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Abstract— Knowledge about the workload is an important
aspect for scheduling of resources as parallel computers or Grid
components. As the scheduling quality highly depends on the
characteristics of the workload running on such resources, a
representative workload model is significant for performance
evaluation. Previous approaches on workload modelling mainly
focused on methods that use statistical distributions to fit the
overall workload characteristics. Therefore, the individual as-
sociation and correlation to users or groups are usually lost.
However, job scheduling for single parallel installations as well
as for Grid systems started to focus more on the quality of
service for specific user groups. Especially for Grid scenarios
the optimization objective pursuited by the scheduling system is
not generally known. Here, detailed knowledge of the individual
user characteristic and preference is necessary for developing
appropriate scheduling strategies. In the absence of a large
information base of actual workloads, the adequate modelling
of submission behaviors is sought. In this paper, we propose a
new workload model, called MUGM (Mixed User Group Model),
which maintains the characteristics of individual user groups. To
this end, existing workload traces from real parallel systems have
been analyzed and modelled. Within this work new insights on
the workload compositions have been found. The MUGM method
has been further evaluated and shown to yield good results.

I. INTRODUCTION

The scheduling in many variants has been examined in
research for a very long time. Especially parallel job schedul-
ing is considerably well understood. Here, the scheduling
system is a vital component for the whole parallel computer
as the applied scheduling strategy has direct impact on the
overall performance of the computer system. The evaluation
of scheduling algorithms is important to identify appropriate
algorithms and the corresponding parameter settings. The
results of theoretical worst-case analysis are only of limited
help as typical workloads on production machines do normally
not exhibit the specific structure that will create a really bad
case. In addition, theoretical analysis is often very difficult to
apply to many scheduling strategies due to their complexity.
The development of new scheduling systems seems to focus
more on the usability of algorithms in real life scenarios. That
is, the system administrator might prefer a higher flexibility
in setting up individual access policies and often complex
scheduling rules. Especially the advent of Grid computing and
the need for efficient Grid scheduling strategies inhibit many
requirements that are difficult to analyze theoretically.

Furthermore, it is known that there is no random distribution
of job parameter values, see e.g. Feitelson and Nitzberg [13].
Instead, the job parameters depend on several potentially
unknown patterns, relations, and dependencies. However, the

number of users on a parallel computer is usually not very
large. That is, their individual behavior has still a major
impact on the scheduling outcome of many strategies. Hence, a
theoretical or practical analysis of random workloads will not
provide the desired information. A trial and error approach on
a production machine is tedious and significantly affects the
system performance. Thus, it is usually not practicable to use
a production machine for the evaluation except for the final
testing.

Therefore simulations are very often used during the design
and evaluation process of scheduling systems. These simula-
tions are usually based on real trace data or on a workload
model. Workload models, as by Jann et al. [17] or Feitelson
and Nitzberg [13], enable a wide range of simulations by
allowing job modifications, like a varying amount of assigned
processor resources. However, many unknown dependencies
and patterns exist in actual workloads of real systems. Here,
the consistence of a statistical generated workload model with
real workloads is difficult to guarantee.

Previous research focused on modelling the summarized and
combined output of all features in a workload of a parallel
computer [21], [3] as shown in Figure 1. They analyzed the
global character of several workload attributes (e.g., runtime,
parallelism, arrival time) and applied certain distributions to
describe them. However these models were general description
and did not consider individual user submissions.
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Fig. 1. The Global Workload Modelling Structure.

For many application scenarios a more detailed model is
preferred, in which characteristics on the user or user-group
model are maintained instead of a general description, see
Figure 2. In this paper such a workload model is presented.
Such a model can not only give a straightforward illustration
on the user’s submission characteristics but also provide a
more intuitive method to understand the usage of machines
by users. This is especially important for research in Grid
environments.

In contrast to conventional parallel computing the schedul-
ing objective in a Grid environment is not clear. Most schedul-
ing strategies on parallel computers are optimized to minimize
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Fig. 2. The Construction of User Group Model.

the response times, makespan or to increase the machine
utilization. In a Grid environment the scheduling objective
depends on the individual choice of the participants. Here,
individual users may prefer the minimization of cost, while
others accept a longer wait time in favor of a better quality of
service, e.g. more or faster processors available. Thus, much
research in this area involve scheduling strategies that include
multi-criteria optimization and market-oriented methods [2],
[9]. The evaluation of these strategies requires realistic work-
load models that do not neglect the individual submission
behavior of user groups. Due to the absence of accepted Grid
workload models much analysis re-use the available workload
information from parallel computer systems. This is reasonable
as these computing sites and their respective user groups
are naturally also the corner-stones of the current Grid user
community. Therefore, thorough knowledge of the workload
characteristic in regards to these user groups is needed for
better evaluation of the scheduling systems.

Therefore in this paper we focus on analyzing and modelling
existing user groups from available workloads from real instal-
lation. Following we propose the novel model MUGM (Mixed
User Group Model) for analysis of job characteristics from
several different user groups. To construct the MUGM model,
first jobs are partitioned into clusters such that the jobs with
similar characteristics are placed in the same cluster. Then the
users are grouped by the contribution of their submissions into
these job clusters. To evaluate the presented method, several
workload traces have been used and analyzed. The output of
the MUGM has been statistically compared with original and
not-used reference workloads.

This paper is structured as follows: In Section 2 we outline
the workload modelling problem for parallel computers in
more detail. After a brief analysis of workload characteristics
in parallel environment in Section 3, we provide a description
of the proposed MUGM method. In Section 5, we discuss the
experimental results for several real workloads. Finally, we end
the paper in Section 6 with a short conclusion and outlook on
future work.

II. RELATED WORK ON WORKLOAD MODELLING

In this paper we analyze several parallel computer
workloads that are available from the Standard Workload
Archive [26]. These workloads were gathered at different
environments of larger parallel computing sites. Many pub-
lications adopted these traces for their workload modelling
and evaluation of scheduling algorithms [23], [11], [14]. The
details of the workloads are given in Table I. It is noteworthy
that the named trace from NASA is quite old and has an
unusual submission characteristic, therefore we did not include
it in our study.

As mentioned above, the most common approach for work-
load modelling is to create a combined model for an observed
workload [4], [5]. Generally this summary is a statistical
distribution or a collection of such for various workload
attributes (e.g. runtime, parallelism, I/O, memory). Then, a
new synthetic workload is created by sampling from these
distributions. The construction of such models is done by
fitting the overall attribute characteristic to well-known dis-
tributions by comparing the histogram observed in the data
to the expected frequencies of the theoretical distribution, i.e.,
Chi-square or KS test.

Since the runtime and the parallelism of jobs are two of the
most important parameters for many parallel systems [10], [1],
[24], we currently limit ourselves to the modelling these two
attributes and focus on them in the following part of the paper.
The modelling of the arrival process is also very important
and has been addressed by many papers, see [20], [3], [21]
for more detailed information about the job arriving process
modelling.

The job runtime is the duration that a job occupies during
execution on a processor set. In general, the runtime varies
widely. Figure 3 shows a histogram of the runtime in the KTH
workload trace. Here, the runtime varies significantly from 1
to over 105 seconds. Such a distribution characteristic is called
heavy-tail and can be formally defined as follows: a random
variable X is a heavy-tailed distribution if

P [X > x] ∼ cx−α, as x → ∞, 0 < α < 2

where c is a positive constant, and ∼ means that the ratio
of the two sides tend to 1 for x → ∞. This distribution has
infinite variance; and if α ≤ 1 it has an infinite mean.

To model a heavy-tail runtime distribution, Downey [6]
proposed a multi-stage log-normal distribution. This method
is based on the observation that the empirical distribution of
runtime in log space was approximately linear. Jann et.al. [17]
proposed a more general model by using a Hyper-Erlang
distribution for the runtime. They used moment estimation
to model the distribution parameters. Feitelson [12] argued
that a moment estimation may suffer from several problems,
including incorrect representation of the shape of the dis-
tribution and high sensitivity to sparse high value samples.
Instead, Lublin and Feitelson [21] selected a Hyper-Gamma
distribution. They calculated the parameters by Maximum
Likelihood Estimations.

Another important aspect of workload modelling is the job
parallelism, that is, the number of nodes or processors a
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Identifier NASA CTC KTH LANL SDSC
SP2

SDSC
95

SDSC
96

Machine iPSC/860 SP2 SP2 CM-5 SP2 SP2 SP2
Period 10/01/93-

12/31/93
06/26/96-
05/31/97

09/23/96-
08/29/97

04/10/94-
09/24/96

04/28/98-
04/30/00

12/29/94-
12/30/95

12/27/95-
12/31/96

Processors 128 430 100 1024 128 416 416
Jobs 42264 79302 28490 201378 67667 76872 38719
Users 69 679 214 213 428 97 59

TABLE I

USED WORKLOADS FROM THE SWF ARCHIVE.

KTH

 runtime[s]

F
re

qu
en

cy

0
50

0
10

00
15

00

1 101 102 103 104 105

Fig. 3. Histogram of Job Runtimes.

job requires. It has been found that the job parallelism in
many workloads displays two significant characteristics [6],
[11]: the power of 2 effect, as jobs tend to require power
of 2 node sets; and a high number of sequential jobs that
require only a single node. These two features can be seen
in Figure 4. Lo et.al. [20] found empirically that these effects
would significantly affect the evaluation of scheduling perfor-
mance. Feitelson [11] proposed a harmonic distribution which
emphasized small parallelism and the other specific sizes like
power of 2. Later, Lublin and Feitelson used job partitions to
explicitly emphasized power of two effects in parallelism [21].

Besides the isolated modelling of each attribute, the cor-
relations between different attributes were addressed as well.
For example, Lo et.al. [20] demonstrated that the neglection
of correct correlation between job size and runtime yields
misleading results. Therefore Jann et.al. [17] divided the job
sizes into subranges then created a separate model of the
runtime for each range. Furthermore, Feitelson and Lublin [21]
considered the correlation according to a two-stage Hyper-
Exponential distribution.

Although these models can provide an overall description
of a workload, they can not give an deeper insight on the
individual job submission behavior. For example, a Hyper-
Exponential distribution distribution can describe the heavy
tailed runtime in parallel machine, but the information is lost
how this heavy-tailed was actually created by user submis-
sions. Similarly, the high amount of sequential jobs can be
modelled by harmonic distributions, but it is not clear where
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Fig. 4. Histogram of Job Parallelism in the KTH Workload

the sequential jobs came from. In general, the global and
summarized characterization does not provide a model for
users or user groups. And thus cannot give hints to relate the
performance metrics to user groups.

Since the active user community on a parallel computer
is usually quite small, e.g. hundreds of users as shown in
Table I, it would be quite beneficial to associate the model and
the resulting workload with users or user groups. With such
user-level information it is possible to analyze the impact of
certain groups to the overall system performance. In addition,
it is possible to associate different scheduling objectives and
methods with the different user groups. This can help to
evaluate and analyze scheduling strategies for Grid scenarios.
To this end, a new workload model is proposed in this paper
that maintains user and group information. In the next section,
we will provide a brief view on the characteristics of individual
user submission behavior in real workloads.

III. ANALYSIS OF USERS IN WORKLOADS

One of the obvious characteristics we can observe in the
6 examined workloads is the sparsity of users. That means,
only a few users are responsible for thousands of jobs, while
many other users just generate very few jobs. Table II shows
the number of submissions from individual users in the KTH
workload: only a couple of users with more than 1000 job
submissions and more than than 25 users with less than 1000
job submission. Actually, there are about 30,000 jobs from
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over 200 users. This effect is similar for all other workload
traces.

Another aspect about the workload data is the heterogeneity
of the job submission pattern between different users. In
Figure 5 the averages of job parallelism are plotted for the top
10 users with the most submissions: the heterogeneity can be
seen clearly as some try to submit jobs with high parallelism
(e.g. user IDs={91,93}), while some tend to make submissions
with lower parallelism (e.g. user IDs={18,67}). We have also
examined the other workloads and found similar results.

# of Job Submission # of Users (%)
[1, 100[ 68.22
[100, 500[ 18.22
[500, 1000[ 12.15
[1000, 2000[ 0.93
more than 2000 0.47

TABLE II

COMPARISON OF USER SUBMISSIONS.
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Fig. 5. Comparison of Average Job Parallelism for an Individual Users.

The main challenge in the construction of a new model
addressing the individual submission behaviors is to find a
trade-off between two extremes. One extreme is the sum-
marization in a general probability model for the whole job
submissions. As the other extreme a unique model is created
for each user based on his or her past transaction data, e.g.
using hundreds of distributions for different users. Even if we
would follow this approach, it suffers from two significant
problems: there is not enough information for those users with
only few job submissions; even for those users with enough
data to model, the number of parameters will be so large
that the interpretability and scalability of the model are lost.
As a consequence, we would like to get a mixture of user
groups that summarizes similar user submission behaviors,
while each of these groups has distinct features. Our proposed
model allows to address the user submission behaviors, while
it maintains simplicity and scalability. In the next section we
will give the details about our new model.

IV. MODELLING

Before we describe our MUGM model in more detail, some
definitions are given. We denote D as the set of n jobs by
D = {d1, . . . , dn}, where di represents the parameter set for
job i, including e.g. the number of processors, the expected
runtime, memory. This parameter set can easily be extended to
contain additional job information. As previously mentioned,
we currently focus only on the parameters parallelism and
runtime. Thus, we use p(di) to represent the parallelism and
r(di) for the runtime of job i. The jobs are generated by J
users, where the user j generates job i: u(di) = j, j ∈ [1, J ].

In our MUGM model the workload is analyzed to classify
users into K user groups. Note that we do not assume these
K groups necessarily represent the true physical groups in the
real environment. The membership of a user j is identified
by m(j) = k, k ∈ [1,K]. The users in the same group are
assumed to have a similar job submission behavior. Thus the
kth group 1 ≤ k ≤ K will represent a specific model for
generating corresponding jobs.

Data
processing

Job
clustering

User
grouping

Group
Analyzing

Group
modelling

Synthetic
workload
generation

Fig. 6. Process of the MUGM Model.

Figure 6 gives an overview on the construction of the
MUGM model. We first find different job clusters or types
using cluster algorithm to partition jobs. In this step the user
origin is not considered. Instead only common job types are
identified by this clustering. Then each user is characterized by
a feature vector, which describes the contribution of this user
to each job cluster. Afterwards, we use these feature vectors
to identify user groups. To this end, the users are clustered by
their feature vectors. In this way the users are grouped by their
similar contribution pattern to the previously identified com-
mon job clusters. Next, we analyze and model the submissions
characteristic of each user group. The combination of this
submission models generates the complete MUGM workload.

In the following, each step in the MUGM process is
described in more detail.

A. Data preprocessing

Parallelism and runtime values both cover a wide range that
is only bound by zero. Therefore, it is common practice to
apply a logarithmic transformation for analysis and modelling.
Here, a log transformations based on 2 was used. That
is, parallelism and runtime are transformed by lg p(di) and
lg r(di). Zero values are neglected as they are very rare (less
than 0.3%).
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B. Job clustering

The first step of our MUGM model is to cluster all jobs
into several groups. Parallelism and runtime are separately
clustered in order to maintain sharper partition border. That
is, the different job clusters differ in parallelism or runtime.
Each job is uniquely assigned to one cluster.

To cluster the parallelism we round the values p(D) to the
�lg p(D) + 0.5�. Such a clustering method is based on the
above mentioned observation of the power of 2 preference in
parallelism. For the runtimes we choose a clustering algorithm
called CLARA proposed in [18] because of its computational
efficiency.

This algorithm is based on the Partition Around Medoids
(PAM) method which is also presented in [18]. The PAM
clustering procedure takes the unprocessed items as input and
produces a set of cluster centers or so called ”medoids”. In
the following, we briefly describe the general approach of the
PAM method. Let X = {x1, . . . , xT } be the input element
set of size T , and H be the number of clusters, and M =
(M1, . . . ,MH) denotes the list of identified mediods in X .
The minimal distance of each element to the mediods can be
calculated by

distance(xt,M) = minh∈[1,H]{||xt,Mh||}.

Next, the PAM method selects the set of medoids M∗

by minimizing the sum of the distances f(M) =∑
t∈T distance(xt,M). An overview of the cluster algorithm

PAM is given in Figure 7.
It can be seen that the complexity of a single iteration is

O(H · (T − H)2). It is therefore computationally quite time
consuming for large values of T and H . For instance, T in
our evaluation equals the number of jobs n which is larger
than 20,000. The difference between the PAM and CLARA
algorithms is that the latter is uses only a sampled subset S ⊂
X before applying the same PAM method. This reduces the
complexity to O(H · |S|2 + H · (T − H)) for each iteration
comparing to the O(H · (T − H)2).

In our case each element is a runtime value. We use the
Euclidean distance between two logarithmic scaled runtimes,
which is

(lg r(di′) − lg r(di′′))
2

. To decide the number of clusters, we do not adopt classical
methods like e.g. silhouette, Gap statistic [22], [27] because
they caused a large number (more than 20) of small clusters.
However, large number of clusters increase the complexity
level for the whole MUGM method. In our analysis we tried
several number of clusters, e.g. 2, 4, 6, 8, 10,..., 20. However,
it turned out that the final modelling quality did not increase
for more than 4 clusters. Note, that this has to be verified if
the model is applied to other workload traces.

Overall, all jobs have been partitioned into L clusters
distinguished by this CLARA clustering of job runtimes and
the lg-clustering of their degree of parallelism. The next step
is the grouping of users based on their contribution to these
job clusters.

PROCEDURE PAM clustering(X,H)
Input: elements to be clustered,

X = {x1, . . . , xT }
Input: H the number of clusters
Output: cluster medoids M = (M1, . . . ,MH)
Output: cluster membership

g : X → {1, . . . , H}
BEGIN

Set M to initial value,
e.g. random selection from X
FOREACH t ∈ [1, T ] LOOP

g(xt) = arg minh∈[1,H] distance(xt,Mh)
END LOOP;
WHILE M has changed LOOP

FOREACH h ∈ [1,H] LOOP
recalculate the Mh of

each cluster {xt|g(xt) = h, t ∈ [1, T ]}
END LOOP;
FOREACH t ∈ [1, T ] LOOP

g(xt) = arg minh∈[1,H] distance(xt,Mh)
END LOOP;

END LOOP;
RETURN M, g;

END PROCEDURE;

Fig. 7. Algorithm for the PAMClustering.

C. User Grouping

We can characterize the submission of user j by a feature
vector αj = (αj1, . . . , αjL), where αjl denotes the fractions
of user j submissions belonging to job cluster l, l ∈ [1, L].
Obviously there is

∑
l∈[1,L] αjl = 1,∀j ∈ [1, J ].

Now we can cluster all users into K groups by their feature
vectors. The similarity of users is characterized by the distance
of their feature vectors. Since different users have different
number of job submissions, we weight the distance between
the feature vectors of users by their corresponding number of
job submissions. In detail, the distance d(j′, j′′) between user
j′ and j′′ is defined by

d(j′, j′′) = ||αj′ − αj′′ || · |W |
|D| ,

where W = {di|(u(di) = j′) ∨ (u(di) = j′′); i ∈ [1, n]}.
That is, we divide the number of jobs belonging to user j′

and j′′ by the number of all jobs, and then multiply the result
by the distance between both feature vectors. With weighted
distances between the feature vectors, the PAM clustering
algorithm is again applied to partition the users into K groups.
The determination of the actual number of groups K is given
in the Section V.

D. Workload Modelling of Identified User Groups

After clustering the users into several groups, we charac-
terize all jobs submitted from the users of a group using
statistical methods. There are several common methods to
describe the data distribution. However we found that after
the users are grouped, the characteristics of jobs originated
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by each user group can not easily be described by a single
distribution. Therefore we use model-based density estimation,
that is described in more detail by Fraley and Raftery [15], to
model the jobs from each group. This model-based method
assumes that the data is generated by a combination of
several distributions. To this end, this method determines the
required parameters for a set of Gaussian distributions. This is
done by multivariate normalizations with the highest posterior
probability.

We denote the estimated combined distribution function for
a user group k as Gk. However the Gk distribution function
set does not address the power of 2 effect for the parallelism.
Hence, we extract the amount of power of 2 jobs fk in the
original workload of a user group k. That is

fk =
|{di|(lg p(di) ∈ �) ∨ (m(u(di)) = k); i ∈ [1, n]}|

|{dj |m(u(dj)) = k; j ∈ [1, n]}| .

Additionally the fraction of submission pk from group k is
calculated by

pk =
|Dk|
D

, where Dk = {di|m(u(di)) = k; i ∈ [1, n]}. In a summary,
the workload of the user group k can be represented by
Gk, fk, pk. In the next section, we will discuss our method
to generate the combined synthetic workload.

E. Synthetic workload generation

In order to create a synthetic workload of n jobs by the
MUGM model the following steps are applied:

1) For each user group k, we generate nk jobs with nk =
n · pk from Gk. We generate the synthetic parallelism
and runtime by sampling from the distribution Gk the
corresponding sets Pk = {p1, . . . , pnk

} and Rk =
{r1, . . . , rnk

}. However, we also have to inverse our
previous scaling from IV-A and round to the nearest
integer value:

P ′
k = {p′k|p′k = �2pk + 0.5�;∀pk ∈ Pk} and

R′
k = {r′k|r′k = �2rk + 0.5�;∀rk ∈ Rk}.

2) In order to model the power of 2 effect, a fraction of the
values in P ′

k is rounded to the nearest power of 2 value.
That is, with a probability of fk the simulated value P ′

k

is modified.
3) The synthetic jobs from different user groups are com-

bined. Particularly, we use probability pk to pick a job
from group k. According to this method we create the
final n jobs.

Note, that for a complete workload modelling not only the
job characteristics of parallelism and runtime need to be mod-
elled. In addition, a model for the job arrival process is needed.
As previously mentioned, several methods are available for
this task [21]. In future work, a more sophisticated approach
based on the user groups can be examined. Such an approach
can include sequence submission patterns [25].

In the next section, we discuss the evaluation of the MUGM
method with experimental results.

V. EVALUATION

To evaluate our MUGM method we used those 6 workloads
from Standard Workload Archive as mentioned before. In
order to validate our approach, some statistical comparison
will be presented.

A. Analysis of Job Characteristic from User Groups

First, we examine the job characteristics of the resulting user
group clusters. Due to the limited available space, primarily
the results for the KTH workload are shown here. However,
the other workloads exhibited similar results. Figure 8, 9, 10
display the results for different numbers of user group clusters
K = {2, 4, 6}. The user groups are ordered left-to-right and
top-to-bottom in descending order by their combined amount
of workload. This is also referred to as the Squash Area SA,
which is the total resource consumptions of all the jobs in
each group. The SAi for group i, i ∈ [1,K] is calculated by:

SAi =
∑

m(u(di))=i

p(di) · r(di)

. These figures give an idea of how much the parallel computer
was utilized by one of the user groups.

The increase of K forces the creation of more user groups.
For example, for K = 2 there are two user groups: the
first group submits a lot of short jobs, requiring below 10
seconds; the other group causes more sequential jobs with
longer runtime requirements. The parallelism is nearly not
distinguished in this classification. For K = 4 more detailed
user groups are found, in which combinations of runtime and
parallelism are found. However, for K = 6 it is noteworthy
that some of the user groups cover only very few users with
a small amount of workload. That is, for some of them SA
contribution is even less than 1%. It can be deduced that these
groups have limited impact on the overall system behavior.
However, this has to be verified in future research work.

Nevertheless, the results indicated that with 4 user groups
the workloads could be distinctively covered. It is worthwhile
to notice that this applied to almost all of our workloads as can
be seen in Table III. That is, there is only a limited number of
distinctive features of user behaviors on real systems. It can
be assumed that additional user clustering only yields groups
with minor contribution to the workload. Therefore, in this
paper we focused on the creation of 4 user clusters.

For the KTH modelling with 4 user groups the following
characteristics of the user groups can be seen in Figure 9:

1) Users in Group 1 submit a lot of highly parallel jobs.
Many jobs require more than 1 node. Moreover, a large
number of jobs run only for a short time of about 10
seconds. However, this group accounts for most of the
resource assumption in terms of the SA. That is, over
40% of the total SA is caused by this group.

2) Users in Group 2 submit more jobs requiring relatively
longer runtimes. Many of these jobs have a runtime
of more than 103 seconds. Some are even larger than
104 and near 105 seconds. This group also creates some
highly parallel jobs. But comparing with the Group 1,
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Fig. 8. The results when 2 user groups are found with our MUGM model. The information in the header of each diagram show the relative contributions
of each user group to the squashed area SA, the total numbers of jobs and users.
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Fig. 9. The results when 4 user groups are found with our MUGM model. The information in the header of each diagram show the relative contributions
of each user group to the squashed area SA, the total numbers of jobs and users.

most of the job node requirements in this group are less
than 24.

3) It is interesting to note that jobs from Group 3 are quite
specific in terms of runtime and parallelism. Most of
these jobs have a parallelism around 23 and a runtime
over 103 seconds. These users do not have jobs with
short runtimes like Groups 1 and 2. These jobs account
only for about 6% of the total job number but over 20%

of the total SA. Another point is that only 3% users are
in this group.

4) In Group 4, users concentrate on submitting sequential
jobs, requiring only 1 node. The runtime is also distinc-
tive: most of them run around 104 seconds. Over 40%
of all users are in this group. It indicates that quite a lot
of users use the machine primarily but infrequently for
sequential jobs.
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Workload # of
User
groups

User group information

2 (53.7, 80, 98.3), (46.3, 20, 1.7)
4 (46.3, 20, 1.7), (22.1, 20.4, 72.9)

SDSC96 (18.7, 40.0, 23.7), (13, 19.6, 1.7)
6 (46.3, 20.0, 1.7), (20.6, 15.8, 71.2)

(17.1, 6.6, 1.7), (13, 19.6, 1.7)
(1.6, 33.5, 22.0), (1.5, 4.6, 1.7)

2 (77.7, 57.4, 30.0), (22.3, 42.6, 70.0)
4 (75.9, 52.8, 26.7), (14.3, 24.1, 14.4)

CTC (9.0, 17.6, 30.8), (0.7, 5.5, 28.1)
6 (49.5, 42.3, 17.4), (34.5, 15.2, 25.6)

(11.1, 16.5, 10.9), (2.3, 6.8, 2.7)
(2.1, 13.7, 16.1), (0.7, 5.5, 27.4)

2 (95.6, 85.9, 55.6), (4.4, 14.1, 44.4)
4 (45.0, 40.1, 37.9), (29.2, 40.1, 16.8)

KTH (21.3, 6.7, 3.3), (4.5, 13.1, 42.1)
6 (44.2, 26.1, 32.2), (29.2, 39.7, 16.4)

(21.3, 6.7, 3.3), (3.4, 4.7, 41.6)
(1.1, 8.4, 0.5), (0.8, 14.5, 6.1)

2 (95.7, 89, 99.5), (4.3, 11, 0.5)
4 (66.3, 33.6, 22.5), (22.7, 25.7, 24.9)

LANL (6.7, 29.6, 52.1), (4.3, 11, 0.5)
6 (53.2, 31.4, 22.1), (14.8, 19.9, 24.4)

(13.1, 2.2, 0.5), (7.9, 5.9, 0.5)
(6.7, 29.6, 52.1), (4.3, 11.0, 0.5)

2 (86.7, 71.6, 42.8), (13.3, 28.4, 57.2)
4 (65.5, 53.2, 25.2), (16.1, 5.9, 3.7)

SP2 (12, 17.7, 34.1), (6.3, 23.2, 36.9)
6 (65.5, 53.2, 25.2), (16.1, 5.9, 3.7)

(11.7, 15.7, 32.2), (5.7, 5.4, 1.6)
(0.8, 2.6, 36.9), (0.2, 17.2, 0.2)

2 (99.7, 91.1, 99.0), (0.3, 8.9, 1.0)
4 (76.5, 68.6, 96.9), (23.0, 5.1, 1.0)

SDSC95 (0.3, 8.9, 1), (0.3, 17.3, 1)
6 (68.9, 55.6, 94.8), (23.0, 5.1, 1.0)

(7.5, 3.5, 1.0), (0.3, 8.9, 1.0)
(0.3, 17.3, 1.0), (0.1, 9.5, 1.0)

TABLE III

THE DETAILS (SA%, # OF JOBS%, # OF USERS%)OF USER GROUPS

IDENTIFIED BY MUGM

Note, that the other workloads do not exhibit the same group
characteristics, as can be seen exemplarily in Figure 11 for the
LANL workload. However, as mentioned before about 4 user
groups can also be identified.

B. Statistic comparison of synthetic and original workloads

A common method of examining the similarity between
the original and modelled workload distribution is the
Kolmogorov-Smirnov (KS) test [19]. This test looks at the
maximum difference between two distribution functions. This
criterion is adopted in several papers [21], [16].

The KS test results are given in Table IV. It can be seen
that the output of our MUGM method yields good results for
most workload traces. That is, the KS value is below 0.10 in
all cases and at 0.05 on average.

In Table V we present the correlation between the par-
allelism and the runtime for the synthetic and the original
workload. As shown in the Table the synthetic data from our
MUGM model displays the similar correlation as that from
original data.

VI. CONCLUSION

In this paper we proposed a novel method MUGM (Mixed
User Group Model) for analyzing and modelling workload

Parallelism Runtime
SDSC 96 0.06 0.03
CTC 0.04 0.06
KTH 0.05 0.07
LANL 0.04 0.06
SP2 0.03 0.05
SDSC 95 0.04 0.06

TABLE IV

KS TEST RESULTS (Dn) OF THE MODELLED AND THE ORIGINAL

WORKLOADS.

Original Synthetic
SDSC 96 0.37 0.30
CTC −0.03 −0.01
KTH 0.01 −0.00
LANL 0.17 0.19
SP2 0.15 −0.00
SDSC95 0.28 0.25

TABLE V

COMPARISONS OF THE CORRELATIONS BETWEEN THE MODELLED AND

THE ORIGINAL WORKLOADS.

traces. The main advantage of this method is the consideration
of individual user groups. Our MUGM method has been
applied to several workloads from real installations. Here, it
is interesting that the analysis of the workloads exhibited that
only a few distinct user groups exists. This applied to all
examined workloads.

The presented method allows the creation of new synthetic
workloads modelled after the original user group character-
istics. This method can be used to evaluate new scheduling
strategies. The job submission process has now a direct
association with individual user groups. This information can
be exploited for individualized quality criteria considered
by scheduling strategies. Furthermore, additional workload
parameters can be modelled in regards to individual scheduling
objectives of these user groups. This applies especially to the
Grid scheduling scenario in which the scheduling objective is
not globally given for a specific computing system but depends
on the user preferences.

As found in [7], [8], [9] new scheduling systems can also
benefit by dynamic adaptation according to the current system
state. This enables the scheduler to dynamically adjust its
parameterizations and consequently its behavior. This can
include predictions strategies for user or groups based on these
results.

Further research is necessary to include individual mod-
elling strategies for the job arrival. Here, sequential depen-
dencies for users or groups can be considered to improve the
quality in the modelling of the temporal submission behavior.
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Fig. 10. The results when 6 user groups are found with our MUGM model. The information in the header of each diagram shows the relative contributions
of each user group to the squashed area SA, the total numbers of jobs and users.
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Fig. 11. The results when 4 user groups are found with our MUGM model. The information in the header of each diagram shows the relative contributions
of each user group to the squashed area SA, the total numbers of jobs and users.
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