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Abstract. An overview of the state-of-the-art in parallel evolutionary
multiobjective optimization with a special view on the population struc-
tures is presented. An introduction to the theory of hypergraphs is given.
The idea of hypergraphs is to scale freely between all existing population
structures from coarse-grained island-models to fine-grained diffusion-
models. Implementation details of pMOHypEA, a parallel evolutionary
multiobjective optimization system that uses hypergraphs to structure
populations, are given. First results of the concept are discussed.

1 Introduction

Population based optimization heuristics like evolutionary algorithms (EAs) or
particle swarm optimization (PSO) in most cases require large amounts of fitness
function evaluations. This can be problematic in practice, since the evaluations
are often very time consuming, e.g. if finite element analyses (FEM) or complex
simulations are used.

For parallelization purposes the use of a standard EA with equally distributed
evaluations is adequate only if constant evaluation times can be assumed and
if the processing nodes have the same performance. If the target architecture is
a heterogeneous cluster of processing nodes or if the nodes are interconnected
by a heterogeneous network, a more sophisticated distribution strategy is rec-
ommended to preserve a high efficiency. In order to achieve a good scalability
and to reduce the communication overhead, it can be helpful to free the de-
pendencies between the individuals and to utilize appropriately generalized EAs
which support multiple temporarily independent populations. If treating com-
plex multiobjective problems these generalized EAs often outperform standard
EAs with a single homogenous population even if a single computer and no
parallel architecture is used.

All parallel multiobjective evolutionary algorithms presently known utilize
specific types of population neighborhood structures. Most commonly either reg-
ular grids or islandmodels are used.

A new and flexible hypergraph approach for the population neighborhood
management will be introduced in this paper. In combination with population
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based optimization techniques it allows to adapt the population neighborhood
structure to the problem’s properties and to the underlying structure of a par-
allel computer system. A parallel multiobjective EA based on NSGA-II called
pMOHypEA using a hypergraph approach has been implemented and tested.

The paper is organized as follows: The next section gives an overview of
common parallelization approaches of evolutionary algorithms. A selection of
parallel multiobjective EAs is discussed in Section 3. The hypergraph approach
is subject of Section 4. In Sections 5 and 6 an implementation of a parallel
hypergraph NSGA-II and the experimental setup are presented. The first test
results are analyzed in Section 7. Finally a brief summary will be given and the
conclusions will be highlighted.

2 Parallelization of Evolutionary Algorithms

2.1 Parallelization and Population Structure

Typically, the parallelization of evolutionary algorithms is realized by the design
of specific mutation, recombination, evaluation and/or selection operators. The
selection operator plays a key role, since multiple individuals are compared to
each other with regard to their fitnesses. The sets of competing individuals arise
from the structure of the population. In many cases the computation time and
communication cost caused by the selection are dependent on the sizes and con-
figurations of these sets. Recombination is the other operator which is directly
influenced by the population structure. At least in the case of pairwise recombi-
nation the parallelization overhead is generally significantly lower than that of
the selection.

The communication distance between two individuals is determined by their
position in the population structure. It is possible to realize panmictic popu-
lations as well as populations which show a seldom, indirect and/or delayed
genetic transfer. In the latter case a spacial or temporal separation can lead
to an independent evolution within different subsets of the population for sev-
eral generations. This usually results in a higher genetic diversity and can be
advantageous especially if complex problems are to be solved.

Commonly the population structure does not match the communication
structure of the parallel processor network on hardware level, but a certain corre-
lation can be beneficial concerning the performance. A special kind of temporal
separation can be achieved by an asynchronous parallel computation. The re-
sulting asynchronous evolutionary optimization is comparable to the evolution
in nature and its asynchronous character. Though algorithmically more com-
plicated, the asynchronous parallel computation shows performance advantages
especially in case of varying and unpredictable fitness evaluation costs or if het-
erogeneous parallel computer architectures are used.

2.2 Parallelization of MOEA

As an alternative to spacial separations which are derived from the communica-
tion structure, the individuals can explicitly be allocated to particular subpop-
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ulations depending on their affiliation to certain regions of the search space. In
case of MOEA (multiobjective evolutionary algorithms) a disjoint decomposition
of the objective space may be used. The main goals of parallelizing MOEA are
usually the acceleration of the computation and the gain of quality according
to the approximation of the true Pareto-Front or the diversity of the solutions.
Research on the theoretic background of parallel MOEA (pMOEA) [19] is still
quite rare. First theories regarding the population size [24] or regarding rather
uncommon strategies [10] have been published.

2.3 Parallelization Approaches

Master-Slave-Approach. Here a single processor (master) takes control of
the selection operator. Recombination, mutation and evaluation are executed by
the other processors (slaves) independently. This approach is rather easy to im-
plement especially if synchronized processes are used. It is used especially in the
case where computation costs of the fitness function evaluations are high. Other-
wise the communication can turn to be a bottleneck. The simple communication
structure is advantageous if the processing power is distributed over the inter-
net. The system GAIN (Genetic Algorithm running on the INternet) [11] was
one of the first that made use of this multiobjective evolutionary approach. The
approach was appliefd to several real world problems: e. g. compuational electro-
magnetics (CEM) and fluid dynamics (CFD) as well as aerodynamic issues [17]
and X-ray Plasma Spectroscopy [9].

Island-Approach. Here the population is divided into spatially separated sub-
populations (demes). The islands correspond to MOEA-instances that are run-
ning nearly independently. Genetic information is exchanged either by migration
or pollination. In the first case an individual is transferred from the original deme
to an other island in the neighborhood. In the second case the individual is left
were it is and a copy is transferred. The amount of demes and their sizes as
well as the interconnection structure and the migration rate are parameters of
the island-model. The population structure and the hardware level architecture
do not have to match. A certain amount of demes can be allocated to a single
processor or vice versa. The following variants of parallel multicriterial island-
models can be distinguished:

1. Identical MOEA with identical parameter settings are applied to every island
(homogeneous island-model).

2. Identical MOEA with different parameter settings or completely different
multicriterial EA are used. This approach is called heterogeneous. Both ho-
mogeneous and heterogeneous island-models are very common [19][21].

3. Different reduced or modified fitness function sets and corresponding sin-
gleobjective or multiobjective EA are assigned to every island. Examples for
SPEA2 and NSGA-II are given in [14]. This approach is motivated by the
idea of dividing a multiobjective problem into several reduced problems that
can be solved step by step.
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4. Every island represents a certain disjoint region of the search space or the
objective space. This relatively new island-model approach is presented in
[8]. The successful application to the test functions ZDT1 to ZDT3 and
DTLZ2 is described in [2]. A regular assignment of the processors to certain
ranges of the Pareto-front (niching) has been recognized.

Diffusion-model. Unlike the island-model, in the diffusion-model the indi-
viduals are not grouped in subpopulations. The communication relationships
are defined on the individual level (fine-grained parallelism). Commonly von-
Neumann or other local neighborhoods are defined for every individual in the
same way. The communication structure of the whole population often shows
a regular pattern (e. g. torus, grid). Recombination and selection operators ac-
cess individuals in the direct neighborhood. Over the generations good solutions
can diffuse throughout the grid. A temporal and spacial separation is caused
by the high average communication distances. Therefore a diverse population
is far more likely to emerge than island-models with panmictic subpopulations.
Diffusion-models result in high communication costs. They can be reduced if
subsets of adjoining individuals are allocated to single processors each. Multi-
objective diffusion-models have been applied to combinatoric test functions [15]
and specific real world problems. The static population structure can be replaced
by a dynamic structure [20][12].

Hierarchic hybrid models. Here island type population structures are used
in the top level. Certain MOEA are applied to every island. It is possible to
recursively subdivide islands into smaller islands of new hierarchical levels. In this
way a hierarchy structure can be realized. Cantú-Paz describes a singleobjective
optimization algorithm [3]. A generalized multiobjective variant is presented in
[19]. A hierarchical pMOEA with metaheuristics of the top levels tuning the
parameters of the algorithms located on lower levels is introduced in [4].

3 Selected Parallel Multiobjective Evolutionary
Algorithms

De Toro et al. introduce the PSFGA (Parallel Single Front Genetic Algorithm)
that utilizes a master-slave-paradigm [17]. A sequential SFGA is executed on
every processing unit. Exclusively non-dominating individuals are regarded for
the selection and variation. A crowding-distance is taken into account in order
to maintain the diversity of the approximation. The PSFGA has been tested on
ZDT1-4 and 6 with the S-metric (hypervolume-metric) [22]. The authors prove
a speed-up that increases with the number of processors up to a certain point.
This saturation effect is typical for master-slave-models. It is caused by the rising
communication overhead. If the amount of processors is very high, the speed up
may even decline if further processors are attached. The authors show that the
implemented SFGA exceeds the performance of the NSGA.
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Xiong and Li [21] introduce the PSPMEA (Parallel Strength Pareto Multiob-
jective Evolutionary Algorithm) system, which is based on the SPEA2 [23] and
utilizes the master-slave-approach as well as the island-model. The islands dif-
fer in the parameter settings for the recombination and mutation probabilities.
Archives are used for the exchange of individuals between the islands. The qual-
ity of the Pareto-front approximation in comparison to the sequential SPEA2 is
different but PSPMEA seems to do better on a certain complex combinatoric
test problem.

Van Veldhuizen et al. present generic models for master-slave, island-model
and diffusion-model MOEA [19]. They are joined in a generic system called
pMOMGA-II (parallel Multi-Objective Messy Genetic Algorithm). A detailed
comparison of the three parallelization paradigms still has to be done. The au-
thors explain that the migration scheme has a great effect on the quality of
the results. The comparison of the sequential and the parallel version of the
MOMGA-II clarifies that complex problems are required for the parallel version
to show its benefits.

No systematic analyses for diffusion-model based MOEA are known yet.

4 Parallel multiobjective Hypergraph EA

4.1 Motivation

The classification of parallel population based search heuristics according to the
underlying population structure brings up the question of how the data exchange
between the individuals should be structured. A systematic analysis of different
population structures on multiobjective standard test problems could give in-
sight to which parallelization paradigm should be applied in order to maximize
the quality of the Pareto-front approximation or the convergence probability for
a certain problem class. Most publications are restricted to analyses of certain
algorithms and the comparison of parallel algorithms with others or their sequen-
tial counterparts. An inter-paradigm-analysis has not been found in literature
yet. This paper will introduce a parallel MOEA that is capable of scaling be-
tween both extremes: the island-model and the diffusion-model. A special data
structure – the hypergraph – for the definition of complex population structures
will be utilized. The hypergraph is an abstract concept that is not restricted to
a specific hardware structure.

4.2 Hypergraphs

All population structures, coarse-grained and fine-grained, can be modeled with
the hypergraph [1] data model. Sprave has introduced this model for the theoretic
analyses of a singleobjective EA applied to arbitrary population structures [16].
In the classic graph theory an edge of an undirected graph is defined as a con-
nection between two vertices. Hypergraph edges (sometimes called hyperedges)
can interconnect any sets of vertices with at least one element.
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Fig. 1. Hypergraph with 6 edges E1,. . . ,E6 and 13 vertices X1,...,X13.

Definition 1 Hypergraph
X = {x1, x2, . . . , xn} is a finite set of vertices. E = (Ei|i ∈ I) is a family of
subsets of X with the set of indices I. The family E is called hypergraph on X if

Ei 6= ∅ ∀i ∈ I (1)
⋃

i∈I

Ei = X. (2)

Figure 1 shows an example of a hypergraph with the vertex set X = {1, . . . , 13}
and the edges E1 = {1, 8}, E2 = {1, 2, 5, 6, 7}, E3 = {4, 11, 12, 13}, E4 =
{4, 6, 9, 10}, E5 = {2, 3, 10} and E6 = {6, 8}.

Classic graphs with two vertices per edge are often represented by adjacency
lists or alternatively by incidence matrices. In the case of incidence matrices an
edge i of the graph is represented by a corresponding row i. The element ai,j of
the matrix is 1 if vertex j is element of the edge i (Xj ∈ Ei). Otherwise it is
0. With this definition incidence matrices can also be used to represent hyper-
graphs. The following 13× 6-incidence matrix A corresponds to the hypergraph
of figure 1.

A =




1 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 0 1 1 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 1 1
0 0 0 1 0 1 0 0 1 1 0 0 0
0 1 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 0




(3)

Hypergraphs can be used to model population structures:
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Definition 2 A population structure Π of a population P with the cardinal-
ity |P | = λ is a pair (H, Q), consisting of a hypergraph H = (X, E), X =
{0, . . . , λ− 1} 3, E ⊆ P(X) and a partition Q ⊂ P(X) of X with |Q| = |E|.
The hyperedge Ei is called subpopulation or deme of all elements Qi ∈ Q.

Based on this paradigm population structures used in MOEA can be defined
as follows:

Panmictic Populations. Standard EA make use of unstructured populations.
This is comparable to a trivial parallelization with a single island. The population
structure Πpan is defined by a triple of sets:

population structure : Πpan = (X, E, Q)
set of vertices : X = {0, . . . , λ− 1}
partition : Q = (X)
set of edges : E = (X)

(4)

Island-model. Since individuals can move from one deme to another (migra-
tion) the hypergraph corresponding to an island-model must be dynamic. The
following population structure Πmigr of a migration capable island-model is
modeled by the population P = (0, . . . , λ− 1) of the size λ = rν and containing
the r subpopulations Qi = {iν, . . . , iν+ν−1} which are of equal size ν as well as
a set Ms→t ⊂ Qs of migrants from Qs to Qt. If pollination instead of migration
is used, the definition of the edges must be adopted appropriately.

population structure : Πmigr = (X, E,Q)
set of vertices : X = {0, . . . , λ− 1}
partition : Q = {iν, . . . , iν + ν − 1}, i = 0, . . . , r − 1
set of edges : E = (E0, . . . , Er−1)
edge (migration) : Ei = Qi ∪

⋃r−1
s=0 Ms → i \⋃r−1

t=0 Mu → t,
Ms → i ⊂ Qs,Mu → t ⊂ Qi

edge (pollination) : Ei = Qi ∪
⋃r−1

s=0 Ms → i Ms → i ⊂ Qs

(5)

Diffusion-model. It is also possible to represent fine-grained diffusion-models
by hypergraphs in a compact manner. Structures like grids, tori and others
are supported. A population P = (0, . . . , λ − 1) with a symmetric ring-shaped
structure P = (0, . . . , λ− 1) and a neighborhood radius ρ results in:

population structure : ΠRing = (X,E, Q)
set of vertices : X = {0, . . . , λ− 1}
partition : Q = ({x0}, . . . , {xλ−1})
set of edges : E = (E0, . . . , Eλ−1)
edge : Ei = (i− ρ, . . . , i, . . . , i + ρ), i = 0, . . . , λ− 1

(6)

3 The indices are calculated modulo λ.
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The Euclidean distance on the grid has been used here for the definition of
the neighborhood radius ρ. More complex structures may require other metrics
like the Manhattan-metric (based on the L1-norm) or the amount of grid-points
visited (based on the L∞-norm).

Intermediate structures. The main advantage of the hypergraph concept is
that arbitrary intermediate population structures can be modeled, too. It is e.g.
possible to realize an island-model with additional diffusion characteristic or a
model with several small panmictic islands arranged on a toric grid.

5 Hypergraph applied to a MOEA: pMOHypEA

A parallel multiobjective evolutionary algorithm with a hypergraph represented
population structure (pMOHypEA) based on NSGA-II has been implemented.
Since NSGA-II does not require archives the parallelization is quite intuitive.
The amount of parallel NSGA-II processes required is equal to the amount of
panmictic subpopulations defined by the hypergraph. In case of the diffusion-
model this is the amount of individuals λ, in case of the standard island-model
it is the amount of islands r.

Minor modifications to some of the NSGA-II operators are necessary, so that
they are applied to the respective sets of individuals. Ranking and replacement of
rank-dominating individuals as well as the calculation of the crowding-distance
and the execution of the crowded tournament selection can intuitively be used
for all sorts of coarse-grained and fine-grained population structures. As in the
panmictic case the selection pressure depends on the ratio of parents and off-
springs but interdependencies with the population structure are expected. Re-
garding the migration the hypergraph model is very flexible. Even complex mi-
gration schemes can be applied. It is e.g. possible to temporarily avoid migration
between some islands and to utilize a clocked migration between others. On the
algorithmic layer migrants can be requested from islands of the neighborhood.
These will respond by transmitting genetic data.

The parallelization concept of the implemented pMOHypEA is independent
from the hardware. The population structure is mapped to the processors on the
basis of user-defined instructions. For performance reasons the specific hardware
architecture should be taken into account.

For comparison with most of the results given in the literature the S-metric
is used. Alternatively the R-metric or the MMBBH-metric [13] can be used in
order to achieve a better statistical relevance. Van Veldhuizen et al. point out
that today’s metrics are designed for the comparison of sequential algorithms.
Special metrices for parallel algorithms are not known.

6 Experimental Setup

In the experiments the parameter settings of table 1 have been used. The basic
algorithm parameters are identical with the parameters of a conventional NSGA-
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II. The number of fitness function evaluations have been set constant for all
experiments in order to guarantee a fair comparison of the results. The standard
test functions ZDT1 and ZDT4 have been chosen. Both functions are commonly
used in literature in sequential and parallel variation [8][21] and the functions
are a sufficiently complex to be a challenge for parallel approaches. In order to
compare the results with the literature, the well known S-metric of Zitzler [22]
has been used.

Table 1. Specifications of the NSGA-II-parameters of pMOHypEA.

Symbol ZDT1 ZDT4 Description

pc 0.9 0.9 crossover probability
pm 0.03 0.1 mutation probability
dc 10 10 distribution index for the crossover
dm 50 50 distribution index for the mutation
g 250 250 number of generations
n 30 10 dimension of the problem
st tournament selection type of selection
ct simulated Binary Crossover type of crossover

The population structures have been designed according to the definitions
shown in table 2. A simple panmictic island-model is described by the data in
the first line. In a panmictic model all individuals can exchange their genetic
material with each other. Therefore, in the respective model all individuals are
completely interconnected with each other. The panmictic model is structurally
identical to the common NSGA-II.

In the second, third, and forth line distributed island-models are described.
The islands have been arranged on a ring. Between each two interconnected
islands migrants are exchanged according to the migration rate and migration
frequency. Pollination and migration have been investigated separately.

A diffusion-model is described by the last two lines. The upper line models a
14×14 torus shaped grid net with a von-Neumann topology, i. e. each individual
has a neighbor to the left, to the right, above and below. The genetic material for
recombination is exchanged only within this small region. Of course the regions
around the individuals overlap. Therefore, a communication between individuals
all throughout the net is possible. The last line models a special diffusion-model,
i.e. a population structure with single individuals arranged on a ring with two
neighbors each. This model has the longest possible communication distance
between two individuals. In the diffusion-models no ”real” migration rate nor
frequency can be defined, although the data exchange is technically realized that
way. Therefore, the values in table 2 are undefined.

The experiments were performed on a parallel and a sequential machine. The
parallel computer was a SGI Origin 2000 (16 MIPS R10000 processors 196 MHz,
4 GB local shared memory and 789 MB peak band width). The one processor
machine was a standard PC under LINUX.
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Table 2. Specification of the population structure.

model subpopulations indiv. per subpop. migration rate migration frequency

panmictic 1 (1 CPU) 200 - -
island ring 2 (2 CPU) 100 30 5
island ring 3 (3 CPU) 100 30 5
island ring 4 (4 CPU) 50 15 5
island ring 10 (10 CPU) 20 6 5
diffusion-model 196 (14 CPU) 1 - -
diffusion-model 196 (14 CPU) 1 - -

7 First Results

All experiments are performed on the parallel computer and on the sequential
one processor PC. The parallel version of the pMOHypEA is asynchronous,
i. e. the evaluation of each individual or island is done without waiting for the
execution of the other elements. The asynchronous communication between the
populations is supported by MPI. A quasi synchronous execution of the program
is introduced by execution of the software on the one processor machine. An
explicit synchronization was not needed. All experiments were repeated five times
in synchronous and five times in asynchronous mode. The average values of the
S-metric of the five runs are analyzed. Standard deviations and execution times
are added where necessary.

7.1 Speed Up

The experiments with the asynchronous and synchronous versions all run stable.
This cannot be expected naturally in asynchronous situations. Communication
bottle-necks and slightly different execution times of single processes can yield
instabilities of the system behavior. Slight fluctuations in the processor loads
due to exchange problems of individuals were compensated by faster or slower
evaluation of the available individuals in the populations. The results was a
globally stable process.

One can see from table 3 that the parallelization generally yielded a relevant
speed up. According to Ahmdals law the absolute speed up can be calculated
via the equation

SI(N) =
T (1)
T (N)

=
Ts + Tp

Ts + Tp/N
(7)

where N is the number of islands/processes. T (1) denotes the total time needed
by one processor in sequential mode. This time can be separated in a serial
part Ts and a parallelizable part Tp. Figure 2 shows the absolute speed up for
the synchronous and the asynchronous mode. Due to the fact that the numbers
of the individuals decrease with the number of islands, a fair speed up value
SP (N) = SI(N)/N was calculated.
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Table 3. Average run times in seconds s and the corresponding standard deviations σs

of pMOHypEA applied to ZDT1 and ZDT4 in asynchronous and synchronous mode.

asynchronous synchronous asynchronous synchronous
ZDT1 ZDT1 ZDT4 ZDT4

Nr. s σs s σs s σs s σs

1 198.0 0.000 82.4 2.1 189.6 0.894 80.2 12.317
2 58.6 0.548 45.4 0.5 54.8 0.447 30.8 16.185
3 28.0 0.000 38.8 1.8 24.6 0.548 30.2 2.775
4 17.8 0.447 35.8 2.8 15.4 0.894 22.0 0.707
5 9.0 0.707 21.6 1.1 3.4 0.548 11.2 0.447

islands

S
  

(N
)

P

0

2

4

6

8

10

0 2 4 6 8 10

theoretical

asynchronous

synchronous

Fig. 2. The fair SP (N) speed up values for the asynchronous and the asynchronous
approach applied to ZDT1.

Figure 2 shows a typical speed up graph. In the beginning in the parallel
asynchronous version the speed up rises strongly and declines due to an increas-
ing communication overhead. A maximum speed up is expected in the region of
about 4 to 6 islands. The synchronous version reaches its fair speed up maximum
in the panmictic case. This is behavior can be expected, because any additional
communication reduces the speed of the one processor system.

7.2 Analyses of the Population Structures

In the experiments of [8] a fixed predefined hypervolumes value has to be reached.
The number of generations that are sufficient to reach a value of 0.794 were
counted. The reference point is set to (1.0646, 1.0646)T for both problems ZDT1
and ZDT4. The theoretically possible value for ZDT4 is 0.8. A maximum number
of 250 generations are allowed.

Results for ZDT1 In table 4 the results for the analyses of the pMOHy-
pEA applied to ZDT1 are shown. In case of the island-models the Pareto-Front
was found by the pMOHypEA. The graphs of the Pareto-fronts are close to
each other. The quality of the approximations did not significantly depend on
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the population structure. Only the linear ring and the diffusion-model show an
insufficient spread of the Pareto-front. This may be due to the usage of the
crowding distance that is not optimal for very small populations. Generally the
Pareto-Front is covered quite good by the other models. A parallel approach to
solve the problem ZDT1 seems neither necessary nor very sensible.

Table 4. Results of pMOHypEA applied to problem ZDT1.

Exp. parents islands migr.rate migr.freq. S̄async S̄sync ¯genasync ¯gensync

1 200 1 0 0 0.797 0.797 44.8 45.6
2 200 2 30 5 0.797 0.797 55.6 55.6
3 198 3 20 5 0.796 0.796 57.8 60.4
4 200 4 15 5 0.796 0.796 69.8 65.8
5 200 10 6 5 0.795 0.795 97.4 93.8
6 196 196 - - - 0.133 250 250.0
7 196 196 - - - 0.452 250 250.0

Results for ZDT4 More interesting results have been gathered by the appli-
cation of pMOHypEA to the more complex ZDT4 problem (see table 5).

1.0

1.0

0.8

0.8

0.6

0.6

0.4

0.4

0.2

0.20.0

f

f
1

2

Fig. 3. Pareto-front found by pMOHypeEA with 15 islands applied to ZDT4.

All models show only a small variation of the average calculated S-metric
value. Only the asynchronous solution shows a slightly higher variation σ(Sasync)
than the synchronous model. This indicates a certain influence of the asyn-
chronous evaluation on the results because these variations cannot be seen in
the synchronous case.

Differences in the results between the asynchronous and the synchronous so-
lution are not very strong. Outliers in the results are due to premature stagnation
of the algorithms or caused by not fully spread Pareto-fronts. More important
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Table 5. S-metric values and the number of generations needed by the pMOHypEA
to reach a predefined value when applied to ZDT4.

Nr. σ(Sasync) S̄async S̄sync σ(Ssync) σ(genasync) ¯genasync ¯gensync σ(gensync)

1 0.080 0.761 0.670 0.133 28.6 212.6 219.8 41.4
2 0.080 0.760 0.689 0.099 97.2 171.2 205.8 78.9
3 0.233 0.796 0.796 0.076 90.5 187.6 156.8 88.9
4 0.325 0.650 0.724 0.099 81.7 162.6 190.6 82.5
5 0.081 0.759 0.683 0.167 70.2 149.8 171.6 75.9
6 - - 0.179 0.187 0.0 250.0 250.0 0.0
7 - - 0.101 0.115 0.0 250.0 250.0 0.0

is the fact that the asynchronous algorithms found the solution more often and
also earlier than the synchronous counterpart.

In the first experiments a completely interconnected island-model was tested.
The motivation for this is to compare pMOHypEA with the standard NSGA-II
in the synchronous and asynchronous modes, i. e. the program was executed on
the parallel computer and on the PC. A relevant influence of the hardware in
the panmictic case cannot be seen.

In the model with two islands in the asynchronous case the migration model
performs a little bit better than the pollination model. Generally a slight im-
provement of the convergence properties with respect to a conventional NSGA-II
can be stated. The solutions of each of the two islands are evenly distributed
over the Pareto-Front. A separation of the island solutions into local clusters
cannot be noticed.

In the model with three islands a higher convergency probability was mea-
sured than that of a conventional NSGA-II. Pollination performed generally
better than migration. The pollination seems to compensate the fast evolution
of dominant suboptimal solutions and, therefore, avoids stagnation in local pre-
Pareto-fronts.

The model with four islands behaves similar to the model with three islands.
The Pareto-Front is covered very uniformly. This is true for the solutions of all
islands.

The model with ten islands emphasizes the trend that pollination yields bet-
ter results. Low migration rates should be preferred. Generally, the first analyzes
suggest that the number of migrants should be chosen approximately propor-
tional to the size of the islands. A higher number of islands also leads to a
more steady convergence behavior of the hypervolume values. Migration leads
to higher convergence fluctuations when small population sizes are used. A mi-
gration frequency of 5 and a pollination frequency of 10 seem to be a good choice
for small islands. Figure 3 shows the Pareto-front found by the asynchronous 10
islands model.

First results using a model with 15 islands shows an even more improved
convergence behavior. The Pareto-Front approximation after 250 generations is
often better than runs with the conventional NSGA-II. Using pollination the
front is reached in 90 percent of the cases, while NSGA-II has a change of
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50 percent. The domination of single individuals can be avoided with a higher
chance with an increased partitioning of the population structure.

The diffusion-models with 200 individuals/islands show a maximum of sepa-
ration of the individuals. The general trend to better solutions and higher conver-
gence probabilities with increasing numbers of islands is not continued. These
models often yielded results with only one ore two extremal solutions. These
results motivate the idea that the genetic operators of the NSGA-II are not
appropriate for very small population sizes. First experiments with 100 islands
show similarly insufficient solutions. Models with 70 islands definitely yielded
better results.

8 Summary and Conclusion

A new parallel multiobjective evolutionary algorithm pMOHypEA is introduced.
The system is using a hypergraph that allows to scale the population structures
freely between coarse-grained island-models to fine-grained diffusion-models. The
experiments are performed on a parallel computer and a PC in asynchronous
and synchronous mode, respectively. The results show, that not only a significant
speed up is gained. Depending on the problem, the convergence probability and
approximation quality and spread of the Pareto-front solutions can be improved
by using parallel models with significantly many islands. This improvement has
a maximum and decreases for the diffusion-model. For small population sizes
the genetic operators, that were adopted from a NSGA-II, have to be adapted
adequately.
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