
UNIVERSITY OF DORTMUND

REIHE COMPUTATIONAL INTELLIGENCE

COLLABORATIVE RESEARCH CENTER 531

Design and Management of Complex Technical Processes
and Systems by means of Computational Intelligence Methods

Efficient Case Based Feature Construction for
Heterogeneous Learning Tasks

Ingo Mierswa and Michael Wurst

No. CI-194/05

Technical Report ISSN 1433-3325 April 2005

Secretary of the SFB 531 · University of Dortmund · Dept. of Computer Science/XI
44221 Dortmund · Germany

This work is a product of the Collaborative Research Center 531, “Computational
Intelligence,” at the University of Dortmund and was printed with financial support of
the Deutsche Forschungsgemeinschaft.

Efficient Case Based Feature Construction

for Heterogeneous Learning Tasks∗

Ingo Mierswa and Michael Wurst

Artificial Intelligence Unit, Department of Computer Science, University of Dortmund, Germany

Abstract

Feature construction is essential for solving many
complex learning problems. Unfortunately, the con-
struction of features usually implies searching a very
large space of possibilities and is often computation-
ally demanding. In this work, we propose a case
based approach to feature construction. Learning
tasks are stored together with a corresponding set
of constructed features in a case base and can be
retrieved to speed up feature construction for new
tasks. The essential part of our method is a new
representation model for learning tasks and a corre-
sponding distance measure. Learning tasks are com-
pared using relevance weights on a common set of
base features only. Therefore, the case base can be
built and queried very efficiently. In this respect, our
approach is unique and enables us to apply case based
feature construction not only on a large scale, but
also in distributed learning scenarios in which com-
munication costs play an important role. We derive a
distance measure for heterogenious learning tasks by
stating a set of necessary conditions. Although the
conditions are quite basic, they constraint the set of
applicable methods to a surprisingly small number.
We also provide some experimental evidence for the
utility of our method.

∗This work was supported by the Deutsche Forschungsge-
meinschaft (DFG) as a part of the Collaborative Research Cen-
ter ”Computational Intelligence” (SFB 531)

1 Introduction

Many inductive learning problems cannot be solved
accurately by using the original feature space. This
is due to the fact that standard learning algorithms
cannot represent complex relationships as induced for
example by trigonometric functions. Feature con-
struction can help to deal with such problems by
enriching the original feature space with additional
features [6, 8, 13]. Many algorithms can be formu-
lated in terms of kernel functions [16, 19]. Since the
search for an appropriate kernel is equivalent to the
search for an appropriate feature space transforma-
tion the success of these algorithms also underlines
the need for feature construction.

Feature construction is an extension of feature se-
lection which aims to find good subsets of features.
Existing approaches include filtering methods like
FOCUS [2] or Relief [11] and wrappers like forward
selection, backward elimination [1] or genetic algo-
rithms [22]. The latter can easily be extended by the
construction or extraction of new features [14, 18] A
(manual) selection and construction of the optimal
feature set can be guided by some relevance measure
of the features. Several approaches for feature rel-
evance calculation exist, based for example on the
entropy [15], the weighting vector derived of the hy-
perplane of a Support Vector Machine [19], or wrap-
per approaches [12]. Statistical algorithms for dimen-
sionality reduction like Principal Component Analy-
sis [10] also induce a weighting of the features. Un-
fortunately, feature construction is a computationally
very demanding task often requiring to search a very
large space of possibilities [21].

1

In this work we consider a scenario in which several
learners face the problem of feature construction on
different learning problems. The idea is to transfer
constructed features between similar learning tasks to
speed up the generation in such cases in which a suc-
cessful feature has already been generated by another
feature constructor. Such approaches are usually re-
ferred to as Meta Learning [20].

Meta Learning was applied to a large variety of
problems and on different conceptual levels. The im-
portance of the representation bias, which is closely
related to feature construction, was recognized since
the early days of Meta Learning research [3, 4].

The key to many Meta Learning methods is the
definition of similarity between different learning
tasks [5, 17]. In this work we propose a Meta Learn-
ing scheme that compares two learning tasks using
only relevance weights assigned to a set of base fea-
tures by the individual learners. Our approach is mo-
tivated by our work in the field of distributed mul-
timedia learning. Concretely, we face a scenario in
which several users independently arrange multime-
dia items according to some personal classification
scheme. New items should be added to this scheme
automatically by classification using a set of base fea-
tures which is the same for all classification schemes
and a set of features generated to increase the ac-
curacy for an individual classification problem. Al-
though the classification schemes created by the users
may differ in any possible way, we can assume that at
least some of them resemble each other to some ex-
tend, e. g. many users arrange their music according
to the genre.

This scenario poses some additional constraints on
Meta Learning. Firstly, the retrieval of similar learn-
ing tasks and relevant features has to be very effi-
cient, as the system is designed for interactive work.
This also means that methods should enable a best
effort strategy, such that the user can stop the re-
trieval process at any point and get the current best
result. Secondly, the system should scale well with an
increasing number of users and thus learning tasks.
Also, it has to deal with a large variety of heteroge-
neous learning tasks, as we cannot make any strict as-
sumptions on the classification problems users create.
Finally, as the system is distributed, communication

cost should be as low as possible. As a consequence,
methods that are based on exchanging examples or
many feature vectors are not applicable. In our opin-
ion, these constraints are quite general and apply to
many Meta Learning problems in heterogeneous, dis-
tributed domains, such as distributed data mining or
robot learning [17].

Considering the given constraints we develop and
analyze a method for feature construction based on
Meta Learning that estimates the distance of two
learning tasks using only base feature weights. All
learners weight a common set of base features accord-
ing to their relevance to the given learning task. Some
of the learners, that have already performed feature
construction, send these relevance weights and the
constructed features to a case base. From this case
base, learners can retrieve possibly relevant features
by sending their own base feature weights. The cen-
tral challenge is to find a measure that compares two
learning tasks using only base feature weights.

1.1 Outline

We give some definitions and conceptual ideas in sec-
tion 2. In section 3 we analyze the problem of com-
paring learning tasks based only on feature weights by
stating some basic conditions. In section 4, negative
results are discussed for some well known weighting
approaches and distance measures. Finally, we show
in section 5 that the weights calculated by Support
Vector Machines in combination with the manhattan
distance fulfill all conditions described in section 3.
These theoretical results are also confirmed by ex-
periments that will be discussed in section 6.

2 Basic Concepts

Before we state the conditions which must be met
by any method comparing learning tasks using fea-
ture weights only, we first introduce some basic defi-
nitions. Let T be the set of all learning tasks, a single
task is denoted by ti. Let Xi be a vector of random
variables for task ti and Yi another random variable,
the target variable. These obey a fixed but unknown
probability distribution Pr(Xi, Yi). The components

2

of Xi are called features Xik. The objective of ev-
ery learning task ti is to find a function hi(Xi) which
predicts the value of Yi. We assume that each set of
features Xi is partitioned in a set of base features XB

which are common for all learning tasks ti ∈ T and a
set of constructed features Xi \ XB .

We now introduce a very simple model of feature
relevance and interaction. The feature Xik is as-
sumed to be irrelevant for a learning task ti if it does
not improve the classification accuracy:

Definition 1. A feature Xik is called irrelevant

for a learning task ti iff Xik is not correlated to the
target feature Yi, i. e. if Pr(Yi|Xik) = Pr(Yi).

The set of all irrelevant features for a learning task
ti is denoted by IFi.

Two features Xik and Xil are alternative for a
learning task ti, denoted by Xik ∼ Xil if they can
be replaced by each other without affecting the clas-
sification accuracy. For linear learning schemes this
leads to:

Definition 2. Two features Xik and Xil are called
alternative for a learning task ti (written as Xik ∼
Xil) iff Xil = a + b · Xik with b > 0.

This is a very limited definition of alternative fea-
tures. However, we will show that most weighting
algorithms are already ruled out by conditions based
on this simple definition.

3 Comparing Learning Tasks

Efficiently

The objective of our work is to speed up feature con-
struction and improve prediction accuracy by build-
ing a case base containing pairs of learning tasks and
corresponding sets of constructed features. We as-
sume that a learning task ti is completely represented
by a feature weight vector wi. The vector wi is calcu-
lated from the base features XB only. This represen-
tation of learning tasks is motivated by the idea that
a given learning scheme approximate similar con-
structed features by a set of base features in a similar
way, e. g. if the constructed feature “sin(Xik ·Xil)” is

highly relevant the features Xik and Xil are relevant
as well.

Our approach works as follows: for a given learning
task ti we first calculate the relevance of all base fea-
tures XB . We then use a distance function d (ti, tj)
to find the k most similar learning tasks. Finally, we
create a set of constructed features as union of the
constructed features associated with these tasks.

This set is then evaluated on the learning task ti.
If the performance gain is sufficiently high (above a
given threshold) we store task ti in the case base as
additional case. Otherwise, the constructed features
are only used as initialization for a classical feature
construction that is performed locally. If this leads to
a sufficiently high increase in performance, the task ti
is also stored to the case base along with the locally
generated features.

While feature weighting and feature construction
are well studied tasks, the core of our algorithm is
the calculation of d using only the relevance values of
the base features XB . In a first step, we define a set of
conditions which must be met by feature weighting
schemes. In a second step, a set of conditions for
learning task distance is defined which makes use of
the weighting conditions.

Weighting Conditions. Let w be a weighting

function w : XB → IR. Then the following must
hold:

(W1) w(Xik) = 0 if Xik ∈ XB is irrelevant

(W2) Fi ⊆ XB is a set of alternative features. Then

∀S ⊂ Fi :
∑

Xik∈S

w(Xik) =
∑

Xik∈Fi

w(Xik) = ŵ

(W3) w(Xik) = w(Xil) if Xik ∼ Xil

(W4) Let AF be a set of features where

∀Xik ∈ AF :

Xik ∈ IFi ∨ ∃Xil ∈ XB : Xik ∼ Xil.

Then

∀Xil ∈ XB :6 ∃Xik ∈ AF : Xil ∼ Xik :

w′(Xil) = w(Xil)

3

where w′ is a weighting function for

X ′
B = XB ∪ AF

These conditions state that irrelevant features have
weight 0 and that the sum of weights of alternative
features must be constant independently of the actual
number of alternative features used. Together with
the last condition it will be guaranteed that a set
of alternative features is not more important than a
single feature. In the following we assume that for a
modified space of base features X ′

B the function w′

denotes the weighting function for X ′
B according to

the definition in (W4).
Additionally, we can define a set of conditions

which must be met by distance measures for learning
tasks which are based on feature weights only:

Distance Conditions. A distance measure d for
learning tasks is a mapping d : T × T → IR+ which
should fulfill at least the following conditions:

(D1) d(t1, t2) = 0 ⇔ t1 = t2

(D2) d(t1, t2) = d(t2, t1)

(D3) d(t1, t3) ≤ d(t1, t2) + d(t2, t3)

(D4) d(t1, t2) = d(t′1, t
′
2) if

X ′
B = XB ∪ IF and IF ⊆ IF1 ∩ IF2

(D5) d(t1, t2) = d(t′1, t
′
2) if

X ′
B = XB ∪ AF and

∀Xk ∈ AF : ∃Xl ∈ XB : Xk ∼ Xl

(D1)–(D3) represent the conditions for a metric.
These conditions are required for efficient case re-
trieval and indexing, using e. g. M-Trees [7]. (D4)
states that irrelevant features should not have an in-
fluence on the distance. Finally, (D5) states that
adding alternative features should not have an in-
fluence on distance.

4 Negative results

In this section we will show that many feature weight-
ing approaches do not fulfill the conditions (W1)–
(W4). Furthermore, one of most popular distance

measures, the euclidian distance, cannot be used as
a learning task distance measure introduced above.

Lemma 1. Any feature selection method does not
fulfill the conditions (W1)–(W4).

Proof. For a feature selection method, weights are
always binary, i. e. w(Xik) ∈ {0, 1}. We assume
a learning task ti with no alternative features and
X ′

B = XB ∪ {Xik} with ∃Xil ∈ XB : Xil ∼ Xik,
then either w′(Xil) = w′(Xik) = w(Xil) = 1, leading
to a contradiction with (W2), or w′(Xil) 6= w′(Xik)
leading to a contradiction with (W3).

Lemma 2. Any feature weighting method for which
w(Xik) is calculated independently of XB \ Xik does
not fulfill the conditions (W1)–(W4).

Proof. We assume a learning task ti with no alter-
native features and X ′

B = XB ∪ {Xik} with ∃Xil ∈
XB : Xil ∼ Xik. If w is independent of XB \ Xik

adding Xik would not change the weight w′(Xil) in
the new feature space X ′

B . From (W3) follows that
w′(Xik) = w′(Xil) = w(Xil) which is a violation of
(W2).

Lemma 2 essentially covers all feature weighting
methods that treat features independently such as
information gain [15] or Relief [11].

The next theorem states that the euclidian distance
cannot be used as a distance measure based on fea-
ture weights.

Theorem 3. Euclidean distance does not fulfill the
conditions (D1)–(D5).

Proof. We give a counterexample. We assume that a
weighting function w is given which fulfills the con-
ditions (W1)–(W4). Further assume that learning
tasks ti, tj are given with no alternative features.
We add an alternative feature Xik to XB and get
X ′

B = XB ∪ {Xik} with ∃Xil ∈ XB : Xil ∼ Xik. We
infer from conditions (W2) and (W3) that

w′(Xik) = w′(Xil) =
w(Xil)

2

w′(Xjk) = w′(Xjl) =
w(Xjl)

2
.

4

and from condition (W4) that

∀p 6= k :w′(Xip) = w(Xip)

∀p 6= k :w′(Xjp) = w(Xjp).

In this case the following holds for the euclidian dis-
tance

d(t′i, t
′
j) =

√

S + 2 (w′(Xik) − w′(Xjk))
2
)

=

√

S + 2

(
w(Xik)

2
−

w(Xjk)

2

)2

=

√

S +
1

2
(w(Xik) − w(Xjk))

2

6=

√

S + (w(Xik) − w(Xjk))
2

= d(ti, tj)

with

S =

|XB |
∑

p=1,p6=k

(w′(Xip) − w′(Xjp))
2

=

|XB |
∑

p=1,p6=k

(w(Xip) − w(Xjp))
2
.

5 Positive results

We have shown that many common feature weighting
algorithms and distance measures cannot be used for
learning task distance in our scenario. In this section
we will prove that the feature weights delivered by
a linear Support Vector Machine (SVM) obeys the
proposed weighting conditions. Afterwards, we also
discuss a distance measure fulfilling the distance con-
ditions.

Support Vector Machines are based on the work of
Vapnik in statistical learning theory [19]. They aim
to minimize the regularized risk Rreg[f] of a learned
function f which is the weighted sum of the empirical
risk Remp[f] and a complexity term ||w||2:

Rreg[f] = Remp[f] + λ||w||2.

The result is a linear decision function y = sgn(w ·x+
b) with a minimal length of w. The vector w is the

normal vector of an optimal hyperplane with a max-
imal margin to both classes. One of the strengths of
SVMs is the use of kernel functions to extend the fea-
ture space and allow linear decision boundaries after
efficient nonlinear transformations of the input [16].
Since our goal is the construction of (nonlinear) fea-
tures during preprocessing we can just use the most
simple kernel function which is the dot product. In
this case the components of the vector w can be in-
terpreted as weights for all features.

Theorem 4. The feature weight calculation of SVMs
with linear kernel function meets the conditions
(W1)–(W4).

Proof. Since these conditions can be proved for a sin-
gle learning task ti we write Xk and wk as a shortcut
for Xik and w(Xik).

(W1) We assume that the SVM finds an optimal
hyperplane. The algorithm tries to minimize both the
length of w and the empirical error. This naturally
corresponds to a maximum margin hyperplane where
the weights of irrelevant features are 0 if enough data
points are given.

(W2) SVMs find the optimal hyperplane by mini-
mizing the weight vector w. Using the optimal classi-
fication hyperplane with weight vector w can be writ-
ten as

y = sgn (w1x1 + . . . + wixi + . . . + wmxm + b) .

We will show that this vector cannot be changed by
adding the same feature more than one time. We
assume that all alternative features can be trans-
formed into identical features by normalizing the
data. Adding k − 1 alternative features will result
in

y = sgn

. . . +

(
w1

i + . . . + wk
i

)

︸ ︷︷ ︸

alternative features

xi + . . . + b

 .

However, the optimal hyperplane will remain the
same and does not depend on the number of alter-
native attributes. This means that the other values
wj will not be changed. This leads to

wi =

k∑

l=1

wl
i

5

which proofs condition (W2).
(W3) The SVM optimization minimizes the length

of the weight vector w. This can be written as

w2
1 + . . . + w2

i + . . . + w2
m

!
= min .

We replace wi using condition (W2):

w2
1 + . . . +

ŵ −
∑

j 6=i

wj

2

+ . . . + w2
m

!
= min .

In order to find the minimum we have to partially
differentiate the last equation for all weights wk:

∂

∂wk

. . . +

ŵ −
∑

j 6=i

wj

2

+ w2
k + . . .

 = 0

⇔ 2wk − 2

ŵ −
∑

j 6=i

wj

 = 0

⇔ wk +
∑

j 6=i

wj = ŵ

The sum on the left side contains another wk. This
leads to a system of linear equations of the following
form:

...

. . . + 0 · wi + . . . + 2 · wk + . . . = ŵ

...

Solving this system of equations leads to wp = wq

(condition (W3)).
(W4) We again assume that a SVM finds an opti-

mal hyperplane given enough data points. Since con-
dition (W1) holds adding an irrelevant feature would
not change the hyperplane and thus the weighting
vector w for the base features will remain. The proofs
of conditions (W2) and (W3) state that the optimal
hyperplane is not affected by alternative features as
well.

In order to calculate the distance of learning tasks
based only on a set of base feature weights we still
need a distance measure that met the conditions
(D1)–(D5).

Theorem 5. Manhattan distance does fulfill the con-
ditions (D1)–(D5).

Proof. The conditions (D1)–(D3) are fulfilled due to
basic properties of the manhattan distance. There-
fore, we only give proofs for conditions (D4) and
(D5).

(D4) We follow from the definition of the manhat-
tan distance that

d(t′i, t
′
j) =

∑

Xip,Xjp∈XB

|w′
i(Xip) − w′

j(Xjp)|+

∑

Xiq,Xjq∈IF

|w′
i(Xiq) − w′

j(Xjq)|

︸ ︷︷ ︸

0

= d(ti, tj)

from (W4).
(D5) Sketch We show the case for adding k features

with ∀Xik : Xik ∼ Xil for a fixed Xil ∈ XB :

d(t′i, t
′
i) =

|XB |
∑

p=1,p6=k

|w′
i(Xip) − w′

j(Xjp)|+

(k + 1) · |w′
i(Xik) − w′

j(Xjk)|

=

|XB |
∑

p=1,p6=k

|wi(Xip) − wj(Xjp)|+

|wi(Xik) − wj(Xjk)|

= d(ti, tj)

from (W4) and (W2).

Therefore, we conclude that SVM feature weights
in combination with manhattan distance fulfill the
necessary constraints for a learning task distance
measure based on feature weights.

6 Experiments

Experiments were performed on synthetical data. A
case base containing maximal 1000 cases was gener-
ated. For each case the following was done:

Example set generation: 300 examples with five base
features were generated. The target variable

6

obeys a randomly created regression function
containing the building blocks +, ∗, sin and exp.
The maximal depth of the target function was
3, the probability for leafs which does not con-
tain another function was 0.3. These parameters
results in functions of type

X5 · e
X2 + sin(X3).

The features X1 and X4 were irrelevant for this
learning task.

Weight calculation: The weights of the base features
were calculated. We tried both linear SVM
weights and weights calculated by Relief.

Feature construction: An evolutionary approach for
feature construction was used to generate new
features from the base features. We used the fol-
lowing parameters: 200 generations, population
size 10, and crossover probability 0.5.

Adding the case: the weights and the constructed
features were added to the case base. Please
note that the case base does not contain the data
itself, information about the target variable, or
the learned hypothesis.

After creation of the case base the test data (200
example sets) was created in the same manner but
without feature construction. We only performed fea-
ture construction on the test set to determine the op-
timal relative error which can be achieved in the op-
timal feature space. The case based feature construc-
tion was performed with the constructed features of
the 20 cases with minimal distance. All experiments
were performed with the machine learning environ-
ment Yale [9].

Figure 1 shows the results. The relative error us-
ing only base features is 7.00%. The best error which
can be achieved with help of evolutionary feature con-
struction is 2.93% (the lower bound in the plot). The
upper bound indicates the average error which can
be achieved by simply taking a random sample of 20
cases from the case base instead of using the distance
measures suggested in this paper. This benchmark
error is 4.70%.

 3

 3.5

 4

 4.5

 300 400 500 600 700 800 900 1000

re
la

tiv
e

er
ro

r

case base size

Random
Optimal construction

SVM + Manhattan
Relief + Euclidian

Figure 1: The results of case based feature construc-
tion. The averaged relative error of all 200 test cases
is plotted against the number of cases used as case
base. The combination SVM weights plus manhattan
distance clearly outperforms the combination Relief
plus euclidian distance.

The averaged relative errors of all 200 test cases
was plotted against the number of cases used for
the case base. The plot shows two curves for the
combination of SVM feature weighting and manhat-
tan distance and Relief weighting and euclidian dis-
tance. Both approaches reduced the error beneath
the benchmark error of 4.70% for all examined case
base sizes. As expected the combination SVM plus
manhattan distance outperforms the combination of
Relief plus euclidian distance, at least for sufficiently
large case bases. This combination almost reaches the
minimal error 2.93% achieved by evolutionary feature
construction.

Our approach fulfills the constraints presented
above and can speed up the process of feature con-
struction considerably. The average time needed for
the automatic construction of an optimal feature set
without using the case base was 76.8 seconds. Using
the feature construction induced by the 20 most sim-
ilar cases reduces the time needed for learning to 0.8
seconds.

7

7 Conclusion and Outlook

We presented a Meta Learning approach to fea-
ture construction that compares tasks using relevance
weights on a common set of base features only. After
stating some very basic conditions for such a distance
measure, we have shown that a SVM as base feature
weighting algorithm and the manhattan distance ful-
fill these conditions, while several other popular fea-
ture weighting methods and distance measures do
not. We have presented some experimental results
indicating that our method can speed up feature con-
struction considerably.

Some limitations of the work presented here are
the following. Firstly, our definition for alternative
or exchangeable features is rather simple and should
be generalized to a weaker concept as e. g. highly cor-
related features. Also, complex interactions between
features are not covered by our conditions. However,
it is very interesting that the conditions stated in
this work are already sufficient to rule out large sets
of feature weighting methods and distance measures.
Finally, the assumption of estimating the distance of
constructed features by the distance of base features
is well motivated, though it would be interesting to
analyze this relationship analytically to get a better
estimation in which cases our approach can be suc-
cessfully applied.

For our future work on the subject we firstly plan to
incorporate generated features in our distance mea-
sure. This distance measure should be used in a two
step process, such that we first efficiently retrieve a
larger number of cases similar on base features and
then compare the generated features in this set with
the query using methods that perform a syntactical
comparison on the constructed features. Another di-
rection of work is to analyze the relationship between
base feature weights and generated features to get
further insight which weighting methods are suitable.
Finally, we plan to perform empirical experiments us-
ing real world data from the domain of distributed
multimedia learning.

References

[1] David W. Aha and Richard L. Bankert. A com-
parative evaluation of sequential feature selec-
tion algorithms. In Doug Fisher and Hans-J.
Lenz, editors, Learning from Data, chapter 4,
pages 199–206. Springer, New York, 1996.

[2] H. Almuallim and T.G. Dietterich. Learning
with many irrelevant features. In 9th National
Conference on Artificial Intelligence, pages 547–
552. MIT Press, 1991.

[3] Jonathan Baxter. Learning internal representa-
tions. In Proceedings of the eighth annual con-
ference on Computational learning theory COLT
’95, pages 311–320. ACM Press, 1995.

[4] Jonathan Baxter. A model of inductive bias
learning. Journal of Artificial Intelligence Re-
search, 12:149–198, 2000.

[5] Shai Ben-David and Reba Schuller. Exploit-
ing task relatedness for multiple task learning.
In Proc. of the Sixteenth Annual Conference on
Learning Theory COLT 2003, 2003.

[6] Avrim L. Blum and Pat Langley. Selection of rel-
evant features and examples in machine learning.
Artificial Intelligence, pages 245–271, 1997.

[7] Paolo Ciaccia, Marco Patella, and Pavel Zezula.
M-tree: An efficient access method for similarity
search in metric spaces. In Proceedings of 23rd
International Conference on Very Large Data
Bases VLDB’97, pages 426–435. Morgan Kauf-
mann, 1997.

[8] M. Dash and H. Liu. Feature selection for clas-
sification. International Journal of Intelligent
Data Analysis, 1(3):131–156, 1997.

[9] Simon Fischer, Ralf Klinkenberg, Ingo Mierswa,
and Oliver Ritthoff. Yale: Yet Another Learn-
ing Environment – Tutorial. Technical Report
CI-136/02, Collaborative Research Center 531,
University of Dortmund, Dortmund, Germany,
2002. ISSN 1433-3325.

8

[10] Trevor Hastie, Robert Tibshirani, and Jerome
Friedman. The Elements of Statistical Learn-
ing: Data Mining, Inference, and Prediction.
Springer series in statistics. Springer, 2001.

[11] K. Kira and I. A. Rendell. The feature selec-
tion problem: Traditional methods and a new
algoirthm. In 10th National Conference on Ar-
tificial Intelligence, pages 129–134. MIT Press,
1992.

[12] R. Kohavi and G. H. John. Wrappers for feature
subset selection. Artificial Intelligence, 97(1-
2):273–324, 1997.

[13] D. Koller and M. Sahami. Toward optimal fea-
ture selection. In Proceedings of the Thirteenth
International Conference on Machine Learning
(ML96), pages 129–134, 1996.

[14] Ingo Mierswa and Katharina Morik. Automatic
feature extraction for classifying audio data. Ma-
chine Learning Journal, 58:127–149, 2005.

[15] R.J. Quinlan. Induction of decision trees. Ma-
chine Learning, 1(1):81–106, 1986.

[16] B. Schölkopf and A. J. Smola. Learning with
Kernels – Support Vector Machines, Regulariza-
tion, Optimization, and Beyond. MIT Press,
2002.

[17] S. Thrun and J. O’Sullivan. Discovering struc-
ture in multiple learning tasks: The TC al-
gorithm. In L. Saitta, editor, Proceedings of
the 13th International Conference on Machine
Learning ICML-96, San Mateo, CA, 1996. Mor-
gen Kaufmann.

[18] Haleh Vafaie and Kenneth De Jong. Evolution-
ary feature space transformation. In Huan Liu
and Hiroshi Motoda, editors, Feature Extraction,
Construction, and Selection – A Data Mining
Perpective, pages 307–323. Kluwer, 1998.

[19] Vladimir N. Vapnik. The Nature of Statistical
Learning Theory. Springer, New York, 1995.

[20] Ricardo Vilalta and Youssef Drissi. A perspec-
tive view and survey of meta-learning. Artificial
Intelligence Review, 18(2):77–95, 2002.

[21] D.H. Wolpert and W.G. Macready. No free lunch
theorems for optimisation. IEEE Trans. on Evo-
lutionary Computation, 1:67–82, 1997.

[22] Jihoon Yang and Vasant Honovar. Feature sub-
set selection using a genetic algorithm. In Huan
Liu and Hiroshi Motoda, editors, Feature Ex-
traction, Construction, and Selection – A Data
Mining Perpective. Kluwer, 1998.

9

