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Abstract

A basic part in the risk assessment of potential carcinogens is the

determination of toxicokinetic parameters. The partition of the xenobiotic

in the body of experimental animals is a first step of the biochemical

pathway of the formation of DNA adducts which might lead to the

development of cancer.

The aim of extrapolation of toxicological data from experimental animals

to the human organism requires a valid characterisation of the considered

processes for the whole species, i. e. population parameters, moreover

accounting for the variability within and between individuals.

This paper presents the results of an inhalation study with one of the

basic petrochemical industrial compounds, ethylene (ethene). Two

nonlinear four-stage hierarchical models for a repeated measurement

design which are of different complexity are presented. The estimation of

the individual and population parameters as well as of the covariance

matrices is performed by an EM algorithm.
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1. Introduction

A basic part in the risk assessment of potential carcinogens is the determination of

toxicokinetic parameters. Most chemical carcinogens are transformed into a chemical

active form, its metabolite, that is able to interact with cellular macromolecules such as

DNA, RNA, and protein, and might finally lead to the development of cancer. The

relationship between applied dose and tumor response is nonlinear (Bolt and Filser,

1984). This nonlinearity is supposed to be connected with the kinetic processes involved

in the formation of DNA adducts (Hoel et al., 1983). Hence an important step to assess

the risk of a xenobiotic is to investigate the kinetic processes of its uptake, metabolism,

and elimination.

As the complete research depends on experiments with animals, a critical step is the

extrapolation from the risk observed in the experimental animals to the risk associated

with the human organism. The basis of such a species extrapolation are the so called

PBPK-models (physiologically-based pharmacokinetic models) which take

consideration of many strongly connected kinetic processes. These models require

detailed information about physiological parameters, as well as information about the

processes involved. The physiological parameters are supposed to be valid for a whole

population. Determining kinetic population parameters, the variation between individual

parameters which may also vary between repeated occasions and doses should be taken

into account.

The present study has been designed to elucidate interindividual and interoccasion

variabilities of toxicokinetic parameters relevant for the carcinogenicity of one of the

basic petrochemical industrial compounds, ethylene (ethene) (Selinski et al., 1999).
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Therefore two groups of inhalation experiments with male Sprague-Dawley rats were

performed at the Institute of Occupational Physiology at the University of Dortmund. In

the first group (group A) 10 rats were exposed 5 times each to a concentration of 100

ppm. In the second group (group B) another 10 animals were exposed to five different

concentrations of 20, 50, 100, 200, and 500 ppm ethylene each (Quinke et al., 2000;

Selinski, 2000; Selinski and Urfer, 1998). This paper refers only to models for the first

experimental design. Estimates for the second group will be presented in a further paper.

Ethylene is an important industrial bulk chemical, which is also present in the

environment. In mammalian organisms ethylene is partly transformed, by hepatic

metabolising enzymes (cytochrome P-450) to ethylene oxide (Filser and Bolt, 1983).

Ethylene oxide, also a physiological body constituent (Bolt, 1996, 1998; Bolt et al.,

1997), is biologically reactive and thereby genotoxic (Kirkovski et al., 1998). The

principles of the toxicokinetics of this transformation have been extensively studied

(Filser and Bolt, 1984; Bolt et al., 1984), and estimates of the carcinogenic risk of

ethylene based on its metabolic transformation to ethylene oxide were published (Bolt

and Filser, 1984, 1987). As previous inhalation experiments with ethylene have

indicated the metabolism may be well approximated by first order kinetics at

concentrations below 800 ppm (parts per million). This approximation is used in the

present study where the maximum concentration were about 500 ppm ethylene. At

higher concentrations the metabolism of ethylene becomes more and more saturated

(Bolt and Filser, 1987).

A two-compartment model is applied to describe the processes of uptake, exhalation,

and metabolic elimination of ethylene. Two nonlinear four-stage hierarchical models of

different complexity based on the approach of Racine-Poon and Smith (1990) are
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presented. The estimation of the individual and population parameters as well as of the

covariance matrices is performed by an EM algorithm as proposed by Dempster et al.

(1977).

2. Two-compartment model

The two-compartment model used by Filser (1992) for the characterisation of exposure

to volatile xenobiotics describes uptake, endogenous production, excretion, and the

metabolic elimination of the substance. The model is depicted as follows: a xenobiotic

gas, in this case ethylene, enters the body and is exhaled. This process is described by

introducing two compartments, the first, C1, representing the environment outside the

body, here the inhalation chamber of the exposition system, and the second

compartment, C2, the body itself. The volatile xenobiotic migrates from one

compartment to the other through a theoretical interface. During this process, some

portion of the xenobiotic within the organism, at any stage, is eliminated by metabolic

processes, and another portion is again exhaled (cf. Fig. 1).

com partm ent C 1 com partm ent C 2

atm osphere

volum e V 1

 organism

volum e V 2

k 1 2
[R ]

k 2 1
[R ]

k el
[R ]
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Figure 1. Two-compartment block model in the case of metabolic turnover

This paper concentrates on overall first order kinetic processes as preceding

investigations have indicated that the initial concentrations from 20 to 500 ppm which

we used here were below the point of saturation of ethylene at about 800 ppm. Thus, the

processes may be well approximated by first order kinetics (Bolt and Filser, 1987).

Moreover, Becka (1998) showed that first order kinetics may be used as approximations

for nonlinear kinetic processes, e.g., Michaelis-Menten kinetics, if the observed

maximum concentrations do not exceed the point of saturation.

Let yl(t), l = 1, 2, denote the concentration of a xenobiotic in compartment l at time t and

let Vl describe the volume of the compartment. A preliminary assumption is that the

compound, in this case ethylene, is metabolised within the body, and that there is no

metabolism back to the parent ethylene, the latter being very likely on toxicological

grounds.

In the case of overall first order kinetics, each partial process can be characterised by

one rate or velocity constant k, that is ][
12

Rk  for the uptake, ][
21

Rk  for the exhalation, and

][R

elk  for the metabolic elimination (cf. Fig. 1).

Thus, the concentration of ethylene in the first and in the second compartment,

respectively, is given by (Becka et al., 1993; Urfer and Becka, 1996):
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where [ ] [ ] [ ]( ) [ ] [ ] [ ]( ) [ ] [ ]
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1λ  and y(0) is the

initial concentration in compartment 1.

In the practical application we have to take into account, that the individual organisms

have different volumes which are also varying between repeated experimental

occasions. In general, the kinetic parameters of the individuals are estimated first and

then standardised to eliminate the effect of the volume (i.e., slightly different body

weights of the rats). As we use the estimated parameters of the individuals for further

calculations, we estimate the standardised kinetic parameters directly (Selinski et al.,

1999; Selinski, 2000).

According to Filser (1992) the individual rates of uptake ][
12

Rk , exhalation ][
21

Rk  and

metabolic elimination ][R

elk are equal to the respective rates k12, k21 and kel for a standard

rat of 1000 ml times a fraction of a volume dependent factor 







=

2

2

1000

V
v , where V2 is

the actual volume of the organism directly (Selinski et al., 1999; Selinski, 2000).

Substituting the real kinetic parameters in the (1) and (2) yields
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 and β = (k12, k21, kel, y(0))T is the vector of the standardised kinetic parameters and the

initial concentration y(0).
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3. Population models

3.1 Notation

The observed concentrations of ethylene in the atmosphere of the exposition system

(compartment 1) are denoted by yijk, with

i = 1, . . ., I the number of the individual rat

j = 1, . . ., J the observations at time points tj and

k = 1, . . ., K the number of the experiment.

Equal time points of measurement are only assumed to simplify the notation. The index

k denotes the kth occasion of exposure to 100 ppm ethylene.

First of all, we presume that our observations yijk can be described by a nonlinear

function f tik j( , )β  and an error term ijkε :

y f tijk ik j ijk= +( , )β ε ,  i = 1, . . ., I, j = 1, . . ., J, k = 1, . . ., K.

The function f tik j( , )β  depends on the individual parameter vector βik and the time t. It

denotes the expected concentration-time curve of the ith individual at the kth occasion.

The parameter vector  βik = (k12ik, k21ik, kelik, yik(0))T = (
T

ikϕ , yik(0))T, where

ϕik = (k12ik, k21ik, kelik)
T represents the vector of the standardised kinetic parameters,

differs from individual to individual and is of dimension p = 4.

Due to the way of application, the initial concentrations yik(0) are not exactly known and

have to be treated as parameters, although we are merely interested in the kinetic

parameters.
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Our main interest are not the individual responses to the experimental conditions but is

focussed on a population mean process, which underlies the different individual

processes. The individual kinetic parameter vectors ϕik may be regarded as to vary at

random across an individual mean parameter vector ϕi, which describes the general

behaviour of the respective processes for that individual. Furthermore the individual

mean processes are supposed to vary across a population mean process with parameter

vector ϕ in the manner of a random sample. Additionally we suppose that the variances

of the observed concentration-time curves differ from individual to individual and from

occasion to occasion.

3.2 Model I

Nonlinear hierarchical model

A Bayesian approach according to Racine-Poon (1985) and Racine-Poon and Smith

(1990) is applied to the data. We are interested especially in the variation of the

individual responses at different dosing occasions, the so called interoccasion

variability, and the variation between the individuals, the intersubject variability.

We propose a four-stage nonlinear hierarchical model assuming that our observations

yijk of the concentration of ethylene in the atmosphere of the exposition system are

independent and have the following distribution:
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given βik, 
2
ikτ : yijk ~ N( f(βik ,tj), 

2
ikτ ) i = 1, . . ., I, j = 1, . . ., J and k = 1, . . ., K,

with βik = (
T

ikϕ , yik(0) )
T and ϕik = (k12ik, k21ik, kelik)

T

given βi , Ωi: βik ~ N(βi , Ωi) i = 1, . . ., I and k = 1, . . ., K,

with βi = (
T

iϕ , yi(0) )
T and ϕi = (k12i, k21i, keli)

T,

given β, Σ: βi ~ N(β , Σ) i = 1, . . ., I,

with β = (ϕT
, y(0) )T and ϕ = (k12, k21, kel)

T

p(β) ∝ 1 ∀ β ∈ 3 
4.

Linear hierarchical model

We obtain the Bayes estimates for the population mean and individual parameter vectors

β, βi, and βik by transforming the nonlinear hierarchical model into a linear one, such as

provided by Lindley and Smith (1972). For that purpose the observations yijk are

replaced by an "almost" sufficient statistic ζik with

ζik ∼ N ( βik, 
2
ikτ Cik) , i = 1, . . ., I, k = 1, . . ., K.

For example, ζik can be chosen as the mean of the posterior density of βik . In the case of

uninformative priors for the variances 2
ikτ , the posterior distribution of βik can be well

approximated by its likelihood, so that the maximum likelihood estimate of βik can be

used as a good approximation for ζik (Racine-Poon, 1985).



11

The resulting linear hierarchical model is given by:

given θ, V: ζ ∼ N (θ, V), 

where ζ = (ζ1,1, . . ., ζIK)T, θ = (θ1, . . ., θI)
T = (β1,1, . . ., βIK)T, θi = (βi1, . . ., βiK)T

and V = diag{ 2
1,1τ C1,1, . . ., 

2
IKτ CIK}

given ψ ,Ω: θ ∼ N (Z2ψ, Ω), 

where θ = (β1,1, . . ., βIK)T, ψ = (β1, . . ., βI)
T,
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 is a suitable design matrix.

given β, Λ: ψ ∼ N (Z3β, Λ), where ψ = (β1, . . ., βI)
T, Λ = diag{Σ, . . ., Σ}, and

Z3 = (I4, . . ., I4)
T is a suitable design matrix,

p(β) ∝ 1, ∀β ∈ 3 
4
.

The matrix ( ) 12 −

ikik Cτ  denotes the Information matrix (cf. Selinski and Urfer, 1998, for

further details):

( ) ( )







−=

− 22
1,11,11,1,1

2
12 ,,,,,,,ln IKIKIJKT

ikik

ikik yyLEC ττββ
∂β∂β

∂τ KKK (5)
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First of all, we suppose that our concentration-time curves can be well approximated by

first order kinetic processes, adapting the main idea of the approach of Becka (1998).

With the notation of chapter 2 the concentration-time curve in the exposition system is

given by

( ) ( ) ( ) { } ( ) { }
( ) 


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v  depends on the volume of the ith rat at the kth occasion V2ik and
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1
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with λ2ik < λ1ik < 0 (cf. Selinski and Urfer, 1998, for further details).

The vectors of parameters βik in (6) are substituted by their maximum likelihood

estimates ζik, i = 1, . . ., I, k = 1, . . ., K.

Estimators in the case of unknown covariance matrices

In case of known variances 2
ikτ  and covariance matrices Ωi , , i = 1, . . ., I, k = 1, . . ., K,

and Σ Bayes estimates can be calculated following the approach of Lindley and Smith

(1972) (Selinski, 2000). However, we have only vague knowledge about these

covariance matrices, and the aim of our investigation is to gain information about just

these covariances, especially with regard to the interoccasion and interindividual

variability. Hence, we estimate both the parameter vectors and the covariance matrices

using an EM algorithm as proposed by Dempster et al. (1977).

Racine-Poon and Smith (1990) suggest to replace unknown variances 2
ikτ , i = 1, . . ., I,

k = 1, . . ., K, by suitable estimates 2
îkτ . Under the assumptions of our model and
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furthermore assuming independent variances 2
ikτ  with vague prior distribution

( ) 12 ∝ikp τ , the posterior mode of 2
ikτ  is equivalent to its maximum likelihood estimate

2
îkτ . Thus, we approximate the Bayes estimate of 2

ikτ  by

( )( )∑
=

−⋅=
J

j

jikijkik tfy
J 1

22 ,
1

ˆ ζτ , i = 1, . . ., I, k = 1, . . ., K. (7)

Assuming that the inverse covariance matrices 1−Ω i , i = 1, . . ., I, and 1−Σ  follow

Wishart distributions with degrees of freedom ρ1 and ρ2 and matrices R1 and R2,

respectively, 1
1
−R /(ρ1- p-1) and 1
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Vague knowledge about the inverse covariance matrices 1
1
−Ω , . . ., 1−Ω I , and 1−Σ  can be

expressed by choosing ρ1 and ρ2 as small as possible, i. e. ρ1 = ρ2 = p = 4. The choice of

R1 and R2, respectively, seems to have little influence on the estimates (Racine-Poon,

1985).

Substituting 2ˆ
ikτ  for 2

ikτ , if necessary, we obtain the approximations of the Bayes

estimates at the lth iteration of the EM algorithm, )(lβ , ( )Tl

I

ll )()(
1

)( ,, ββψ K= , and
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( )Tl

IK

ll )()(
1,1

)( ,, ββθ K= , by replacing the covariance matrices by their current

approximations )1( −Ω l , and )1( −Λ l  (E-Step) and subsequent calculation of )(lΩ  and )(lΛ

as the posterior mode of (8) using )(lβ , )(lψ , and )(lθ ( M-Step) (Selinski, 2000).

E-Step

Approximating Ω and Λ by )1( −Ω l  and )1( −Λ l  we obtain

{ } { } ζβ
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where ( ) ( ){ }ikikikik CCdiagV
22 ˆ,,ˆˆ ττ K= .

Substituting β, Ω, and Λ by )(lβ , )1( −Ω l , and )1( −Λ l , respectively, yields
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In the same way we get )(lθ  by replacing the unknown parameters by their current

estimates:
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M-Step

Setting β, ψ and θ equal to their current values )(lβ , ( )Tl

I
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1
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Both steps are repeated until )(
1
lΩ , . . ., )(l

IΩ , and )(lΣ  converge. Racine-Poon (1985)

suggests as criterion for convergence, that the maximum change in the elements of the

covariance matrices between successive iterations should be less than 0.001.

Reasonable starting values )0(
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3.3 Model II

The estimation of the parameter vectors and covariance matrices of Model I requires the

manipulation of quadratic matrices of size KIp ⋅⋅ . This leads to computational

problems due to the size and conditioning of the matrices. In a design using only ten

animals, five replications, and four parameters, matrices of size (200 x 200) have to be

repeatedly manipulated at each iteration of the EM-algorithm. These operations,

including multiplication and inversion of the matrices lead to numerically questionable

results due to the large number of operations and the representational errors in the

computer memory, i.e. the mantissa being cut off after a certain number of digits. The

latter results in a difference between a number and its digital representation in the

computer (e.g. 1/3 can never be accurately represented by 0.33333...). The effect is

magnified by the repeated computing operations. Hence, we propose a less complex

model, Model II, which ignores the correlation between the individual and occasion-

dependent parameter vectors βik .This model allows an estimation of the parameters by

manipulating matrices of size p x p , which is independent of the number of animals

and measurements in the experiment.

The nonlinear four-stage hierarchical model is the same as given in the previous section.

Additionally the parameter vectors βi1, . . ., βiK are assumed to be independent. The

transformation to the linear model is performed by substituting the observation yijk in the

first stage by the Maximum-Likelihood estimates of the parameter vectors βik.. Thus, we

obtain the following linear hierarchical model.
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Linear hierarchical model

given βik, 
2
ikτ : ζik ∼ N (βik, 

2
ikτ Cik), i = 1, . . ., I, k = 1, . . ., K

given βi ,Ωi: βik ∼ N (βi, Ωi), i = 1, . . ., I, k = 1, . . ., K

given β, Σ: βi ∼ N (β, Σ), i = 1, . . ., I

p(β) ∝ 1, ∀β ∈ 3 
4
.

where 12 −−
ikik Cτ  is the Fisher Information matrix:

( )
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2
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2
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∂β∂β
∂τ KKK JT

ikik

ikik yyLEC

EM algorithm

With the assumptions of section 3.2 for 2
ikτ , 1−Ω i , and Σ-1, furthermore, assuming

independence between βi1, . . ., βiK the EM algorithm is performed as follows:

E-Step

Approximating Ω1, . . ., ΩI, Σ by )1(
1

−Ω l , . . ., )1( −Ω l

I , and Σ(l-1) we obtain
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Furthermore, substituting β by )(lβ  yields
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In the same way we get )(l

ikβ  by replacing the unknown parameters by their current

estimates:

( ) ( ) ( ) ( ) 



 ⋅Σ+Ω+⋅⋅



 Σ+Ω+=

−−−−
−

−−−− )(1)1()1(12
1

1)1()1(12)( ˆˆ lll

iikikik

ll

iikik

l

ik CC βζττβ .

(16)

M-Step

Conditioning on βik =
)(l

ikβ , βi = )(l

iβ and β = )(lβ , i = 1, . . ., I, k = 1, . . ., K, the

conditional posterior mode is given by

( ) ( )
11
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, i = 1, . . ., I, and (17)
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Both steps are repeated until )(
1
lΩ , . . ., )(l

IΩ , and )(lΣ  converge, i. e., that the maximum

change in the elements of the covariance matrices between successive iterations should

be less than 0.001.

Reasonable starting values )0(
1Ω , . . ., )0(

IΩ , and )0(Σ  are given by

( )( )
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5. Results
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The methods presented in the previous chapters were applied to data from an inhalation

experiment mentioned in section 1. Both, Model I and Model II were implemented for

the first goup using SAS (Schirm, 1999). In case of normality, the maximum

likelihood estimates ζik coincide with the least squares estimates. Thus, ζik can be

conveniently estimated using PROC NLIN. This procedure provides also an estimation

of the variances 2
ikτ , being the mean squared residuals of the least squares estimation

(see eq. (7)). The least squares estimators transport the information from the experiment

into the hierarchical model, thus yielding a first look at the estimates. Table A.1

(appendix) shows the least squares estimates provided by the Marquardt-algorithm in

the PROC NLIN procedure (SAS STAT users guide, 1994). The means squared

residuals in Table A.2 provide both, the estimate of the variance 2ˆ
ikτ , and a measurement

for the fit of the linear model, allowing the detection of possible outliers (e.g. animal 3,

day 2).

Animal 10 was dropped out of the experiment during day 4 because of health problems

not related to the experiment.

5.1. Model I

As mentioned before, the computation of estimates for Model I is connected with

possibly large numerical errors. In tables B.1 – B.3 (appendix) the Bayes estimates for

the population parameters computed by implementing equations (9) – (13) of the EM-

algorithm in SAS/IML are shown. While the estimate for the population mean vector

in table B.1 seems to be consistent with the raw estimates in table A.1, the estimates for

individual mean parameters and the specific parameters are questionable. All the

individual estimates are almost identical to their respective population means, and the
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estimates for the velocity constant for the uptake, 12k̂ , are negative in 9 out of 10

animals. While possible in the mathematical model, a negative uptake, i.e. exhalation of

endogeneously produced ethylene and elimination of ethylene by other means at this rate

is not sensible for toxicological reasons. The estimates for the individual covariances

iΩ  indicate an almost uniform variance for all components of the parameter vector,

which points to numerical problems in the computations of the estimate. The estimate

for the population covariance Σ is obviously distorted.

5.2. Model II

Alternatively, equations (14) – (18) were implemented, also using SAS/IML. The

algorithm needed only about a third of the iterations compared to the EM algorithm of

Model I, giving this model a numerical advantage because the number of computing

operations is greatly reduced. Table 1 – 3 show the estimators of the population mean,

individual mean and specific kinetic constants β , iβ , and ikβ , i = 1, . . ., 10,

k = 1, . . ., 5, based on Model II.

Table 1: Estimated population mean parameters from Model II.

12k̂ 21k̂ elk̂ )0(ŷ

0,0195 1,9459 7,9203 120,7751



21

Table 2: Estimated individual mean parameters from Model II.

rat
12k̂

21k̂ elk̂ )0(ŷ

1 0,0165 1,7996 8,2271 122,0978
2 0,0251 1,4295 9,7140 125,9349
3 0,0172 1,6769 8,6843 123,6201
4 0,0170 1,5062 9,4373 124,6642
5 0,0395 2,7110 5,9216 109,8376
6 0,0152 1,8898 7,8890 121,3839
7 0,0153 1,7540 8,3365 122,1477
8 0,0185 2,3801 6,5166 116,9047
9 0,0171 2,1202 7,2037 119,2689

10 0,0163 1,9532 7,6405 120,7579

Table 3: Estimated individual occasion-dependent parameters from Model II.

rat day
12k̂

21k̂ elk̂ )0(ŷ rat day
12k̂

21k̂ elk̂ )0(ŷ

1 1 0,0179 2,0424 7,8139 120,4073 6 1 0,0158 1,4976 8,4349 122,7631
1 2 0,0370 1,1774 8,3388 121,9544 6 2 0,0148 0,5846 9,3530 126,5864
1 3 0,0276 3,7447 5,9832 115,5819 6 3 0,0146 1,5965 8,4010 122,6981
1 4 0,0173 2,8074 7,2129 118,9648 6 4 0,0152 1,9571 7,9596 120,9847
1 5 0,0161 1,7541 8,2190 121,9360 6 5 0,0145 1,9141 8,0283 121,2633
2 1 0,0162 1,8132 8,3107 122,2961 7 1 0,0177 1,2889 8,4888 122,8876
2 2 0,0157 0,5766 10,1476 129,1667 7 2 0,0178 1,8176 8,0158 121,0803
2 3 0,0288 2,9114 6,9585 118,2023 7 3 0,0152 1,8046 8,0610 121,2859
2 4 0,0241 0,9839 8,9140 124,2524 7 4 0,0127 2,4287 7,3941 118,9533
2 5 0,0272 1,1130 8,5302 122,7155 7 5 0,0147 1,6953 8,2006 121,8441
3 1 0,0139 1,2868 9,0321 125,3350 8 1 0,0190 1,2020 8,9751 124,4785
3 2 0,0386 1,4377 8,1966 121,5839 8 2 0,0189 1,3019 8,9513 124,4497
3 3 0,0200 2,6895 6,8662 116,9364 8 3 0,0197 1,4846 8,7033 123,5732
3 4 0,0201 2,3987 7,3475 118,7158 8 4 0,0189 2,6431 6,6844 116,5329
3 5 0,0171 1,5405 8,2975 122,1170 8 5 0,0174 2,7736 6,8947 117,7432
4 1 0,0168 2,3980 7,1087 118,1416 9 1 0,0186 2,8072 6,8077 116,7688
4 2 0,0161 2,0931 7,7696 120,3665 9 2 0,0218 3,3662 6,7982 118,2781
4 3 0,0189 2,8631 6,1714 115,1470 9 3 0,0181 2,2097 7,7350 120,2433
4 4 0,0168 1,9826 7,9291 120,8590 9 4 0,0163 1,6759 8,2920 122,2700
4 5 0,0171 1,2532 9,1140 124,8166 9 5 0,0164 2,2476 7,5441 119,3607
5 1 0,0151 1,3722 8,6944 124,4412 10 1 0,0210 1,4504 8,3251 122,2795
5 2 0,0170 2,5219 7,1380 117,3994 10 2 0,0261 2,6438 6,9201 116,7731
5 3 0,0170 1,6030 8,3336 122,6333 10 3 0,0201 3,1723 6,3442 115,0667
5 4 0,0290 3,9191 5,5637 113,4746 10 4 0,0160 2,0168 7,8933 120,7383
5 5 0,0495 3,5087 6,2935 115,8091 10 5 --- --- --- ---
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These results appear to be more stable from a numeric point of view and are also far

more consistent with the maximum-likelihood estimates in table A.1 In general, extreme

data points in some components are corrected towards a common mean by the Bayes

estimation; e.g. animal 5, day 4 and 5 with low maximum-likelihood estimates of initial

concentration and velocity constant for elimination, elk̂ , and high estimates of

maximum-likelihood estimates for uptake, 12k̂ , are corrected towards the mean.

As mentioned above, a comparison of the interindividual and interoccasional variability

can be made by computing estimates of the covariance matrices iΩ , i = 1, . . . , 10 and

Σ .
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Table 4: Estimates of the individual covariance matrices iΩ  in Model II.

rat

1 1,1112 0,0011 -0,0027 -0,0088
0,0011 1,6942 -0,6174 -1,7940
-0,0027 -0,6174 1,8052 2,0536
-0,0088 -1,7940 2,0536 7,2421

2 1,1111 0,0011 -0,0004 -0,0035
0,0011 1,4855 -0,4734 -1,5382
-0,0004 -0,4734 2,4212 3,6635
-0,0035 -1,5382 3,6635 11,8527

3 1,1112 0,0001 -0,0023 -0,0092
0,0001 1,3083 -0,3080 -1,1427
-0,0023 -0,3080 1,7335 2,3199
-0,0092 -1,1427 2,3199 9,7854

4 1,1111 0,0002 -0,0005 -0,0014
0,0002 1,4746 -0,9026 -2,5671
-0,0005 -0,9026 3,4722 6,5698
-0,0014 -2,5671 6,5698 19,5659

5 1,1113 0,0064 -0,0157 -0,0880
0,0064 1,6835 -0,7500 -2,8888
-0,0157 -0,7500 2,8058 9,0527
-0,0880 -2,8888 9,0527 54,7850

6 1,1111 0,0000 0,0000 -0,0002
0,0000 1,3276 -0,2519 -0,8607
0,0000 -0,2519 1,4142 0,9997
-0,0002 -0,8607 0,9997 4,5410

7 1,1111 -0,0003 0,0002 0,0008
-0,0003 1,1869 -0,0815 -0,2881
0,0002 -0,0815 1,2343 0,4160
0,0008 -0,2881 0,4160 2,5251

8 1,1111 -0,0003 0,0005 0,0014
-0,0003 1,5085 -0,8097 -2,5331
0,0005 -0,8097 2,9916 5,7585
0,0014 -2,5331 5,7585 18,8444

9 1,1111 0,0008 -0,0003 -0,0011
0,0008 1,3607 -0,1300 -0,4652
-0,0003 -0,1300 1,3226 0,5785
-0,0011 -0,4652 0,5785 3,0218

10 1,1111 0,0010 -0,0010 -0,0059
0,0010 1,3578 -0,2673 -1,1618
-0,0010 -0,2673 1,4147 1,2539
-0,0059 -1,1618 1,2539 6,7316
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Table 5: Estimates of the population covariance matrix Σ  in Model II.

Σ̂
1,1112 0,0016 -0,0038 -0,0235
0,0016 1,2665 -0,4653 -1,7714
-0,0038 -0,4653 2,5475 5,1850
-0,0235 -1,7714 5,1850 22,3028

The results indicate a correlation between the rate of elimination and initial

concentration of ethene, which is not consistent with the assumption of a first order

kinetic.

The next step after the computation of the estimators is to answer the question of their

“quality” according to different criteria. A general discussion of the analytical properties

of Bayes estimates in a hierarchical normal model is omitted in this paper.

However, if we want to apply the estimators of the population parameters, it might be

useful to compute the variation coefficient, i.e. to express the standard deviation of an

estimate in multiples of its mean. By computing these figures, it is also possible to

answer the question if interoccasional or interindividual variability is higher.

Table 6: Estimated variation coefficients of  the population mean vector β 

(Model II).

v( 12k̂ ) v( 21k̂ ) v( elk̂ ) v( )0(ŷ )

54,1379 0,5789 0,2017 0,0347
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Table 7:  Estimated variation coefficients of the individual mean vectors iβ  

(Model II)

rat v( 12k̂ ) v( 21k̂ ) v( elk̂ ) v( )0(ŷ )

1 63,6431 0,7240 0,1635 0,0198
2 41,8743 0,8560 1,0161 0,0254
3 61,2824 0,6812 0,1532 0,0236
4 62,2581 0,8039 0,1996 0,0342
5 26,5692 0,4763 0,2878 0,0580
6 69,3984 0,6108 0,1520 0,0170
7 68,9671 0,6220 0,1335 0,0124
8 56,7999 0,5153 0,2674 0,0351
9 61,5637 0,5491 0,1600 0,0139

10 64,6053 0,5952 0,1570 0,0202

From tables 6 and 7, the kinetic constants can be divided into two groups. The first

group consists of the estimates for the constants for uptake and exhalation, 12k̂  and 21k̂ .

The interoccasion variability in general is greater than the interindividual variability for

these two constants. The other group consists of the estimates for the elimination rate,

elk̂ , where the interindividual variability is greater than the interoccasion variability.

A possible explanation for this behaviour of the rates is the fact, that 12k̂  and 21k̂  are

estimates of the constants of the interface between the organism an the environment,

while elk̂  is an estimate for the endogenous elimination of the xenobiotic and therefore

being influenced less by environmental factors.
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6. Discussion

The present approach simplifies the complex biological processes of highly organised

living organisms by the reduction to two-compartment models and the approximation of

nonlinear kinetics by linear ones. Using linear kinetics we have to be aware of the

possible errors which result from the dependence of the parameters on the concentration

if the underlying processes are nonlinear. Assuming first order kinetics the processes of

uptake, exhalation, and metabolic elimination are independent from the dose. Before

summarising the information provided by experiments within a range of concentrations,

like in the experiments of group B, it is necessary to verify that a first order

approximation of the processes is valid. In fact, the experiments of group A show a

correlation between the metabolism and the initial concentration. In a further paper a

procedure will be presented to detect such critical departures from linearity.

Implementing the model in a computer using SAS/IML, we experienced severe

numerical difficulties, especially with Model I, when trying to invert large almost

singular matrices, which were present in the computation of the population parameter

estimates. Even though the EM-type algorithm converged after some modification of the

program algorithm, the results of model 1 are numerically questionable at best.

Model II, while neglecting some aspects of the covariance structure of the parameter

vectors, has the advantage to be computable by a numerically stable algorithm and

therefore yielding numerically more accurate results.

Determining the processes involved in the formation of reactive metabolites is a crucial

step to establish a dose-response relationship for the interesting chemical. The
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metabolites may be transformed partly into an inactive form, and others form various

DNA, RNA, and protein adducts. These processes may also contribute to the

nonlinearity of the dose-tumor response curve. Hoel et al. (1983) presume a linear DNA

adduct–tumor relation and conclude that a valid characterisation of the processes of

uptake, elimination, and metabolism is a necessary part of the risk assessment of

potential mutagens and carcinogens.

Various attempts have been published to determine toxicokinetic parameters. Holländer

et al. (1998) compared log-linear regression, a noncompartmental method, unweighted

and weighted nonlinear least squares regression, multicompartmental methods, using

different weighting schemes. They found that the parameters depended on the model

and the weighting scheme and stressed the importance of correct assumptions with

respect to the variability, presenting an approach to use information about the analytical

method in order to estimate the variability of the observation.

Gilberg et al. (1999) discussed an extension of the nonlinear random effects model for

the Michaelis-Menten enzyme kinetic by adding a flexible transformation to both sides

of the model. The so called weighted transform-both-sides models are very adaptable

with respect to the error structure. An EM algorithm, which updates the transformation

and weighting parameters every iteration step, was applied to estimate regression and

covariance parameters.

Toxicological data reflect profound complexities of the biology of living individuals.

Recent research on Gibbs sampling has great potential for estimating the parameters of

complex models, because it reduces the problem of dealing simultaneously with a large

number of related parameters into a much simpler problem of dealing with one
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unknown quantity at a time. Gilks et al. (1993) have reviewed applications of Gibbs

sampling in immunology, pharmacology, cancer screening, industrial and genetic

epidemiology. Wikle et al. (1998) propose the use of hierarchical Bayesian space-time

model with five stages to achieve more flexible models and methods for the analysis of

environmental data distributed in space and time. They implement their models in a

Markov Chain Monte Carlo framework using the Gibbs sampler approach. Increasing

familiarity and experimentation with new Markov Chain Monte Carlo methods for

exploring and summarising posterior distributions in Bayesian statistics will lead to new

insights in toxicokinetics.
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Appendix

A. Maximum Likelihood Estimates

Table A.1: Maximum-Likelihood/Least Squares  estimators ζik  for the kinetic 

parameters

rat day
12k̂ 21k̂ elk̂ )0(ŷ

1 1
2
3
4
5

0,0179
0,0370
0,0282
0,0175
0,0161

1,9834
1,3815
3,0936
2,4801
1,7670

7,5627
10,1214
4,7398
6,2660
8,2543

120,3721
122,4654
111,6025
115,8488
122,1925

2 1
2
3
4
5

0,0162
0,0156
0,0290
0,0240
0,0271

1,7919
0,8078
2,5768
1,2132
1,3280

8,1693
13,4555
6,0722

10,6692
10,0242

122,5419
130,3897
114,4934
127,2511
126,5720

3 1
2
3
4
5

0,0138
0,0388
0,0201
0,0202
0,0170

1,3979
1,5373
2,4761
2,2535
1,6386

9,6647
9,3229
6,2576
6,8527
8,7623

126,1174
122,7035
116,1434
118,3251
123,8729

4 1
2
3
4
5

0,0169
0,0161
0,0190
0,0168
0,0171

2,2823
2,0188
2,6849
1,9370
1,3649

6,7253
7,4552
5,7432
7,7216
9,8498

117,9545
120,2150
114,2223
120,8827
125,5488

5 1
2
3
4
5

0,0151
0,0170
0,0170
0,0299
0,0501

1,4682
2,3446
1,6582
3,0153
2,9668

9,3428
6,5673
8,6420
3,9671
5,0905

124,5229
117,2172
122,7099
109,8855
104,1462

6 1
2
3
4
5

0,0157
0,0146
0,0146
0,0152
0,0145

1,5901
0,8859
1,6536
1,9170
1,8831

8,8894
12,7375
8,6472
7,7655
7,8644

123,5081
128,9003
123,2277
121,0803
121,4114

7 1
2
3
4
5

0,0176
0,0178
0,0152
0,0128
0,0147

1,4496
1,8279
1,8132
2,2423
1,7339

9,4554
8,0623
8,0818
6,8069
8,3582

124,0585
121,1315
121,4740
118,2284
122,1776

8 1
2
3

0,0190
0,0188
0,0196

1,3459
1,4119
1,5525

9,9516
9,6450
9,0676

125,5356
125,2320
124,1400



34

4
5

0,0190
0,0176

2,4840
2,5093

6,2286
6,1872

116,1028
116,1285

9 1 0,0187 2,5403 6,1001 115,4773
2
3
4
5

0,0221
0,0182
0,0162
0,0164

2,8076
2,0875
1,7161
2,1371

5,4744
7,2773
8,4109
7,1308

113,2601
119,6566
122,9679
119,2333

10 1 0,0210 1,5697 9,0092 122,9741
2 0,0263 2,4504 6,3709 115,3474
3 0,0203 2,7899 5,4678 113,5891
4 0,0160 1,9540 7,6131 120,7674

Table A.2: Mean squared residuals 
2ˆ
ikτ  of the least squares model.

rat day Number of
Obsevations

2ˆ
ikτ rat day number of

obsevations

2ˆ
ikτ

1 1
2
3
4
5

19
20
21
20
20

0,3751
7,6993
2,3942
1,1378
0,8222

6 1
2
3
4
5

21
20
21
21
21

1,5588
1,8800
1,1651
1,1731
1,0177

2 1
2
3
4
5

19
20
21
21
21

0,5984
0,7304
8,0063
2,6939
8,8819

7 1
2
3
4
5

20
21
19
21
20

1,9394
0,8443
1,5757
2,1700
1,2412

3 1
2
3
4
5

19
20
21
21
19

0,8810
46,7935
0,7284
0,7362
1,5714

8 1
2
3
4
5

20
19
19
21
20

1,4161
0,9936
0,8557
0,4737
5,9009

4 1
2
3
4
5

19
20
21
21
21

0,3881
16,7085
0,7776
0,4518
1,0244

9 1
2
3
4
5

21
19
19
20
21

0,9357
6,3617
8,7399
2,1776
0,3247

5 1
2
3
4
5

19
20
21
20
18

0,2953
0,6920
0,5447
1,5790
0,9940

10 1
2
3
4
5

21
21
21
16
0

1,5953
0,5121
0,7565
0,6898

---
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B. Bayes Estimates, Model I

Table B.1: Estimated population mean parameters from Model I.

12k̂ 21k̂ elk̂ )0(ŷ

0,0207 2,2663 8,7248 121,3182

Table B.2: Estimated individual mean parameters from Model I.

rat
12k̂ 21k̂ elk̂ )0(ŷ

1 -0,1245 2,1213 8,5791 121,1731
2 0,2499 2,4954 8,9546 121,5473
3 -0,0660 2,1798 8,6379 121,2316
4 -0,0514 2,1943 8,6525 121,2462
5 -0,1194 2,1263 8,5842 121,1782
6 0,1691 2,4145 8,8736 121,4665
7 -0,0843 2,1613 8,6195 121,2132
8 -0,0338 2,2119 8,6702 121,2638
9 0,0704 2,3161 8,7746 121,3679

10 -0,0095 2,2363 8,6946 121,2882
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Table B.3 Estimated individual mean parameters for Model I.

rat day
12k̂ 21k̂ elk̂ )0(ŷ rat day

12k̂ 21k̂ elk̂ )0(ŷ

1 1 0,0207 2,2663 8,7248 121,3182 6 1 0,0207 2,2663 8,7248 121,3182
1 2 0,0207 2,2663 8,7248 121,3182 6 2 0,0207 2,2663 8,7248 121,3182
1 3 0,0207 2,2663 8,7248 121,3182 6 3 0,0207 2,2663 8,7248 121,3182
1 4 0,0207 2,2663 8,7248 121,3182 6 4 0,0207 2,2663 8,7248 121,3182
1 5 0,0207 2,2663 8,7248 121,3182 6 5 0,0207 2,2663 8,7248 121,3182
2 1 0,0207 2,2663 8,7248 121,3182 7 1 0,0207 2,2663 8,7248 121,3182
2 2 0,0207 2,2663 8,7248 121,3182 7 2 0,0207 2,2663 8,7248 121,3182
2 3 0,0207 2,2663 8,7248 121,3182 7 3 0,0207 2,2663 8,7248 121,3182
2 4 0,0207 2,2663 8,7248 121,3182 7 4 0,0207 2,2663 8,7248 121,3182
2 5 0,0207 2,2663 8,7248 121,3182 7 5 0,0207 2,2663 8,7248 121,3182
3 1 0,0208 2,2665 8,7249 121,3184 8 1 0,0207 2,2663 8,7248 121,3182
3 2 0,0208 2,2665 8,7249 121,3188 8 2 0,0207 2,2663 8,7248 121,3182
3 3 0,0208 2,2665 8,7249 121,3184 8 3 0,0207 2,2663 8,7248 121,3182
3 4 0,0208 2,2665 8,7249 121,3184 8 4 0,0207 2,2663 8,7248 121,3182
3 5 0,0208 2,2665 8,7249 121,3184 8 5 0,0207 2,2663 8,7248 121,3182
4 1 0,0207 2,2663 8,7248 121,3182 9 1 0,0174 2,2631 8,7215 121,3149
4 2 0,0207 2,2663 8,7248 121,3182 9 2 0,0174 2,2630 8,7215 121,3025
4 3 0,0207 2,2663 8,7248 121,3182 9 3 0,0174 2,2631 8,7215 121,3149
4 4 0,0207 2,2663 8,7248 121,3182 9 4 0,0174 2,2631 8,7215 121,3149
4 5 0,0207 2,2663 8,7248 121,3182 9 5 0,0174 2,2631 8,7215 121,3149
5 1 0,0154 2,2611 8,7195 121,3130 10 1 0,0207 2,2663 8,7248 121,3182
5 2 0,0154 2,2611 8,7195 121,3130 10 2 0,0207 2,2663 8,7248 121,3182
5 3 0,0154 2,2611 8,7195 121,3130 10 3 0,0207 2,2663 8,7248 121,3182
5 4 0,0152 2,2609 8,7193 121,2929 10 4 0,0207 2,2663 8,7248 121,3182
5 5 0,0154 2,2611 8,7195 121,3129 10 5 --- --- --- ---
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Table B.4: Estimates of the individual covariance matrices iΩ  in Model I.

rat 12k 21k elk 0y

1 12k 1,1228 0,0117 0,0117 0,0117

21k 0,0117 1,1228 0,0117 0,0117

elk 0,0117 0,0117 1,1229 0,0117

0y 0,0117 0,0117 0,0117 1,1228

2 1,1403 0,0292 0,0293 0,0292
0,0292 1,1403 0,0292 0,0292
0,0293 0,0292 1,1404 0,0292
0,0292 0,0292 0,0292 1,1403

3 1,1153 0,0042 0,0042 0,0042
0,0042 1,1153 0,0042 0,0042
0,0042 0,0042 1,1153 0,0042
0,0042 0,0042 0,0042 1,1153

4 1,1140 0,0029 0,0029 0,0029
0,0029 1,1140 0,0029 0,0029
0,0029 0,0029 1,1140 0,0029
0,0029 0,0029 0,0029 1,1140

5 1,1212 0,0101 0,0101 0,0098
0,0101 1,1212 0,0101 0,0098
0,0101 0,0101 1,1213 0,0098
0,0098 0,0098 0,0098 1,1206

6 1,1233 0,0122 0,0123 0,0122
0,0122 1,1233 0,0123 0,0122
0,0123 0,0123 1,1234 0,0123
0,0122 0,0122 0,0123 1,1233

7 1,1172 0,0061 0,0061 0,0061
0,0061 1,1172 0,0061 0,0061
0,0061 0,0061 1,1173 0,0061
0,0061 0,0061 0,0061 1,1172

8 1,1128 0,0016 0,0017 0,0016
0,0016 1,1128 0,0017 0,0016
0,0017 0,0017 1,1128 0,0017
0,0016 0,0016 0,0017 1,1128

9 1,1127 0,0016 0,0016 0,0016
0,0016 1,1127 0,0016 0,0016
0,0016 0,0016 1,1127 0,0016
0,0016 0,0016 0,0016 1,1128

10 1,1115 0,0004 0,0004 0,0004
0,0004 1,1115 0,0004 0,0004
0,0004 0,0004 1,1115 0,0004
0,0004 0,0004 0,0004 1,1115
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Table B.5: Estimates of the population covariance matrix Σ in Model I.

Σ̂ 12k 21k elk 0y

12k 0,2939 0,2939 0,2940 0,2939

21k 0,2939 0,2939 0,2940 0,2939

elk 0,2940 0,2940 0,2940 0,2940

0y 0,2939 0,2939 0,2940 0,2939




