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Abstract. This article presents a predator-prey approach for multi-
objective optimization. Based on the underlying search heuristic – the
evolution strategy – a consequent further development with respect to
the manyfold requirements of multi-criterion optimization is done. Par-
ticular, the well proved self-adaptation mechanism in the single objective
case is adopted for the multi-objective one. Six well-known test functions
are used to demonstrate the practicability of the model.

1 Introduction

During the last decades, numerous heuristic-based search methods for solving
multi-objective optimization (MO) problems have been developed. Evolutionary
algorithms (EA) as well as recent developments like particle swarm algorithms
(PSO) have proved very efficient in approximating the set of Pareto-optimal so-
lutions. In [1–3], surveys of the existing variants for EA are provided. In many,
if not most cases, these approaches are able to ensure convergence to an approx-
imative good set of Pareto-optimal solutions. Differences between the search
heuristics arise in the distribution of the obtained results and the computational
effort [4–6].

Most of these multi-objective evolutionary algorithms (MOEA) developed
in the past using techniques of genetic algorithms (GA) [4, 15, 16] or evolution
strategies (ES) [8, 11, 9]. Modifications of these original single objective search
heuristics are mainly concerned on the selection operators and additional meth-
ods to maintain diversity or to speed up the search (elitism), but in most cases
the variation operators remain unchanged.

In modern synthesis of evolutionary theory their is a broad agree upon the
hypothesis that species evolve by increasing their adaptation to the environment
where they live. Theses adaptation process takes place by variation at the geno-
type level and by developing new strategies of competition with other species.

While the particular attention is payed on the genotype level in single ob-
jective optimization as well as in the multi-objective case, research focusing on
the level of species interaction remained rare. In the last years, only a few ap-
proaches have been developed [29, 14, 3, 17, 18]. These studies have show that a
predator-prey model is effective in the field of MOP. Their crucial advantages
can be summarized into two main arguments:
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– Scalability between single-objective and multi-objective optimization, and

– the consequential conduction of the inherent parallel alignment of each pop-
ulation based approach.

Scalability between single-objective optimization and multi-objective optimiza-
tion is achieved by adding further predator species into the selection process
only. Modifications of other components from the underlying heuristics are not
necessary. The hope and the aim of these approaches is the design of a heuristic
for single- and multi-objective problems at last. In the second, Laumanns et al.
has designed his model in an asynchronous and parallel manner. Most models
from ecology show that individuals interact in time and space within their own
specie as well as with other species. Laumanns was the first, who has mimiced
successfully both decisive factors from ecology in order to preserve diversity in
the current population.

This article takes up the inspiration of the predator-prey models. Starting
from the idea of using an evolution strategy (ES) as the basic underlying search
heuristic the question that has to be answered is: ”How an evolution strategy has
to be modified or parameterized to solve multi-objective optimization problems”.

In evolution strategies, as well as in every other search heuristic, too, the pa-
rameter settings for the given heuristic-problem combination decide on success
or failure of the search. In case of single objective optimization, various so called
standard parameterization can be found in literature [22, 23], but in most cases
experiences show that the simple adaptation of the parameter settings yields to
lower solution qualities. For example, in ES an effective control mechanism is
developed to steer up the mutation strength. These self-adaptation mechanism
is a powerful mechanism, but it can fail. The causes for the risk of failure might
be found in various reasons. Starting from a disadvantageous parameterization
of the exogenous parameters so the mechanism is not able to work and ending
up to an actually failure of the mechanism themselve. But if the optimal pa-
rameterization decide on sucess or failure of the controlling mechanism in the
single objective case, is it possible to adopt these well proved mechanism to the
multi objective case through a simple new parameterization or it is neccesarry
to develop a new controlling mechanism?

The rest of this paper is organized as follows: in Section 2 an overview of
the basic principles of the underlying search heuristic is given. In particular
the precondition for a fully operative controlling mechanism for the mutation
strength is briefly discussed. In Section 3 existing predator-prey approaches are
presented. In Section 4 the implementation details are briefly described while in
Section 5 the experimental environment and the used statistical methods to set
up the experiments are sketched. In Section 6 preliminary results are reported,
and finally Section 7 conclude this article with a summary of the insights and
with directions for further research.
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2 Evolution Strategy

This section presents the main aspects of a multimembered evolution strategy
(ES), which was needed for further discussion. For a comprehensive introduction
the reader is referred to [19, 20].

In principle, existing parameters in evolution strategies can be distinguished
between exogenous and endogenous parameters. Exogenous parameters such as
µ (parent population size) or
lambda (size of descendants) which are kept constant during the optimization
run, are a characteristic of most of the modern search heuristics. Endogenous
parameters sich as σ (the used standard deviations) are a pecularity of ES: they
are used to control the ability of self-adaptation in ES during the run.

The adaptation of the endogenous parameters – the so called strategy pa-
rameters – depends on various adjustments. First of all, the strategy parameters
are closely coupled with the object parameters [19]. Each individual has its own
set of strategy parameters. Like the object parameters, the strategy parameters
undergo recombination (together with the object parameters) and mutation and
are used to control the mutation of the object parameters. Due to this mech-
anism, the optimizer can hope – and only hope – the an individual is able to
learn the approximately optimal strategy parameters for the specific problem.

The realization of the described self-adaptation mechanism depends further
on the kind and the number of strategy parameters to be adapted. In most cases
only 1 or N standard deviations are used, where N denote the dimension of the
problem. In the sphere function, i.e. only one standard deviation [20] will do
the work, in multimodal fitness landscapes it is favourable to use more then one
standard deviation. The question, how many standard deviations are necessary
for a specific algorithm-problem combination or how many are necessary in the
moment of evolution, is still open.

Correlated mutations finalize the current self-adaptation mechanism in ES.
For a deeper insight of correlated mutations the reader is referred to [21]. The
use of correlated mutation introduces N(N − 1)/2 additional strategy param-
eters which have to be controlled too. This may be the reason why correlated
mutation is commonly not used. In many real-world applications, where the
computational cost of optimization problems is mainly determined by the time-
comsuming function evaluations, the computational effort of computing the cor-
relations is relative small.

In order to obtain the best possible self-adaptation for the given problem the
specification of the exogeneous parameters is required. Table 1 shows the main
exogenous parameters used in ES and their common default parameterization.

Some of these default values originates from investigations in the sixties [24,
25] of the last century about only two artificial test functions (sphere and corridor
model). Other values – such as the progress coefficient cτ0 – are theoretically
analyzed [26] very well, but also only for a specific test function. Experimental
investigations from [23, 22] have yielded to principle recommendations for the
parameter settings i.e. for the type of recombination that must be choosen if the
test function is unimodal or multimodal or for the initial standard deviation.
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Table 1. Exogenous parameters of an ES. Column 1 shows the usual symbols for the
parameters. Column 3 holds their most used default values [22, 23].

Symbol Description Default Values

µ number of parent individuals 15
λ number of offspring individuals 100

σ
(0)
i initial standard deviation 1.0

nσ number of standard deviations problem-dimension
cτ0 progress coefficient 1
κ Maximum age of an individual {1;∞}
β correlation variablity 0.0873
ρ Mixing number 2
Rx Recombination type for the object variables r(d) local discrete
Rσ Recombination type for the standard devia-

tions
r(i) local intermediate

Rα Recombination type for the rotation angles r(−) no recombination

Nevertheless, after a first specification of these parameters, an evolution strat-
egy is performed as follows: The initial parental population of size µ will be gen-
erated. A new offspring population is produced then by the rule of the (µ/ρκ λ)
- notation. From the parent population of size µ, ρ individuals are randomly
chosen as parents for one child. Depending of the specified types of recombi-
nation, the recombination of the endogenous and exogenous parameters takes
place. With respect to the recombination step, the mutation of the strategy pa-
rameters is done. The learning parameters τ0/i determines the rate and precision
of the self-adaptation of the standard deviations and β determines the adapta-
tion of the rotation angles. After having a new offspring population of size λ,
the selection operator is used to select the new parental population for the next
iteration. In the choice of usual values for µ and λ it is only neccessary that λ
exceeds µ by a sufficient margin that on average at least one child can be better
than its parents. The famous 1/5-success rule, originally developed for a (1+1)-
ES, is based on these assumption that maximum progress can only be achieved
through step sizes leading to a success probability of approximately 20%. κ = 1
referres to the well-known comma-selection scheme of an ES, and κ = +∞ to
the plus-selection scheme.

2.1 Some Implementation Details

In the following two implementation details of the multimembered ES are dis-
cussed that are also nessessary for the controlling mechanism of the mutation
strengh. In the originally algorithm of a multimembered ES listed in [20], lower
bounds (εabsolute/relative) for the standard deviations are defined. The reason
for the definition of these lower bounds is to ensure that the standard devia-
tion is able to variate each objective variable at least at the last place behind
the comma. Therefore, the step lengths of each individual has to satisfy the
constraints:
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σ
(g)
i ≥ εabsolute

andσ
(g)
i ≥ εrelative|x(g)

i |

}
∀i = 1(1)n (1)

where
εabsolute > 0

and 1 + εrelative > 1 (2)

according to the computational accuracy. Experiences gained during the last
years determines the second endogenous and fix parameter: the upper bound of
the step length of each standard deviation (maxε). In practice this parameter
setting is recommended to maxε = τ0 ∗ log(2.0). Values above this limit would
lead to chaos.

While the lower bound is direct motivated by the necessity of variation in
each iteration, the existence of an upper bound is solely well-founded through
experiences in the single objective case.

3 Related Works

It may be discussed controversially, whether a predator-prey model is a kind of
coevolution or not. Certainly it is a kind of arms race on the level of macroevo-
lution. Individuals interact, in this case in a competetive way with each other.
These interaction takes place in many ways in ecology, so that a construction
of an exact model of these interactions is impossible. Most models from ecology
or growth theory show that indivuduals interact in time and space within their
own species as well as with other species [28].

Poloni [35] has been the first one to use structured populations to maintain
diversity in multi-objective optimization problems (MOP). In his approach indi-
viduals are mapped onto the vertices of a two-dimensional torus. Recombination
is performed by a predefined neighborhood-relation according to the dominance
relation. A non-pareto approach proposed in [14], the Predator-Prey-ES (PPES)
consists of a spatially distributed population, too. Selection is performed in a
local spatial depended manner from predators, which move randomly across the
population. Each predator select the preys in its neighborhood by a specific
single objective. The worst prey is cought by the predator. The free vertex is
replaced then by recombination of the parents selected from the neighborhood.
Due to this (µ+1) approach, the controlling mechanism of the mutation strength
must fail. Two conditions for a full operative controlling mechanism are not care-
fully implemented: their is no surplus of offsprings, so that the underlying ES
has a low probability to produce a better offspring according to his parents.
Due to the absent of a ”comma strategy”, there is no possibiliy to delete bad
adapted individuals in local optima. More extensive investigation about the con-
trolling mechanism of this model [36] takes these problems into consideration.
First results show that an improvement in convergence and diversity in the case
of a multi-sphere model is possible. The results on difficult test functions like
Kursawe (see below) are as unsufficient as in the original approach. While the
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convergence to few small regions of the Pareto-front is possible the ability of
maintaining a diverse set of non-dominated soluations is still poor. This loss of
diversity will become increasingly impotant the more iterations are performed. A
further development of PPES can be found in [3]. Deb mascerate the strikt one
predator to one objective assignment with an individual weighted vector in each
predator. From now on each predator select the worst prey with respect to the
weighted sum of all objectives. This individual selection allows each predator to
steer prey to a specific region on the Pareto-front. Based on both approaches, Li
proposed a real-coded predator-prey (RCPPGA) [17] model. In his approach he
uses a genetic algorithm as the underlying search heuristic and investigates the
two discribed fitness assigment methods from Laumanns and Deb. In addition
he uses a dynamic population, where predators as well as prey are able to move
on the structured environment. In opposite to the previous two models, recombi-
nation takes place only if two prey individuals are in the same neighborhood. If
a prey has no neighbours, no duplication is allowed. In the model of Li, it is pos-
sible that predators exterminate the entire prey population. In order to prevent
this situation, Li defined a special migration for both species to keep the prey
population on a predefined level. Another approach using a dynamic interaction
between predators and preys can be found in [37]. In his asynchronous parallel
evolution strategy (APES) that is developed to solve singleobjective multimodal
problems, a Lotka-Volterra model is defined. Unfortunately, this model has great
difficulties to hold a stabil state in order to prevent the extinction of a specie.

4 The Predator-Prey Model

In the following a predator-prey model for multi-objective optimization is pre-
sented. Based on the underlying search heuristc, which was described in Section
2, the necessary modifications to solve MOP are sketched.

4.1 Choice of Population Structure

In the last section it has been shown that the use of spatial population structures
is favourable to achieve a diverse set of non-dominated solutions. In general the
exchange from panmictic operating variation and selection operators through
local ones are the main feature of the spatial structures. This will be modeled
in this approach by dividing of the global population into subpopulations: the
so called demes. The number of demes is a new exogenous parameter (Ndeme).
Starting from a global definition of a (50 κ 200)-ES the 50 parent individuals
are divided into Ndeme uniform demes, which have constant size during the
evolutionary run.

Recombination: Recombination takes place within these demes only. No mi-
gration between demes is allowed. The number of offsprings is defined in
the same manner as the number of parents. For example, in the case of
Ndeme = 2 the global population is devided into two uniform demes. Within
each deme a (25 κ 100)-ES is performed.
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Selection: The number of predators, which are used in the evolution is defined
by a maximum number of predators per objective (Npred1, and Npred2 for
two objectives). Selection is performed by an uniformly distributed selection
from the amount of predators. That defines how many predators perform in
the specific deme the selection. In this way for every deme the composition
of the pack of predators for the actual deme is defined anew. As long as the
number of individuals in the specific deme is greater than the predefined
number of parents, selection take place.

Mutation and Step Size Control: The self-adaptive mutation mechanism,
described in section 2 is used. The only change is concerned to the upper
and the lower bounds of the mutation strength. From now on the upper
bound for this parameter is defined in every iteration by the formula:

maxε = τ0 ∗ (σbestObj−1 + σbestObj−2) (3)

which defines the arithmetic mean of the global best standard deviation for
the first objective (σbestObj−1) and the corresponding standard deviation for
the second objective.
The lower bound of the mutation strength is defined for each individual by
the formula:

εrelative = εabsolute ∗ (τ0/(σbestObj − 1 + σbestObj−2) + N(0, τ0) (4)

In this way the controlling mechanism for the mutation strength is no longer
restricted by an arbitrary fix upper or lower bound, but on bounds, which
values are defined by the controlling mechanism themselve.

5 Experimental Set Up

5.1 Parameter Setting and Experimental Design

As mentioned in section 1, the problem of choosing optimal or nearly optimal
parameter settings for a given heuristic-problem combination is essential for the
success of a search process. Practitioners often use so-called standard parameters.
For the ES the standard parameters are listed in table 1. Experiences from
the last four decades show, that each heuristic-problem combination requires a
specific parameterization. For this, [31, 30] proposed a statistical methodology
to set up computer experiments in an efficient manner. Design of Experiments
(DOE) as well as tree based methods (classification and regression trees CART)
are used to find nearly optimal parameter settings for a specific combination.
Following these proposals the resulting fractional factorial design is presented in
table 2.

It shows a 210−6
III design, where the minus and the plus signs denote to the low

and the high levels of the factors, respectively. For each parameter a low level
and a high level has to be specified. Because of the lack of standard parameters
for the multi-objective optimization with ES the low level and the high levels
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Table 2. Fractional Factorial Design 210−6
III Design. The Design represents the starting

design that is used for all test functions.

A B C D E =
ABC

F =
BCD

G =
ACD

H =
ABD

I =
ABCD

J =
AB

1 − − − − − + + + − +
2 + − − − + + − − + −
3 − + − − + − + − + −
4 + + − − − − − + − +
5 − − + − + − − + + +
6 + − + − − − + − − −
7 − + + − − + − − − −
8 + + + − + + + + + +
9 − − − + − + + + − +
10 + − − + + + − − + −
11 − + − + + − + + + −
12 + + − + − − − − − +
13 − − + + + − − − + +
14 + − + + − − + + − −
15 − + + + − + − − − −
16 + + + + + + + + + +

are choosen under consideration of experiences in the single objective case. The
resulting design matrix for the high and the low levels of the predator-prey
evolution strategy is shown in Table 3.

All experiments, based on the experimental design in table 3, were performed
to gather the data. Each experimental setting was repeated five times.

5.2 Test functions

In order to compare the predator-prey model with the results of Laumanns et al.
and Deb, the same three test functions (F2, F4, and F5) are chosen. In addition
the ZDT1 [33] (F3) and the simple Schaffer [14] (F1) test functions have also
been analyzed. It is important to annotate that the first test function F0 is single-
objective. This function is added to the test suite, in order to show that within
this model, changing between single-objective optimization and multi-objective
optimization is possible (see section 6.1).

Test Function 0 (Sphere) [20]: This is an unimodal single-objective test
function, with a single minimum at x∗ = 0

F0(x) =
∑n

i=1 x2
i (5)

Test Function 1 (Schaffer) [34]: This test function is 1-dimensional, the
optimal Pareto set is convex.

F1(f1(x), f2(x)) =
(

f1(x) = x2

f2(x) = (x− 2)2

)
(6)
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Table 3. Corresponding fractional factorial design for the choosen model-problem com-
bination: (d = discrete, i = intermediate recombination, and N = problem-dimension)

µ λ σinit
0 Nσ κ Ndemes Npred1 Npred2 Rx Rσ

1 180 500 0.15 1 1 30 1 1 d d
2 360 500 0.15 1 +∞ 30 10 10 i i
3 160 700 0.15 1 +∞ 75 1 10 i i
4 360 700 0.15 1 1 75 10 1 d d
5 180 500 3 1 +∞ 75 10 1 i d
6 360 500 3 1 1 75 1 10 d i
7 180 700 3 1 1 30 10 10 d i
8 360 700 3 1 +∞ 30 1 1 i d
9 180 500 0.15 N 1 75 10 10 i d
10 360 500 0.15 N +∞ 75 1 1 d i
11 180 700 0.15 N +∞ 30 10 1 d i
12 360 700 0.15 N 1 30 1 10 i d
13 180 500 3 N +∞ 30 1 10 d d
14 360 500 3 N 1 30 10 1 i i
15 180 700 3 N 1 75 1 1 i i
16 360 700 3 N +∞ 75 10 10 d d

Test Function 2 (Multi-Sphere) [14]: This test fuction represents an ex-
tension of the well-known Sphere-function from the single objective case. In
these experiments, the function ist restrictted on two dimensions.

F2(f1(x), f2(x)) =
(

f1(x) = x2
1 + x2

2

f2(x) = (x1 + 2)2 + x2
2

)
(7)

Test Function 3 (ZDT-1) [32]: This test function is a composition of three
functions f1, g and h:

F3(f1(x), f2(x)) (8)

where 
f1(x) = x1

f2(x) = g(x) ∗ h(f1, g)
g(x) = 1 +

∑30
i=2(xi − 0.5)2

h(f1, g) = 1−
√

f1/g


Test Function 4 (Kursawe) [11]: In this test function, the Pareto optimal set

is non–convex as well as discontinuous, and, thus, the values of the decision
variables that correspond to the true Pareto optimal solutions are difficult
to obtain:

F4(f1(x), f2(x)) =
(

f1(x) =
∑n−1

i=1 −10 exp(−0.2
√

x2
1 + x2

2)
f2(x) =

∑n
i=1(|xi|0.8 + 5 ∗ sin3(xi))

)
(9)
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Test Function 5 (Quagliarella) [14]: This function is a 16-dimensional uni-
form function. The corresponding Pareto-front is concav.

F5(f1(x), f2(x)) (10)

where f1(x) =
√

A1
n

f2(x) =
√

A2
n


Restrictions:(

A1 =
∑n

i=1[(x
2
i )− 10 cos[2 ∗Π(xi)] + 10]

A2 =
∑n

i=1[(xi − 1.5)2 − 10 cos[2 ∗Π(xi − 1.5)] + 10

)

6 Evaluation

The applicability of the predator-prey model is demonstrated in this section.
In Section 1 one of the main advantages of predator-prey models is named by
”scalability”. This advantage has to be shown in an experimental manner at
first. The well-known sphere model (F0) is chosen for this task. Next the model
is applied to the convex test functions F1 to F3. Two important questions are
analyzed: the impact of the number of demes used in the model and the influence
of a variable number of predators per objective. The results of the model for the
test functions F4 and F5 finalize this section.

6.1 Scalability

The experiments in this section were set up in order to solve the single-objective
function F0. Therefore the number of predators are set to Npred1 = 1 and
Npred2 = 0, respectively. The panmictic population, which is traditionally used in
the evolution strategy is configured by Ndeme = 1. No further modifications are
necessary. The variation of three exogenous parameters will change the heuristic
from multi-objective to single-objective optimization.

Due to comparability to the results found in [20], the type of initialization of
each individal and the termination criterion are changed. Here, the number of
iterations is measured that is needed ”in going from the initial values

x0
i = x∗i + (−1)i√

(N)
, for i = 1(1)n

to an approximation

|x(g)
i − x∗i | ≤ 1

10 |x
(0)
i − x∗i |, for i = 1(1)n.

” [20]. x∗i denotes to the known optimal value for each objective variable, and x
(g)
i

to the actual value of the best individual in population (g). Table 4 shows the
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Table 4. Comparison between the ES and the predator-prey model on test function F0.
The arithmetic mean of ten independent runs is presented. Results show that there is no
significant difference between both heuristics. Particular, the predator-prey approach
outperforms the ES in small dimensions.

problem-
dimension

ES predator-prey

3 4 4.2
6 10 8.8
10 20 12.9
20 37 28.7
30 55 58.8

obtained results for F0. The arithmetic mean of ten independet runs is presented
in column three. In the second column results taken from [20] are listed.

Results show that there is no significant difference between both heuristics.
In particular, the predator-prey approach outperforms the ES in relative small
dimensions (N = {6, 10, 20}). It can be conjectured that the modification of the
controlling mechanism for the mutation strengths is also able to work in single
objective cases.

6.2 Convex Pareto-Fronts

Starting from the initial parameterization listed in Table 3, first results from 90
experiments have shown that a good parameterization for this heuristic-problem
combination reads: µ = 360, λ = 700 , σ0

init = 3.0, Nσ = 2, Ndemes = 75,
Npred1 = 10, Npred2 = 10, Rx = d (deterministic) and Rσ = d by a predefined
termination criterion of 100 iterations.

Figure 1 shows the approximation of the Pareto-front for the test function
F2. From (a) - (e) the number of demes is increased by Ndemes = 1, 2, 25, 50, 75.
All other parameters remain constant. Here it can be seen that the number
of demes has a significant impact on the number of different solutions in the
resulting population. Starting from a panmictic (Ndeme = 1) model (a) only few
solutions covering a very small region of the Pareto-front are obtained. Already
the use of two seperated demes (b) allows to cover the whole region but with
poor diversity. If the number of demes increased the final population gets more
and more diverse (e). Similar results can be observed from test functions F1 and
F3. In general, one can state that in this model, as well as in the models with a
spatial population structure, the exchange from a panmictic population structure
with panmictic variation and selection operators to local ones is favourable for
a better diversity of the resulting population.

Next the number of predators per objective is analyzed. Figure 2 shows the
approximation of the Pareto-front and its associated decision vectors for F2. The
top row represents the case of one predator per objective. The lower two rows
show the state of the model with Npred1/pred2 = 10, 100 predators per objective,
respectively. As a surprising result the number of predators for each objective
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Fig. 1. Variable number of used demes for the test function F2. From top to below,
deme size is recommended to Ndemes = 1, 2, 25, 50, 75. The greater the number of demes
the better the diversity.
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Fig. 2. Variable number of predators per objective for the test function F2. From top
to below, the number of predators is recommended to Npred1/pred2 = 1, 10, 100.
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seems to have no significant impact for the distribution of the population. It
could be conjectured that the decision if a deme is encountered by only one or
both types of predators is sufficient to get a well distributed Pareto-front.
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Fig. 3. Pareto-Fronts for the test functions F1 and F3. Both fronts are well approxi-
mated by the model.

The number of used predators is not relevant. In contrast to the descreasing
schedules used in [14] [3] no decomposition of the Pareto-set can be observed
(see Figure 2 right column). This leads to the hope that the controlling mecha-
nism anticipates the trend to few single isolated set. Finally Figure 3 shows the
resulting Pareto-fronts for the functions F1 and F3. Both Pareto-sets are well
approximated. Summarizing one can state that the model is abel to solve multi-
objective optimization problems, which have in general convex Pareto-Fronts.

6.3 Non-Convex Pareto-Fronts

In this section more complex functions are analyzed. F4 is more difficult, because
there are also locally efficient solutions that are not globally efficient. Function
F5 derives from the test suite of [40]. Here, the solutions are non-uniformly dis-
tributed along the non-convex Pareto-front. While the results of the function F4

are ecouraging, here, the control mechanism of the mutation strength leads to
a well approximated Pareto-set with a relative small number of dominated so-
lutions. The same controlling mechanism works even well on theconcav function
F5. A limitation occurs at the borders of the Pareto-Front. Here, further reasons
for this behaviour must be detected, especially in the field of finding the optimal
parameterization for this heuristic-problem combination.

7 Summary

In this study the problem of adapting the well-known evolution strategy into the
field of multi-objective optimization is treated. The modified evolution strategy
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Fig. 4. Pareto-fonts of the test functions F4 (a) and F5 (b). The modified control
mechanism of an ES leads to a well approximated Pareto-front in case of function F4,
but it fails by F5.

adapted ideas of predator-prey models from ecology. In particular, this predator-
prey approach enables the practitioner to change between single-objective opti-
mization and multi-objective optimization in an easy manner. Questions about
an appropriate controlling mechanism for the mutation strength in the case of
multi-objective optimization are answered via a simple but efficient modification
of the hitherto fix upper and lower bounds for the mutation strength. Experi-
ments carried out with five test functions have shown that the predator-prey
model is able to produce a good set of diverse solutions along the Pareto-
front for convex as well as for non-convex test functions. Even in the case
of single-objective optimization, the modified controlling mechanism still al-
lows self-adaptation with equal and sometimes better rates of convergence. The
hypothesis that structured populations preserve diversity in the set of non-
dominated solutions can be confirmed. Unfortunately, a relativ great number
of fitness evaluations is necessary in contrast to the well-known state-of-the-art
heuristics. It might be speculated that an approximately optimal specification
of the upper bound of the mutations strengths still remains to be done.
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