, (t) = o(1), uniformly with respect to ¢ € [0, 1], and therefore it is sufficient to

consider the process A, in the following discussion. Thus the assertion of Theorem 2.1 follows from the

weak convergence

(A.5) {An() hiepo,) = {AM) biepo,,
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where {A(t)}icpo,1) is a Gaussian process with covariance kernel defined in (2.16). For a proof of this
statement we first show convergence of the finite dimensional distributions, i.e.

= = D
(A.6) (Au (t1) - An ()" 2 (A1), A(t)"
for any vector (t1,...,t) € [0,1]F. Secondly, we prove that there exists a constant, say C, such that for
al0<s<t<l1
(A7) E [\An (t) - 4, (s)\‘*] <COt-s).

The assertion (A.5) then follows from Theorem 13.5 in Billingsley (1999).
For a proof of (A.6) we restrict ourselves to the case k = 2 (the general case follows exactly the same
way with an additional amount of notation) and note that the process A, can be represented as

(A.8) A, (t) = B — B,A'C,
where C' = (c1y... ,éd)T,

o 7 ;o ,
(A.9) B; = n_rj;IZj, Ci = n_rj;-lzjo-i (t5)

and the random variables Z; are defined by Z; = L?—E[L?]. From the representation (4, (t1), 4, (tQ))T =
V2 X, with

X, =vn (B, B er,....c0)"
and Vo = (L|U) , U = —(Bgflfl, Bg;/lfl)T and Vo = Va4 o(1) it follows that it is sufficient to establish
the weak convergence

D
(AIO) Xn - N2+d(07 Etl,tg)a

where the matrix X, 4, is defined in (2.17). For a proof of this statement we first calculate the asymptotic
covariance matrix of the random vector X,,. Observing the identity

E[Z}]+2) E[ZZjym] = (ma(t;) — 1+ 45,) 0" (t;) + O (n7)

m=1
(uniformly with respect to ¢j,7 =1,...,n) it follows for ¢ = 1,2
1 [nt;] 1 [nt;|—r r 1
ROVZ| _ 2 _ 2
nE[(B)°] = nE(— > Z) = ) (E[Z]]+2 Y ElZZn] ) +0 (E)
Jj=r+1 Jj=r+1 m=1

= /0 i m(x)ot (z) f () dz 4+ O (n™7)

(uniformly with respect to ¢;;i = 1,...,n), where we have used the Lipschitz-continuity of the functions

o2, 0]2-, f. A similar calculation yields for 1 <,/ < 2:t; <ty

o 1 ' 1
nE (BB = nE(— >z Z)

= — 3 (slz})+2 mzz Bl2,20) ) +0 (1) = [ w@ioto) o)t + 00 )
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[recall that 7,.(z) = my (x) — 1+ 44, Jand for 1 <i<2;1<¢<d

nE [Bgég] = /0 i m(x)ot (x) o? (x) f (z) dz + O (n77),

1
nE 6] = /0 r(@)0* (@) 0 (2) 02 (2) f (x) dx + O (n 7).

Therefore it follows Var(X,) = ¥, +, + O(n™7), where the matrix ¥, 4, is defined in Theorem 2.1.
For a proof of the asymptotic normality we introduce the notation ¢ = (a1, ag, by, ... ,bd)T and show with
the aid of a central limit Theorem for a-mixing arrays in Liebscher (1996) that

TX _ _ d
(A.11) T, = CAn _ 4 (alB,?l +aB) + Y b@) B N(0,1),
=1

g

2

where 0° = cTEthmc denotes the asymptotic variance of ¢ X,,. For this we assume t; < t5 and note that

n

the statistic T}, can be represented as T), = > 7 4

Ch,j, where

Ja (a1 +az+ X0 bio? ())2; < [nty]

n

Oni = =) (a2 + 320y 0i0 (8))Z; [nt] <j < [nta] -
S bio} (t;) Z; > [nta)

Obviously, {Cy; | j =r+1,...,n;n € N} is a triangular array of (r 4+ 1)-dependent random variables
and

(A.12) E[1Z’] <E[LY] +3E[L]] E[L] +4(E[L3])*.

Now a straightforward calculation gives E|Z;|3 = O(1) and E|Z;|* = O(1) uniformly with respect to
j=r+1,...,n. As a consequence we obtain

3 —3/2y. 4 _ -2
E|C ;1 =0(n™*); B|C, ;| =0(n~?)

uniformly with respect to j = r+1,...,n. From the calculation of the covariance matrix of X, it follows
that lim, o0 E [T 3] = 1, and the assumptions in the central limit theorem of Liebscher (1996) hold with
g = 4 and p = 3, respectively. This theorem now yields the assertion (A.11), and as a consequence we

obtain
ol = CTXn 2) N (07 CTEt1,t2c) :
By the Cramér-Wold device the weak convergence of the finite dimensional distributions and the state-

ment in (A.6) follows.
In order to prove the remaining assertion (A.7) we introduce a further decomposition

LntJ n

) 1 1 ) ) . )
An(t) = n—r j;—l 4= n—r j;—l Zi{8010% (1)) + ...+ draoy (t;) } = AP (1) — AD) (1),

where the last equality defines the processes 2153) and Aﬁf), 55 = Zgzl I;kjf?f, and l;ij denotes the element
in the ith row and jth column of the inverse of the matrix A. Obviously, the assertion (A.7) follows from

(A.13) E [nQIAQ) (t) — AY (s) Iﬂ <C(t-s)?, i=1,2
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for some positive constant. For a proof of this property in the case ¢ = 1 we use the representation

AY (t) — AY (s) =L Z]V:Ltﬂns 1+1%i and obtain by a straightforward calculation

B = B[n2AD (1) - AD <s>|4] =y QE[ZZ4+6ZZZ2Z+k+4ZZz Zit

i k=1 i k=1

MY S22+ Y Y P+ 21 Y ZiZiiZiin kst
1 k=1 i k=1 1 k=1

+12) Z ZiZ Lk +12) Z 2, Zik 2 e

i k=1 i k=1

T T
32222+ 12 Y N ZiZinZiZpav12 Y ZZZ-ZMZ]?]

i] §>i42r+1 k=1 j>itr+1 k=1

_(n_ 2E{Zz2z2+4 Z ZZZMZ im + 4 Z ZZZ-ZZ-MZ]Z]—FO(%).

i#£] J>i42r+1 k;m=1 j>i+r+1 k=1
The dominating terms in this expression satisfy

[nt]

1 2 1
{n—r 22222 - (5 Z E[Zﬂ) —i_0(5>7
i#£j i=|ns|+1
. [nt|—r r
ety T % anssn] - (3 % ez o).

7>14+2r+1 kym=1 i1=|ns|]+1 k=1

1 r . 1 [nt] [nt]—r

E[(ig Z ZZiZi+ij = 3 Z Z ZE AVARRY +O( >

n=T) i e : i=|ns|+1 i=|ns|+1 k=1

and it follows

[nt] [nt]—r r
6n:3[(% Y E[Z? ) ( S YE ZZM)
i=|ns]+1 i=|ns|+1 k=1
+2(% % % iEZZz+k)]+O( )
t=|ns|+1 i1=|ns|]+1 k=1
1 [nt]—r r 9 1
:3{5 Z (E[Z’?]+2ZE[ZiZZ'+k]>} +O(ﬁ>
i=|ns|+1 k=1

2

t
=3 </ T,«(m)a4 (x) f (x) da:) + 0 (n*V)
uniformly with respect to s,¢ € [0,1]. The estimate (A.13) in the case i = 1 is now obvious from the

mean value theorem.
In order to derive a similar estimate for the process AP we note that E[nﬂfig) (t) — Ay (s)[*] = o(1)
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uniformly with respect to ¢ € [0, 1], where the process /L(f) is defined by

_ 1 "
A£L2) (t) = P Z Zj{8t710'% (tj) + "'+St,d0621 (tj)}
j=r+1

with s;; = Zgzl bijI{g and by; denotes the element in the £th row and jth column of the inverse of the
matrix A. Obviously, we have for some constants C1,...,Cy

d t d
Stj — Ssj = Z bkj(/ of (x) f (x) d:c) =(t—s) Zbij’k,
k=1 s k=1

and obtain
~ _ 1 n d d
Ag) (t) — Ag) (3) = —— Z Zj{ (t —5) Z blekaf (tj) +...+ (t — 8) Zbkdckdg (tj) }
j=r+1 k=1 k=1
t—s —
T n—r Z 1iZj,
j=r+1

where the constants ;; are defined by p; = Zle (22:1 briCr)o? (t;) . A similar calculation as used in
the proof of the tightness of the process 2153) shows that the inequality (A.13) also holds in the case i = 2.
This establishes the remaining condition (A.7) and the proof of Theorem 2.1 is completed. O

Proof of Lemma A.1. Defining the quantities A; = >"7  d;ym (tj—;) we obtain

[nt] [nt]
s0 & 1 1
D, =B}~ B; = — > (RI-LY) = — > AL+ A).
j=r+1 j=r+1

The expectation and variance of D,, can be estimated using the Lipschitz continuity of the function m,
and it follows E[D,] = O(n™7),

[nt] 2 |nt]
Var (Dn) = Var( 2 Z LjAj) < {m%x A]} Var( 2 Z Lj) = O(n_2'y).

n-—r =r+1 n—r
j=r+1 J j=r+1

By Markov’s inequality this yields D,, = 0,(n~'/2) (note that v > 1/2). The second term in (A.3) can be
treated similarly, which completes the proof of Lemma A.1. |

Proof of Theorem 5.1. For the sake of brevity we only sketch the main difference in the proof, which
emerges in the different variance in the case of a random design. Let ¢; and B? be defined as in (5.2) and
(5.3), where the random variables R; are replaced by the variables L; = o(X(;)) > i_odica;_,. By the
Lipschitz continuity of the regression function the limiting behaviour of the process S; is not changed by
this replacement. For the calculation of the asymptotic covariance we now use the random variables B?l

and B?Q (with 0 <1 <ty <1) and the formula
(A.14) Cov (BY,BY) = Cov (E (B}, |F.],E [BL|Fa]) + E[Cov (BY, By | F)l,
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where J;, denotes the o—field generated by the order statistics Xy, ..., X(,). For the conditional expec-
tation we have
n

EB[BY|F,] = ir S 03X X < HE( ngA“ V2| Fl Za DILX; < 1} +o(1),

n .
j:7’+1 =0

and an easy calculation gives for t1 < to

~ . t1
(A1) nCov (BB L BIBLIF]) = [0 @) ] (@) do = B B, +o(0).
For the second term in equation (A.14) we obtain
1 n T
Cov (B?NBO ‘F ) m{ Z 0’4(X(J))I{X(]) S tl}var<(2di5,4j_i)2‘fn>
j=r+1 i=0

+2 Z Z X(j) I{X(j) < tl}COV ((ZdieAj,i)Q, ( ZdieAkfi)aFn)}
=0 =0

m=1 j=r+1
+op(1).

Observing that

Var(( Z dl-EAj_i)2].7-"n> +2 Z Cov (( Z diEAj_i)2, ( Z diEAk_i)Q‘Fn>
i=0 m=1 i=0 '
=My (X( )) —1—|—46 +0p( )

it follows that

n Cov ((Bgl,B0)|Fn) = n_r 2 Z X(] I{X(j) < tl}-f—Op( )
j=r+1

Z—Z“ X;) — 1446,)I1{X; < t1} + 0p(1)
and

E[Cov (BY, BY)|F.)] = /0 LA @) () f(x) d + o(1).

Note that this is exactly the same as the asymptotic covariance calculated in the fixed design case. From
(A.15) we obtain the representation of 7;; in (5.7), and formula (A.14) yields the representation of the
corresponding element in the matrix 3, ¢,. The other elements in the matrix %, ;, are calculated exactly
in the same way and the details are omitted for the sake of brevity. O

B A central limit theorem for triangular array of mixing

random variables

In this section we briefly restate a result of Liebscher (1996) which gives a central limit theorem for a
rowwise a-mixing triangular array of random variables {Y,,; | ¢ = 1,...,ky;n € N} with &k, — oo as
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n — 00. We denote the mixing coefficients by «; and consider the statistic

kn
(B.1) T, = ZYn
i=1

Theorem B.1. (Liebscher, 1996) Assume that
[e.e]

(B.2) S <oo
k=1

for some p > 2, E[Y, ;] =0, E[|Y,[’] < oo and E[|Y, ;| < oo for some g >p (i=1,...,kp;n € N). If
the conditions

kn

(B.3) lim Z (E |yn7l.|q)2/p =0,
i=1
(B.4) lim E [T7] =1,

n—oo

kn
(B.5) ST BV <C

i=1

for some constant C' are satisfied, then the statistic T, defined by (B.1) satisfies T), A N(0,1) if n — oo.
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