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Abstract

In this paper we present two new tests for the parametric form of the variance function
in diffusion processes dXt = b(t,Xt) + σ(t,Xt)dWt. Our approach is based on two stochastic
processes of the integrated volatility. We prove weak convergence of these processes to
centered processes whose conditional distributions given the process (Xt)t∈[0,1] are Gaussian.
In the special case of testing for a constant volatility the limiting process is the standard
Brownian bridge in both cases. As a consequence an asymptotic distribution free test (for the
problem of testing for homoscedasticity) and bootstrap tests (for the problem of testing for a
general parametric form) can easily be implemented. It is demonstrated that the new tests are
more powerful with respect to Pitman alternatives than the currently available procedures for
this problem. The asymptotic advantages of the new approach are also observed for realistic
sample sizes in a simulation study, where the finite sample properties of a Kolmogorov-
Smirnov test are investigated.

Keywords and Phrases: Specification tests, integrated volatility, bootstrap, heteroscedasticity,
stable convergence, Brownian Bridge

1 Introduction

Modeling the dynamics of interest rates, stock prices exchange rates is an important problem in
mathematical finance and since the seminar papers of Black and Scholes (1973) and Merton (1973)
many theoretical models have been developed for this purpose. Most of these models are continu-
ous time stochastic processes, because information arrives at financial markets in continuous time
[see Merton (1990)]. A commonly used class of processes in mathematical finance for representing
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asset prices are Itô diffusions defined as a solution of the stochastic differential equation

dXt = b (t, Xt) dt + σ (t, Xt) dWt(1.1)

where (Wt)t is a standard Brownian motion and b and σ denote the drift and volatility, respec-
tively. Various models have been proposed in the literature for the different types of options [see
e.g. Black and Scholes (1973), Vasicek (1977), Cox, Ingersoll and Ross (1985), Karatzas (1988),
Constantinides (1992) or Duffie and Harrison (1993) among many others]. For a reasonable pricing
of derivative assets in the context of such models a correct specification of the volatility is required
and good estimates of this quantity are needed. For example, the pricing of European call options
crucially depends on the functional form of the volatility [see Black and Scholes (1973)] and the
same is true for other types of options [see e.g. Duffie and Harrison (1993) or Karatzas (1988)
among many others].

A (correct) specification of a parametric form for the volatility has the advantage that the problem
of its estimation is reduced to the determination of a low dimensional parameter. On the other
hand a misspecification of drift or variance in the diffusion model (1.1) may lead to an inadequate
data analysis and to serious errors in the pricing of derivative assets. Therefore several authors
propose to check the postulated model by means of a goodness-of-fit test [see Ait Sahalia (1996),
Corradi and White (1999), Dette and von Lieres und Wilkau (2003)]. Ait Sahalia (1996) assumes a
time span approaching infinity as the sample size increases and considers the problem of testing a
joint parametric specification of drift and variance, while in the other references a fixed time span
is considered, where the discrete sampling interval approaches zero, and a parametric hypothesis
regarding the volatility function is tested. This modeling might be more appropriate for high
frequency data.

In the present paper we also consider the case of discretely observed data on a fixed time span,
say [0, 1], from the model (1.1) with increasing sample size. As pointed out by Corradi and
White (1999) this model is appropriate for analyzing the pricing of European, American or Asian
options. These authors consider the sum of the squared differences between a nonparametric and
a parametric estimate of the variance function at a fixed number of points in the interval [0, 1].
Although this approach is attractive because of its simplicity, it has been argued by Dette and von
Lieres und Wilkau (2003) that the results of the test may depend on the number and location of the
points, where the parametric and nonparametric estimates are compared. Therefore these authors
suggest a new test for the parametric form of the volatility in the diffusion model (1.1), which
does not depend on the state x, i.e. σ(t, Xt) = σ(t). The test is based on an L2-distance between
the volatility function in the model under the null hypothesis and alternative. This approach
yields a consistent procedure against any (fixed) alternative, which can detect local alternatives
converging to the null hypothesis at a rate n−1/4. In the present paper an alternative test for the
parametric form of the volatility function is proposed, which is based on an empirical process of
the integrated volatility. Our motivation for considering functionals of stochastic processes as test
statistics stems from the fact that tests of this type are more sensitive with respect to Pitman
alternatives. Moreover the new tests are also applicable for testing parametric hypotheses on the
volatility, which which depend on the state x.

In Section 2 we introduce some basic terminology and describe two kinds of parametric hypothe-
ses for the volatility function. We also define two types of stochastic processes of the integrated
volatility, which will be used for the construction of test statistics for these hypotheses. Section
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3 contains our main results. We show convergence in probability of the stochastic processes to
a random variable, which vanishes if and only if the null hypothesis is satisfied. Moreover, we
also establish weak convergence of appropriately scaled processes of the integrated volatility to a
centered process under the null hypothesis of a parametric form of the volatility. Consequently,
the Kolmogorov-Smirnov and Cramér von Mises functional of these processes are natural test sta-
tistics. In general the limiting process is a complicated “function” of the data generating diffusion,
but conditioned on the diffusion (Xt)t∈[0,1] it is a Gaussian process. In the problem of testing for
homoscedasticity these tests are asymptotically distribution free and the limit distribution is given
by a Brownian bridge. In Section 4 we study the finite sample properties of the proposed method-
ology and compare the new procedure with the currently available tests for the parametric form
of the volatility function. For high frequency data the new tests yield a reliable approximation of
the nominal level and substantial improvements with respect to power compared to the currently
available procedures. Finally, all proofs and some auxiliary results are presented in an appendix.

2 Specification of a parametric form of the volatility

Let (Wt)t≥0 denote a standard Brownian motion defined on an appropriate probability space
(Ω,F , (Ft)0≤t≤1, P ) with corresponding filtration FW

t = σ(Ws, 0 ≤ s ≤ t) and assume that the
drift and variance function in the stochastic differential equation (1.1)

b : [0, 1] × R → R

σ : [0, 1] × R → R

are locally Lipschitz continuous, i.e. for every integer M > 0 there exists a constant KM such that

|b (t, x) − b (t, y)| + |σ (t, x) − σ (t, y)| ≤ KM |x − y|(2.1)

for all t ∈ [0, 1], x, y ∈ [−M, M ], and there exists a constant K such that

|b (t, x)|2 + |σ (t, x)|2 ≤ K2 (1 + |x|2)(2.2)

for all t ∈ [0, 1], x ∈ R. It is well known that for an F0-measurable square integrable random
variable ξ, which is independent of the Brownian motion (Wt)t∈[0,1], the assumptions (2.1) and
(2.2) admit a unique strong solution (Xt)t∈[0,1] of the stochastic differential equation (1.1) with
initial condition X0 = ξ which is adapted to the filtration (Ft)0≤t≤1 [see e.g. Karatzas and Shreve
(1991) p. 289]. The solution of the differential equation can be represented as

Xt = ξ +

∫ t

0

b (s, Xs) ds +

∫ t

0

σ (s, Xs) dWs a.s.,(2.3)

where Xt is Ft-measurable for all t ∈ [0, 1] and the paths t → Xt are almost surely continuous.
In the literature various parametric functions have been proposed for different types of options
[see e.g. Black and Scholes (1973), Vasicek (1977), Cox, Ingersoll and Ross (1985), Karatzas
(1988), Constantinides (1992) or Duffie and Harrison (1993) among many others]. In principle the
assumption on the volatility function in these models can be formulated in two ways that is

H̄0 : σ2(t, Xt) =
d

∑

j=1

θ̄jσ̄
2
j (t, Xt) ∀ t ∈ [0, 1] (a.s.) ,(2.4)
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or

H0 : σ(t, Xt) =
d

∑

j=1

θjσj(t, Xt) ∀ t ∈ [0, 1] (a.s.) ,(2.5)

where σ̄2
1, . . . , σ̄

2
d, respectively σ1, . . . , σd are given and known volatility functions and θ̄ = (θ̄1, . . . , θ̄d),

θ = (θ1, . . . , θd) ∈ Θ ⊂ R
d are unknown finite dimensional parameters. Throughout this paper we

assume additionally that the drift and variance function satisfy a further Lipschitz condition of
order γ > 1

2
, i.e.

|b (t, x) − b (s, x)| + |σ(t, x) − σ(s, x)| ≤ L |t − s|γ

(2.6)

|b (t, x) − b (s, x)| + |σj(t, x) − σj(s, x)| ≤ L |t − s|γ , j = 1, . . . , d,

for all s, t ∈ [0, 1], L > 0. Note that the hypothesis (2.4) refers to the variance function σ2 while
the formulation (2.5) directly refers to the factor of the term dWs in the stochastic differential
equation (1.1). There exist in fact many models for prices of financial assets traded in continuous
time, where both hypotheses are equivalent [see e.g. Vasicek (1977), Cox, Ingersoll and Ross
(1985), Brennan and Schwartz (1979), Courtadon (1982), Chan, Karolyi, Longstaff and Sanders
(1992)], but in general these hypotheses are not equivalent. A typical example for such a case is
given by

H̄0 : σ2(t, Xt) = ϑ̄1 + ϑ̄2X
2
1 , (a.s.)(2.7)

H0 : σ(t, Xt) = ϑ1 + ϑ2|Xt|, (a.s.)(2.8)

which is a slight generalization of the models considered in the cited references. We begin our
discussion with the construction of a test statistic for the hypothesis H0 in (2.5) and since the law of
the process X depends only on σ2 [see Revuz and Yor (1999) p. 293] we assume that the functions
σ, σ1, . . . , σd are strictly positive and linearly independent on every compact set [0, 1]×[a, b], a < b.
We assume additionally that σ : [0, 1] × R → R is twice continuously differentiable such that for
some constant F > 0

sup
s,t∈[0,1]

E[(
∂

∂y
σ(s, Xt))

4] < F, sup
s,t∈[0,1]

E[(
∂2

∂y2
σ(s, Xt))

4] < F(2.9)

and

sup
s,t∈[0,1]

E[(
∂

∂y
{σi(s, Xt)σj(s, Xt)})4] < F, sup

s,t∈[0,1]

E[(
∂2

∂y2
{σi(s, Xt)σj(s, Xt)})4] < F(2.10)

for all 1 ≤ i, j ≤ d, where the differentiation in (2.9) and (2.10) is performed with respect to the
second argument. Throughout this paper we assume that

E[|ξ|4] < ∞,(2.11)

and that the functions σ1, . . . , σd in the linear hypothesis (2.5) satisfy the same assumptions (2.1),
(2.2) and (2.9) as the volatility function σ. For the discussion of hypothesis (2.4) we need to
replace σ by σ2 in assumption (2.9), σi by σ̄2

i in (2.10) and 4 by 8 in assumption (2.11).
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For testing the hypothesis (2.5) we consider the following stochastic process

Mt :=

∫ t

0

{

σ(s, Xs) −
d

∑

j=1

θmin
j σj(s, Xs)

}

ds ,(2.12)

where the vector θmin = (θmin
1 , . . . , θmin

d )T is defined by

θmin := argminθ∈Rd

∫ 1

0

{

σ(s, Xs) −
d

∑

j=1

θjσj(s, Xs)
}2

ds .(2.13)

Note that the null hypothesis in (2.5) is satisfied if and only if

Mt = 0 ∀ t ∈ [0, 1] a.s.(2.14)

and that we use an L2-distance to determine the best approximation of σ by linear combination
of the functions σ1, . . . , σd. This choice is mainly motivated by the sake of transparency and
other distances as the L1-distance could be used as well with an additional amount of technical
difficulties.

From standard Hilbert space theory [see Achieser (1956)] we obtain

θmin = D−1C ,(2.15)

where the matrix D = (Dij)1≤i,j≤d and the vector C = (C1, . . . , Cd)
T are defined by

Dij := 〈σi, σj〉2,(2.16)

Ci := 〈σ, σi〉2,(2.17)

and 〈·, ·〉2 denotes the standard inner product for functions f, g : [0, 1] × R → R, that is

〈f, g〉2 =

∫ 1

0

f(t, Xt)g(t, Xt)dt(2.18)

(here and throughout this paper we assume that the integrals exist almost surely, whenever they
appear in the text). Throughout this paper we also assume the existence of the expectation

E[det(D)−ρ] < ∞(2.19)

for some ρ > 0. The quantities in (2.16) and (2.17) can easily be estimated by

D̂ij :=
1

n

n
∑

k=1

σi(
k

n
, X k

n
)σj(

k

n
, X k

n
)

P−→ Dij,(2.20)

Ĉi := µ−1
1 n− 1

2

n
∑

k=1

σi(
k − 1

n
, X k−1

n
)|X k

n
− X k−1

n
| P−→ Ci ,(2.21)

where the symbol
P−→ means convergence in probability and µ1 is the first absolute moment of a

standard normal distribution. With the notation

D̂ = (D̂ij)1≤i,j≤d,(2.22)

Ĉ = (Ĉ1, . . . , Ĉd)
T(2.23)

5



we obtain
θ̂min := D̂−1Ĉ(2.24)

as estimate for the random variable θmin. We finally introduce the stochastic process

M̂t := B̂0
t − B̂T

t D̂−1Ĉ ,(2.25)

as estimate of the process (Mt)t∈[0,1] defined in (2.12), where the quantities B̂0
t and B̂t = (B̂1

t , . . . , B̂
d
t )

T

are given by

B̂0
t := µ−1

1 n− 1

2

bntc
∑

k=1

|X k
n
− X k−1

n
|,(2.26)

B̂i
t :=

1

n

bntc
∑

k=1

σi(
k

n
, X k

n
), 1 ≤ i ≤ d,(2.27)

respectively. Note that Mt = 0 (a.s.) for all t ∈ [0, 1] if and only if the null hypothesis H0 is
satisfied. Consequently, it is intuitively clear that the rejection of the null hypothesis for large
values of

sup
t∈[0,1]

|M̂t| ,

∫ 1

0

|M̂t|dt or

∫ 1

0

|M̂t|2dt

yields a consistent test for the above problem.

Before we make these arguments more rigorous we briefly present the corresponding testing pro-
cedure for the hypothesis (2.4). In this case the analogue of the stochastic process Mt is defined
by

Nt :=

∫ t

0

{

σ2(s, Xs) −
d

∑

j=1

θ̄min
j σ̄2

j (s, Xs)
}

ds ,(2.28)

where the random variable θ̄min = (θ̄min
1 , . . . , θ̄min

d )T is given by

θ̄min := argminθ̄∈Rd

∫ 1

0

{

σ2(s, Xs) −
d

∑

j=1

θ̄jσ̄
2
j (s, Xs)

}2

ds .(2.29)

The nonobservable stochastic process can easily be estimated from the available data by

N̂t := B̄0
t − B̄T

t D̄−1C̄ ,(2.30)

where

D̄ij :=
1

n

n
∑

k=1

σ̄2
i (

k

n
, X k

n
)σ̄2

j (
k

n
, X k

n
), i, j = 1, . . . , d(2.31)

C̄i :=

n
∑

k=2

σ̄2
i (

k − 1

n
, X k−1

n
)|X k

n
− X k−1

n
|2, i = 1, . . . , d(2.32)
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and the quantities B̄0
t and B̄t = (B̄1

t , . . . B̄
d
t )

T are given by

B̄0
t :=

bntc
∑

k=1

|X k
n
− X k−1

n
|2,(2.33)

B̄i
t :=

1

n

bntc
∑

k=1

σ̄2
i (

k

n
, X k

n
), 1 ≤ i ≤ d.(2.34)

In the following section we investigate the stochastic properties of the processes

(
√

n(M̂t − Mt))t∈[0,1]

and
(
√

n(N̂t − Nt))t∈[0,1].

In particular, we will prove weak convergence of these processes to centered processes, which
are conditioned on the process (Xt)t∈[0,1] Gaussian processes. This is the basic result for the
application of these processes in the problem of testing for the parametric form of the volatility
in a continuous time diffusion model. The reason for considering both processes is twofold. On
the one hand the weak convergence of the process

√
n(M̂t −Mt) can be established under weaker

assumptions on the model (1.1). On the other hand the statistic
√

n(N̂t − Nt) can easily be
extended to vector-valued diffusions [see Remark 3.7].

3 Main results

For the sake of brevity we mainly restrict ourselves to a detailed derivation of the stochastic
properties of the process M̂t. The corresponding results for the process N̂t can be obtained by
similar arguments and the main statements are given at the end of this section for the sake of
completeness. We begin our discussion with two auxiliary results regarding the estimators D̂ and
B̂i

t defined in (2.22) and (2.27), which are also of own interest. Throughout this paper µi denotes
the ith absolute moment of a standard normal distribution (i = 1, 2). Our first results clarify the
order of difference between the empirical quantities Ĉi, B̂i

t, D̂ij and their theoretical counterparts
Ci, Bi

t, Dij, respectively.

Lemma 3.1. If the assumptions stated in Section 2 are satisfied we have

B̂i
t −

∫ t

0

σi(s, Xs)ds = op(n
− 1

2 ) 1 ≤ i ≤ d

D̂ − D = op(n
− 1

2 )

Throughout this paper the symbol

Xn
Dst−→ X
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means that the sequence of random variables converges stably in law. Recall that a sequence
of d-dimensional random variables (Xn)n∈N converges stably in law with limit X, defined on
an appropriate extension (Ω′,F ′, P ′) of a probability space (Ω,F , P ), if and only if for any F -
measurable and bounded random variable Y and any bounded and continuous function g the
convergence

lim
n→∞

E[Y g(Xn)] = E[Y g(X)]

holds. This is obviously a slightly stronger mode of convergence than convergence in law [see
Renyi (1963), Aldous and Eagleson (1978) for more details on stable convergence]. The following
Lemma shows that the random variables B̂0

t and Ĉi defined in (2.26) and (2.23) converge stably
in law if they are appropriately normalized.

Lemma 3.2. If the assumptions stated in Section 2 are satisfied we have for any t1, . . . , tk ∈ [0, 1]

√
n





















B̂0
t1
− < σ, 1 >t1

2
...

B̂0
tk
− < σ, 1 >tk

2

Ĉ1 − C1
...

Ĉd − Cd





















Dst−→ µ−1
1

√

µ2 − µ2
1

∫ 1

0

Σ
1

2

t1,...tk
(s, Xs) dW ′

s ,

where W ′ denotes a (d + k)-dimensional Brownian motion, which is independent of the σ-field F ,
and the matrix Σt1,...tk(s, Xs) is defined by

Σt1 ,...tk(s, Xs) =



















v11(s, Xs) · · · v1k(s, Xs) w11(s, Xs) · · · w1d(s, Xs)
...

. . .
...

...
. . .

...
vk1(s, Xs) · · · vkk(s, Xs) wk1(s, Xs) · · · wkd(s, Xs)
w11(s, Xs) · · · wk1(s, Xs) s11(s, Xs) · · · s1d(s, Xs)

...
. . .

...
...

. . .
...

w1d(s, Xs) · · · wkd(s, Xs) sd1(s, Xs) · · · sdd(s, Xs)



















(3.1)

with

vij(s, Xs) = σ2(s, Xs)1[0,ti∧tj)(s) 1 ≤ i ≤ k

wij(s, Xs) = σj(s, Xs)σ
2(s, Xs)1[0,ti)(s) 1 ≤ i ≤ k , 1 ≤ j ≤ d

sij(s, Xs) = σi(s, Xs)σj(s, Xs)σ
2(s, Xs) 1 ≤ i, j ≤ d

and

< σ, 1 >t
2=

∫ t

0

σ(s, Xs)ds.

Note that the matrix Σt1 ,...tk(s, Xs) defined in (3.1) can be represented as

Σ
1/2
t1,...,tk

(s, Xs) =
gt1,...,tk(s, Xs)gt1,...,tk(s, Xs)

T

√

gt1,...,tk(s, Xs)T gt1,...,tk(s, Xs)
,(3.2)
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where the vector gt1,...,tk(s, Xs) is defined by

gt1,...,tk(s, Xs) = (σ(s, Xs)I[0,t1)(s), . . . , σ(s, Xs)I[0,tk)(s),(3.3)

σ1(s, Xs)σ(s, Xs), . . . , σd(s, Xs)σ(s, Xs))
T .

Now we state one of our main results. For this purpose we define the process

An(t) =
√

n(M̂t − Mt) (t ∈ [0, 1])(3.4)

and obtain the following result.

Theorem 3.3. If the assumptions given in Section 2 are satisfied, then the process (An(t))t∈[0,1]

defined in (3.4) converges weakly on D[0, 1] to a process (A(t))t∈[0,1], which is Gaussian conditioned
on the σ-field F . Moreover, the finite dimensional conditional distributions of the limiting process
(A(t1), . . . A(tk))

T are uniquely determined by the conditional covariance matrix

µ−2
1 (µ2 − µ2

1) V

∫ 1

0

Σt1,...tk(s, Xs) ds V T ,(3.5)

where the k × (d + k)-dimensional matrix V is defined by

V = (Ik|Ṽ ) Ṽ = −







BT
t1
D−1

...
BT

tk
D−1






,(3.6)

and Ik ∈ R
k×k denotes the identity matrix.

Note that the identity Mt ≡ 0 holds (a.s.) for all t ∈ [0, 1] if and only if the null hypothesis in
(2.5) is satisfied, and consequently the null hypothesis is rejected for large values of a functional
of the process (

√
nM̂t)t∈[0,1]. For example, in the case of the Kolmogorov-Smirnov statistic

Kn =
√

n sup
t∈[0,1]

|M̂t|,(3.7)

it follows from Theorem 3.3 that (under H0)

Kn
D−→ sup

t∈[0,1]

|A(t)|,

where the symbol
D−→ denotes the weak convergence and the process (A(t))t∈[0,1] is defined in

Theorem 3.3. In general, even under the null hypothesis H0, the distribution of this process is
rarely available and depends on the full process (Xt)t∈[0,1]. However, conditioned on the process
(Xt)t∈[0,1] the process (A(t))t∈[0,1] is Gaussian. Moreover, in the important case of testing for a
constant volatility, i.e. d = 1, σ1(t, Xt) = 1, the limit distribution of the process (An(t))t∈[0,1] is
surprisingly simple.
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Corollary 3.4. Assume that the assumptions stated in Section 2 are satisfied and that the hy-
pothesis H0 : σ(t, Xt) = σ for some σ > 0 has to be tested (that is d = 1, σ1(t, Xt) = 1 in (2.5)).
Under the null hypothesis the process (An(t))t∈[0,1] converges weakly on D[0, 1] to the process

(µ−1
1

√

µ2 − µ2
1σBt)t∈[0,1] ,

where Bt denotes a Brownian bridge.

We now briefly consider the corresponding results for testing the hypothesis (2.4) based on the
stochastic process N̂t defined in (2.30). For this recall the definition of Nt in (2.28) and define

Ān(t) =
√

n(N̂t − Nt).(3.8)

The following result is proved by similar arguments as presented for the proof of Theorem 3.3 in
the Appendix.

Theorem 3.5. If the assumptions given in Section 2 are satisfied, then the process (Ān(t))t∈[0,1]

in (3.8) converges weakly on D[0, 1] to a process (Ā(t))t∈[0,1], which is Gaussian conditioned on
the σ-field F . Moreover, the finite dimensional conditional distributions of the limiting process
(Ā(t1), . . . Ā(tk))

T are uniquely determined by the conditional covariance matrix

2 V̄

∫ 1

0

Σ̄t1,...tk(s, Xs) ds V̄ T ,(3.9)

where the k × (d + k)-dimensional matrix V̄ is defined by

V̄ = (Ik|Ũ) Ũ = −







B̄T
t1
D̄−1

...
B̄T

tk
D̄−1






,

and the matrix Σ̄t1,...tk is given by

Σ̄t1 ,...tk(s, Xs) =



















v̄11(s, Xs) · · · v̄1k(s, Xs) w̄11(s, Xs) · · · w̄1d(s, Xs)
...

. . .
...

...
. . .

...
v̄k1(s, Xs) · · · v̄kk(s, Xs) w̄k1(s, Xs) · · · w̄kd(s, Xs)
w̄11(s, Xs) · · · w̄k1(s, Xs) s̄11(s, Xs) · · · s̄1d(s, Xs)

...
. . .

...
...

. . .
...

w̄1d(s, Xs) · · · w̄kd(s, Xs) s̄d1(s, Xs) · · · s̄dd(s, Xs)



















(3.10)

with

v̄ij(s, Xs) = σ4(s, Xs)1[0,ti∧tj)(s) 1 ≤ i ≤ k

w̄ij(s, Xs) = σ̄2
j (s, Xs)σ

4(s, Xs)1[0,ti)(s) 1 ≤ i ≤ k , 1 ≤ j ≤ d

s̄ij(s, Xs) = σ̄2
i (s, Xs)σ̄

2
j (s, Xs)σ

4(s, Xs) 1 ≤ i, j ≤ d

10



and

B̄t =
(

∫ t

0

σ̄2
1(s, Xs)ds, . . . ,

∫ t

0

σ̄2
d(s, Xs)ds

)T

.

For a construction of a test for the hypothesis (2.4) we calculate a Kolmogorov-Smirnov statistic
and reject the null hypothesis for large values. We conclude this section with an investigation of
the stochastic properties of the tests with respect to local alternatives. For the sake of brevity we
restrict ourselves to the problem of testing for homoscedasticity, that is

H0 : σ(t, Xt) = σ a.s.(3.11)

for some σ > 0 and local alternatives of the form

H
(n)
1 : σ(t, Xt) = σ + γnh(t, Xt),(3.12)

where h is a positive function and γn is a positive sequence converging to 0 at an appropriate rate.
The problem of testing more general hypotheses can be treated exactly in the same way. The
consideration of the null hypothesis of homoscedasticity additionally allows a comparison of the
two approaches based on Theorem 3.3 and 3.5, because in the special case d = 1 the hypotheses
(2.4) and (2.5) are in fact equivalent. Note that the process corresponding to the hypothesis
H0 : σ(t, Xt) = σ is given by

M̂t = µ−1
1 n− 1

2

(

bntc
∑

k=2

|X k
n
− X k−1

n
| − bntc

n

n
∑

k=2

|X k
n
− X k−1

n
|
)

.(3.13)

Similarly, if the process defined by (2.30) is used we have (in the case d = 1, σ1(s, Xs) = 1)

N̂t =

bntc
∑

k=2

(X k
n
− X k−1

n
)2 − bntc

n

n
∑

k=2

(X k
n
− X k−1

n
)2.(3.14)

We finally also introduce the statistic proposed by Dette and von Lieres und Wilkau (2003) for
the hypothesis (3.11), that is

Ĝ =
√

n
{n

3

n
∑

k=2

(X k
n
− X k−1

n
)4 −

(

n
∑

k=2

(X k
n
− X k−1

n
)2

)2}

(3.15)

The following results specify the asymptotic behaviour of the processes M̂t, N̂t and the statistic Ĝ
under local alternatives of the form (3.12).

Theorem 3.6. Consider local alternatives of the form (3.12).

(a) If the assumptions of Theorem 3.3 are satisfied, γn = n−1/2, then the processes (
√

nM̂t)t∈[0,1]

defined in (3.13) converges weakly on D[0, 1] to the process (µ−1
1

√

µ2 − µ2
1σBt + Rt)t∈[0,1],

where Bt denotes a Brownian bridge, the process Rt is given by

Rt =

(
∫ t

0

h(s, Xs)ds − t

∫ 1

0

h(s, Xs)ds

)

,(3.16)

and the processes (Bt)t∈[0,1] and (Rt)t∈[0,1] are stochastically independent.
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(b) If the assumptions of Theorem 3.5 are satisfied, γn = n−1/2, then the process (
√

nN̂t)t∈[0,1]

defined by (3.14) converges weakly on D[0, 1] to the process (
√

2σ2Bt +2σRt)t∈[0,1], where Bt

denotes a Brownian bridge, the process Rt is given in (3.16) and the processes (Bt)t∈[0,1] and
(Rt)t∈[0,1] are stochastically independent.

(c) If the assumptions of Theorem 3.5 are satisfied, γn = n−1/4, then it follows for the random
variable Ĝ defined in (3.15)

√
nĜ

D−→ Z + 4σ2
(

∫ 1

0

h2(s, Xs)ds −
(

∫ 1

0

h(s, Xs)ds
)2)

,

where the random variables Z ∼ N (0, 8
3
σ8) and (

∫ 1

0
h2(s, Xs)ds − (

∫ 1

0
h(s, Xs)ds)2) are sto-

chastically independent

Note that it follows from Theorem 3.6 that goodness-of-fit tests based on the processes (3.13)
and (3.14) are more powerful with respect to Pitman alternatives of the form (3.12) than the test
which rejects the null hypothesis (3.11) for large values of the statistic Ĝ. Moreover, Theorem 3.6
also shows that there will be no substantial differences between the tests based on the stochastic
processe M̂t and N̂t with respect to power for local alternatives of the form (3.12) (besides that
the asymptotic theory for the latter requires slightly stronger assumptions). We finally note again
that a similar statement can be shown for the general hypotheses (2.4) and (2.5).

Remark 3.7. It is worthwhile to mention that the process (Nt)t∈[0,1] can easily be generalized
to p-dimensional diffusions. For this assume that the drift function b in (1.1) is a p-dimensional
vector, the volatiltiy is a p× q matrix, and that the underlying Brownian motion is q-dimensional.
For functions f, g : [0, 1] × R

p → R
p×p we define the (random) inner product

〈f, g〉2 =

∫ 1

0

trace (f(s, Xs)g(s, Xs)
T )ds

and denote by

θ̄min := argminθ̄∈Rd〈σσT −
d

∑

j=1

θ̄jσ̄jσ̄
T
j , σσT −

d
∑

j=1

θ̄jσ̄jσ̄
T
j 〉2

Note that θ̄min can be written as
θ̄min = D̄−1C̄ ,

where the elements of the matrix D̄ = (D̄ij)1≤i,j≤d and the vector C̄ = (C̄1, . . . , C̄d)
T are defined

as

D̄ij := 〈σ̄iσ̄
T
i , σ̄jσ̄

T
j 〉2,(3.17)

C̄i := 〈σσT , σ̄iσ̄
T
i 〉2,(3.18)

12



Finally we define the p × p process

Nt :=

∫ t

0

{

σ(s, Xs)σ(s, Xs)
T −

d
∑

j=1

θ̄min
j σ̄j(s, Xs)σ̄j(s, Xs)

T
}

ds ,(3.19)

then it is easy to see that the null hypothesis σσT =
∑d

j=1 θ̄jσ̄jσ̄
T
j is valid if and only if Mt ≡ 0

∀ t ∈ [0, 1] (a.s.). This process is now estimated in an obvious way. For example, the first term in
(3.19) can be approximated by the data by

[nt]
∑

i=1

(X i
n
− X i−1

n
)(X i

n
− X i−1

n
)T P−→

∫ t

0

σ(s, Xs)σ(s, Xs)
T ds,

and the other terms are treated similarly. Consequently under appropriate assumptions on the
drift b the volatility σ and the functions σ̄1, . . . σ̄d an analogue of Theorem 3.5 is available for the
vector-valued diffusions.

4 Finite sample properties

In this section we investigate the finite sample properties of Kolmogorov-Smirnov tests based on
the processes (M̂t)t∈[0,1] and (N̂t)t∈[0,1]. We also compare these tests with the test, which was
recently proposed by Dette, Podolskij and Vetter (2005) for the hypotheses of the form (2.4). We
begin with a study of the quality of approximation by a Brownian bridge in the case of testing
for homoscedasticity. In the second part of this section we briefly investigate the performance of
a parametric bootstrap procedure for the problem of testing more general hypotheses and present
an example analyzing exchange rate data. Here and throughout this section all reported results
are based on 1000 simulation runs.

4.1 Testing for homoscedasticity

Recall from Corollary 3.4 that under the null hypothesis

M (n) :=
√

n sup
t∈[0,1]

|M̂t

β̂
| D−→ sup

t∈[0,1]

|Bt| ,(4.1)

where (Bt)t∈[0,1] denotes a Brownian bridge and β̂ is given by

β̂ = µ−2
1

√

µ2 − µ2
1n

−1/2
n

∑

i=2

|X i
n
− X i−1

n
|.

Similarly, it follows from Theorem 3.5 that

N (n) :=
√

n sup
t∈[0,1)

|N̂t

γ̂
| D−→ sup

t∈[0,1]

|Bt| ,(4.2)
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where the process (N̂t)t∈[0,1] is defined in (3.14) and γ̂ is given by

γ̂ =
√

2

n
∑

i=1

(X i
n
− X i−1

n
)2.

The null hypothesis (3.11) of a constant volatility in the stochastic differential equation is now
rejected if M (n) or N (n) exceed the corresponding quantile of the distribution of the maximum of
a Brownian bridge on the interval [0, 1]. In Table 4.1 we show the approximation of the nominal
level of these tests for sample sizes n = 100, 200, 500. The data was generated according to the
diffusion model (1.1) with σ = 1 and various drift functions b(t, x).

M (n) N (n)

n 100 200 500 100 200 500

b
∖

α 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

0 .044 .098 .045 .099 0.046 0.093 .047 .082 .041 .077 .041 .098
2 .045 .077 .050 .099 0.044 0.106 .032 .078 .034 .078 .048 .092
x .045 .095 .044 .081 0.042 0.091 .033 .089 .033 .081 .041 .082

2 − x .045 .086 .039 .092 0.053 0.092 .041 .075 .039 .069 .051 .090
tx .042 .081 .050 .100 0.042 0.092 .037 .068 .042 .089 .051 .089

Table 4.1. Approximation of the nominal level of the tests, which reject the null hypothesis of
homoscedasticity for large values of the statistics M (n) and N (n). The critical values are obtained
by the asymptotic law (4.1) and (4.2), respectively.

We observe a reasonable approximation of the nominal level in most cases. The statistic M (n)

usually yields a more precise approximation of the nominal level than the statistic N (n), which
turns out to be slightly conservative for small sample sizes. We now investigate the power of both
tests in the problem of testing for homoscedasticity. For the sake of comparison we consider the
same scenario as in Dette, von Lieres und Wilkau (2003) who proposed the test based on the
statistic Ĝ in (3.15) for the problem of checking homoscedasticity. Following these authors we
chose the volatitlity functions

σ(t, x) = 1 + x; 1 + sin(5x); 1 + xet; 1 + x sin(5t); 1 + xt.

In Table 4.2 we present the corresponding rejection probabilities for the sample sizes n = 100, 200
and 500. The results are directly comparable with the results in Table 3 of Dette and von Lieres
und Wilkau (2003) for the corresponding test based on the statistic (3.15). From Thoereom
3.6 we expect some improvement in local power with respect to Pitman alternatives by the new
procedure and these theoretical advantages are impressively reflected in our simulation study. We
observe a substantial increase in power for the new tests. In most cases the improvement is at
least approximately 15% and there are many cases, for which the power of the new test with 200
observations already exceeds the power of the test of Dette, von Lieres und Wilkau (2003) for 500
observations.
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M (n) N (n)

n 100 200 500 100 200 500

σ/α 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

1 + x .857 .888 .920 .944 .972 .976 .830 .863 .929 .949 .969 .978
1 + sin(5x) .1.000 1.000 1.000 1.000 1.000 1.000 .998 .999 1.000 1.000 1.000 1.000

1 + xet .972 .981 .990 .993 0.999 0.999 .947 .968 .989 .996 0.998 0.998
1 + x sin(5t) .781 .843 .890 .911 .962 .970 .776 .824 .882 .914 .961 .974

1 + tx .744 .797 .866 .891 .941 .955 .743 .780 .851 .878 .950 .987

Table 4.2. Rejection probabilities of the tests, which reject the null hypothesis of homoscedasticity
for large values of thes tatistics M (n) and N (n). The critical values are obtained by the asymptotic
law (4.1) and (4.2), respectively.

4.2 Testing for the parametric form of the volatility

As pointed out previously, for a general null hypothesis the asymptotic distribution of the processes
depends on the underlying diffusion (Xt)t∈[0,1] and cannot be used for the calculation of critical
values (except in the problem of testing for homoscedasticity). However, conditional on (Xt)t∈[0,1]

the limiting processes in Theorem 3.3 and 3.5 are Gaussian and this suggests that the parametric
bootstrap can be used to obtain critical values. In this paragraph we will investigate the finite
sample performance of this approach. We explain this procedure for the process (M̂t)t∈[0,1], the

corresponding bootstrap test for the process (N̂t)t∈[0,1] is obtained similarly. In a first step the

least squares estimator θ̂min = (θ̂min
1 , . . . , θ̂min

d )T defined in (2.24) is determined. Then the process√
nM̂t is standardized by an estimate of the conditional variance

s2
t = µ−2

1 (µ2 − µ2
1)(1,−BT

t D−1)

∫ 1

0

Σt(s, Xs)ds (1,−BT
t D−1)T

For the corresponding estimate, say ŝ2
t , the random variables Bt und D are replaced by their

empirical counterparts defined in Section 3, and the random elements in the matrix Σt(s, Xs)
defined in (3.1) are replaced by the statistics

[nt]
∑

k=1

(X k
n
− X k−1

n
)2 P−→

∫ t

0

σ2(s, Xs)ds

[nt]
∑

k=1

σ2
i (

k − 1

n
, X k−1

n
)(X k

n
− X k−1

n
)2 P−→

∫ t

0

σ2
i (s, Xs)σ

2(s, Xs)ds

n
∑

k=1

σ2
j (

k − 1

n
, X k−1

n
)σ2

i (
k − 1

n
, X k−1

n
)(X k

n
− X k−1

n
)2 P−→

∫ 1

0

σ2
j (s, Xs)σ

2
i (s, Xs)σ

2(s, Xs)ds

This yields the (standardized) Kolmogorov-Smirnov statistic

Zn = sup
t∈[0,1]

∣

∣

∣

√
nM̂t

ŝt

∣

∣

∣
(4.3)
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In a second step data X
∗(j)
i/n (i = 1, . . . , n; j = 1, . . . B) from the stochastic differential equation

(1.1) with b(t, x) ≡ 0 and σ(t, x) =
∑d

j=1 θ̂min
j σj(t, x) are generated [note that this choice corre-

sponds to the null hypothesis (2.5)]. These data are used to calculate the bootstrap analogues

Z∗(1)
n , . . . , Z∗(B)

n

of the statistic Zn defined in (4.3). Finally the value of the statistic Zn is compared with the
corresponding quantiles of the bootstrap distribution.

We have investigated the performance of this resampling procedure for the problem of testing
various linear hypotheses, where the volatility function depends on the variable x. The sample
sizes are again n = 100, 200, 500 and B = 500 bootstrap replications are used for the calculation of
the critical values. In particular we compare the two procedures based on (M̂t)t∈[0,1] and (N̂t)t∈[0,1]

for testing the hypothesis

H̄0 : σ2(t, x) = θ̄x2(4.4)

H0 : σ(t, x) = θx

In Table 4.3 we display the simulated level of the parametric bootstrap tests for various drift
functions. We observe a better approximation of the nominal level by the test based on the
process (Nt)t∈[0,1], in particular for small sample sizes. The Kolmogorov-Smirnov test based on

the process (M̂t)t∈[0,1] yields a reliable approximation of the nominal level for sample sizes larger

than 200, while the statistic based on the process N̂t can already be recommended for n = 100.
The results for sample size n = 200, 500 demonstrate that for high frequency data as considered
in this paper both tests yield a reliable approximation of the nominal level. In Table 4.4 we show
the simulated rejection probabilities for the case b(t, x) = 2 − x and the alternatives

σ2(t, x) = 1 + x2, 1, 5|x|3/2, 5|x|, (1 + x)2

M̂t N̂t

n 100 200 500 100 200 500
b/α 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%
0 .125 .195 .081 .135 .074 .133 .052 .110 .050 .099 .061 .114
2 .076 .126 .066 .107 .048 .096 .084 .132 .079 .124 .069 .117
x .094 .148 .071 .128 .048 .100 .069 .129 .057 .117 .054 .100

2 − x .082 .133 .065 .112 .063 .117 .048 .088 .043 .101 .043 .097
xt .103 .166 .068 .130 .062 .116 .049 .103 .046 .099 .063 .105

Table 4.3. Simulated level of the bootstrap test for the hypothesis (4.4) based on the standardized
Kolmogorov-Smirnov functional of the processes (M̂t)t∈[0,1] and (N̂t)t∈[0,1].
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M̂t N̂t

n 100 200 500 100 200 500
σ2/α 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%
1 + x2 .516 .587 .652 .720 .831 .885 .352 .467 .502 .627 .752 .828

1 .809 .862 .933 .955 .996 .998 .739 .838 .917 .960 .995 .997
5|x|3/2 .371 .516 .511 .638 .743 .838 .252 .310 .388 .534 .485 .598
5|x| .917 .882 .954 .970 .994 .997 .439 .551 .731 .858 .898 .949

(1 + x)2 .749 .815 .874 .920 .960 .976 .387 .500 .537 .751 .883 .934

Table 4.4. Simulated rejection probabilities of the bootstrap test for the hypothesis (4.4) based on
the standardized Kolmogorov-Smirnov functional of the processes (M̂t)t∈[0,1] and (N̂t)t∈[0,1].

Note that the Kolmogorov-Smirnov test based on the process (M̂t)t∈[0,1] is substantially more

powerful than the test based on the process (N̂t)t∈[0,1] which uses the squared differences. This
superiority is partially bought by a worse approximation of the nominal level for smaller sample
sizes [see the results for n = 100 and n = 200 in Table 4.3]. However, in the case b(t, x) = 2 − x
and n = 200, 500 both tests keep approximately their level, but the test based on (M̂t)t∈[0,1] is
still substantially more powerful. Thus for high frequency data we recommend the application of
the Kolmogorov-Smirinov test based on the process (M̂t)t∈[0,1].

It is also of interest to compare the power of the new tests with a bootstrap test, which was recently
proposed by Dette, Podolskij and Vetter (2005) and is based on an estimate of the L2-distance

M2 = min
θ1,...,θd

∫ 1

0

{

σ2(t, Xt) −
d

∑

j=1

θjσ
2
j (t, Xt)

}2

dt.

Because this test yield a rather accurate approximation of the nominal level [see Table 1 in this
reference] we mainly consider the Kolmogorov-Smirnov test based on the process (N̂t)t∈[0,1] in our
comparison. The results in the right part of Table 4.4 are directly comparable with the results
displayed in Tabel 4 of Dette, Podolskij and Vetter (2005). We observe that in most cases the new
Kolmogorov-Smirnov test yields a substantial improvement with respect to power. For the sample
size n = 100 the procedure is more powerful for detecting the alternatives σ2(t, x) = 1; 1 + x2

and less powerful for the alternative σ2(t, x) = 5|x|3/2. For the remaining two alternatives the
new test yields slightly better results. One the other hand the asymptotic advantages of the
Kolmogorov-Smirnov test become more visible for larger sample sizes (n = 200, n = 500), where
it outperforms the test based on the L2-distance in all cases. For example, the power of the
test of Dette, Podolskij and Vetter (2005) with n = 500 observations is already achieved by the
Kolmogorov-Smirnov test with n = 200 observations. Except for the alternative σ2(t, x) = 5|x|3/2

the power of the new test is substantially larger.

We finally note again that the power of the Kolmogorov-Smirnov test based on the process
(M̂t)t∈[0,1] is even larger than the power obtained for (N̂t)t∈[0,1]. Thus for high frequeny data
the new tests are a substantial improvement of the currently available procedure for testing the
parametric form of the diffusion coefficient in a stochastic differential equation.
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4.3 Data Example

In this paragraph we apply the test based on the process (Nt)t∈[0,1] to tick-by-tick data. As
a specific example we consider the log returns of the excange rate between the EUR and the
US dollar in 2004. The data were available for 10 weeks between February and April 2004 and
approximately 710 log returns were recorded per week. A typical picture for the 4th and 8th week
is depicted in Figure 4.1.
We applied the proposed procedures to test the hypotheses H̄0 : σ2(t, x) = θ̄1, H̄0 : σ2(t, x) = θ̄1|x|,
H̄0 : σ2(t, x) = θ̄1x

2 and H̄0 : σ2(t, x) = θ̄1 + θ̄2x
2. The corresponding p-values are depicted in

Table 4.5. The null hypothesis H̄0 : σ2(t, x) = θ̄1 is cleary rejected in all cases. For the hypotheses
H̄0 : σ2(t, x) = θ̄1|x| and H̄0 : σ2(t, x) = θ̄1x

2 the results do not indiate a clear structure. In the
remaining case H̄0 : σ2(t, x) = θ̄1 + θ̄2x

2 we observe relatively large p-values, which gives some
evidence for the null hypothesis in all weeks under consideration. Further details of this evaluation
are available from the authors.

-0.002

-0.001

0.001

0.002

-0.002

-0.001

0.001

0.002

Figure 4.1. Log returns of the EUR/USD exchange rate for two different weeks.

week 1th 2th 3th 4th 5th 6th 7th 8th 9th 10th
n 714 714 713 714 714 714 708 714 718 710
σ2(t, x) = θ1 0.000 0.026 0.000 0.002 0.002 0.000 0.004 0.000 0.001 0.010
σ2(t, x) = θ1|x| 0.142 0.294 0.000 0.060 0.352 0.062 0.546 0.000 0.056 0.000
σ2(t, x) = θ1x

2 0.748 0.714 0.000 0.976 0.774 0.368 0.634 0.000 0.710 0.000
σ2(t, x) = θ1 + θ2x

2 0.880 0.996 0.886 0.994 0.978 0.986 0.968 0.974 0.966 0.988

Table 4.5. p-values of the test based on the process (Nt)t∈[0,1] for various hypotheses on the
volatility function. The table shows the results for ten weeks. The second row shows the number
of the available data at each week.
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5 Appendix: Proofs

5.1 Proof of Lemma 3.1.

The proof of the following result is obtained along the lines of Dette, Podolskij and Vetter (2005)
and therefore omitted. 2

5.2 Proof of Lemma 3.2.

For the sake of brevity we restrict ourselves to a proof of asymptotic normality of the component

√
n(Ĉ1 − C1)(4.1)

The general case is shown by exactly the same arguments using the results of Barndorff-Nielsen,
Graversen, Jacod, Podolskij and Shephard (2004). For a proof of the stable convergence of the
statistic (4.1) we introduce the notation

∆n
i X = X i

n
− X i−1

n
(4.2)

βn
i =

√
nσ(

i − 1

n
, X i−1

n
)∆n

i W(4.3)

g(x) = |x|(4.4)

ρx(f) = E[f(X)] , where X ∼ N(0, x2)(4.5)

ρσs
(f) = ρσ(s,Xs)(f)(4.6)

and decompose the proof in three parts.

(1) We prove the assertion

Un =
1√
n

n
∑

i=1

σ1(
i − 1

n
, X i−1

n
)[g(βn

i )− ρσ i−1

n

(g)]
Dst−→ ν

∫ 1

0

σ1(s, Xs)σ(s, Xs)dW ′
s,(4.7)

where ν =
√

µ2 − µ2
1.

(2) We show the estimate

Un − V n P−→ 0,(4.8)

where the random variable Vn is defined by

V n =
1√
n

n
∑

i=1

σ1(
i − 1

n
, X i−1

n
)[g(

√
n∆n

i X) − E[g(
√

n∆n
i X)|F i−1

n
]](4.9)

(3) We prove the estimate √
nµ1(Ĉ1 − C1) − V n P−→ 0(4.10)
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Recalling the definition of Ĉi in (2.21) and observing (4.1), (4.7) - (4.10) it follows

√
n(Ĉ1 − C1)

Dst−→ µ−1
1

√

µ2 − µ2
1

∫ 1

0

σ1(s, Xs)σ(s, Xs)dWs,

which proves the assertion of Lemma 3.2 for the second component.

Proof of (4.7). We introduce the random variable

ξn
i =

1√
n

σ1(
i − 1

n
, X i−1

n
)[g(βn

i ) − ρσ i−1

n

(g)](4.11)

and obtain the representation Un =
∑n

i=1 ξn
i . Note that g is an even function and observe the

identities

E[ξn
i |F i−1

n
] = 0(4.12)

E[ξn
i ∆n

i W |F i−1

n
] = 0(4.13)

E[|ξn
i |2|F i−1

n
] = n−1(µ2 − µ2

1)σ
2
1(

i − 1

n
, X i−1

n
)σ2(

i − 1

n
, X i−1

n
)(4.14)

Next, let N be any bounded martingale on (Ω,F , (Ft)0≤t≤1, P ), which is orthogonal to W (this
means that the quadratic variation process < M, N >t is equal to 0). It follows from Barndorff-
Nielsen et al. (2004)

E[ξn
i ∆n

i N |F i−1

n
] = 0,(4.15)

and finally Theorem IX 7.28 in Jacod and Shiryaev (2003) implies

Un
Dst−→

√

µ2 − µ2
1

∫ 1

0

σ1(s, Xs)σ(s, Xs)dW ′
s,

which proves (4.7).

Proof of (4.8). We consider the representation

Vn − Un =
n

∑

i=1

(ζn
i − E[ζn

i |F i−1

n
]),(4.16)

where the random variables ζn
i are given by

ζn
i =

1√
n

σ1(
i − 1

n
, X i−1

n
)[g(

√
n∆n

i X) − g(βn
i )] ,(4.17)

and note that it is sufficient to prove

n
∑

i=1

E[|ζn
i |2] → 0.(4.18)
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For a proof of (4.18) we calculate using Burkholder inequality, Lemma 6.2 in Appendix 6 and
(2.11)

n
∑

i=1

E[|ζn
i |2] =

1

n

n
∑

i=1

Eσ2
1(

i − 1

n
, X i−1

n
)[g(

√
n∆n

i X) − g(βn
i )]2

≤
n

∑

i=1

Eσ2
1(

i − 1

n
, X i−1

n
)|

∫ i
n

i−1

n

b(s, Xs) ds +

∫ i
n

i−1

n

σ(s, Xs) − σ(
i − 1

n
, X i−1

n
) dWs|2

≤ 2

n
∑

i=1

E{σ4
1(

i − 1

n
, X i−1

n
)} 1

2 E{|
∫ i

n

i−1

n

b(s, Xs) ds|4} 1

2

+ E{σ4
1(

i − 1

n
, X i−1

n
)} 1

2 E{|
∫ i

n

i−1

n

σ(s, Xs) − σ(
i − 1

n
, X i−1

n
) dWs|4}

1

2

= o(1),

which completes the proof of (4.8).

Proof of (4.10). Obviously, the assertion (4.10) follows from the statements

1√
n

n
∑

i=1

σ1(
i − 1

n
, X i−1

n
)E[g(

√
n∆n

i X) − g(βn
i )|F i−1

n
]

P−→ 0(4.19)

√
n

n
∑

i=1

∫ i
n

i−1

n

σ1(s, Xs)ρσs
(g) − σ1(

i − 1

n
, X i−1

n
)ρσ i−1

n

(g) ds
P−→ 0(4.20)

Note that σ, σ1 > 0, which shows that ρσs
(g) = µ1σs and (4.20) follows along the lines of Dette,

Podolskij and Vetter (2005). For a proof of (4.19) we define the set

An
i := {|√n∆n

i X − βn
i | > |βn

i |},(4.21)

and obtain the decomposition

g(
√

n∆n
i X) − g(βn

i ) = R1
in + R2

in − R3
in,(4.22)

with

R1
in = g′(βn

i )(
√

n∆n
i X − βn

i ),(4.23)

R2
in = [g(

√
n∆n

i X) − g(βn
i )]1An

i
,(4.24)

R3
in = g′(βn

i )(
√

n∆n
i X − βn

i )1An
i
,(4.25)

where 1A denotes the indicator function of the set A. Note that the decomposition (4.22) follows
from the fact that the random variables

√
n∆n

i X and βn
i have the same sign if (

√
n∆n

i X, βn
i ) is

an element of (An
i )c (here Bc denotes the complement of the set B). Note also that g ′ is defined

on R\{0} and that σ > 0. We now decompose R1
in as follows

R1
in = R1.1

in + R1.2
in ,(4.26)
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where

R1.1
in :=

√
ng′(βn

i )
[1

n
b(

i − 1

n
, X i−1

n
) +

∫ i
n

i−1

n

σ′(
i − 1

n
, X i−1

n
)
(

∫ s

i−1

n

σ(
i − 1

n
, X i−1

n
)dWt

)

dWs

]

R1.2
in :=

√
ng′(βn

i )
[

∫ i
n

i−1

n

b(s, Xs) − b(
i − 1

n
, X i−1

n
) ds +

∫ i
n

i−1

n

σ(s, Xs) − σ(
i − 1

n
, Xs) dWs

+

∫ i
n

i−1

n

σ′(
i − 1

n
, X i−1

n
)
(

∫ s

i−1

n

b(t, Xt)dt +

∫ s

i−1

n

σ(t, Xt) − σ(
i − 1

n
, X i−1

n
) dWt

)

dWs

+
1

2

∫ i
n

i−1

n

σ′′(
i − 1

n
, ξn

i )(Xs − X i−1

n
)2 dWs

]

= R1.2.1
in + R1.2.2

in + R1.2.3
in + R1.2.4

in ,

the last line defines the random variables R1.2.j
in (j = 1, 2, 3, 4) and ξn

i = ϑn
i X i−1

n
+ (1 − ϑn

i )Xs for

some ϑn
i ∈ [0, 1]. Here σ′, σ′′ denote the first and the second derivative with respect to the second

variable, respectively. Because R1.1
in is an odd function of ∆n

i W and ∆n
i W is independent of the

σ-field F i−1

n
we obtain

E[R1.1
in |F i−1

n
] = 0.(4.27)

Several applications of the Cauchy-Schwartz inequality, Burkholder inequality, Lemma 6.2 in the
Appendix and (2.11) now yield

σ1(
i − 1

n
, X i−1

n
)E[R1.2.1

in |F i−1

n
] = Op(n

−1)

σ1(
i − 1

n
, X i−1

n
)E[R1.2.2

in |F i−1

n
] = op(n

− 1

2 )

σ1(
i − 1

n
, X i−1

n
)E[R1.2.3

in |F i−1

n
] = Op(n

−1)

σ1(
i − 1

n
, X i−1

n
)E[R1.2.4

in |F i−1

n
] = Op(n

−1)

(uniformly with respect to i = 1, . . . , n), and we obtain

1√
n

n
∑

i=1

σ1(
i − 1

n
, X i−1

n
)E[R1

in|F i−1

n
]

P−→ 0.(4.28)

In order to derive similar estimates for R2
in and R3

in we note that it follows from Barndorff-Nielsen
et al. (2004) that we may assume the existence of positive constants, say C1, C2 > 0 such that

C1 < |σ| < C2,(4.29)

C1 < |σj| < C2.

Recalling the definition of the set An
i in (4.21) and observing the estimate

1An
i
≤ 1{|√n∆n

i X−βn
i |≥ε} + 1{|βn

i |<ε} ,(4.30)
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we obtain by using Burkholder inequality, Lemma 6.2 in the Appendix and (2.11)

E[1An
i
|F i−1

n
] ≤ E[|√n∆n

i X − βn
i |2]

ε2
+ K1ε ≤ K2(

1

nε2
+ ε) ,(4.31)

for some constants K1, K2 > 0. With the choice ε = n− 1

3 it therefore follows

E[1An
i
|F i−1

n
] = Op(n

− 1

3 ).(4.32)

A further application of the Cauchy-Schwartz inequality yields

σ1(
i − 1

n
, X i−1

n
)E[R2

in|F i−1

n
] = Op(n

− 2

3 ),

σ1(
i − 1

n
, X i−1

n
)E[R3

in|F i−1

n
] = Op(n

− 2

3 ),

which implies

1√
n

n
∑

i=1

σ1(
i − 1

n
, X i−1

n
)E[R2

in|F i−1

n
]

P−→ 0,

1√
n

n
∑

i=1

σ1(
i − 1

n
, X i−1

n
)E[R3

in|F i−1

n
]

P−→ 0.

The assertion (4.19) finally follows from (4.22), (4.28), which proves (4.10). By the arguments
given at the beginning the proof of Lemma 3.2 is completed. 2

5.3 Proof of Theorem 3.3.

Recall the definition of B̂i
t (i = 0, . . . , d) in (2.26) and (2.27), then it follows from Lemma 3.2

that

√
n





















B̂0
t1
− < σ, 1 >t1

2
...

B̂0
tk
− < σ, 1 >tk

2

Ĉ1 − C1
...

Ĉd − Cd





















Dst−→ µ−1
1

√

µ2 − µ2
1

∫ 1

0

Σ
1

2

t1 ,...tk
(s, Xs) dW ′

s ,(4.33)

where W ′ denotes a (d + k)-dimensional Brownian motion, which is independent of W and the
matrix Σt1 ,...tk(s, Xs) is defined by (3.1). Now an application of the Delta-method for stable conver-
gence [see the proof of Theorem 4 in Dette, Podolskij and Vetter (2005)] yields weak convergence
of the finite dimensional distributions, that is

√
n
(

M̂t1 − Mt1 , . . . , M̂tk − Mtk

)T Dst−→ µ−1
1

√

µ2 − µ2
1 V

∫ 1

0

Σ
1

2

t1,...tk
(s, Xs) dW ′

s ,(4.34)
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where the k × (d + k) matrix V is defined by (3.6). We finally prove tightness of the sequence√
n(M̂t − Mt). For this we use the decomposition

√
n
(

M̂t − Mt

)

=
√

n(B̂0
t − B0

t ) +
√

nBT
t D−1(Ĉ − C) + op(1),(4.35)

which follows from the definition of the processes Mt and M̂t in (2.12) and (2.25), respectively,
and from Lemma 3.1. Tightness of the process

√
n(B̂0

t −B0
t ) follows from Barndorff-Nielsen et al.

(2004). For the second term in (4.35) we note that in view of (4.29) it is sufficient to prove

lim
δ→0

lim sup
n→∞

P (
√

nδ|D−1
kl ||Ĉj − Cj| > ε) = 0(4.36)

for all ε > 0 and all 1 ≤ k, l, j ≤ d where D−1
kl denote the element of the matrix D−1 in the

position (k, `). For this we use Markov’s inequality and obtain

P (
√

nδ|D−1
kl ||Ĉj − Cj| > ε) ≤ n

ρ
4 δ

ρ
2 E[|D−1

kl |
ρ
2 |Ĉj − Cj|

ρ
2 ]

ε
ρ

2

≤ n
ρ
4 δ

ρ
2 E[|D−1

kl |ρ]
1

2 E[|Ĉj − Cj|ρ]
1

2

ε
ρ

2

Moreover, it follows from the proof of Lemma 3.2 that E[n
ρ
2 |Ĉj −Cj|ρ] = O(1) and an application

of Cramer’s rule, (4.29) and (2.19) yield E[|D−1
kl |ρ] < ∞, which proves (4.36) and by (4.35) the

tightness of the process
√

n(M̂t − Mt). 2

5.4 Proof of Corollary 3.4

Note that in the case d = 1 and σ1 = 1 we have for the quantities in (2.27) and (2.20)

B̂1
t = bntc/n, D̂ = 1,

and the statistic M̂t in (2.25) reduces to (3.13). Moreover, under the null hypothesis of ho-
moscedasticity it follows in the case k = 2 for the matrix V

V =

(

1 0 −t1
0 1 −t2

)

.

Note that under the hypothesis H0 : σ(t, Xt) = σ we have θmin = σ and the matrix Σt1 ,t2 in (3.1)
can be calculated as

Σt1t2(s, Xs) = σ2





I[0,t1)(s) I[0,t1∧t2)(s) I[0,t1)(s)
I[0,t1∧t2)(s) I[0,t2)(s) I[0,t2)(s)
I[0,t1)(s) I[0,t2)(s) 1





Consequently, the limiting process is Gaussian and determined by its covariance kernel. From the
representation

∫ 1

0

Σt1 ,t2(s, Xs)ds = σ2





t1 t1 ∧ t2 t1
t1 ∧ t2 t2 t2
t1 t2 1




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we obtain

V

∫ 1

0

Σt1,t2(s, Xs)ds V T = σ2

(

t1(1 − t1) t1 ∧ t2 − t1t2
t1 ∧ t2 − t1t2 t2(1 − t2)

)

.

Therefore it follows from Theorem 3.3 that under the null hypothesis of homoscedasticity the
process

√
nM̂t converges in law on D[0, 1], that is

√
nM̂t =⇒ µ−1

1

√

µ2 − µ2
1σBt ,

where Bt denotes a Brownian bridge with covariance kernel k(t1, t2) = t1∧t2−t1t2, which completes
the proof of Corollary 3.4. 2

5.5 Proof of Theorem 3.6.

We will only prove part (b) of the theorem. All other cases are treated by similar arguments. Since
the drift function b does not influence the limiting process we assume without loss of generality
that b = 0. With the notation XH0

t = σWt we obtain the decomposition

Xt = XH0

t + γn

∫ t

0

h(s, Xs)dWs = XH0

t + γnXH1

t(4.37)

where the last identity defines the process XH1

t . This yields

N̂t =

bntc
∑

k=1

|∆n
i X|2 − bntc

n

n
∑

k=1

|∆n
i X|2 = N̂H0

t + Sn.(4.38)

Here N̂H0

t denotes the process defined by (3.14), where the random variables X k
n

have to be

replaced by the corresponding quantities XH0

k
n

and the process Sn is defined by

Sn = Pn1 + Pn2 − Nn1 − Nn2

with

Pn1 = 2γn

bntc
∑

k=1

∆n
i XH0∆n

i XH1

Pn2 = γ2
n

bntc
∑

k=1

|∆n
i XH1 |2

Nn1 = 2
bntc
n

γn

n
∑

k=1

∆n
i XH0∆n

i XH1

Nn2 =
bntc
n

γ2
n

n
∑

k=1

|∆n
i XH1 |2
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(here and in the following discussion the dependence of Pnj and Nnj (j = 1, 2) on the index t will
not be reflected by our notation). A straightforward calculation yields

Pn1 = 2γnσ

∫ t

0

h(s, Xs)ds + op(γn),

Pn2 = γ2
n

∫ t

0

h2(s, Xs)ds + op(γ
2
n),

Nn1 = 2tγnσ

∫ 1

0

h(s, Xs)ds + op(γn),

Nn2 = tγ2
n

∫ 1

0

h2(s, Xs)ds + op(γ
2
n),

which gives (observing that γn = n−1/2)

√
nN̂t =

√
nN̂H0

t + 2σ

(∫ t

0

h(s, Xs)ds − t

∫ 1

0

h(s, Xs)ds

)

+ op(1)

The assertion now follows from Corollary 3.4. 2

6 Appendix: two auxiliary results

Lemma 6.1 If assumptions (2.1), (2.2) are satisfied and E[|X0|2m] < ∞ for some m ∈ N, then
the inequalities

E[ sup
0≤s≤t

|Xs|2m] ≤ Cm,K(1 + E[|X0|2m])eCm,K t ∀t ∈ [0, 1]

E[|Xt − Xs|2m] ≤ Cm,K(1 + E[|X0|2m])|t − s|m ∀s, t ∈ [0, 1]

hold for some Cm,K > 0.

Proof of Lemma 6.1 See Karatzas/Shreve (1991) p.306. 2

Lemma 6.2 If assumptions (2.1), (2.2), (2.6) are satisfied and E[|X0|2m] < ∞ for some m ∈ N

then we have
sup

0≤t≤1
E[|b(t + h, Xt+h) − b(t, Xt)|2m] = O(|h|m) (h ↓ 0)(A.1)

This statement remains true for functions σ, σ1, . . . , σd.

Proof of Lemma 6.2 We first observe that

E[|b(t + h, Xt+h) − b(t, Xt)|2m] ≤ E[(|b(t + h, Xt+h) − b(t, Xt+h)| + |b(t, Xt+h) − b(t, Xt)|)2m]

≤ 2mE[|b(t + h, Xt+h) − b(t, Xt+h)|2m + |b(t, Xt+h) − b(t, Xt)|2m]
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It follows from (2.1), (2.6) and Lemma 6.1

E[|b(t + h, Xt+h) − b(t, Xt+h)|2m] = O(|h|m)

and

E[|b(t, Xt+h) − b(t, Xt)|2m] = O(|h|m)

Combining the above estimates we obtain the result. 2
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