
UNIVERSIT�AT DORTMUNDFachbereich InformatikLehrstuhl VIIIK�unstliche IntelligenzMaking Large-Scale SVM Learning PracticalLS{8 Report 24Thorsten JoachimsDortmund, 15. June, 1998

Universit�at DortmundFachbereich Informatik University of DortmundComputer Science Department

Forschungsberichte des Lehrstuhls VIII (KI) Research Reports of the unit no.VIII (AI)Fachbereich Informatik Computer Science Departmentder Universit�at Dortmund of the University of DortmundISSN 0943-4135Anforderungen an:Universit�at DortmundFachbereich InformatikLehrstuhl VIIID-44221 Dortmund ISSN 0943-4135Requests to:University of DortmundFachbereich InformatikLehrstuhl VIIID-44221 Dortmunde-mail: reports@ls8.informatik.uni-dortmund.deftp: ftp-ai.informatik.uni-dortmund.de:pub/Reportswww: http://www-ai.informatik.uni-dortmund.de/ls8-reports.html

Making Large-Scale SVM Learning PracticalLS{8 Report 24Thorsten JoachimsDortmund, 15. June, 1998

Universit�at DortmundFachbereich Informatik

AbstractTraining a support vector machine (SVM) leads to a quadratic optimization problem withbound constraints and one linear equality constraint. Despite the fact that this type ofproblem is well understood, there are many issues to be considered in designing an SVMlearner. In particular, for large learning tasks with many training examples, o�-the-shelfoptimization techniques for general quadratic programs quickly become intractable in theirmemory and time requirements. SVM light1 is an implementation of an SVM learner whichaddresses the problem of large tasks. This chapter presents algorithmic and computationalresults developed for SVM lightV2.0, which make large-scale SVM training more practical.The results give guidelines for the application of SVMs to large domains.Also published in:'Advances in Kernel Methods - Support Vector Learning',Bernhard Sch�olkopf, Christopher J. C. Burges, and Alexander J. Smola (eds.),MIT Press, Cambridge, USA, 1998.
1SV M lightis available at http://www-ai.cs.uni-dortmund.de/svm light

11 IntroductionVapnik [1995] shows how training a support vector machine for the pattern recognitionproblem leads to the following quadratic optimization problem (QP) OP1.(OP1) minimize: W (�) = �X̀i=1 �i + 12 X̀i=1 X̀j=1 yiyj�i�jk(xi;xj) (1)subject to: X̀i=1 yi�i = 0 (2)8i : 0 � �i � C (3)The number of training examples is denoted by `. � is a vector of ` variables, whereeach component �i corresponds to a training example (xi;yi). The solution of OP1 is thevector �� for which (1) is minimized and the constraints (2) and (3) are ful�lled. De�ningthe matrix Q as (Q)ij = yiyjk(xi;xj), this can equivalently be written asminimize: W (�) = ��T1 + 12�TQ� (4)subject to: �Ty = 0 (5)0 � � � C1 (6)The size of the optimization problem depends on the number of training examples `.Since the size of the matrix Q is `2, for learning tasks with 10000 training examples andmore it becomes impossible to keep Q in memory. Many standard implementations of QPsolvers require explicit storage ofQ which prohibits their application. An alternative wouldbe to recompute Q every time it is needed. But this becomes prohibitively expensive, ifQ is needed often.One approach to making the training of SVMs on problems with many training exam-ples tractable is to decompose the problem into a series of smaller tasks. SVM lightuses thedecomposition idea of Osuna et al. [1997b]. This decomposition splits OP1 in an inactiveand an active part - the so call \working set". The main advantage of this decompositionis that it suggests algorithms with memory requirements linear in the number of trainingexamples and linear in the number of SVs. One potential disadvantage is that these algo-rithms may need a long training time. To tackle this problem, this chapter proposes analgorithm which incorporates the following ideas:� An e�cient and e�ective method for selecting the working set.� Successive \shrinking" of the optimization problem. This exploits the property thatmany SVM learning problems have{ much less support vectors (SVs) than training examples.{ many SVs which have an �i at the upper bound C.� Computational improvements like caching and incremental updates of the gradientand the termination criteria.

2 2 GENERAL DECOMPOSITION ALGORITHMThis chapter is structured as follows. First, a generalized version of the decompositonalgorithm of Osuna et al. [1997a] is introduced. This identi�es the problem of selectingthe working set, which is addressed in the following section. In section 4 a method for\shrinking" OP1 is presented and section 5 describes the computational and implementa-tional approach of SVM light. Finally, experimental results on two benchmark tasks, a textclassi�cation task, and an image recognition task are discussed to evaluate the approach.2 General Decomposition AlgorithmThis section presents a generalized version of the decomposition strategy proposed byOsuna et al. [1997a]. This strategy uses a decomposition similar to those used in activeset strategies (see Gill et al. [1981]) for the case that all inequality constraints are simplebounds. In each iteration the variables �i of OP1 are split into two categories.� the set B of free variables� the set N of �xed variablesFree variables are those which can be updated in the current iteration, whereas �xedvariables are temporarily �xed at a particular value. The set of free variables will also bereferred to as the working set. The working set has a constant size q much smaller than `.The algorithm works as follows:� While the optimality conditions are violated{ Select q variables for the working set B. The remaining`� q variables are fixed at their current value.{ Decompose problem and solve QP-subproblem: optimize W (�) on B.� Terminate and return �.How can the algorithm detect that it has found the optimal value for �? Since OP1 isguaranteed to have a positive-semide�nite Hessian Q and all constraints are linear, OP1is a convex optimization problem. For this class of problems the following Kuhn-Tuckerconditions are necessary and su�cient conditions for optimality. Denoting the Lagrangemultiplier for the equality constraint 5 with �eq and the Lagrange multipliers for the lowerand upper bounds 6 with �lo and �up, � is optimal for OP1, if there exist �eq, �lo, and�up, so that (Kuhn-Tucker Conditions, see Werner [1984]):g(�) + (�eqy� �lo + �up) = 0 (7)8i 2 [1::n] : �loi (��i) = 0 (8)8i 2 [1::n] : �upi (�i � C) = 0 (9)�lo � 0 (10)�up � 0 (11)�Ty = 0 (12)0 � � � C1 (13)

3g(�) is the vector of partial derivatives at �. For OP1 this isg(�) = �1 +Q� (14)If the optimality conditions do not hold, the algorithm decomposes OP1 and solvesthe smaller QP-problem arising from this. The decomposition assures that this will leadto progress in the objective function W (�), if the working set B ful�lls some minimumrequirements (see Osuna et al. [1997b]). In particular, OP1 is decomposed by separatingthe variables in the working set B from those which are �xed (N). Let's assume �, y,and Q are properly arranged with respect to B and N , so that� = ����� �B�N ����� y = ����� yByN ����� Q = ����� QBB QBNQNB QNN ����� (15)Since Q is symmetric (in particular QBN = QTNB), we can write(OP2) minimize: W (�) = ��TB(1�QBN�N) + 12�TBQBB�B +12�TNQNN�N ��TN1 (16)subject to: �TByB + �TNyN = 0 (17)0 � � � C1 (18)Since the variables in N are �xed, the terms 12�TNQNN�N and ��TN1 are constant.They can be omitted without changing the solution of OP2. OP2 is a positive semide�nitequadratic programming problem which is small enough be solved by most o�-the-shelfmethods. It is easy to see that changing the �i in the working set to the solution of OP2is the optimal step on B. So fast progress depends heavily on whether the algorithm canselect good working sets.3 Selecting a Good Working SetWhen selecting the working set, it is desirable to select a set of variables such that thecurrent iteration will make much progress towards the minimum of W (�). The followingproposes a strategy based on Zoutendijk's method (see Zoutendijk [1970]), which uses a�rst-order approximation to the target function. The idea is to �nd a steepest feasibledirection d of descent which has only q non-zero elements. The variables correspondingto these elements will compose the current working set.This approach leads to the following optimization problem:(OP3) minimize: V (d) = g(�(t))Td (19)subject to: yTd = 0 (20)di � 0 for i: �i = 0 (21)di � 0 for i: �i = C (22)�1 � d � 1 (23)jfdi : di 6= 0gj = q (24)

4 4 SHRINKING: REDUCING THE SIZE OF OP1The objective (19) states that a direction of descent is wanted. A direction of descenthas a negative dot-product with the vector of partial derivatives g(�(t)) at the currentpoint �(t). Constraints (20), (21), and (22) ensure that the direction of descent is projectedalong the equality constraint (5) and obeys the active bound constraints. Constraint (23)normalizes the descent vector to make the optimization problem well-posed. Finally, thelast constraint (24) states that the direction of descent shall only involve q variables. Thevariables with non-zero di are included into the working set B. This way we select theworking set with the steepest feasible direction of descent.3.1 ConvergenceThe selection strategy, the optimality conditions, and the decomposition together specifythe optimization algorithm. A minimum requirement this algorithm has to ful�ll is thatit � terminates only when the optimal solution is found� if not at the solution, takes a step towards the optimumThe �rst requirement can easily be ful�lled by checking the (necessary and su�cient)optimality conditions (7) to (13) in each iteration. For the second one, let's assume thecurrent �(t) is not optimal. Then the selection strategy for the working set returns anoptimization problem of type OP2. Since by construction for this optimization problemthere exists a d which is a feasible direction for descent, we know using the results ofZoutendijk [1970] that the current OP2 is non-optimal. So optimizing OP2 will lead to alower value of the objective function of OP2. Since the solution of OP2 is also feasible forOP1 and due to the decomposition (16), we also get a lower value for OP1. This meanswe get a strict descent in the objective function of OP1 in each iteration.3.2 How to Solve OP3The solution to OP3 is easy to compute using a simple strategy. Let !i = yigi(�(t)) andsort all �i according to !i in decreasing order. Let's futhermore require that q is an evennumber. Successively pick the q=2 elements from the top of the list for which 0 < �(t)i < C,or di = �yi obeys (21) and (22). Similarly, pick the q=2 elements from the bottom of thelist for which 0 < �(t)i < C, or di = yi obeys (21) and (22). These q variables compose theworking set.4 Shrinking: Reducing the Size of OP1For many tasks the number of SVs is much smaller than the number of training examples.If it was known a priori which of the training examples turn out as SVs, it would besu�cient to train just on those examples and still get to the same result. This would makeOP1 smaller and faster to solve, since we could save time and space by not needing partsof the Hessian Q which do not correspond to SVs.Similarly, for noisy problems there are often many SVs with an �i at the upper boundC. Let's call these support vectors \bounded support vectors" (BSVs). Similar arguments

5as for the non-support vectors apply to BSVs. If it was known a priori which of the trainingexamples turn out as BSVs, the corresponding �i could be �xed at C leading to a newoptimization problem with fewer variables.During the optimization process it often becomes clear fairly early that certain ex-amples are unlikely to end up as SVs or that they will be BSVs. By eliminating thesevariables from OP1, we get a smaller problem OP1' of size `0. From OP1' we can constructthe solution of OP1. Let X denote those indices corresponding to unbounded support vec-tors, Y those indexes which correspond to BSVs, and Z the indices of non-support vectors.The transformation from OP1 to OP1' can be done using a decomposition similar to (16).Let's assume �, y, and Q are properly arranged with respect to X , Y , and Z, so that wecan write� = ������� �X�Y�Z ������� = ������� �XC10 ������� y = ������� yXyYyZ ������� Q = ������� QXX QXY QXZQY X QY Y QY ZQZX QZY QZZ ������� (25)The decomposition of W (�) isminimize: W (�X) = ��TX(1� (QXY1) �C) + 12�TXQXX�X +12C1TQYYC1� jYjC (26)subject to: �TXyX +C1TyY = 0 (27)0 � �X � C1 (28)Since 12C1TQYYC1 � jYjC is constant, it can be dropped without changing thesolution. So far it is not clear how the algorithm can identify which examples can beeliminated. It is desirable to �nd conditions which indicate early in the optimizationprocess that certain variables will end up at a bound. Since su�cient conditions are notknown, a heuristic approach based on Lagrange multiplier estimates is used.At the solution, the Lagrange multiplier of a bound constraint indicates, how muchthe variable \pushes" against that constraint. A strictly positive value of a Lagrangemultiplier of a bound constraint indicates that the variable is optimal at that bound. Atnon-optimal points, an estimate of the Lagrange multiplier can be used. Let A be thecurrent set of �i ful�lling 0 < �i < C. By solving (7) for �eq and averaging over all �i inA, we get the estimate (29) for �eq.�eq = 1jAjXi2A24yi � X̀j=1�jyjk(xi;xj)35 (29)Note the equivalence of �eq and the threshold b in the decision function. Since variables�i cannot be both at the upper and the lower bound simultanously, the multipliers of thebound constraints can now be estimated by�loi = yi0@24X̀j=1�jyjk(xi;xj)35+ �eq1A� 1 (30)

6 5 EFFICIENT IMPLEMENTATIONfor the lower bounds and by�upi = �yi 0@24X̀j=1�jyjk(xi;xj)35+ �eq1A + 1 (31)for the upper bounds. Let's consider the history of the Lagrange multiplier estimates overthe last h iterations. If the estimate (30) or (31) was positive (or above some threshold)at each of the last h iterations, it is likely that this will be true at the optimal solution,too. These variables are eliminated using the decomposition from above. This meansthat these variables are �xed and neither the gradient, nor the optimality conditions arecomputed. This leads to a substantial reduction in the number of kernel evaluations.Since this heuristic can fail, the optimality conditions for the excluded variables arechecked after convergence of OP1'. If necessary, the full problem is reoptimized startingfrom the solution of OP1'.5 E�cient ImplementationWhile the previous sections dealt with algorithmic issues, there are still a lot of openquestions to be answered before having an e�cient implementation. This section addressesthese implementational issues.5.1 Termination CriteriaThere are two obvious ways to de�ne termination criteria which �t nicely into the algo-rithmic framework presented above. First, the solution of OP3 can be used to de�ne anecessary and su�cient condition for optimality. If (19) equals 0, OP1 is solved with thecurrent �(t) as solution.SVM lightgoes another way and uses a termination criterion derived from the optimalityconditions (7)-(13). Using the same reasoning as for (29)-(31), the following conditionswith � = 0 are equivalent to (7)-(13).8i with 0 < �i < C: �eq � � � yi � [Pj̀=1 �jyjk(xi;xj)] � �eq + � (32)8i with �i = 0: yi([Pj̀=1 �jyjk(xi;xj)] + �eq) � 1 � � (33)8i with �i = C: yi([Pj̀=1 �jyjk(xi;xj)] + �eq) � 1 + � (34)�Ty = 0 (35)The optimality conditions (32), (33), and (34) are very natural since they re
ect theconstraints of the primal optimization problem. In practice these conditions need not beful�lled with high accuracy. Using a tolerance of � = 0:001 is acceptable for most tasks.Using a higher accuracy did not show improved generalization performance on the taskstried, but lead to considerably longer training time.5.2 Computing the Gradient and the Termination Criteria E�cientlyThe e�ciency of the optimization algorithm greatly depends on how e�ciently the \house-keeping" in each iteration can be done. The following quantities are needed in each itera-tion.

5.3 What are the Computational Resources Needed in each Iteration? 7� The vector of partial derivatives g(�(t)) for selecting the working set.� The values of the expressions (32), (33), and (34) for the termination criterion.� The matrices QBB and QBN for the QP subproblem.Fortunately, due to the decompositon approach, all these quantities can be computed orupdated knowing only q rows of the Hessian Q. These q rows correspond to the variables inthe current working set. The values in these rows are computed directly after the workingset is selected and they are stored throughout the iteration. It is useful to introduce s(t)s(t)i = X̀j=1�jyjk(xi;xj) (36)Knowing s(t), the gradient (14) as well as in the termination criteria (32)-(34) can becomputed very e�ciently. When �(t�1) changes to �(t) the vector s(t) needs to be updated.This can be done e�ciently and with su�cient accuracy as followss(t)i = s(t�1)i +Xj2B(�(t)j � �(t�1)j)yjk(xi;xj) (37)Note that only those rows of Q are needed which correspond to variables in the workingset. The same is true for QBB and QBN , which are merely subsets of columns from theserows.5.3 What are the Computational Resources Needed in each Iteration?Most time in each iteration is spent on the kernel evaluations needed to compute the qrows of the Hessian. This step has a time complexity of O(qlf), where f is the maximumnumber of non-zero features in any of the training examples. Using the stored rows of Q,updating s(t) is done in time O(ql). Setting up the QP subproblem requires O(ql) as well.Also the selection of the next working set, which includes computing the gradient, can bedone in O(ql).The highest memory requirements are due to storing the q rows of Q. Here O(ql)
oating point numbers need to be stored. Besides this, O(q2) is needed to store QBB andO(l) to store s(t).5.4 Caching Kernel EvaluationsAs pointed out in the last section, the most expensive step in each iteration is the evalua-tion of the kernel to compute the q rows of the Hessian Q. Throughout the optimizationprocess, eventual support vectors enter the working set multiple times. To avoid recom-putation of these rows, SVM lightuses caching. This allows an elegant trade-o� betweenmemory consumption and training time.SVM lightuses a least-recently-used caching strategy. When the cache is full, the ele-ment which has not been used for the greatest number of iterations, is removed to makeroom for the current row.Only those columns are computed and cached which correspond to active variables.After shrinking, the cache is reorganized accordingly.

8 7 EXPERIMENTS5.5 How to Solve OP2 (QP Subproblems)Currently a primal-dual interior-point solver (see Vanderbei [1994]) implemented by A.Smola is used to solve the QP subproblems OP2. Nevertheless, other optimizers can easilybe incorporated into SVM lightas well.6 Related WorkThe �rst approach to splitting large SVM learning problems into a series of smaller op-timization tasks was proposed by Boser et al. [1992]. It is known as the \chunking"algorithm (see also Kaufman [1998]). The algorithm starts with a random subset of thedata, solves this problem, and iteratively adds examples which violate the optimality con-ditions. Osuna et al. [1997b] prove formally that this strategy converges to the optimalsolution. One disadvantage of this algorithm is that it is necessary to solve QP-problemsscaling with the number of SVs. The decomposition of Osuna et al. [1997a], which is usedin the algorithm presented here, avoids this.Currently, an approach called Sequential Minimal Optimization (SMO) is explored forSVM training (see Platt [1998a] and Platt [1998b]). It can be seen a special case of thealgorithm presented in this chapter, allowing only working sets of size 2. The algorithmsdi�er in their working set selection strategies. Instead of the steepest feasible descentapproach presented here, SMO uses a set of heuristics. Nevertheless, these heuristicsare likely to produce similar decisions in practice. Another di�erence is that SMO treatslinear SVMs in a special way, which produces a great speedup for training linear separators.Although possible, this is not implemented in SVM light. On the other hand, SVM lightusescaching, which could be a valuable addition to SMO.7 ExperimentsThe following experiments evaluate the approach on four datasets. The experiments areconducted on a SPARC Ultra/167Mhz with 128MB of RAM running Solaris II. If notstated otherwise, in the following experiments the cache size is 80 megabytes, the numberof iterations h for the shrinking heuristic is 100, and OP1 is solved up to a precision of� = 0:001 in (32)-(34).7.1 How does Training Time Scale with the Number of Training Exam-ples?7.1.1 Income PredictionThis task was compiled by John Platt (see Platt [1998a]) from the UCI \adult" data set.The goal is to predict whether a household has an income greater than $50,000. Afterdiscretization of the continuous attributes, there are 123 binary features. On average,there are �14 non-zero attributes per example.Table 1 and the left graph in �gure 1 show training times for an RBF-kernelk(x;y) = exp ��kx� yk2=(2 �2)� ; (38)

7.1 How does Training Time Scale with the Number of Training Examples? 9with � = 10 and C = 1. The results for SMO and Chunking are taken from Platt[1998a]. When comparing absolute training times, one should keep in mind that SMO andChunking were run on a faster computer (266Mhz Pentium II)2.Examples SVM light SMO Chunking Minimum total SV BSV1605 7.8 15.8 34.8 4.2 691 5852265 16.8 32.1 144.7 9.0 1007 8493185 30.6 66.2 380.5 6.8 1293 11154781 68.4 146.6 1137.2 38.4 1882 16546414 120.6 258.8 2530.6 70.2 2475 218411221 430.8 781.4 11910.6 215.4 4182 376316101 906.0 1784.4 N/A 436.2 5894 539822697 1845.6 4126.4 N/A 862.8 8263 757432562 3850.2 7749.6 N/A 1795.8 11572 10740Scaling 2.1 2.1 2.9 2.0Table 1: Training times and number of SVs for the income prediction data.Both SVM lightand SMO are substantially faster than the conventional chunking algo-rithm, whereas SVM lightis about twice as fast as SMO. The best working set size is q = 2.By �tting lines to the log-log plot we get an empirical scaling of `2:1 for both SVM lightandSMO. The scaling of the chunking algorithm is `2:9.The column \minimum" gives a lower bound on the training time. This bound makesthe conjecture that in the general case any optimization algorithms needs to at least oncelook at the rows of the Hessian Q which correspond to the support vectors. The column\minimum" shows the time to compute those rows once (exploiting symmetry). This timescales with `2:0, showing the complexity inherent in the classi�cation task. For the trainingset sizes considered, SVM lightis both close to this minimum scaling as well as within afactor of approximately two in terms of absolute runtime.7.1.2 Classifying Web PagesThe second data set - again compiled by John Platt (see Platt [1998a]) - is a text clas-si�cation problem with a binary representation based on 300 keyword features. Thisrepresentation is extremely sparse. On average there are only �12 non-zero features perexample.Table 2 shows training times on this data set for an RBF-kernel (38) with � = 10 andC = 5. Again, the times for SMO and Chunking are taken from Platt [1998a]. SVM lightisfaster than SMO and Chunking on this data set as well, scaling with `1:7. The best workingset size is q = 2.2The Pentium II takes only �65% of the time for running SV M light. Many thanks to John Platt forthe comparison.

10 7 EXPERIMENTSExamples SVM light SMO Chunking Minimum total SV BSV2477 18.0 26.3 64.9 3.6 431 473470 28.2 44.1 110.4 7.8 571 694912 46.2 83.6 372.5 13.2 671 967366 102.0 156.7 545.4 27.0 878 1389888 174.6 248.1 907.6 46.8 1075 18717188 450.0 581.0 3317.9 123.6 1611 36324692 843.0 1214.0 6659.7 222.6 1994 50649749 2834.4 3863.5 23877.6 706.2 3069 948Scaling 1.7 1.7 2.0 1.7Table 2: Training times and number of SVs for the Web data.
0

1000

2000

3000

4000

5000

6000

7000

8000

0 5000 10000 15000 20000 25000 30000 35000

C
P

U
-t

im
e
 i
n
 s

e
c
o
n
d
s

Number of examples

chunking
SMO

SVM-Light
minimum

0

500

1000

1500

2000

2500

3000

3500

4000

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

C
P

U
-t

im
e
 i
n
 s

e
c
o
n
d
s

Number of examples

chunking
SMO

SVM-Light
minimum

Figure 1: Training times from tables 1 (left) and 2 (right) as graphs.7.1.3 Ohsumed Data SetThe task in this section is a text classi�cation problem which uses a di�erent represen-tation. Support vector machines have shown very good generalisation performance usingthis representation (see Joachims [1998]). Documents are represented as high dimensionalvectors, where each dimension contains a (TFIDF-scaled) count of how often a particularword occurs in the document. More details can be found in Joachims [1998]. The par-ticular task is to learn \Cardiovascular Diseases" category of the Ohsumed dataset. Itinvolves the �rst 46160 documents from 1991 using 15000 features. On average, there are�63 non-zero features per example. An RBF-kernel with � = 0:91 and C = 50 is used.Table 3 shows that this tasks involves many SVs which are not at the upper bound.Relative to this high number of SVs the cache size is small. To avoid frequent recomputa-tions of the same part of the Hessian Q, an additional heuristic is incorporated here. Theworking set is selected with the constraint that at least for half of the selected variablesthe kernel values are already cached. Unlike for the previous tasks, optimum performanceis achieved with a working set size of q = 20. For the training set sizes considered here,runtime is within a factor of 4 from the minimum.

7.2 What is the In
uence of the Working Set Selection Strategy? 11Examples SVM light Minimum total SV BSV9337 18.8 7.1 4037 013835 46.3 14.4 5382 027774 185.7 50.8 9018 046160 509.5 132.7 13813 0Scaling 2.0 1.8Table 3: Training time (in minutes) and number of SVs for the Ohsumed data.7.1.4 Dectecting Faces in ImagesIn this last problem the task is to classify images according to whether they contain ahuman face or not. The data set was collected by Shumeet Baluja. The images consist of20x20 pixels of continuous gray values. So the average number of non-zero attributes perexample is 400. An RBF-kernel with � = 7:1 and C = 10 is used. The working set size isq = 20. Examples SVM light Minimum total SV BSV512 10.8 8.4 340 01025 37.2 31.2 559 02050 129.0 111.0 930 04100 443.4 381.0 1507 08200 1399.2 1170.6 2181 0Scaling 1.7 1.7Table 4: Training time and number of SVs for the face detection data.Table 4 shows the training time (in seconds). For this task, the training time isvery close to the minimum. This shows that the working set selection strategy is verywell suited for avoiding unnecessary kernel evaluations. The scaling is very close to theoptimum scaling.Let's now evaluate, how particular strategies of the algorithm in
uence the perfor-mance.7.2 What is the In
uence of the Working Set Selection Strategy?The left of �gure 2 shows training time dependent on the size of the working set q for thesmallest Ohsumed task. The selection strategy from section 3 (lower curve) is comparedto a basic strategy similar to that proposed in Osuna et al. [1996] (upper curve). In eachiteration the basic strategy simply replaces half of the working set with variables thatdo not ful�ll the optimality conditions. The graph shows that the new selection strategyreduces time by a factor of more than 3.

12 8 CONCLUSIONS
0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100

C
P

U
-t

im
e
 i
n
 m

in
u
te

s

Size of working set

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60 70 80

C
P

U
-t

im
e
 i
n
 m

in
u
te

s

Cache-size in MBFigure 2: Training time dependent on working set size and cache size for the Ohsumedtask.7.3 What is the In
uence of Caching?The curves in the graph on the right hand side of �gure 2 shows that caching has a strongimpact on training time. The lower curve shows training time (for an RBF-kernel with� = 10 and C = 50 on the 9337 examples of the Ohsumed data) dependent on the cachesize when shrinking is used. With the cache size ranging from 2 megabytes to 80 megabytesa speedup factor of 2.8 is achieved. The speedup generally increases with an increasingdensity of the feature vectors xi.7.4 What is the In
uence of Shrinking?All experiments above use the shrinking strategy from section 4. The upper curve in �gure2 (right) shows training time without shrinking. It can be seen that shrinking leads to asubstantial improvement when the cache is small in relation to the size of the problem.The gain generally increases the smaller the fraction of unbounded SVs is compared tothe number of training examples ` (here 2385 unbounded SVs, 110 BSVs, and a total of9337 examples).8 ConclusionsThis chaper presents an improved algorithm for training SVMs on large-scale problemsand describes its e�cient implementation in SVM light. The algorithm is based on adecomposition strategy and addresses the problem of selecting the variables for the workingset in an e�ective and e�cient way. Furthermore, a technique for \shrinking" the problemduring the optimization process is introduced. This is found particularly e�ective forlarge learning tasks where the fraction of SVs is small compared to the sample size, orwhen many SVs are at the upper bound. The chapter also describes how this algorithm ise�ciently implemented in SVM light. It has a memory requirement linear in the number oftraining examples and in the number of SVs. Nevertheless, the algorithms can bene�t fromadditional storage space, since the caching strategy allows an elegant trade-o� betweentraining time and memory consumption.

139 AcknowledgementsThis work was supported by the DFG Collaborative Research Center on Complexity Re-duction in Multivariate Data (SFB475). Thanks to Alex Smola for letting me use hissolver. Thanks also to Shumeet Baluja and to John Platt for the data sets.ReferencesB. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal marginclassi�ers. In D. Haussler, editor, Proceedings of the 5th Annual ACM Workshop onComputational Learning Theory, pages 144{152, Pittsburgh, PA, July 1992. ACM Press.P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic Press, 1981.T. Joachims. Text categorization with support vector machines. In European Conferenceon Machine Learning (ECML), 1998.L. Kaufman. Solving the quadratic programming problem arising in support vector classi-�cation. In B. Sch�olkopf, C. Burges, and A Smola, editors, Advances in Kernel Methods- Support Vector Learning. MIT Press, Cambridge, USA, 1998.E. Osuna, R. Freund, and F. Girosi. Support vector machines: Training and applications.A.I. Memo (in press), MIT A. I. Lab., 1996.E. Osuna, R. Freund, and F. Girosi. An improved training algorithm for support vectormachines. In J. Principe, L. Gile, N. Morgan, and E. Wilson, editors, Neural Networksfor Signal Processing VII | Proceedings of the 1997 IEEE Workshop, pages 276 { 285,New York, 1997a. IEEE.E. Osuna, R. Freund, and F. Girosi. Training support vector machines: An application toface detection. In , editor, Proceedings CVPR'97, , 1997b. .J. Platt. Sequential minimal optimization: A fast algorithm for training support vectormachines. Technical Report MSR-TR-98-14, Microsoft Research, 1998a.J. Platt. Sequential minimal optimization: A fast algorithm for training support vectormachines,. In B. Sch�olkopf, C. Burges, and A Smola, editors, Advances in KernelMethods - Support Vector Learning. MIT Press, Cambridge, USA, 1998b.R. Vanderbei. Loqo: An interior point code for quadratic programming. Technical ReportSOR 94-15, Princeton University, 1994.V. Vapnik. The Nature of Statistical Learning Theory. Springer Verlag, New York, 1995.J. Werner. Optimization - Theory and Applications. Vieweg, 1984.G. Zoutendijk. Methods of Feasible Directions: a Study in Linear and Non-linear Pro-gramming. Elsevier, 1970.

