
UNIVERSITY OF DORTMUND

REIHE COMPUTATIONAL INTELLIGENCE

COLLABORATIVE RESEARCH CENTER 531

Design and Management of Complex Technical Processes
and Systems by means of Computational Intelligence Methods

Minimum Spanning Trees Made Easier Via
Multi-Objective Optimization

Frank Neumann and Ingo Wegener

No. CI-192/05

Technical Report ISSN 1433-3325 January 2005

Secretary of the SFB 531 · University of Dortmund · Dept. of Computer Science/XI
44221 Dortmund · Germany

This work is a product of the Collaborative Research Center 531, “Computational
Intelligence,” at the University of Dortmund and was printed with financial support of
the Deutsche Forschungsgemeinschaft.

Minimum Spanning Trees Made Easier Via
Multi-Objective Optimization

Frank Neumann1 and Ingo Wegener2,?

1 Inst. für Informatik und Prakt. Mathematik,
Christian-Albrechts-Univ. zu Kiel, 24098 Kiel, Germany

fne@informatik.uni-kiel.de
2 FB Informatik, LS 2, Univ. Dortmund, 44221 Dortmund, Germany

ingo.wegener@uni-dortmund.de

Abstract. Many real-world problems are multi-objective optimization
problems and evolutionary algorithms are quite successful on such prob-
lems. Since the problem is to compute or approximate the Pareto front,
multi-objective optimization problems are considered as more difficult
than single-objective problems. One should not forget that the fitness
vector with respect to more than one objective contains more informa-
tion that in principle can direct the search of evolutionary algorithms.
Therefore, it is possible that a single-objective problem can be solved
more efficiently via a generalized multi-objective model of the problem.
That this is indeed the case is proved by investigating the computation
of minimum spanning trees.

1 Introduction

Typical textbooks on optimization problems focus on single-objective optimiza-
tion problems, see, e. g., Cormen, Leiserson, Rivest, and Stein (2001). The func-
tion f to be optimized is defined on a search space S and takes real values, i. e.,
f : S → R. For minimization problems on discrete search spaces S there may be
many optimal search points s ∈ S such that f(s) ≤ f(s′) for all s′ ∈ S but only
one optimal value fmin := min{f(s) | s ∈ S}. One is interested in the optimal
value fmin and one optimal search point s.

In the case of multi-objective optimization problems the fitness function f
is vector-valued, i. e., f : S → R

k. Since there is no canonical complete order
on Rk, one compares the quality of search points with respect to the canonical
partial order on Rk, namely f(s) ≤ f(s′) iff fi(s) ≤ fi(s′) for all i ∈ {1, . . . , k}.
A Pareto optimal search point s is a search point such that (in the case of
minimization problems) f(s) is minimal with respect to this partial order and
all f(s′), s ∈ S. Again there can be many Pareto optimal search points but they
? This work was supported by the Deutsche Forschungsgemeinschaft (DFG) as part

of the Collaborative Research Center “Computational Intelligence” (SFB 531) and
by the German-Israeli Foundation (GIF) in the project “Robustness Aspects of Al-
gorithms”.

do not necessarily have the same fitness vector. The Pareto front consists of all
fitness vectors y = (y1, . . . , yk) such that there exists a search point s where
f(s) = y and f(s′) ≤ f(s) implies f(s′) = f(s). The problem is to compute the
Pareto front and for each element y of the Pareto front one search point s such
that f(s) = y. As in any case of optimization problems one may be satisfied with
approximate solutions. This can be formalized as follows. For each element y of
the Pareto front we have to compute a solution s such that f(s) is close enough
to y. Close enough is measured by an appropriate metric and an approximation
parameter. In the single-objective case one switches to the approximation variant
if exact optimization is too difficult. The same reason may hold in the multi-
objective case. There may be another reason. The size of the Pareto front may
be too large for exact optimization.

Sometimes, people try to turn multi-objective problems into single-objective
ones, e. g., by optimizing a weighted sum of the fitness values of the single criteria.
This may be useful in some applications but, in general, we do not obtain the
information contained in the Pareto front and corresponding search points.

Multi-objective optimization has been an issue in operations research since a
long time. Due to the typically high computational complexity of multi-objective
problems the application of randomized search heuristics is a possibility to ob-
tain satisfying solutions. Many variants of evolutionary algorithms specialized
to multi-objective optimization problems have been developed and applied, for
a survey see the monographs of Deb (2001) and Coello Coello, Van Veldhuizen,
and Lamont (2002).

A conclusion from this discussion is that “multi-objective optimization is
more (at least as) difficult than (as) single-objective optimization”. This is true
at least if the fitness values for the different criteria are “somehow independent”.
Without such an assumption there is no reason to believe in the conclusion above.

We discuss the following scenario. The considered problem is a single-objective
problem. It is possible to add some further criteria such that the Pareto front
of the newly created multi-objective optimization problem is not too large and
such that the solution of the multi-objective problem includes the solution of
the single-objective problem. Solving the multi-objective problem instead of the
single-objective problem implies to compute the Pareto front instead of a single
optimal value. Each considered search point contains more information than in
the single-objective case since it contains also the fitness values for the addi-
tional criteria. At least in principle it is possible that this additional information
improves the search behavior of evolutionary algorithms. This would imply that
for solving difficult single-objective optimization problems one should also think
about the possibility to model the problems as generalized multi-objective opti-
mization problems.

The purpose of this paper is to prove that the considered scenario is not a
fiction. We do not investigate artificial problems to support this claim but one
of the combinatorial optimization problems contained in each textbook namely
the computation of minimum spanning trees. (Nobody should expect that evo-

lutionary algorithms computing minimum spanning trees beat the well-known
problem-specific algorithms.)

In Section 2, we present the well-known evolutionary algorithms for multi-
objective optimization that have been subject to a rigorous analysis of the ex-
pected optimization time. In Section 3, we introduce the two-objective variant
of the minimum spanning tree problem which is subject of our investigations
and distinguish it from other multi-objective variants of the minimum spanning
tree problem. In Section 4, we prove upper bounds on the expected optimization
time of some evolutionary algorithms for multi-objective optimization applied
to our problems. It turns out that they are asymptotically smaller than lower
bounds for the worst-case instances of simple evolutionary algorithms for the
single-objective case. In order to investigate what happens for small problem di-
mensions and typical problem instances we have performed several experiments
whose results are presented in Section 5. We finish with some conclusions.

2 Simple Evolutionary Algorithms for Multi-Objective
Optimization

The rigorous analysis of the expected optimization time of evolutionary algo-
rithms is not easy. Most of such results are on simple evolutionary algorithms
like the (1+1) EA (Droste, Jansen, and Wegener (2002)). This is even more true
for multi-objective optimization. Therefore, we investigate and analyze the al-
gorithm called SEMO (Simple Evolutionary Multi-Objective Optimizer) due to
Laumanns et al.(2002). The algorithm starts with an initial solution s ∈ {0, 1}n.
All non-dominated solutions are stored in the population P . In each step a search
point from P is chosen uniformly at random and one bit is flipped to obtain a
new search point s′. The new population contains for each non-dominated fitness
vector f(s), s ∈ P ∪ {s′}, one corresponding search point and in the case that
f(s′) is not dominated s′ is chosen.

Algorithm 1 SEMO

1. Choose an initial solution s.
2. Determine f(s) and initialize P := {s}.
3. Repeat

– choose s ∈ P uniformly at random,
– choose i ∈ {1, . . . , n} uniformly at random,
– define s′ = (s′1, . . . , s

′
n) by s′j = sj, if j 6= i, and s′i = 1− si,

– determine f(s′),
– let P unchanged, if there is an s′′ ∈ P such that f(s′′) ≤ f(s′) and
f(s′′) 6= f(s′)

– otherwise, exclude all s′′ where f(s′) ≤ f(s′′) from P and add s′ to P .

In applications, we need a stopping criterion. Here we are interested in the
expected number of rounds until f(P) := {f(s)|s ∈ P} equals the Pareto front.
This is called the expected optimization time. Note that the described algorithm

differs from the original version of SEMO by replacing an individual s′′ of P by
s′ if f(s′′) = f(s′) holds. Applying our version of SEMO to a single-objective
optimization problem, we obtain the algorithm known as RLS (randomized local
search). All our results also hold for the original version of SEMO but it seems
to be more typical for search heuristics to replace search points by other ones
with the same quality (e.g., simulated annealing works this way). If SEMO starts
with a search point s which is a local optimum, then P = {s} forever. The use of
this local mutation operator was motivated by the fact that this choice simplifies
the analysis. Giel (2003) has generalized the investigations of Laumanns et al.
(2002) and also Zitzler et al. (2003) by considering the usual mutation operator
of evolutionary algorithms.

Algorithm 2 GSEMO (Global SEMO)
GSEMO works like SEMO but s′ is defined in a different way. For each i,

s′i = 1− si with probability 1/n and s′i = si otherwise.

Note that GSEMO applied to single-objective optimization problems equals
the well-known (1+1) EA. Hence, we compare SEMO and GSEMO with RLS
and (1+1) EA.

3 A Two-Objective Model of the Minimum Spanning
Tree Problem

An instance of the minimum spanning tree problem consists of an undirected
graph G = (V,E) with n vertices and m edges and a positive integer weight w(e)
for each edge. The problem is to find an edge set E′ connecting all vertices of V
with minimal total weight.

Neumann and Wegener (2004) have analyzed RLS (with 1-bit flips and 2-bit
flips) and the (1+1) EA for the minimum spanning tree problem. They have
used the following model of the problem. The search space is S = {0, 1}m and
s ∈ S describes the edge set of all edges ei where si = 1. Raidl and Julstrom
(2003) have shown that edge sets are appropriate for the minimum spanning tree
problem. Neumann and Wegener (2004) have penalized edge sets which do not
describe connected graphs (and in one model additionally edge sets containing
cycles). They were able to prove the following results:

– The expected optimization time of RLS and the (1+1) EA is bounded by
O(m2(log n+ logwmax)) where wmax is the largest weight of the considered
graph.

– There are graphs with m = Θ(n2) and wmax = Θ(n2) such that the expected
optimization time of RLS and the (1+1) EA equals Θ(m2 log n).

This is one of the first rigorous analyses of the expected optimization time of evo-
lutionary algorithms on combinatorial optimization problems contained in text-
books. Previous results considered the computation of shortest paths (Scharnow,
Tinnefeld, and Wegener (2002)) and maximum matchings (Giel and Wegener
(2003)).

We discuss the reason for the expected optimization time of RLS and the
(1+1) EA. If a search point describes a non-minimum spanning tree, one-bit flips
are not accepted. Either the new search point describes an unconnected graph
or a connected graph with a larger weight. We have to wait until a mutation
step includes an edge and excludes a heavier one from the newly created cycle.
The expected waiting time for a specified 2-bit flip equals Θ(m2).

As already mentioned, the considered algorithms penalize the number of
connected components. This motivates the following two-objective optimization
model of the minimum spanning tree problem.

– The search space S equals {0, 1}m for graphs on m edges and the search
point s describes an edge set.

– The fitness function f : S → R
2 is defined by f(s) = (c(s), w(s)) where c(s)

is the number of connected components of the graph described by s and w(s)
is the total weight of all chosen edges.

– Both objectives have to be minimized.

We discuss some simple properties of this problem.

– The parameter c(s) is an integer from {1, . . . , n}.
– The first property implies that the populations of SEMO and GSEMO con-

tain at most n search points and the Pareto front contains exactly n elements.
– The parameter w(s) is an integer.

We have to be careful when discussing this problem. There exists another
type of multi-objective minimum spanning tree problem. Each edge has k dif-
ferent types of weights, i. e., w(e) = (w1(e), . . . , wk(e)). Unconnected graphs are
penalized and the aim is to minimize f(s) where s is not legal if s does not
describe a connected graph and f(s) is the sum of all w(ei) where si = 1, oth-
erwise. Similarly to other optimization problems this multi-objective variant of
a polynomially solvable problem is NP-hard (Ehrgott (2000)). This problem has
been attacked in different ways, e. g., by Hamacher and Ruhe (1994). Zhou and
Gen (1999) present experimental results for evolutionary algorithms and Neu-
mann (2004) has analyzed which parts of the Pareto front can be obtained in
expected pseudopolynomial time.

4 The Analysis of the Expected Optimization Time

Our results hold for SEMO as well as for GSEMO. The essential steps are 1-
bit flips. In the definition of SEMO and GSEMO we have not specified how to
choose the first search point. We discuss two possibilities.

– The first search point is chosen uniformly at random. This is the typical
choice for evolutionary algorithms.

– The first search point is s = 0m describing the empty edge set. This is quite
typical, e. g., for simulated annealing.

Our analysis is simplified by knowing that P contains 0m. Note that f(0m) =
(n, 0) belongs to the Pareto front and 0m is the only search point s with c(s) = n.
First, we investigate the expected time until the population contains the empty
edge set.

Theorem 1. Starting with an arbitrary search point the expected time until the
population of SEMO or GSEMO contains the empty edge set is bounded above
by O(mn(log n+ logwmax)).

Proof. One might expect that we only have to wait until all edges of the initial
search point s have been excluded. This is not true. It is possible that we accept
the inclusion of edges since this decreases the number of connected components
(although it increases the total weight). Later, we may exclude edges of the new
search point s′ without increasing the number of connected components. It is
possible to construct a search point s′′ which dominates s. Then s is eliminated
and all search points in the population (perhaps only one) have more edges
than s.

Hence, the situation is more complicated. Instead of the minimal number
of edges of all search points in P we analyze the minimal weight of all search
points in P . One search point s∗ with minimal weight has the largest number
of connected components (otherwise, the search point s∗∗ with c(s∗∗) > c(s∗)
is dominated by s∗ and will be excluded from P). We analyze w(s∗). We have
reached the aim of our investigations if w(s∗) = 0, since this implies s∗ = 0m.
After initialization, w(s∗) ≤W := w1 + · · ·+ wm ≤ m · wmax.

We only investigate steps where s∗ is chosen for mutation. The probability
of such a step is always at least 1/n, since |P | ≤ n. Hence, the expected time is
only by a factor of at most n larger than the expected number of steps where s∗

is chosen.
By renumbering, we may assume that s∗ has chosen the first k edges. We

investigate only steps flipping exactly one bit. This has probability 1 for SEMO
and probability at least e−1 for GSEMO, where e = 2.71 These steps are
accepted if they flip one of the first k edges. If the edge i is flipped, we obtain
a search point whose weight is w(s∗) − wi and the minimal weight has been
decreased by a factor of 1 − wi

w(s∗) . The average factor of the weight decrease
equals

1
m

 ∑
1≤i≤k

(1− wi
w(s∗)

) +
∑

k+1≤i≤m

1

 = 1− 1
m

if the choice of a non-existing edge is considered as a weight decrease by a factor
of 1. The result 1− 1

m does not depend on the population. After M := d(ln 2) ·
m · (logW + 1)e steps choosing the current s∗, the expected weight of the new
s∗ is bounded above by (1− 1/m)M ·W ≤ 1

2 . Applying Markoff’s inequality, the
probability that w(s∗) < 1 is bounded above by 1/3 (or 1/2− ε for each ε > 0).
Since weights are integers, w(s∗) < 1 implies w(s∗) = 0. The expected number of
phases of length M until w(s∗) = 0 is less than 3. Hence, altogether the expected

waiting time for s∗ = 0m is bounded above by 3·n·M = O(mn(log n+logwmax))
for SEMO. The corresponding value for GSEMO is only by a factor of less than
3 larger. ut

One may expect that this upper bound is not exact for many graphs and
starting points.

Theorem 2. Starting with a population containing the empty edge set the ex-
pected optimization time of SEMO or GSEMO is bounded by O(mn2).

Proof. As long as the algorithm has not reached its goal we consider the smallest
i such that the population contains for each j, i ≤ j ≤ n, a Pareto optimal
search point sj with f(sj) = (j, ·). This implies that the graph described by sj
consists of j connected components and has the minimal possible weight among
all possible search points describing graphs with j connected components. After
initialization, the population includes 0m which has the smallest weight among
all search points representing graphs with n connected components. Hence, i
is well defined. The search point sj is only excluded from the population if a
search point s′j with f(s′j) = f(sj) is included in the population. Hence, the
crucial parameter i can only decrease and the search is successful if i = 1.

Finally, we investigate the probability of decreasing i. It is well-known that
a solution with i− 1 components and minimal weight can be constructed from a
solution with i components and minimal weight by introducing the lightest edge
that does not create a cycle. Therefore, it is sufficient to choose si for mutation
(probability at least 1/n) and to flip exactly one bit concerning a lightest edge
connecting two components in the graph described by si (probability at least
1/m for SEMO and at least 1/(em) for GSEMO). Hence, the expected waiting
time to decrease the parameter i is bounded above by O(nm). After at most
n− 1 of such events the search is successful. ut

Corollary 1. If the weights are bounded above by 2n, SEMO and GSEMO find
the Pareto front in the two-objective variant of the minimum spanning tree prob-
lem in an expected number of O(mn2) rounds independently from the choice of
the first search point.

For dense graphs, this bound beats the bound O(m2 · log n) for the applica-
tion of RLS and the (1+1) EA to the single-objective variant of the minimum
spanning tree problem.

5 Experimental Results

The theoretical results are asymptotic ones. They reveal differences for worst-
case instances and large m. We add experimental results that show what happens
for typical instances and reasonable m. In order to compare randomized algo-
rithms on perhaps randomly chosen instances one may compare the average run
times, but these values can be highly influenced by outliers. We have no hypoth-
esis about the probability distribution describing the random run time for con-
stant input length. Hence, only parameter-free statistical tests can be applied.

We apply the Mann-Whitney test (MWT) that ranks all observed run times.
Small ranks correspond to small run times. If the average rank of the results of
algorithm A1 are smaller than those for A2, MWT decides how likely it can be
that such a difference or a larger one can occur under the assumption that A1 is
not more efficient than A2. If the corresponding p-value is at most 0.05, we call
the result significant, for 0.01 very significant, and for 0.001 highly significant.
The statistical evaluation has been performed with the software SPSS (Version
11.5, see www.spss.com). The tables contain the considered class of graphs, the
average rank AR of different algorithms and the p-value for the hypothesis that
the algorithm with the smaller AR-value is likely to be faster.

The experiments consider the following graph classes.

– uniformn: these are complete graphs with m =
(
n
2

)
edges and the weights

are chosen independently and uniformly at random from {1, . . . , n}.
– uniformbdn: each possible edge is chosen with probability 3/n leading to a

small average degree of 3, unconnected graphs are rejected and the construc-
tion is repeated, the weights of existing edges are chosen as for uniformn.

– planen: the n vertices are placed randomly on the points of the two-dimensional
grid {1, . . . , n}×{1, . . . , n}, the weight of an edge is the rounded Euclidean
distance between the vertices.

– planebdn: the n vertices are placed as for planen but each edge is only
considered with probability 3/n as for uniformbdn.

These graph classes reflect different choices of weights (one non-metric and
one metric one) and the possibility of dense and sparse graphs. Our algorithms
are RLS, (1+1) EA, SEMO, and GSEMO. The index z denotes the case that the
initial search point is the empty edge set (or all-zero string). Without an index
the initial search point is chosen uniformly at random. The run time of RLS
and the (1+1) EA denotes the number of fitness evaluations until a minimum
spanning tree is constructed. The run time of SEMO and GSEMO denotes the
number of rounds until, in one experiment, P contains a minimum spanning
tree or until f(P) equals the Pareto front. In each experiment the compared
algorithms are considered for 100 runs leading to an average rank of 100.5.

We have analyzed the influence of the initial search point. First, we have
considered the time until the Pareto front is computed. The results are shown
in Table 1.

Result 1 In 23 out of 24 experiments the variant starting with the empty edge
set has the smaller AR-value. Only 8 results are significant, among them 5 very
significant and 2 of these highly significant.

If we are only interested in the computation of a minimum spanning tree,
one may expect that one sometimes computes a minimum spanning tree without
computing the empty edge set. Indeed, the influence of the choice of the initial
search point gets smaller. For the classes uniformn, n = 4i and 3 ≤ i ≤ 11,
there is no real difference between SEMOz and SEMO, while the AR-values of

Table 1. Comparison of SEMO and GSEMO with different initial solutions until they
have computed the Pareto front

Class AR SEMOz AR SEMO p-value AR GSEMOz AR GSEMO p-value

uniform12 92.76 108.25 0.058 89.35 111.66 0.006

uniform16 83.51 117.49 < 0.001 91.28 109.72 0.024

uniform20 99.12 101.89 0.735 94.21 106.80 0.124

uniform24 98.01 102.99 0.543 93.65 107.35 0.094

uniform28 94.62 106.38 0.151 94.48 106.52 0.141

uniform32 91.24 109.76 0.024 96.76 104.24 0.361

plane12 81.61 119.39 < 0.001 88.14 112.86 0.003

plane16 94.51 106.49 0.143 89.38 111.63 0.007

plane20 97.17 103.83 0.416 95.15 105.85 0.191

plane24 93.33 107.67 0.080 103.11 97.89 0.524

plane28 90.58 110.43 0.015 93.09 107.91 0.070

plane32 94.55 106.45 0.146 97.44 103.56 0.455

GSEMO are in 8 of the 9 experiments smaller than for GSEMOz. For the classes
planen, n = 4i and 3 ≤ i ≤ 11, SEMOz beats SEMO (7 cases) and GSEMOz

beats GSEMO (7 cases). We do not show the results in detail since they are not
significant (with the exception of 3 out of 36 cases). The remaining experiments
consider the more general case of an initial search point chosen uniformly at
random.

We have not considered the worst-case instances for RLS and (1+1) EA
presented by Neumann and Wegener (2004). This would be unfair against these
algorithms. Nevertheless, the experiments of Briest et al. (2004) have indicated
that, for n and m of reasonable size, dense random graphs are even harder than
the asymptotic worst-case examples. This leads to the conjecture that SEMO
beats RLS and GSEMO beats its counterpart (1+1) EA. Here, the run time
measures the rounds until a minimum spanning tree is constructed. Table 2
proves that our conjecture holds for the considered cases. Note that the average
rank of 100 runs of one algorithm is at least 50.5. In several experiments the
AR-value of SEMO or GSEMO comes close to this value. For n ≥ 20 all values
are at most 51.6 and for small values of n the AR-values are smaller than 60.

Result 2 It is highly significant for all considered graph classes and graph sizes
that SEMO outperforms RLS and GSEMO outperforms the (1+1) EA.

The theoretical analysis of the algorithms gives values of O(m2 log n) for
RLS and the (1+1) EA and O(mn2) for SEMO and GSEMO (if the weights
are reasonably bounded). For complete graphs, m = Θ(n2) and we get values
n4 log n vs. n4. For sparse graphs, m = Θ(n) and we get values n2 log n vs. n3.
Although these are only upper bounds, one may expect different results for the
sparse graphs from uniformbdn and planebdn. Table 3 shows that this is indeed
the case.

Table 2. Comparison of SEMO and GSEMO with their single-criteria counterparts on
complete uniform and complete geometric instances

Class AR RLS AR SEMO p-value AR (1+1) EA AR GSEMO p-value

uniform12 146.36 54.64 < 0.001 147.79 53.32 < 0.001

uniform16 148.45 52.55 < 0.001 149.28 51.72 < 0.001

uniform20 149.74 51.26 < 0.001 149.40 51.60 < 0.001

uniform24 150.00 51.00 < 0.001 150.29 50.71 < 0.001

uniform28 150.40 50.60 < 0.001 150.23 50.77 < 0.001

uniform32 150.50 50.50 < 0.001 150.50 50.50 < 0.001

plane12 141.43 59.58 < 0.001 145.04 55.96 < 0.001

plane16 144.25 56.75 < 0.001 148.28 52.72 < 0.001

plane20 149.47 51.53 < 0.001 149.54 51.46 < 0.001

plane24 149.95 51.05 < 0.001 149.89 51.11 < 0.001

plane28 150.40 50.60 < 0.001 150.36 50.64 < 0.001

plane32 150.34 50.66 < 0.001 150.28 50.72 < 0.001

Result 3 It is highly significant for uniformbdn and n ≥ 24 and for planebdn
and n ≥ 16 (and the considered values of n) that RLS outperforms SEMO.
Similar results hold for the (1+1) EA and GSEMO, but the results are highly
significant only for large values of n, namely n ≥ 32 for both graph classes.

Note that the last group of experiments considers values of n up to 100.

Conclusions

It has been investigated whether the multi-objective variant of a single-variant
optimization problem can lead to more efficient optimization processes. This is
indeed the case for the well-known minimum spanning tree problem and ran-
domly chosen dense graphs. For sparse connected graphs it is better to use the
single-objective variant of the problem. The results are obtained by a rigorous
asymptotic analysis of the expected optimization time and by experiments on
graphs of reasonable size.

Acknowledgement

The authors thank Dirk Sudholt who performed the statistical tests with the
SPSS software.

References

1. Briest, P., Brockhoff, D., Degener, B., Englert, M., Gunia, C., Heering, O.,
Jansen, T., Leifhelm, M., Plociennik, K., Röglin, H., Schweer, A., Sudholt, D., Tan-
nenbaum, S., and Wegener, I. (2004). Experimental supplements to the theoretical

Table 3. Comparison of SEMO and GSEMO with their single-criteria counterparts on
uniform and geometric instances with bounded average degree

Class AR RLS AR SEMO p-value AR (1+1) EA AR GSEMO p-value

uniformbd12 91.91 109.09 0.036 101.44 99.57 0.819

uniformbd16 90.62 110.39 0.016 103.54 97.46 0.458

uniformbd20 89.79 111.22 0.009 98.98 102.02 0.710

uniformbd24 73.19 127.82 < 0.001 91.53 109.47 0.028

uniformbd28 78.01 122.99 < 0.001 93.03 107.98 0.068

uniformbd32 77.92 123.08 < 0.001 80.85 120.15 < 0.001

uniformbd40 73.02 127.98 < 0.001 84.37 116.63 < 0.001

uniformbd60 65.40 135.60 < 0.001 71.22 129.78 < 0.001

uniformbd80 56.70 144.30 < 0.001 58.72 142.28 < 0.001

uniformbd100 54.99 146.01 < 0.001 58.47 142.53 < 0.001

planebd12 97.56 103.45 0.472 105.24 95.77 0.247

planebd16 81.88 119.13 < 0.001 96.79 104.22 0.364

planebd20 81.06 119.95 < 0.001 101.70 99.30 0.769

planebd24 84.45 116.55 < 0.001 86.52 114.48 0.001

planebd28 81.94 119.06 < 0.001 88.45 112.55 0.003

planebd32 71.53 129.47 < 0.001 80.86 120.14 < 0.001

planebd40 67.18 133.82 < 0.001 74.57 126.44 < 0.001

planebd60 56.59 144.41 < 0.001 60.69 140.31 < 0.001

planebd80 52.98 148.02 < 0.001 59.60 141.40 < 0.001

planebd100 52.21 148.79 < 0.001 52.30 148.70 < 0.001

analysis of EAs on problems from combinatorial optimization. In Proc. of the 8th Int.
Conf. on Parallel Problem Solving from Nature (PPSN VIII). LNCS 3242, 21–30.

2. Coello Coello, C. A., Van Veldhuizen, D. A., and Lamont, G. B. (2002). Evolutionary
Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, New
York.

3. Cormen, T., Leiserson, C., Rivest, R., and Stein, C. (2001). Introduction to Algo-
rithms. 2nd Edition, McGraw Hill, New York.

4. Deb, K. (2001). Multi-Objective Optimization Using Evolutionary Algorithms. Wi-
ley, Chichester.

5. Droste, S., Jansen, T., and Wegener, I. (2002). On the analysis of the (1+1) evolu-
tionary algorithm. Theoretical Computer Science 276, 51–81.

6. Ehrgott, M. (2000). Approximation algorithms for combinatorial multicriteria opti-
mization problems. Int. Transactions in Operational Research 7, 5–31.

7. Giel, O. (2003). Expected runtimes of a simple multi-objective evolutionary algo-
rithm. In Proc. of the 2003 Congress of Evolutionary Computation (GEC), 1918–
1925.

8. Giel, O. and Wegener, I. (2003). Evolutionary algorithms and the maximum match-
ing problem. In Proc. of the 20th Ann. Symp. on Theoretical Aspects of Computer
Science (STACS). LNCS 2607, 415–426.

9. Hamacher, H. W. and Ruhe, G. (1994). On spanning tree problems with multiple
objectives. Annals of Operations Research 52, 209–230.

10. Laumanns, M., Thiele, L., Zitzler, F., Welzl, E., and Deb, K. (2002). Running time
analysis of multi-objective evolutionary algorithms on a simple discrete optimization

problem. Proc. of the 7th Int. Conf. on Parallel Problems Solving from Nature (PPSN
VII). LNCS 2439, 44–53.

11. Neumann F. (2004). Expected run times of a simple evolutionary algorithm for
the multi-objective minimum spanning tree problem. In Proc. of the 8th. Int. Conf.
on Parallel Problem Solving from Nature (PPSN VIII). LNCS 3242, 80–89.

12. Neumann, F. and Wegener, I. (2004). Randomized local search, evolutionary algo-
rithms, and the minimum spanning tree problem. In Proc. of Genetic and Evolution-
ary Computation Conference (GECCO 2004). LNCS 3102, 713–724.

13. Raidl, G. R. and Julstrom, B. A. (2003). Edge sets: an effective evolutionary coding
of spanning trees. IEEE Trans. on Evolutionary Computation 7, 225–239.

14. Scharnow, J., Tinnefeld, K., and Wegener, I. (2002). Fitness landscapes based on
sorting and shortest paths problems. Proc. of the 7th Conf. on Parallel Problem
Solving from Nature (PPSN VII). LNCS 2439, 54–63.

15. Zhou, G. and Gen, M. (1999). Genetic algorithm approach on multi-criteria min-
imum spanning tree problem. European Journal of Operational Research 114, 141–
152.

16. Zitzler, E., Laumanns, M., Thiele, L., Fonseca, C. M., and Grunert da Fonseca, V.
(2003). Performance assessment of multi-objective optimizers: An analysis and re-
view. IEEE Trans. on Evolutionary Computation 7, 117–132.

