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Abstract: Dickey-Fuller control charts aim at monitoring a random walk

until a given time horizon to detect stationarity as early as possible. That

problem appears in many fields, especially in econometrics and the analysis

of economic equilibria. To improve upon asymptotic control limits (critical

values), we study the bootstrap and establish its a.s. consistency for fixed

alternatives. Simulations indicate that the bootstrap control chart works very

well.
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1 Introduction

We study the bootstrap for a sequential detection procedure with finite time horizon (trun-

cated control chart) which aims at detecting whether the in-control model of a random

walk (unit root) is violated in favour of stationarity. The bootstrap is known to provide

easy-to-use and accurate procedures, and its application to the design of monitoring pro-

cedures (control charts) is promising.

The problem to study truncated control charts for random walks has several moti-

vations. Often, it is not clear whether an econometric time series has a unit root or is

stationary. In many practical applications monitoring stops latest when a known prespec-

ified time horizon is reached. For instance, in portfolio management continuous or near-

continuous trading is often not feasible, because time- and cost-intensive (econometric)

analyses are required to obtain valid distributional model specifications for the underlying

time series, in particular with regard to their degree of integration. Instead, the portfolio

is updated, e.g., only on a quarterly basis. Between these updates it is advisable to ap-

ply monitoring procedures to influential time series. Additional trades, hedges, or further

analyses can then be initiated if a monitoring rule (control chart) provides a signal. A fur-

ther interesting application is to monitor equilibrium errors of a (known) co-integration

relationship in order to confirm co-integration in the sense of Granger (1981), i.e. station-

arity of equilibrium errors. Finally, the question ’random walk or stationary process’ is

also crucial to choose a valid method when analysing a series of observations to detect

trends. These methods usually assume stationarity as in Steland (2004, 2005a), Pawlak et

al. (2004), Hušková (1999), Hušková and Slabý (2001), or Ferger (1995), among others.

When detecting trends in random walks by, e.g., a kernel smoother, the results change

drastically as shown in Steland (2005b).

Detection rules using (modifications of) the Dickey-Fuller test statistic have been stud-

ied in Steland (2005c). To improve the detection quality it is advisable to introduce a

weighting mechanism which assigns smaller weigths to past contributions than to more

recent ones. Simulations revealed that the bandwidth parameter h controlling the weights

and the start of monitoring k have to be chosen carefully when using asymptotic critical

values. The bootstrap should avoid this problem, since it resamples the procedure as it
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is. Whereas for fixed sample Dickey-Fuller type unit root tests the bootstrap has been

studied, see Park (2003) and the references given there, the present article establishes a

first consistency result for a bootstrap scheme of the underlying (weighted) Dickey-Fuller

process and a related control chart.

2 Model and Dickey-Fuller type detection procedures

Let us consider an autoregressive time series model of order 1, AR(1), given by

Yt+1 = ρYt + ut, t ≥ 1, (1)

where {ut} are independent and identically distributed error terms with common variance

0 < σ2 < ∞. We assume Y0 = 0. The autoregressive parameter, ρ, determines whether

the time series Yt is stationary (|ρ| < 1) or a random walk (ρ = 1). The well known

least-squares based Dickey-Fuller test for testing the unit root null hypothesis H0 : ρ = 1

against the alternative of stationarity H1 : |ρ| < 1 based on a sample Y1, . . . , YT of (fixed)

size T is the Dickey-Fuller test (DF test) which is given by

ρ̂T =
T∑

t=1

Yt−1Yt /
T∑

t=1

Y 2
t−1, DT = T (ρ̂T − 1) =

∑T
t=1 Yt−1∆Yt

1
T

∑T
t=1 Y 2

t−1

,

where ∆Yt = Yt − Yt−1. DT has a nonstandard limit distribution under H0, if T → ∞.

H0 is rejected for small (negative) values of DT . Usually, one relies on asymptotic theory,

i.e., one approximates the appropriate critical value c by the corresponding quantile of

the the asymptotic distribution for T → ∞. The DF test and its asymptotic properties,

particularly its non-standard limit distribution have been studied by White (1958), Fuller

(1976), Rao (1978), Dickey and Fuller (1979), Chan and Wei (1988), among others.

The weighted Dickey-Fuller control chart as introduced in Steland (2005c) is defined

as follows. For a control limit c define for t = k, k + 1, . . . , T

ST = inf{k ≤ t ≤ T : Dt < c}, Dt =
1
t

∑t
s=1 K([t− s]/h)Ys−1(Ys − Ys−1)

1
t2

∑t
s=1 Y 2

s−1

,

for some non-negative kernel function K : [0,∞) → R+
0 . The detection procedure ST

gives a signal at time t, if the weighted Dickey-Fuller test statistic Dt is smaller than the

3



control limit c for the first time. Monitoring starts at the k-th observation and ends at

the latest at the time horizon T . Here and in the sequel we assume that c is chosen to

attain a given nominal type I error that a false signal is given, at least asymptotically, i.e.,

limT→∞ P0(ST < T ) = α. However, the modifications to control other characteristics as

the average run length or the median run length are straightforward.

The kernel function K is used to downweight past contributions to the sum, which

improves the detection properties (Steland, 2005c) in change-point models. Usually one

takes a decreasing density function with unique maximum at 0. We assume the following

regularity assumptions for K.

(K) 0 <
∫∞

0
K(z)dz < ∞, K ∈ C2, ‖K ′′‖∞ < ∞, and

∫
|dK| < ∞.

The bandwidth parameter h appearing in the definition of the kernel weights K([t−s]/h)

may be absorbed into the kernel, but it is more common to rescale a given (standardised)

kernel by a bandwidth. Notice that the procedure uses the most recent h observations, if

K has support [0, 1]. In this sense h defines the memory of the control chart. We assume

that h = hT satisfies

T/hT → ζ ∈ (1,∞),

as T →∞. The memory parameter ζ is chosen in advance.

In the sequel let bxc, x ∈ R, denote the floor function. Introduce the stochastic process

related to DT obtained by rescaling time,

DT (s) = DbTsc, s ∈ [0, 1].

Note that the trajectories of DT are constant on intervals of the form (a, b], a < b, thus

being elements of the function space D[0, 1] of right-continuous functions with existing

left-hand limits. We have the representation ST = T inf{s ∈ [κ, 1] : DT (s) < c}, which

allows to base the stochastic analysis of ST on the distributional properties of ST from the

properties of DT . Further, we assume that the start of monitoring, k, is given by

k = bTκc, for some κ ∈ (0, 1).

Equip D[κ, 1] with the Skorokhod topology induced by the Skorokhod metric d. Weak

convergence of a sequence X,XT : (Ω,A, P ) → D[0, 1] under the probability P is
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denoted by XT
w,P→ X , T → ∞. For details we refer to Billingsley (1968) or Jacod

and Shiryaev (2003). Further, {B(s) : s ∈ [0, 1]} is a standard Brownian motion with

B(0) = 0.

Assuming the same AR(1) model the following functional central limit theorem pro-

viding the asymptotic distribution of the Dickey-Fuller process was shown in Steland

(2005c), where it was used to choose the control limit based on the asymptotic distribu-

tion.

Theorem 2.1 Assume either K(z) = z for all z or (K). Then, as T →∞,

DT (s)
w,P→ D(s) =

∫ s

0

K(ζ(r − s))B(r) dB(r) /

∫ s

0

B(r)2 dr, s ∈ [0, 1],

and, as T →∞,

ST /T
d→ inf{s ∈ [κ, 1] : D(s) < c}.

Remark 2.1 Assume K(z) = z for all z ∈ R. Then the limit process is given by

D(s) = (2s)−1(B(s)2 − s)/

∫ s

0

B(r)2 dr, s ∈ [0, 1].

3 The bootstrap

The basic idea of the bootstrap is to invest in computing resources to obtain a resam-

pling based estimate of the control limit satisfying certain statistical properties, instead of

relying on the asymptotic distribution as an approximation. In the sequential (monitor-

ing) setting considered in this article the data Y1, . . . , YT are observed sequentially, and

at each time point t ∈ {1, . . . , T} the current data Y1, . . . , Yt are used to decide whether

the in-control model holds or not. Thus, it seems natural to calculate at each time point a

σ(Y1, . . . , Yt)-measurable bootstrap estimate ĉt of the control limit c, based on all avail-

able observations Ys, s ≤ t, which implicitly have been classified as in-control data. Then,

at each time point we consider the stopping rule

ŜT = inf{k ≤ t ≤ T : Dt < ĉt}.

Note that at each monitoring step there are at least k observations from which one can

bootstrap.
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An appropriate bootstrap scheme has to generate bootstrap samples Y ∗
1 , . . . , Y ∗

T which

mimic the distributional behaviour of Y1, . . . , YT ∗ under the null hypothesis (in-control

model). Allowing for a maximum bootstrap sample size T ∗ different from T will sim-

plify the proofs and sometimes increases the accuracy of the bootstrap approximation,

but usually one takes T ∗ = T . Concretely, at each time point t perform the following

steps.

1. Draw a bootstrap sample u∗1, . . . , u
∗
T ∗ (with replacement) from the observed cen-

tered differences, ûi = ∆Yi −∆Y , i = 1, . . . , t, ∆Y = t−1
∑t

s=1 ∆Ys.

2. Put Y ∗
r = Y ∗

r−1 + u∗r, r = 1, . . . , T ∗, Y ∗
0 = 0.

3. Calculate the trajectory of the associated bootstrap process

D∗
T ∗(s) =

bT ∗sc−1 ∑bT ∗sc
r=1 K([bT ∗sc − r]/h)Y ∗

r−1∆Y ∗
r

bT ∗sc−2 ∑bT ∗sc
r=1 Y ∗2

r−1

, s ∈ (0, 1], (2)

D∗
T ∗(0) = 0, at the time points s = t/T, t = 1, . . . , T .

4. Calculate m∗ = mink≤r≤T D∗
T ∗(r/T )

5. Repeat the resampling step B times to obtain B replicates m∗(1), . . . ,m∗(B) and

estimate the control limit by ĉtB, the empirical α-quantile of m∗(1), . . . ,m∗(B)

The bootstrap scheme defines a bootstrap probability P ∗ = P ∗
t for given Y1, . . . , Yt. Un-

der P ∗, the common distribution function of the u∗i is given by the empirical distribution

function, F̂t, of the values ûr = ∆Yr −∆Y , r = 1, . . . , t.

Remark 3.1 Note that the bootstrap is based on the H0-residuals ût calculated under

H0. Usually, one has to bootstrap from residuals being consistent for the error terms

also under H1, i.e., bootstrap from the AR(1)-residuals ût = Yt − ρ̂Yt−1 after centering,

for some consistent estimator ρ̂. Nevertheless, our main result shows that the simplified

bootstrap is consistent, which is a special feature of the statistic Dt.

For a bootstrap sample Y ∗
1 , . . . , Y ∗

T ∗ the bootstrapped detection rule associated to the

process defined in (2) is given by

S∗
T ∗ = inf{k ≤ t ≤ T ∗ : D∗

T ∗(t/T ∗) < c}.
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The following main result yields P -a.s. consistency of the proposed bootstrap scheme. It

asserts that under the bootstrap probability P ∗
t the process D∗

T ∗ converges weakly to D,

as T ∗ → ∞. For a given specification of the conditional probability P ∗
t the result holds

true for every sample Y1, . . . , Yt, thus P -a.s. for any conditional probability.

Theorem 3.1 Fix t. Assume 0 < ρ ≤ 1. Under P ∗ (given Y1, . . . , Yt) we have P -a.s.

D∗
T ∗

w,P ∗
→ D

and

ST ∗/T ∗ w,P ∗
→ inf{s ∈ [κ, 1] : D(s) < c},

as T ∗ tends to ∞ such that T ∗/h → ζ ,

The consistency of the detection rule using the bootstrapped control limit appears now

as a Corollary.

Corollary 3.1 Under the assumptions of Theorem 3.1 the bootstrap estimate of the con-

trol limit provides an a.s. consistent procedure in the sense that under the bootstrap

probability P ∗ we have P -a.s.

ŜT /T
w,P ∗
→ inf{s ∈ [κ, 1] : D(s) < c}, T →∞.

4 Simulations

In our simulation study we focused on a small (maximum) sample size to investigate the

type I error of a false detection if the series is a random walk and the conditional average

run length (CARL), i.e., the conditional expected run length, E(ŜT |ŜT < T ), given that

the procedure provides a signal, calculated under the alternative. The CARL says after

how many observations, on average, we get the signal, if the procedure rejects the unit root

hypothesis, and it is very informative under the alternative. We study both bootstrapping

from differences and AR(1)-residuals.

The most recent bootstrap replicates are almost as informative as the current ones,

since they are drawn from a very similar set of observations. Thus, we used the following
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simulation approach. When monitoring starts, a bootstrap sample of size 10000 using

the available k observations is drawn and stored. At time t = k + l · 20, l ∈ N, i.e.,

at every 20th observation, the 10% oldest bootstrap replicates are replaced by 1000 new

ones using the available t observations Y1, . . . , Yt. Using the AR(1) model (1) time series

of length T = 150 and two settings with T = 250 with N(0, 1)-distributed error terms ut

were simulated for ρ = 1 (null hypothesis) and ρ = 0.9 (alternative), respectively. The

parameters h (bandwidth) and k (start of monitoring) were taken from {25, 50}. Each

table entry is based on 10000 repetitions.

Table 1: Type I error, power, and conditional average run length given a signal.

H0-residuals AR(1)-residuals

T h k type I error power CARL type I error power CARL

Epanechnikov kernel:

150 25 25 0.0462 0.1878 17.0 0.0467 0.1849 17.0

150 50 25 0.0480 0.224 21.8 0.0452 0.2326 20.7

150 25 50 0.0452 0.5235 32.6 0.0487 0.5288 32.5

150 50 50 0.0463 0.4461 23.5 0.0486 0.4514 22.8

Gaussian kernel:

150 25 25 0.0506 0.2327 22.3 0.0514 0.2367 23.7

150 50 25 0.0528 0.3943 43.7 0.0504 0.4037 43.8

150 25 50 0.0463 0.4821 25.1 0.0451 0.4739 25.5

150 50 50 0.0471 0.5748 32.0 0.0496 0.5756 32.4

250 50 25 0.0525 0.4291 57.1 0.0491 0.4312 55.7

250 50 50 0.0468 0.6411 48.5 0.0483 0.6407 47.6

The results indicate that the bootstrap works very well for a wide range of combina-

tions of the parameters T , h, and k. Even for small k accuracy is good. Bootstrapping

from AR(1)-residuals seems to provide slightly more accurate tests in terms of the type

I error, but our simulations do not indicate an advantage in terms of power. The CARL
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values indicate a trade-off: The CARL is smaller for smaller h, but the power decreases.

Using fewer recent observations yields a loss of power, but if we reject, we get this deci-

sion very early. For the same reason, the Gaussian kernel provides more power but higher

CARLs than the Epanechnikov kernel which has bounded support.
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Appendix: Proofs

We apply the following result due to Kurtz and Protter (1996 resp. 2004, Sec. 7).

Theorem (Kurtz and Protter). Suppose Xn is a semimartingale for each n, and Hn

is predictable for each n. If (Hn, Xn)
w→ (H, X) in the Skorokhod space DR2 [0, 1], and if

supn Var (Xn) < ∞, then, as n →∞,(
Hn, Xn,

∫
Hn dXn

)
w→

(
H, X,

∫
H dX

)
2

Proof (of Theorem 3.1).

We first consider the case ρ = 1. The bootstrap defines an array {Y ∗
ti : i = 1, . . . , T ∗, t =

1, . . . , T} of bootstrap observations Y ∗
ti =

∑i
j=1 u∗j . In the sequel we will suppress the t

in the notation. Donsker’s theorem yields

T−1/2

bTsc∑
i=1

ui
w,P→ σB(s), T →∞, (T ∗)−1/2

bT ∗sc∑
i=1

u∗i
w,P ∗
→ stB

∗(s), T ∗ →∞.

since under P ∗ the r.v.s. u∗i are i.i.d. with mean û = 0 and common variance s2
t =

1
t

∑t
i=1 û2

i . Here B and B∗ are two Brownian motions with B(0) = 0. Define the boot-

strap process

Z∗
T∗(s) = (T ∗)−1/2Y ∗

bT ∗sc, s ∈ [0, 1],
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and the filtration F∗
r = σ(u1, . . . , ubTrc), r ∈ [0, 1]. By definition of Y ∗

i =
∑i

j=0 u∗j ,

E∗(Z∗
T ∗(s)|F∗

r ) = Z∗
T ∗(r),

E∗((T ∗)−1/2Z∗
T ∗(s))2 =

bT ∗sc
T

E∗(u∗21 ),

i.e., ZT ∗ and K([bT ∗◦c − bT ∗sc]/h)Z∗
T ∗(◦) are L2-martingales w.r.t. to P ∗. Thus, for

each T ∗ the numerator

1

bT ∗sc

bT ∗sc∑
i=1

K([bT ∗sc − i]/h)Y ∗
i−1∆Y ∗

i

of D∗
T ∗ can be represented as an Ito integral,

bT ∗sc−1T

∫ s

0

K([bT ∗sc − bT ∗rc]/h)Z∗
T ∗(r) dZ∗

T ∗(r).

Let us verify fidi-convergence of

s 7→ N∗
T ∗(s) =

∫ s

0

K([bT ∗sc − bT ∗rc]/h)Z∗
T ∗(r) dZ∗

T ∗(r), s ∈ [κ, 1].

Consider for s ∈ [κ, 1] the random function

r 7→ I∗T ∗(r; s) = K([bT ∗sc − bT ∗rc]/h)Z∗
T ∗(r). (3)

By the Skorokhod/Dudley/Wichura representation theorem, we may assume that ‖Z∗
T ∗ −

stB
∗‖∞ → 0, T ∗ →∞, P ∗-a.s. Then, since K is Lipschitz continuous,

sup
s∈[κ,1],r∈[0,1]

∣∣∣K([bT ∗sc − bT ∗rc]/h)Z∗
T ∗(r)− stK(ζ(s− r))B∗(r)

∣∣∣ → 0,

if T ∗ →∞, P ∗-a.s. Hence,

(Z∗
T ∗(◦), I∗T ∗(◦, s)) → (stB

∗(◦), K(ζ(s− ◦))stB
∗(◦)),

in the supnorm, and even uniformly in s ∈ [κ, 1]. It follows that for each fixed s ∈ [κ, 1]

the triple (Z∗
T ∗(◦), I∗T ∗(◦, s), N∗

T ∗(s)) converges in distribution to(
stB

∗(◦), K(ζ(s− ◦))stB
∗(◦), s2

t

∫ s

0

K(ζ(s− r))B(r) dB(r)

)
,

under P ∗, as T ∗ → ∞. By taking linear combinations, this can be extended to conver-

gence of all fidis, yielding fidi convergence of N∗
T ∗ . Since {I∗T ∗} and {Z∗

T ∗} are tight,
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(I∗T∗, Z
∗
T ∗) is also tight implying tightness of N∗

T∗ =
∫

I∗T ∗dZ∗
T ∗ . Thus, the numerator

converges weakly to the random element s2
t

∫ s

0
K(ζ(s − r))B∗(r) dB∗(r). Further, the

denominator of D∗
T ∗ is a continuous functional of Z∗

T ∗ ,

bT ∗sc−2

bT ∗sc∑
i=1

Y ∗2
i−1 =

∫ s

0

(Z∗
T ∗(u))2 du

w,P ∗
→ s2

t

∫ s

0

B(u)∗2du,

as T ∗ → ∞. The continuous mapping theorem yields that (
∫ ◦

0
(Z∗

T ∗(u))2 du, N∗
T ∗(◦))

converges weakly. Thus, we can conclude that

D∗
T ∗(◦) =

N∗
T ∗(◦)∫ ◦

0
(Z∗

T ∗(r))2 dr

w,P ∗
→

s2
t

∫ ◦
0

K(ζ(◦ − r))B(r) dB(r)

s2
t

∫ ◦
0

B(r)2 dr
,

as T ∗ → ∞. Note that st cancels in the limit. Hence the result holds for all t. Noting

that the limit process has a.s. continuous sample paths, convergence in distribution of ST

follows using a result of Lifshits (1982).

It remains to verify the weak limit for the case 0 < ρ < 1. First note that

∆Yt = (ρ− 1)Yt−1 + ut =
∑
i≥0

(ρ− 1)iut−i

is a stationary AR(1) process if 0 < ρ < 1, implying ∆Y
P→ 0. Hence, {∆Yi − ∆Y :

i = 1, . . . , t} is a stationary series. Thus, the i.i.d. bootstrap values u∗t ∼ Ft satisfy an

invariance principle,

(T ∗)−1/2

bT ∗sc∑
i=1

u∗i
w,P ∗
→ s′tB

∗(s), T ∗ →∞,

with s′t = Var (∆Y1−∆Y ). Since s′t cancels in the limit process, for 0 < ρ < 1 we obtain

the same limit process for D∗
T ∗ under P ∗ as for ρ = 1. 2

Proof (of Corollary 3.1). The corollary is shown as follows. Define

ĉT (s) = ĉbTsc, s ∈ [κ, 1],

and note that

ST /T = inf{s ∈ [κ, 1] : DT (s)− ĉT (s) < 0}.

By a.s. consistency of the bootstrap as shown above, the process ĉT (s) converges weakly

to constant, ĉT (s)
P ∗
→ c, as T →∞, P -a.s. Hence, by Slutzky’s theorem,

DT − ĉT
w,P ∗
→ D − c ∈ C[κ, 1],
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as T →∞, P -a.s., yielding

ST /T
w,P ∗
→ inf{s ∈ [κ, 1] : D(s)− c < 0},

if T →∞, a.s. 2
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