
 

Adaptive Sample Size Calculation for  

Industrial Experiments 

 

 

 

 

Submitted to 

the Department of Statistics 

of the University of Dortmund 

 

 

In Fulfilment of 

the Requirements for the Degree of 

Doctor of Natural Sciences 

 

 

 

by 

 

Clovis Njontie Kouakep 

 

 

Dortmund 2005 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supervisor:     Prof. Dr. Joachim Hartung, Dr. Guido Knapp 

Co-Supervisor:    Prof. Dr. Götz Trenkler 

Date of the oral examination:  December 20, 2005 

 



 

CONTENTS 

 

1 Introduction……………………….……..…….…………………………………..1 

 

2 Hypothesis testing….……………….………………………………………...........5 

 

3 Sample size determination………….………………………………...…………...7 

3.1 Comparison of means of normally distributed data……………………...….8 

3.2 Testing equivalence with normally distributed outcomes……………..…...14 

3.2.1 Formulation of the test and sample size formula……………………….14 

3.2.2 Combinations of significance and equivalence test…………………….19 

3.3 Sample size methods for reliability studies………………………………....23 

3.3.1 Basic concepts…………………………………………………………..23 

3.3.2 Reliability and related functions………………………………………..24 

3.3.3 Comparing survival distributions……………………………………….28 

3.3.4 Sample size determination procedures……………………………….....31 

 

4 Sample size adaptation methods…………….…………………………………....47 

4.1 Internal pilot study……………………………………………………...…...48 

4.1.1 The proposal of  Wittes and Brittain……………………………..….......48 

4.1.2 Choice of the pilot sample………………………………………..……...49 

4.2 Self-designing method……………………………………………..…….…..50 

4.2.1 The proposal of Shen and Fisher…….……………………………….….51 

4.2.2 The proposal of Hartung………..……….…………………….…………54 

4.3 Combining the adaptive self-designing of Hartung with the classical group se-

quential design………………………………………………………..……..58 

4.3.1 Classical group sequential design…….………………………….……...59 

4.3.2 Adaptation procedure………….…………………….………….……….59 

4.3.3 A simulation study…….………………………………….……….….....60 

 

5 Sample size adaptation for the one-sided equivalence test…………..……….....63 

5.1 Sample size adaptation using the internal pilot study.……………….……...64 

5.1.1 Variance estimator, distribution of the test statistic and actual type I error 

rate……………………………..….………………………………..…....64 



 

5.1.2 Comparison of the two variance procedures…...……………………….73  

5.2 Sample size adaptation using the self-designing of  Hartung………………75 

 

6 Sample size adaptation for reliability studies…………………………………...79 

6.1 General theory of sequential reliability analysis……………………………80 

6.1.1 Notation and Formulas………………………………………………….80 

6.1.2 Asymptotic distribution of the statistic…………………………………82 

6.2 Adaptation under proportional hazard………………………………………92 

6.2.1 Test statistic……………………………………………………………..92 

6.2.2 Adaptive designing……………………………………………………...95 

6.2.3 Strategies for adjustment……………………….……………………….99 

6.2.4 Example……………………………….……………………………….102 

6.2.5 Simulation……………………………..……………………………….104 

6.3 Adaptation under non-proportional hazard………………………..……….111 

6.3.1 Notation and test statistic……………………..………………………..111 

6.3.2 Adaptation procedure…………………………………………..............118 

6.3.3 Simulation………………………..…………………………………….119 

 

7 Conclusion…………………………………………………………………...........125 

 

8 References…………..…………………………………………………..................128 

 

 

 

 

 

 

 

 

 

 

 

 

 



ADAPTIVE SAMPLE SIZE CALCULATION FOR INDUSTRIAL EXPERIMENTS  

 

1 

1 Introduction 

 

In today's technological world, achievement and improvement of customer satisfaction, de-

velopment of highly sophisticated products in record time, while improving productivity, 

product field reliability and quality have increased the need for more testing of materials, 

components and systems. Engineers, statisticians, scientists and others need to draw conclu-

sion from scanty data. In order to select the best source of supply for use in new designs, 

computer manufacturers have to test electronic parts from each of several vendors. It is also 

the case for automobile manufacturers who have to inspect incoming shipments of bolts and 

nuts to compare lot quality with acceptance specifications. Chemical companies or Aircraft 

materials laboratories make fatigue-test for specimens of new metals with different combina-

tions of chemical elements in order to compare the effects of these elements on tensile 

strength. An important step in the design of all these experiments is the determination of the 

number of specimens to be tested. Determining the appropriate sample size for an investiga-

tion in industrial experiments is an essential step in the statistical design of the project and it 

is usually a difficult one. The number of specimens in the investigation must be large enough 

to provide a reliable answer to the question addressed.  Sample size is important for economic 

reasons; an undersized study can be a waste of resources for not having the capacity to pro-

duce useful results, while an oversized one uses more resources than are necessary. Histori-

cally, learning the techniques of sample size determination and power analysis have been 

difficult, because of relatively complex mathematical considerations and numerous different 

formulas. 

In fixed sample size designs, one has to know in advance, the relevant alternative which 

should be detected with a given power and reliable guesses about nuisance parameters needed 

in the sample size formula. For example, for comparing means in a two-group parallel design 

the knowledge of the effect size and its variability are required to calculate the sample size 

needed for achieving a specified power when using a test at a given significance level. A mis-

judgement of the variance may lead to a seriously over- or under-powered study.  

There has been considerable recent interest in achieving greater flexibility in sample size cal-

culations, either because the sponsor is very uncertain about the underlying effect size or be-

cause of uncertainty about nuisance parameters like variance. Adaptive sample size calcula-

tions that preserve the type-I error and power are possible in both settings, especially in con-

junction with group sequential trials where the data are routinely monitored. Adaptive sam-
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pling designs for statistical experiments are ones where the accruing data from experiments 

are used to adjust the experiment as it is being run. 

 Unfortunately, adaptive procedures are more complicated to design and to analyse and they 

tend to be more difficult to implement than fixed sample size procedures. Because of this, 

adaptive designs are usually overlooked in favour of simpler, though less efficient, fixed de-

signs. 

Adaptive designs can be divided into two categories: 

• Designs with interim analysis which allow both sample size adaptation and early stopping 

(Bauer and Köhne: 1994, Proschan and Hunsberger: 1995, Lehmacher and Wassmer: 

1999)  

• Internal pilot study design that allows adaptation of the sample size during the ongoing 

experiment using the estimated variance obtained from an interim analysis. Wittes and 

Brittain (1990) provided a specific plan to design such pilot studies and for incorporating 

the data from the pilot phase into the final study results. 

Shen and Fisher (1999) present a method of sequential analysis for industrial experiments, 

which uses all prior data to assign a weight to the next data, by using the self-designing 

method as introduced by Fisher (1998). This weight is used to guarantee the integrity of the 

variance of the final test statistic so that the overall type I error rate is preserved.  The vari-

ance estimate and the effect size will be updated at each step and therefore the overall sample 

size. Extension was made by Hartung (2001) who presented a completely self-designing rule 

by taking the inverse normal transformation of the p-values within the classical Pocock 

(1977) design and Hartung and Knapp (2003) who proposed a flexible and effective adaptive 

method that allows for a completely self-designing of a group sequential experiment and a 

decision about stopping for significance of the sequential test results at each stage.  

In this work, methods of adaptive sample size determination in industrial experiment for the 

comparison of two production process (or product, machine, systems) will be presented, fur-

ther developed and the operating characteristics will be compared. The thesis is organised as 

follows:  

Chapter 2 presents definitions of terms usually used in the context of hypothesis testing.  

In chapter 3, a detailed discussion on sample size methodologies for some important situa-

tions in industrial experiments is provided: difference of means for two groups with normally 

distributed outcomes, equivalence of means for two groups with normally distributed out-

come, comparison of two groups with reliability data. In the case of difference of means, we 

compared the exact computation of the sample size with an approximated computation to see 
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that the difference is non relevant. By the equivalence test, methods of the computation of the 

sample size in case of the difference and the ratio of the mean of the two groups are presented 

and we conduct a small simulation study to access the power to simultaneously conclude that 

two means are both statistically different and equivalent. Beginning with a short review of the 

basic concepts of reliability studies, we present the methodologies of calculation of sample 

size using the log-rank test when the reliability function is exponentially distributed or fol-

lows a Weibull distribution. 

Chapter 4 is an exposition of the methodology of internal pilot study and the self-designing 

procedure. By the internal pilot study, the proposal of Wittes and Brittain (1990) and the 

choice of the pilot sample will be of interest. The self-designing procedures as proposed by 

Shen and Fisher (1999) and Hartung (2001) are presented. Furthermore, following the idea of 

Yin and Shen (2005), we presented a way to combine the classical group sequential method to 

the self-designing procedure of Hartung. The resulting design will not only update the sample 

size and stop for futility at each stage, but also can stop at each stage for strong efficacy. The 

operating characteristics of the new design are evaluated and compared to those of the self-

designing procedure using group sequential techniques of Pocock (1977) and O’Brien and 

Fleming (1979). 

In chapter 5, we used for the first time procedure of internal pilot study to reestimate the sam-

ple size in the one-sided equivalence test with normally distributed outcomes. Using tech-

niques similar to those of Kieser und Friede (2000), the exact type I error rate is computed 

using the pooled-variance to reestimate the variance. Characteristics of the reestimated sample 

size are also investigated through simulations. The work of Friede and Kieser (2003) is pre-

sented in the case where the one-sample variance has been used to reestimate the variance. 

The reestimated sample sizes of the two variance procedure are compared through simula-

tions. Secondly, a simple way to use the self-designing procedure of Hartung (2001) in the 

one-sided equivalence test is proposed, to obtain an adequate sample size, to preserve the type 

I error and to gain power. 

Chapter 6 deals with sample size adaptation for reliability study. After a detailed presentation 

of the theory of sequential analysis for reliability study as proposed by Tsiatis (1981, 1982), a 

flexible design method of updating sample size based on the idea of Hartung and Knapp 

(2003) is proposed and illustrated. The test statistic is a linear rank statistic similar to that 

proposed by Shen and Cai (2003) and the test has independent increments. Specimen entry is 

staggered. We illustrated the application of the proposed design using an engineering exam-

ple. The performances of the procedure are investigated and compared to the usual log-rank 
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test with fixed sample design under exponential failure time distribution (proportional hazard 

function) through a simulation study. Since the log-rank test behaves poorly in the case of non 

proportional hazard, a test statistic based on the integrated weighted difference in the Kaplan-

Meier estimates of the reliabilities functions of the two groups is proposed. The performance 

of the proposed procedure is also evaluated under Exponential and Weibull failure time dis-

tribution through simulations. The proposed adaptive procedure is compared with adaptive 

procedure based on the log-rank test. Chapter 7 gives a summary of the work. 
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2 Hypothesis Testing 

 

A statistical hypothesis is an assertion or conjecture concerning one or more populations. For 

instance, suppose we want to determine if a new product will meet a pre-defined design stan-

dard, or if process A will be better than process B, we perform a hypothesis test. The objec-

tive of hypothesis testing is to decide, based on the information derived from a sample, which 

of the following two claims is more likely: 

1. The null hypothesis, 0H , is a statement that there is no difference between the groups 

being compared, with respect to the variable of interest. 

2. The alternative hypothesis, aH  or 1H , is a statement that the null hypothesis is not true. 

It is the idea that there is a difference between the groups being compared, with respect to 

the variable of interest. In the context of power analysis and sample size determination, 

this difference is termed the “effect size”. 

Here are some examples of null hypotheses: 

• The mean life of a new product at design stress level meets or is equal to a specified stan-

dard value. 

• The average performance of product design A is the same as the average performance of 

product design B. 

• There is no difference in the average quality of materials from supplier X and the average 

quality of materials from supplier Y. 

In order to choose between the null and the alternative hypothesis, a test statistic or a P-value 

is calculated based on the available data.  A P-value is the lowest level at which the observed 

value of the test statistic is significant. The P-value will be compared to a predetermined value 

in order to make the decision. 

A null hypothesis can only be rejected. The acceptance of a hypothesis merely implies that the 

data does not give sufficient evidence to refuse it. On the other hand, rejection implies that the 

sample evidence refuses it. 

In hypothesis testing there will always be the possibility of making a wrong decision. As 

shown in table 1, there are two kinds of errors: 

• Type I error occurs when we reject the null hypothesis when it is true. 

• Type II error occurs when we fail to reject the null hypothesis when it is false. 
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                              Reality 

Decision 
0H  is true 0H  is  false 

Fail to reject 0H  
Correct Decision Type II error 

Reject 0H  

Type I error Correct Decision 

 

Table 2.1:  Possible situations in testing a statistical hypothesis 

 

The probability of type I error (sometimes called Producer’s risk) is usually designated “al-

pha” or α , and statistical tests are designed to ensure that α  is suitably small. 

The probability of type II error (Consumer’s risk) is designated β . 

The power of the test β−1  is the probability of rejecting 0H  given that an alternative is 

true. The more powerful the test, the better it is. 

In the following chapter, formulas for sample size determination of certain commonly used 

statistical distributions are presented, when the experimental objective has been formulated as 

a test of hypothesis. We will only consider the one-sided test of hypothesis, with the sample 

results used to detect deviations from the test in a single direction. The objective is the control 

of the power of an α -test for certain alternatives. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ADAPTIVE SAMPLE SIZE CALCULATION FOR INDUSTRIAL EXPERIMENTS  

 

7 

3 Fixed sample size 

 

Sample size methodology has been well developed and standardised for some statistical 

methods, such as; paired and pooled t-tests, binomial proportion comparisons, equivalence 

test, regression models, correlation and simple survival analysis models. For some of these 

models, sample size calculations are exact in the sense of utilising a mathematical formula. In 

the absence of exact mathematical results, approximate formulas can sometimes be used, if 

not, simulation provides a viable alternative. 

There is a small amount of published literature including Mace (1964), Kraemer and Thie-

mann (1987), Cohen (1988), Desu and Raghavarao (1990). There are numerous articles, espe-

cially in biostatistics journals, concerning sample size determination for specific tests and 

there is a growing amount of software for sample size determination, including nQuery Advi-

sor (Elashoff, 2000), PASS (Hintze, 2000) and online calculators such as Lenth (2000). 

One of the most popular approaches to sample size determination involves studying the power 

of a test of hypothesis. It is the approach emphasised here.  

The sample size in the context of hypothesis testing is determined by controlling the power of 

an α -level test for certain alternatives. The power approach involves these elements: 

• Specification of the underlying probability model for the data. 

• Specification of a hypothesis test (Difference, Equivalence, ...) on a parameter θ . 

• Specification of the significance level or type I error rate α  of the test. 

• Specification of an effect size θ
~

 that reflects an alternative of scientific interest. 

• Specification of a goal value of the power at the test when θθ
~

= . 

• Computations of the power function of the test. (Other parameters needed are estimated or 

given. In fact there are three parameters under our control which define the power of the 

study. These are the sample size, the effect size and α . Considering these three parame-

ters and the power of the study together, specification of any three will allow the determi-

nation of the fourth.) 

 

In the following sample size methodologies for the important situation in industrial studies 

will be presented. 
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3.1 Comparison of means of normally distributed 

data 

 

Tests concerning two means represent a set of very important analytical tools for the engineer. 

We consider an experiment comparing two production groups with independent normally 

distributed outcomes with expectations Eµ  for the experimental group and Sµ  for the stan-

dard group, and with unknown but common variance 2σ . Two independent random samples 

of size En  and Sn , respectively, are drawn from the two production groups. 

Let EX  and SX  designate the normally distributed outcome of interest for the experimental 

and standard production groups respectively. We know that the random variable 

 
σ

µµ )()( SESE

SE

SE XX

nn

nn
Z

−−−

+
=       (3.1) 

has a standard normal distribution. It serves as a basis for the development of the test proce-

dures involving two means. 

With SE µµθ −= , the null hypothesis is usually two-sided as follow: 

 0:0 =θH  vs. 0:1 ≠θH . 

A point estimate of the unknown common variance 2σ  can be obtained by pooling the sam-

ple variances 2

SS  and 2

ES . Denoting the pooled estimator by 2

pS , we write 

 
2

)1()1( 22
2

−+

−+−
=

ES

EESS

p
nn

SnSn
S .       (3.2) 

The test statistic is given by 

 
p

SE

SE

SE

S

XX

nn

nn
T

)( −

+
= .        (3.3) 

The statistic T  has under the null hypothesis a t-distribution with 2−+ ES nn  degrees of 

freedom, so that the two-sided hypothesis is rejected when 2,2/1 −+−>
ES nntt α . mxt ,1−  denotes the 

( x−1 ) percentile of the central t-distribution with m  degrees of freedom. 

For simplicity and without loss of generality we consider in the following a balanced design, 

that is equal sample sizes in both production groups nnn ES ==  (In the general case, ∃ ξ , 

such that SE nn ⋅= ξ ). 
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Approximate computation of the sample size 

 

We suppose the variance 2σ  is known. 

For a specific alternative ES µµθ −=
~

, the power of the test is given by 

 )
~

 when (1 θθβ =>−=− cXXP SE .      (3.4) 

Therefore, 

 )
~

 when ( θθβ =<−<−= cXXcP SE  

 







=

−
<

−−
<

−−
= θθ

σ
θ

σ
θ

σ
θ ~

 when 

~

 
2

~

 
2

~

 
2

   
cnXXncn

P SE . 

Under the alternative hypothesis θθ
~

=  

 
σ

θ
~

 
2

−−
= SE XXn

Z  

is standard normal distributed. The critical value c is given by  

 2/  
2

ασ z
n

c = . 

xz  is the 100x percentile point of the standard normal distribution. 

Thus 

 







−<<−−=

σ
θ

σ
θ

β αα

~

 
2

~

 
2

2/2/

n
zZ

n
zP . 

This equation yields 

 
σ
θ

αβ

~

 
2

2/

n
zz −≈−  

from which we conclude that 

 
( )

2

22

2/

~
2

θ

σβα zz
n

+
≈ . 

The approximate sample sizes nnn ES ==  needed to give a power of β−1  when θθ
~

=  for 

a two-sided α -level test of 0:0 =θH  is given by [ ] 1+n  where [ ]⋅  is the greatest integer 

function. 

For the one-sided test 0:0 =θH   against 0:1 >θH , the expression for the required sample 

size when nnn ES ==  is given by 
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( )

2

22

~
2

θ

σβα zz
n

+
= .         (3.5) 

 

Exact computation of the sample size 

 

Recall that the test statistic is given by 

 
p

SE

S

XXn
T

)(

2

−
= .         (3.6) 

Under the alternative hypothesis 1H  is T  noncentrally t-distributed with 22 −n  degrees of 

freedom and noncentrality parameter  

 
2

~
n

S
NC

p

θ
= .         (3.7) 

The power of the test is given by 

 )(1 )1(2 ,2/1 −−>=− ntTP αβ  

          )(1)( )1(2 ,2/)1(2 ,2/1 −−− <−+<= nn tTPtTP αα .     (3.8) 

The relationship between the power and the effect size is shown on figure 3.1.  The power is 

an increasing function of the effect size. 

 

Figure 3.1: Power of the test by the exact method for 05.0=α , 100=n  and 1=pS  and dif-

ferent values of the effect size. 
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 )()( )1(2 ,2/1)1(2 ,2/ −−− <−<= nn tTPtTP ααβ  

    )()( )1(2 ,2/1)1(2,,)1(2 ,2/)1(2,, −−−−− −= nnNCtnnNCt tFtF αα , 

with )1(2,, −nNCtF  denoting the distribution function of the noncentral t-distribution with 22 −n  

degrees of freedom and noncentrality parameter NC  given by 

dxdu
ux

x
n

tF

NC
n

tx

n

nnNCt   )
2

exp(
2

1
)

2
exp(

)1(2

1
)(

)1(2 2

0

2
12

2)1(2,, ∫∫

−
−

∞−

∞
−

−− −−
−Γ

=
π

. (3.9) 

This equation has to be solved iteratively for n . The sample sizes nnn ES ==  needed to 

yield a power of β−1  when θθ
~

=  for a two-sided α -level test of 0:0 =θH  is given by 

[ ] 1+n , where n satisfies the equation 

 )()( )1(2 ,2/1)1(2,,)1(2 ,2/)1(2,, −−−−− −= nnNCtnnNCt tFtF ααβ .            (3.10) 

 

Comparison of the two methods 

To compare the two computation methods of the sample size, we computed the required sam-

ple size per group to give a power of 90% for a two-sided 5%-level test for different values of 

the standardized effect size σθ /
~

. The computations have been done with the statistical soft-

ware R. Results are given in table 2.1. 

 

stand. effect size n (exact method) n (approximate method) Difference 

0.1 2102 2102 0 

0.2 526 526 0 

0.3 234 234 0 

0.4 132 132 0 

0.5 86 85 1 

0.6 60 59 1 

0.7 44 43 1 

0.8 34 33 1 

0.9 27 26 1 

1 23 22 1 

1.5 11 10 1 

 

Table 3.1: Comparison of the exact and approximate sample size 
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The difference in sample sizes obtained using the normal approximation or the exact method 

is minimal as we can observe in table 2.1. For large sample size, the normal approximation 

will generally provide good estimates for sample size. 

 

Summary 

 

Considering the formula of the sample size given by the approximate method, recall that one 

step in the sample size problem requires eliciting an effect size of scientific interest. It is the 

smallest difference that is thought to provide meaningful improvement. The effect size is gen-

erally unknown and difficult to assess at the planning stage of the study and it is up to statisti-

cians to elicit this information from the researchers involved in the study. To detect a small 

effect size, a large sample size is required and a small decrease in the effect size can result in 

a drastic change on the required sample size as shown by the figure 3.1 below. This is due to 

the fact that the sample size has a quadratic relationship with the effect to be detected. 
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Figure 3.2: Relationship between the sample size per group and the effect size by 05.0=α , 

1.0=β  and 1=σ . 
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Recall that another element required for the computation of the sample size is the variability 

of the target variable. Since the variability of the target variable is typically not known, esti-

mates based upon the past observed data are often used, especially when planning a study that 

utilizes a similar target or the same design. Another method to elicit the variability is to con-

duct a pilot study whose primary purpose is to provide a data-based estimate of the variance 

of the target variable. This will be the subject of chapter 4.  

When the variance is large, a large sample size will be needed to obtain a precise estimate of 

the target. As the variance becomes larger, the sample size increases as shown in figure 3.2. 
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Figure 3.3: Relationship between sample size per group and σ  by 05.0=α , 1.0=β  and 

1
~

=θ . 
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3.2 Testing equivalence with normally distributed 

outcomes 

 

Many industrial experiments aim at showing equivalence between an experimental production 

group under development and an existing standard production group. The aim of such trials is 

usually to demonstrate that the groups differ by not more than a defined amount, which means 

the groups are equivalent. It is appropriate to use when the experimental group is hypothe-

sised to be at least as good as the standard group in the primary variable and the experimental 

group has some advantages in secondary variables compared to the standard group. This fact 

necessitates a role reversal in the defining of the hypotheses; the specification of no difference 

in the alternative and a difference in the null. 

Many of the currently employed methods of equivalence testing were developed in the 1970’s 

and 1980’s in the field of bio statistic and medicine (Metzler,1974; Westlake,1976,1979; 

Schuirmann,1981,1987; Anderson and Hauck, 1981,1983). 

 

3.2.1 Formulation of the test and sample size formula 

 

We consider experiments comparing two production groups with independent normally dis-

tributed outcomes with expectations Eµ  for the experimental group and Sµ  for the standard 

group, and with unknown but common variance 2σ . For simplicity and without loss of gen-

erality we consider a balanced design, which means an equal sample size in both production 

groups with a total of N  observations. 

Let EX  and SX  designate the normally distributed outcome of interest for the experimental 

and standard production group respectively. For equivalence testing it is reasonable to assume 

that the sign of the corresponding population means Eµ  and Sµ  are both positive. 

The equivalence hypotheses are typically two-one-sided as follows: 

 δθ ≥:0H  against δθ <:1H ,  0>δ , 

where δ  indicates the maximum difference allowed for an experimental group to be consid-

ered equivalent with a standard group, and θ  is the difference (additive model) or ratio 

(multiplicative model) of means for the experimental group and the standard group. δ  is 

sometimes defined as a percentage of the mean for the standard group. 
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The power is the probability of accepting equivalence when the groups are in fact equivalent, 

that is, the difference or the ratio of the success measure is within the prespecified boundaries. 

In the following we briefly describe statistical techniques for sample size involved in cases of 

additive model and multiplicative model. 

 

Additive model 

 

In this case, SE µµθ −= , and the corresponding test problem is formulated as follow: 

• The null hypothesis for the two one-sided test (TOST) is 

  aSE

a
H δµµ ≥−:0  

or equivalently 

  aSE

a
H δµµ ≥−:0  or aSE δµµ −≤− . 

• The alternative hypothesis is 

aSE

a
H δµµ <−:1  

 or equivalently 

  aSEa

a
H δµµδ <−<−:1 . 

Therefore the null hypothesis a
H 0  can be tested by simultaneous testing of the following two 

one-sided hypotheses: 

 aSE

a
H δµµ ≥−:01  versus    aSE

a
H δµµ <−:11  

and 

 aSE

a
H δµµ −≤−:01  versus    aSE

a
H δµµ −>−:11 . 

The test statistic involved is the usual statistic for testing the difference between two popula-

tion means with unknown variance. For the first one-sided test, the test statistic is given by 

 
p

aSEa

S

XXN
T

δ−−
=

4
1 , 

where pS  is the pooled standard deviation of the two samples, EX  and SX  the sample means 

of the experimental and standard production group.  

The null hypothesis can be rejected at level α  if  2,11 −−−≤ N

a
tT α  where 2,1 −− Nt α  is the )1( α−  

percentile of the central −t distribution with 2−N  degrees of freedom. 

The test statistic of the second one-sided test is similar to the first and is given by 
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p

aSEa

S

XXN
T

δ+−
=

4
2 . 

The null hypothesis can be rejected at level α  if  2,12 −−≥ N

a
tT α . 

a
H 0  is rejected  at level α  if 2,11 −−−≤ N

a
tT α  and 2,12 −−≥ N

a
tT α . 

The power of the test is the probability of rejecting that the two means are different by at least 

aδ  when the means are in fact equivalent: 

 (1 P=− β 2,11 −−−≤ N

a
tT α  and 2,12 −−≥ N

a
tT α )

~
 ,

~
| aaaa δθδθθ <<−= . 

The method for calculation of the exact sample size can be found in Phillips (1990). 

As shown in the case of difference of mean in section 2.1, an approximate sample size per 

group can be derived. 

The sample size per group required for the rejection of a
H 01  to give a power β−1  of an α -

level test at  a specified alternative SEa µµθ −=
~

 is 

 
( )

( )2

22

1 ~2

aa

zz
n

δθ

σβα

−

+
= . 

The sample size per group required for the rejection of a
H 02  to give a power β−1  of  an α -

level test at  a specified alternative SEa µµθ −=
~

 is given by 

 
( )

( )2

22

2 ~2

aa

zz
n

δθ

σβα

+

+
= . 

Thus the sample size per group n  required for the rejection of  a
H 0  is 

 ( )












=
+

≠

=

0
~

 if  2

0
~

 if  ),max(

2

22

2/

21

a

a

a

zz

nn

n

θ
δ

σ

θ

βα

. 

 

Multiplicative model 

 

In this case, 
S

E

µ
µ

θ =  and the corresponding test problem is formulated as follow: 

m

S

Em
H δ

µ
µ

≥:0  versus  m

S

Em
H δ

µ
µ

<:1 . 
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Another equivalent formulation of the test problem is given by 

 1

0 : m

S

Em
H δ

µ
µ

≥  or 2

m

S

E δ
µ
µ

≤  versus  12

1 : m

S

E

m

m
H δ

µ
µ

δ << . 

This formulation makes sense only if Eµ  and Sµ  have the same sign. We assumed that Eµ   

and Sµ  are both positive and 21 /1 mm δδ =  for the invariance of the test by permuting Eµ  and 

Sµ .  

The two one-sided test problem are 

 1

01 : m

S

Em
H δ

µ
µ

≥  versus  1

11 : m

S

Em
H δ

µ
µ

<  

and 

 2

02 : m

S

Em
H δ

µ
µ

≤  versus  2

12 : m

S

Em
H δ

µ
µ

> . 

The test statistic involves the size-α  likelihood ratio test proposed by Sasabuchi (1988) (Kie-

ser and Hauschke, 1999). m
H 01  is rejected if  α−−−≤ 1,2

1

Nm tT  and m
H 02  is rejected if 

α−−≥ 1,2

2

Nm tT , where 

 
( )( ) p

S

i

mE

i

m

i

m
S

XXN
T

δ

δ

−

+
=

2
12

, 2 ,1=i . 

The power of the test is  

 (P α−−−≤ 1,2

1

Nm tT  and α−−≥ 1,2

2

Nm tT  )| 21

m

S

E

m δ
µ
µ

δ << . 

The vector ( )21 , mm TT  has a bivariate noncentral t-distribution with noncentrality parameters 

1NC  and 2NC : 

 
( )( )2

1 i

mp

S

i

mE

i

n

S
NC

δ

µδµ

+

−
= =

( ) S

i

mm

i

m
CV

n δθ

δ

−

+
2

1
 2 ,1=i  

and correlation coefficient (Hauschke et al.,1999) 

 
1

1

2121

21

+++

+
=

mmmm

mm

δδδδ

δδ
ρ .  
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SCV  denotes the coefficient of variation of the standard group: 

 
S

p

S

S
CV

µ
= . 

Approximate sample size 

 

We considered the first one-sided test  

1

01 : m

S

Em
H δ

µ
µ

≥  versus  1

11 : m

S

Em
H δ

µ
µ

< . 

For a specified alternative  

 1

m

S

E

m δ
µ
µ

θ <= , 

1

mT  follows the noncentral t-distribution with 2−N  degrees of freedom and noncentrality 

parameter  

 
( ) S

mm

m
CV

NN

1

211

1
2/ 2/

δθ

δ
ϑ

−

+
= . 

For the computation of the sample size, we need the expression of the power 

 ),|(1 1,2

1

SmNm CVtTP θβ α−−−<=− . 

Hence 

) 2/(,21,2 ϑβα Ntt NN −−− =− ,  

with ) 2/(,2 ϑβ NtN −  denoting the )1( β− percentile of the noncentral t-distribution with 

2−N  degrees of freedom and noncentrality parameter ϑ 2/N . 

We can express the percentiles of the noncentral t-distribution by those of the central t-

distribution by using the approximation 

 ϑϑ ββ  2/) 2/( ,2,2 NtNt NN +−=− −−  

in other to facilitate the determination of the sample size. Hence the required sample size per 

group can be approximated by the smallest integer for which the following inequality is ful-

filled  

 ( )( )
21

22

,22,22211

)(

)(
1

11

mm

Snn

mm

CVtt
n mm

δθ
δ βα

−

+
+≥

−−
. 

This inequality can be solved iteratively for 1

mn . 
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 An approximate formula to determine the sample size per group required to give a power 

β−1  of the α -level test m
H 01  at the given alternative 1

mm δθ <  is  

 ( )( )
21

22

11211

)(

)(
1

mm

S

mm

CVzz
n

δθ
δ βα

−

+
+= −−

. 

By analogy, the approximated formula to determine the sample size per group required to 

produce a power β−1  of the α -level test m
H 02  at the given alternative 2

mm δθ >  is  

 ( )( )
22

22

11222

)(

)(
1

mm

S

mm

CVzz
n

δθ
δ βα

−

+
+= −−

. 

Therefore, an approximate formula to determine the sample size per group required to give a 

power β−1  of the α -level test m
H 0  at the given alternative 12

mmm δθδ <<   is given by (Kie-

ser  and Hauschke, 1999) 

 

 

 

( )( )













=
−

+
+

<<

<<

=

−−
1   when  

)1(

)(
1

1   when   

1   when   

22

22

2/1122

12

11

m

m

S

m

mmm

mmm

m

θ
CVzz

θδn

δθn

n

δ
δ βα

. 

 

3.2.2 Combinations of significance and equivalence test 

 

If one performs a standard significance test and equivalence test on the same data set, then 

there are four possibilities by decision making about the rejection of the null hypothesis 

(Rogers et al., 1993). The four possibilities are given in table 3.2. 

 

Equivalence Test Significance Test  Situation 

Reject Reject Equivalent and different 

Reject Fail to reject Equivalent 

Fail to reject Reject Different 

Fail to reject Fail to reject Equivocal 

 

Table 3.2: Possible situations in simultaneous testing of significance and equivalence 
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In the following we considered the additive formulation of the equivalence test and we de-

signed a small simulation study to access the power of simultaneously concluding that two 

means are both statistically different and equivalent. 

For the simulation we took 2=σ , five different sample sizes per group ( =n 10, 50, 100, 

200, 500), four different values for the effect size ( =θ 0, 0.1, 0.25, 0.4) and  three values of 

the equivalence bound ( aδ = 0.1, 0.25, 0.5). 

Hence we have a fully randomised design with =×× 345 60 cases. For each case, 100000 

simulations were run in the statistical software R and the proportion of rejections of the null 

hypothesis of the significance test, equivalence test and simultaneous rejection of both tests 

are given in the followings tables (tables 3.4 through 3.7). 

 

Equivalence 

Bound ( aδ ) 

Sample size per 

Group ( n ) 

Equivalent Different Equivalent & 

Different 

0.1 10 0 0,04900 0 

0.1 50 0 0,05096 0 

0.1 100 0 0,04883 0 

0.1 200 0 0,04894 0 

0.1 500 0 0,05031 0 

0.25 10 0 0,049 0 

0.25 50 0 0,05096 0 

0.25 100 0 0,04893 0 

0.25 200 0,09585 0,04894 0 

0.25 500 0,74760 0,05031 0 

0.5 10 0,00001 0,04900 0 

0.5 50 0,09719 0,05096 0 

0.5 100 0,60568 0,04883 0 

0.5 200 0,94172 0,04894 0,00298 

0.5 500 0,99991 0,05031 0,05054 

 

Table 3.3: Proportion of rejections of the null hypothesis (100000 simulations) of the statisti-

cal significance and equivalence test, α = 0.05, θ
~

= 0. 
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Equivalence 

Bound ( aδ ) 

Sample size per 

Group ( n ) 

Equivalent Different Equivalent & 

Different 

0.1 10 0 0,05155 0 

0.1 50 0 0,06419 0 

0.1 100 0 0,07931 0 

0.1 200 0 0,10782 0 

0.1 500 0 0,20020 0 

0.25 10 0 0,05155 0 

0.25 50 0 0,06419 0 

0.25 100 0 0,07931 0 

0.25 200 0,07485 0,10782 0 

0.25 500 0,50204 0,20020 0 

0.5 10 0 0,05155 0 

0.5 50 0,09196 0,06419 0 

0.5 100 0,54865 0,07931 0 

0.5 200 0,87714 0,10782 0,00431 

0.5 500 0,99755 0,20020 0,19775 

 

Table 3.4: Proportion of rejections of the null hypothesis (100000 simulations) of the statisti-

cal significance and equivalence test, α = 0.05, θ = 0.1 

 

 

Equivalence 

Bound ( aδ ) 

Sample size per 

Group ( n ) 

Equivalent Different Equivalent & 

Different 

0.1 10 0 0,06527 0 

0.1 50 0 0,14125 0 

0.1 100 0 0,23694 0 

0.1 200 0 0,41907 0 

0.1 500 0 0,79806 0 

0.25 10 0 0,06527 0 

0.25 50 0 0,14125 0 

0.25 100 0 0,23694 0 

0.25 200 0,02032 0,41907 0 



ADAPTIVE SAMPLE SIZE CALCULATION FOR INDUSTRIAL EXPERIMENTS  

 

22 

0.25 500 0,04956 0,79806 0 

0.5 10 1 0,06527 0 

0.5 50 0,06670 0,14125 0 

0.5 100 0,32551 0,23694 0 

0.5 200 0,55016 0,41907 0,00830 

0.5 500 0,87342 0,79806 0,67148 

 

Table 3.5: Proportion of rejections of the null hypothesis (100000 simulations) of the statisti-

cal significance and equivalence test, α = 0.05, θ = 0.25 

 

 

Equivalence 

Bound ( aδ ) 

Sample size per 

Group ( n ) 

Equivalent Different Equivalent & 

Different 

0.1 10 0 0,09044 0 

0.1 50 0 0,28804 0 

0.1 100 0 0,51375 0 

0.1 200 0 0,80473 0 

0.1 500 0 0,99412 0 

0.25 10 0 0,09044 0 

0.25 50 0 0,28804 0 

0.25 100 0 0,51375 0 

0.25 200 0,00201 0,80473 0 

0.25 500 0,00044 0,99412 0 

0.5 10 0 0,09044 0 

0.5 50 0,03532 0,28804 0 

0.5 100 0,12153 0,51375 0 

0.5 200 0,17528 0,80473 0,00618 

0.5 500 0,30087 0,99412 0,29499 

 

Table 3.6: Proportion of rejections of the null hypothesis (100000 simulations) of the statisti-

cal significance and equivalence test, α = 0.05, θ = 0.4 
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The results of the simulation study show that 

• for aδθ < , the proportion of rejection of the null hypothesis of the equivalence test and 

the significance test approach unity as n  increase. The convergence of the equivalence 

test is slow when  θ
~

 is nearly equal to aδ . 

• for aδθ > , the proportion of the null hypothesis of the significance test approaches unity 

and the proportion of rejections of the equivalence test tends to zero as  n  increases. 

• The proportion of simultaneous rejection of both tests was only for large values of n  and 

aδ  different for zero. This is probably due to the fact that we assume homoscedasticity 

and normality of the data of the two groups being compared. 

 

3.3 Sample size methods for reliability studies 

 

In reliability studies the Normal distribution is not of major importance. The most common 

distributions in reliability analysis are the Exponential, Weibull, and Log-Normal distribu-

tions.  In this section we present sample size methods to compare the failure time distribution 

between two independent groups (products, processes, machines). The Exponential and the 

Weibull distribution have been chosen to model the failure time.  

 

3.3.1 Basic concepts 

 

Due to rapid advances in technology, achievement and improvement of customer satisfaction, 

development of highly sophisticated products, the statistical analysis of reliability data has 

become a topic of considerable interest to statisticians and engineers. In today's technological 

world nearly everyone depends upon the continued functioning of a wide array of complex 

machinery and equipment for their everyday health, safety, mobility and economic welfare. 

We expect our cars, computers, electrical appliances, lights, televisions, etc. to function 

whenever we need them - day after day, year after year. When they fail the results can be a 

desaster: injury, loss of life and/or costly lawsuits can occur. More often, repeated failure 

leads to annoyance, inconvenience and a lasting customer dissatisfaction that can play havoc 

with the responsible company's marketplace position.  

It takes a long time for a company to build up a reputation for reliability, and only a short time 

to be branded as "unreliable" after shipping a flawed product. Continual assessment of new 
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product reliability and ongoing control of the reliability of everything shipped are critical 

necessities in today's competitive business arena.  

 The main purposes for collecting reliability data are as follows: 

• Early detection of bad design, poor production processes or materials, defective parts, 

etc.; 

• Comparison of  two or more production processes or competing products; 

• Prediction of product reliability, future claims, product warranty costs; 

• Observation of the target of a new product development ; 

• Providing needed inputs for system-failure risk assessment 

Reliability data are typically censored, that means the exact failure times are not known. 

When reliability data are analysed, some units are unfailed, and their failure times are known 

only to be beyond their present running times. Such data are said to be right censored or cen-

sored on the right. Similarly a data is said to be left censored or censored on the left if the 

failure time is known only to be before a certain time. Removing unfailed units from an ex-

periment at a prespecified time is known as time censoring or type I censoring. An experi-

ment that is terminated after a specified number of failures is knows as type II censoring.  

 

3.3.2 Reliability and related functions 

 

The definitions in this section are taken from Meeker and Escobar (1998). In reliability analy-

sis, each individual subject is followed up to some time, at which time either a failure is ob-

served to occur or follow-up is curtailed without observation of a failure. When the time T  of 

a failure is observed to an instant of time, the failure times have a right continuous distribu-

tion function )()( tTPtF ≤= , t >0. The complement of the cumulative distribution function 

is the right continuous survival distribution 

 )()(1)( tTPtFtS >=−=  

and gives the probability of surviving beyond time t . For a continuous distribution the hazard 

function that describes the instantaneous probability of the failure among those still at risk, or 

those still free of the failure, is defined as 

 
)(

)(

)(

)|(
lim)(

0 tS

tf

tTP

tTttTtP
th

t
=

>

>+∆≤<
=

↓∆
, 

where )(tf is the probability density function defined as 

 
dt

tdF
tf

)(
)( = . 
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The quantile pt  is the inverse of the cumulative distribution function and it is the time at 

which a specified proportion p  of the population fails. For 10 << p , the p quantile of )(tF  

is generally defined as the smallest time t  such that  

 ptFtTP ≥=≤ )()( . 

Another important function for the analysis of reliability data is the Likelihood Function. 

The form of the likelihood function depends on the assumed probability model, the form of 

the available data and the question of the study. Assuming n  independent observations, the 

likelihood can be written as the joint probability of the data and it is given by 

 ( ) ( ) ( )∏
=

==
n

i

ii pLCpLpL
1

data;DATA; ( )[ ] ( )[ ]∏
=

−−=
n

i

ii
ii ptFptf

1

1
;1;

δδ
. 

p  is the vector of parameter to be estimated, ( )ii pL data; is the probability of the observation 

i  idata  is the data for observation i ,  C  a constant, ( )ptf i ;  and ( )ptF i ;  are the probability 

distribution function and the cumulative distribution function, respectively, of the specified 

distribution, 

 




=
nobservatio censored-right a is  if    0   

                   failureexact an  is  if    1

i

i

i
t

t
δ . 

Another expression of the total likelihood is 

 ( ) ( )[ ] ( ) ( )[ ] ( )[ ]∏
+

=
− −−=

1

1

1 1DATA,
m

i

r

i

d

ii

l

i
iii tFtFtFtFCpL , 

where  

 ( )∑
+

=

++=
1

1

m

i

iii rdln , 

which id  observations interval censored in 1−it  and it , il  observations left-censored at it  and 

ir  observations right-censored at it . The maximum likelihood estimate of ( )tF  is obtained by 

providing a p  that maximise ( )pL . 

For reliability applications, quantiles, failure probabilities and the hazard function are of 

higher interest than distribution moments. Many of the used statistics are either location-scale 

distributions or closely related. A random variable X  follows a location-scale distribution if 

its cumulative distribution function can be expressed as (Meeker and Escobar, 1998) 

 






 −
Φ=

σ
µ

σµ
x

xF ),;( , µ∈IR and 0>σ , 

where Φ  does not depend on any unknown parameters. µ  is a location parameter and σ  a 

scale parameter. In the following some location-scale distributions are introduced. 
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Exponential Distribution 

 

The exponential distribution occupies an important position in the analysis of reliability data. 

The two-parameter exponential distribution will be written with its cumulative distribution 

function in the form 

 ( ) 






 −
−−=

λ
γ

γλ
t

tF exp1,; , γ>t , 

in which case 0>λ  is a scale parameter and γ  is both a location and a threshold parameter. 

The density distribution function is given by 

 ( ) 






 −
−=

λ
γ

λ
γλ

t
tf exp

1
,;  

and the hazard function is given by 

 ( ) ( )
( ) λγλ

γλ
γλ

1

,;1

,;
,; =

−
=

tF

tf
th . 

The p quantile is given by 

 ( )pt p −−= 1logλγ . 

The mean and variance of T  which follows an exponential distribution are 

  ( ) λγ +=TE  and ( ) 2λ=TVar . 

If we set 0=γ , we obtain the one-parameter exponential distribution, which is the simplest 

distribution commonly used in reliability analysis. 

The hazard function is constant over the time; this means that for a unit still at risk, the prob-

ability of failing in the next small interval is independent of the age of the unit. This charac-

teristic makes that the exponential distribution will not be appropriate for modelling popula-

tion items subject to some combination of fatigue and corrosion like electronic components.   

The likelihood function is given by 

 ( ) ( ) 







−== ∑

=

n

i

i

n

t
tLpL

1

exp
1

,
λλ

λ  

and the maximum likelihood estimator of λ  is 

 ∑
=

==
n

i

in t
n

t
1

1
λ̂ . 
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Weibull distribution 

 

The two-parameter Weibull cumulative distribution function is given by 

 ( )






















−−=

β

η
βη

t
tF exp1,; , 0>t , 

where 0>β  is a shape parameter and 0>η  is a scale parameter. 

The density distribution function is 

 ( )
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


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and the hazard function is 

 ( )
1

,;

−









=

β

ηη
β

βη
t
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The mean and the variance are given respectively by 

 

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where 

 ( ) ( )∫
∞

− −=Γ
0

1  exp dxxxu
u  

is the gamma function. 

The p quantile of the Weibull distribution is given by 

 ( )[ ] βη /1
1log pt p −−= . 

The Weibull distribution can be used to model failure-time data with decreasing or increasing 

hazard function. That is why it can provide reliable models in many empirical studies 

The likelihood function is 

 ( ) ( )




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the maximum likelihood estimates of the parameters are given by 
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and 
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The second equation formula can be solved iteratively and one can show that this equation 

has a unique positive solution. (Meeker and Escobar, 1998) 

 

3.3.3 Comparing survival distributions 

 

 

Comparison of survival distribution is particularly important in industrial experiments where 

groups of items have been randomised to different processes and we are required to make 

inferences about the effect of the processes on reliability. In principle, because survival times 

are not normally distributed, nonparametric tests that are based on the rank ordering of sur-

vival times should be applied. A wide range of nonparametric tests can be used in order to 

compare survival times. We denote the number of survival distributions to be compared by K 

and the corresponding survivor functions by ( ) ( ) ( )tStStS K,,, 21 L . The null hypothesis is 

( ) ( ) ( )tStStSH K=== L210 : , t∀ . 

The following five different (mostly nonparametric) tests for censored data are available: Ge-

han's generalised Wilcoxon test, the Cox-Mantel test, the Cox's F test , the log-rank test, and 

Peto and Peto's generalised Wilcoxon test. In the following, the log-rank test will be pre-

sented. 

 

The log-rank test 

 

In survival analysis, a log-rank test compares the equality of K survival functions by creating 

a sequence of Kx2 contingency tables (K survival functions by failure observed/failure not 

observed at that time) one at each (uncensored) observed event time, and calculating a statistic 

based on the observed and expected values for these contingency tables. This test is also 

known as the Mantel-Cox (Mantel-Haenszel) test. 

Suppose that K=2. Suppose ( ) ( ) ( )mttt <<< L21  are m distinct failure times across two groups 

and that at time ( )jt , jd1  units in Group I failed and jd 2  units in Group II failed, for 
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mj ,,2,1 L= . Also, suppose jn1  units in Group I are still alive just before time ( )jt  while jn2  

units in Group II are still alive just before time ( )jt . Let jjj nnn 21 +=  and jjj ddd 21 += . 

Then, we have the following table,  

 

Group Number of failures 

at ( )jt  

Number surviving 

beyond ( )jt  

Total at risk at ( )jt  

I 
jd1  jj dn 11 −  jn1  

II 
jd 2  jj dn 22 −  jn2  

Total 
jd  jj dn −  jjj nnn 21 +=  

 

Table 3.7:  Contingency table for two groups 

 

Under the null hypothesis of no difference between the groups, all subsets of size jd  of the 

jn  units at risk at ( )jt  are equally likely to comprise the set of failures at this time. Thus, con-

ditionally on jjj ddd 21 += , under the null hypothesis jd1   has a hypergeometric distribution. 

Under the null hypothesis, the mean is given by 

 ( )
j

jj

j
n

dn
dE

1

1 =  

and the variance by 

 ( ) ( )
( )1

2

21

1
−

−
=

jj

jjjjj

j
nn

dndnn
dVar . 

The log-rank test is 

 ( )
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∑

=

=

−

−
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Denoting  

 ( )∑
=

=
m

j

jdEE
1

1  
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the expected number - under the null hypothesis -  if no difference between the groups and

 ∑
=

=
m

j

jdO
1

1  

the observed number of failures in group I, 

L  can be expressed as 

 
( )

( )EOVar

EO
L

−

−
=

2

. 

When the number of failure is not too small, 
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is under the null hypothesis approximately standard normal distributed. Therefore, L  has 

approximately a 2

1χ  distribution (chi-square distribution with one degree of freedom).  

If the number of groups being compared is bigger than 2 (K>2), the log-rank test is based on 

the corresponding Kx2 contingency table at each ( )jt . 

 

Group Number of failures 

at ( )jt  

Number surviving 

beyond ( )jt  

Total at risk at ( )jt  

I 
jd1  jj dn 11 −  jn1  

II 
jd 2  jj dn 22 −  jn2  

... ... ... ... 

K 
Kjd  KjKj dn −  Kjn  

Total 
jd  jj dn −  Kjjjj nnnn +++= L21  

 

Table 3.8:  Contingency table for K  groups 

 

For each ( )jt , the distribution of  ( )T

jKjjj dddD 121 ,,, −= L under the null hypothesis is multi-

variate hypergeometric.  

The log-rank statistic is expressed as 

 ( ) ( )EOVEOL
T

−−= −
rr

1  
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where ∑
=

=
m

j

jDO
1

r

, ∑
=

=
m

j

jEE
1

, ∑
=

=
m

j

jVV
1

. 

jE  and jV  denote the mean and variance-covariance matrix of the multivariate hypergeomet-

ric distribution at each ( )jt . 

If we denote for Ki ,,2,1 L=  and mj ,,2,1 L= , 

ijn  the total of units at risk in ith group at jth ordered failure time, 

ijd  the observed total of failures in ith group at jth ordered failure time, 

ijE  the expected total of failure in ith group at jth ordered failure time, 

 j

j

ij

ij d
n

n
E = . 

 ( )∑
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ijijii EdEO
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( ) ( )
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 ( )ilVV =  1,,2,1 −= Ki L  and 1,,2,1 −= Kl L , 

with 
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ii
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The log-rank statistic is given by 

 ( ) ( )EOVEOL
T

−−= −
rr

1 . 

Under the null hypothesis L  is chi-square distributed with 1−K  degrees of freedom 

( 2

1~ −KL χ ). 

 

3.3.4 Sample size determination procedures 

 

Sample size determination for reliability data is particularly complex. The problem of finding 

the sample size in trials with reliability data reduces to that of determining the length of the 

experiment required to obtain a desired power for an α -level test, where the survival distribu-

tions, accrual rate, follow-up period are specified. 
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In many instances we wish to compare the failure-time distributions between two independent 

groups of subjects or machines or processes, which is done here by comparing the hazard 

rates of the two groups ( Sh  for the standard group and Eh  for the experimental group). 

The null hypothesis to be tested is  

 1:0 =θH , 

against the alternative hypothesis 

 1:1 ≠θH , 

with  

 
S

E

h

h
=θ . 

The computation of sample sizes itself consists of two parts. First, the number of events (fail-

ures, d ) required to detect a certain effect is determined. In the second step the necessary 

sample size is calculated depending on the probability of a failure during the study. 

We assume uniform accrual during the accrual period of A  years and the follow-up period is 

of τ additional years. The probability of a failure is given by 

 ( )∫=
A

dtat tntryandfailurePFailureP
0

  e  )(  

          ( ) ( )∫=
A

dttatentryPtatentryfailureP
0

     |  

        ( )∫−=
A

dttatentryfailurenoP
A

0

   | 
1

1  

         ( )∫ −+−=
A

0

 
1

1 dttAS
A

τ  

         ∫
+

−=
A

duuS
A

τ

τ

)(
1

1 . 

 

One-parameter exponential survival 

 

The exponential distribution is one of the most common life distribution used in reliability 

testing.   It is the only distribution with a constant failure rate function.  The exponential dis-

tribution represents a good model for testing units/products that have no early failures (units 

have passed the burn-in period) and no significant wear-out mechanism. The following dis-
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cussion is based on the work of George and Desu (1974). The design problem is solved by 

making the following assumptions: 

• The survival time distributions for the standard and experimental group are exponential 

with hazard rates Sh  and Eh . 

• Unit accrual follows a Poisson process with rate a  (>0). Therefore the number of units 

entering the experiment will be distributed as a Poisson variable with mean Aa ⋅ . 

• The number of failures in both groups is equal; ddd ES == . 

With the assumption of exponential survival, )exp()( httS −= the probability of a failure is 

given by 

 ( ) ( )( )hAh
hA

duhu
A

failureP

A

−−−−=−−= ∫
+

exp1exp
1

1)exp(
1

1)( τ
τ

τ

.  

The test statistic for the test problem 1:0 =θH  against the alternative hypothesis 

1:1 >θH  is the ratio of the maximum likelihood estimators of the rate parameters  

 

S

E

h

h

ˆ

ˆ
ˆ =θ , 

with ii th /1ˆ = , where it  is the mean survival time in group SEi ,= . 

The test consists of rejecting 0H  if c>θ̂ . One require c such that for the type I error α , 

 ( ) αθθ ==> 1|ˆ cP  

and for the power of the test β−1  at the alternative 1
~

>θ , 

 ( ) βθθθ −==> 1
~

|ˆ cP . 

 

Exact method 

 

It is known that θ̂  has an F distribution with d2  and d2  degrees of freedom (Mace, 1964). 

Therefore, the critical value c of the test statistic is given by 

 ( )ddFc 2 ,21 α−=  

and the power requirement imposes the condition 

( )( ) βθθθ α −==> − 1
~

|2 ,2ˆ
1 ddFP . 

Thus, the required number of failures d  in each group needed to give a power of β−1 at the 

alternative 1
~

>θ   for an α -level test of 1:0 =θH  must satisfy the relation 
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 ( ) ( )ddFddF 2 ,2
~

2 ,21 βα θ=−  

which needs to be solved iteratively. 

  

Approximate method  

 

θ̂log=W  is approximately normally distributed with mean θlog  and variance d/2 . 

For the type I error, we have 

αθ ≤=> )1|( cWP  ⇒  dzc /21 α−= . 

The power at the alternative 1
~

>θ  is 

βθθ −==> 1)
~

|( cWP  ⇒  dzc /2
~

log 1 βθ −−= . 

xz  is the 100x percentile point of the standard normal distribution. 

Equality of the two c  yield the required number of failures d  in each group 

 
( )

2

2

11

)
~

(log

2

θ
βα −− +

=
zz

d . 

The following table shows the difference between the exact and the approximate method. 

 

θ
~

 d  (exact method) d  (approximate method) Difference 

1.1 1886 1886 0 

1.2 516 516 0 

1.3 250 249 1 

1.4 152 152 0 

1.5 105 105 0 

1.6 78 78 0 

1.7 62 61 1 

1.8 51 50 1 

1.9 43 42 1 

2 37 36 1 

2.5 21 21 0 

 

Table 3.9: Difference between the number of failures required to detect a significance differ-

ence using the exact and the approximate method, 05.0=α  and 10.0=β  
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The difference between the exact and the approximate method (as shown in table 3.8) is 

minimal. The approximate method has the advantage that it is easy to compute, although with 

modern computing techniques this advantage is minimal. 

The required duration of the study is computed on the basis of the expected total number of 

failure, given a total sample size of  Aan ⋅= . It is the smallest length of accrual and follow-

up such that 

 
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1
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These minima are obtained for the follow-up 0=τ  and the accrual length A  satisfying  
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The necessary total sample size can be calculated by 
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Schoenfeld and Richter (1982) developed an approximate formula for power and sample size 

of their parametric test statistic. Considering the median survival of the specimens of the two 

groups Em  and Sm , SE mmR /=  can express the difference between the two groups. The 

hypotheses in their development are 

 1:0 =
S

E

m

m
H  and  R

m

m
H

S

E =:1 . 

Assuming an exponential survival distribution for each group with parameters Eλ   und Sλ  

respectively, let it  be the total time on study and id  be the number of failures on group i , 

SEi  ,= . The asymptotic distribution of the test statistic 
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SE

ES

dd

dt
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T
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under the alternative hypothesis is used to obtain, with n  specimens on each group, the fol-

lowing expression for power 

 
( )
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where Φ  is the standard normal distribution function, α  the type I error rate. 

The sample size in each group is computed according to 

  
( )

( )( ) 







+

+
= −−

SE ppR

zz
n

11

ln
2

2

11 βα
. 

ip  is the probability that a specimen in group i  fail in the course of the study and is given by 

 ( ) ( )τiii SAPp −= 1 , SEi  ,= , 

where the survival function of  the exponential in group i , iS  and is given by 

 ( ) ( )








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i
m

S
2ln
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τ

τ . 

The probability that a specimen not failed to the end of the accrual period after entry, iP , is 

given by 

 ( )∫





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 −
−

=−=
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ii
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A
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2ln

2ln
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1
. 

For alternative formulations of this problem, we refer to Schoenfeld (1983), Lachin & Foul-

kes (1986). 

 

Weibull survival 

 

Although an exponential distribution may provide an acceptable approximation to the distri-

bution of survival times over relatively short intervals, the adequacy of the characterization of 

the distribution on more substantial proportion is no guarantee because the hazard function is 

constant over time. Therefore, it may be more flexible to assume the Weibull than the expo-

nential distribution. Thus an extension of the sample size calculations assuming Weibull sur-
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vival can give a better appreciation about the study at the design stage. Based on the devel-

opment of Schoenfeld and Richter (1982) for the exponential case, Moonseong et al. (1998) 

suggested an extension of the sample size formula for the case of the Weibull distribution. 

Assuming the same shape parameter κ  belongs to the two groups, the corresponding survival 

function can be expressed depending on the corresponding median im  as 
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and the corresponding hazard function is given by 
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The shape parameter κ  indicates the degree of acceleration of hazard over time. 

• If 1>κ , the hazard accelerates. 

• If 1<κ , the hazard decelerates 

• If 1=κ , the hazard is constant, which is the case of the exponential distribution. Thus 

the exponential distribution is a special case of the Weibull distribution.  

Another important and well known relationship between the two distributions is the follow-

ing: If the survival time T   is Weibull distributed, κT  is exponentially distributed. Therefore, 

because of the test problem 

 1:0 =
S

E

m

m
H  and  R

m

m
H

S

E =:1  

under the Weibull distribution, the alternative  hypothesis becomes equivalent to  
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The sample size formula developed by Schoenfeld and Richter (1982) can be found by replac-

ing R  by κR . 

 
( )

( )( ) 







+

+
= −−

SE ppR

zz
n

11

ln
22

2

11

κ
βα

. 

ip  is the probability that a specimen in group i  will fail in the course of the study and is 

given by 

 ( ) ( )τiii SAPp −= 1 , 

where iS  is the survival function of  the Weibull in group i , and the probability that a speci-

men not failed up to the end of the accrual period after entry, iP , is given by 



ADAPTIVE SAMPLE SIZE CALCULATION FOR INDUSTRIAL EXPERIMENTS  

 

38 

 ( ) dv
m

vA

A
dvvAS

A
P

A

i

A

ii    2lnexp
1

      
1

00

∫∫ 




















 −
−=−=

κ

, 

which can be solved by numerical integration. 

The power can also be derived and is given by 
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In the following, we investigate the effect of the shape parameter on the power calculation. 

The parameters are set as follows: 

• The ratio R  is between 1 and 1.5. 

• The accrual period is 2 months and the follow-up period is for 3 additional months. 

• The shape parameter in both groups is =κ 1, 2, 3. 

• The median for the standard group is 1=Sm . 

• 100=n  and 05.0=α . 

The computation is made in Mathematica 4. Figure shows the power curve of the test for the 

tree values of the shape parameter =κ 1, 2, 3. (blue colour for 3=κ , red colour for 2=κ  

and green colour for 1=κ  or exponential survival). The power is increasing in κ  for any 

value of R . It clearly indicates that the power depends on the shape parameter κ . This pa-

rameter must be identified correctly when the underlying distribution of the survival is 

Weibull. A reason for this dependency is the fact that when the hazard rate increases, a small 

difference of the median induces a greater power or a small sample size when the distribution 

is Weibull. 
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Figure 3.4: Power curves for =κ 1, 2, 3. 

 

With the same specifications for the parameter, we computed the sample size required to ob-

tain a power of 0.9 for the test problem. The computation is done with Mathematica 4 and the 

results are summarized in Table 3.10. We can observe very important changes on the sample 

size for varying R  and κ . The required sample size is decreasing in κ . This implies that the 

difference of the expected number of failures between the ratios during the study is increasing 

in κ . These indicate that the required sample size depends on the shape parameter as deduced 

from the power comparison above. 
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R  κ  n  

 1 7755 

1.05 2 1802 

 3 800 

 1 2043 

1.1 2 473 

 3 210 

 1 955 

1.15 2 220 

 3 98 

 1 565 

1.2 2 130 

 3 58 

 1 379 

1.25 2 87 

 3 39 

 1 276 

1.3 2 63 

 3 28 

 1 212 

1.35 2 48 

 3 22 

 1 170 

1.4 2 39 

 3 17 

 1 144 

1.45 2 32 

 3 14 

 1 119 

1.5 2 27 

 3 12 

 

Table 3.10: Comparison of the sample size per group for different values of R  and κ . 



ADAPTIVE SAMPLE SIZE CALCULATION FOR INDUSTRIAL EXPERIMENTS  

 

41 

Sample size based on the log-rank statistic 

 

Schoenfeld (1981) and Freedman (1982) presented a sample size formula for comparing two 

survival distributions using the log-rank test.  Their methods are based on the asymptotic ex-

pectation and variance of the log-rank statistic. But the conditions under which they derived 

their formulae are very restrictive. Lakatos (1988) extends Freedman’s approach by modelling 

the survival curves that one could expect under very general conditions using a stochastic 

process. To calculate the sample size, he then used the asymptotic expectation and variance of 

the log-rank test applied to those curves. In the following, the sample size provided by Laka-

tos (1988) will be presented, beginning with the basic nonstationary Markov process. 

 

The basic Markov process von Lakatos 

 

We consider an industrial experiment that compares two production processes or groups (ex-

perimental and standard processes) in which each specimen is randomised into one of the two 

groups. In this nonstationary Markov process the experimental and the standard groups are 

modelled separately. Each specimen randomised to the experimental group is considered to be 

a complier initially and is in the state EA . The probability of having a failure in a giving pe-

riod of time is EP . Thus as the experiment progresses, a transition to a different state occurs. 

If a specimen has a failure, it is transferred to a state E. Those specimens who become lost to 

follow-up and can not be followed for the failure of interest or competing risk are transfered 

to state L. If the specimen no longer complies with the experimental processes, it is trans-

ferred to the state CA .  Assuming that there is no time lag in the effectiveness of the processes 

at a given time, t , a specimen is in one of the four states ( )CE AAEL ,,,  with the correspond-

ing vector of occupancy probabilities tD . The basic initial distribution is 
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In the discrete formulation, the transition matrices kkT ,1−  are constructed such that ( )21,1 , sst kk −  

is the probability of transferring from state 1s  to state 2s  during the time interval [ ]kk tt ,1− . 
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1,1 −−=

kk tkkt DTD , mk ,,2,1 L= , 

where mt  is the end of the experiment. This model provides a sequence of m distribu-

tions{ }mkD
kt

,,2,1   , L= . 

Transitions can take place at any time. The probability of failing in the interval [ ]kk tt ,1−  is 

 
)(

)(1

1−

−

k

k

tS

tS
  

with (.)S  denoting the cumulative survival distribution function. This cumulative survival 

distribution can take any form.  A continuous process can be approximated by replacing each 

transition matrix T  by ∏
=

I

l

lT
1

, where each time specimen has been divided into I equal inter-

vals, and each off-diagonal element of lT  is given by an appropriate term of the form 

 
)(

)(1

1−

−

l

l

tS

tS
. 

For constant hazard rate within each time specimen, this amounts to replacing each off-

diagonal entry y  in T  by 

 ( ) Iy
1

11 −− . 

 

Derivation of sample size formula 

 

We begin by introducing the formula of the total number of failures d  derived by Freedman 

(1982). This formula is derived by considering the expectation and the variance of the log-

rank statistic. We know that the log-rank statistic  
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under the null hypothesis is approximately standard normally distributed. If we consider a 

constant hazard ratio θ  (the ratio of the hazards in the two groups does not change with time), 

then the expectation and the variance of the statistic T  are  
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where jφ  denotes the ratio of the units at risk in the two groups before the jth failure. Under 

the assumption that the ratio of the number of unit in each group at risk just before each fail-

ure is equal to 1 ( 1=jφ ), this is 

 ( )
1
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θ
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Therefore, using the fact that the log-rank statistic is asymptotically normally distributed, one 

may show that the total number of failures required to give a power of  β−1   at the alterna-

tive 1>θ  for an α -level test is given by 
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This equation yields 
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which is the formula usually used for practical applications. 

 

If we considered the Tarone-Ware statistic which is expressed as 
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where jw  is the jth Tarone-Ware weight. If we divide the experiment in I  independent time 

intervals, the expectation can be written as 
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where  

ld  is the number of failure in the l th interval, 

ljw  is the j th Tarone-Ware weight in the l th interval, 

jlφ  is the ratio of items in the two groups at risk just prior to the j th failure in the l th interval, 

jlθ  is the ratio of the hazard in the two groups of failing just before the j th failure in the l th 

interval. 
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When ljw =1 for all l and j, the log-rank is obtained. Assuming constant ratio of units under 

risk before failure j in the lth interval, ljl φφ =  , the expectation of the log-rank statistic can be 

written as 
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Letting 
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Denoting 
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the expectation of the log-rank statistic can be written as 

 ( ) ( ) dDETE W = . 

Using the asymptotic normal distribution of the log-rank with expectation ( )WTE  and vari-

ance one, we have for an α -level one-sided test to achieve a power of β−1  
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Therefore ( )(DE  is independent of ld  and d ) 

 ( ) ( ) dDEzzTE W =+= βα   ⇒  
( )DE

zz
d

βα +
=

∑

∑

=

=

+
=

I

l

ll

I

l

ll

zz

1

1

ηρ

γρ

βα
 

and 

 

( )
2

1

1

2










+
=

∑

∑

=

=

I

l

ll

I

l

llzz

d

γρ

ηρβα

. 

 

The quantities lρ  , lγ , lη  can be easily determined from the sequences of vectors of occu-

pancy probabilities under the Markov model. 

The required total sample size is determined using the cumulative failure rates SP  and EP  

from the final distributions of the Markov model: 
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4 Sample size adaptation methods 

 

We saw in chapter 3 that in case of normally distributed outcomes, the sample size is deter-

mined by the type I and type II error rates, the effect size and the variance of the outcomes. 

The variance is generally unknown at the design stage of the study and it is often the case that 

the variance will be estimated based on the past studies. However, due to many factors influ-

encing the study conditions like equipment and population, there is still uncertainty about 

whether the assumed value of the variance is appropriate for the current study. An approach to 

solving this problem consists of conducting a pilot study whose primary purpose is to provide 

a data-based estimate of the variance of the outcomes. Wittes and Brittain (1990) provided a 

specific plan to design such pilot studies and for incorporating the data from the pilot phase 

into the final study results. In this work, we deal with the internal pilot study approach pro-

posed by Wittes and Brittain (1990). Another approach will be the self-designing method 

proposed by Fisher (1998). This method consists of using all information available prior to a 

stage to estimate the sample size and the weight for the next step of the experiment. Shen and 

Fisher (1999) gave a method to construct the final test statistic based on the weighted average 

of the sequentially collected information for the case of normal variables with known vari-

ances.  Hartung (2001) presented a completely self-designing rule by taking the inverse nor-

mal transformation of the p-values within the classical Pocock (1977) design. Hartung and 

Knapp (2003) proposed a flexible effective and adaptive method that allows for a completely 

self-designing of a group sequential experiment and a decision about stopping for significance 

of the sequential test results at each stage. All those approaches will be used in this work for 

further investigations. The self-designing method is a little bit different for the classical group 

sequential design where we have to test the null hypothesis for rejection after each stage. Po-

cock provided clear lines for group sequential tests with given type I error and power. 

O’Brien and Fleming (1979) proposed an alternative to Pocock’s repeated significance tests. 

By the classical group sequential design, there is no possibility to change the maximum sam-

ple size to obtain the desired power. Therefore, a flexible design combining the advantages of 

group sequential and self-designing methods is of interest. In the following, methods of inter-

nal pilot study and self-designing are presented. We also introduce a method of combining the 

classical group sequential method and the adaptive self-designing method of Hartung (2001) 

and compared the performance of the proposed method with the adaptive self-designing me-

thod of Hartung. 
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4.1 Internal pilot study 

 

The general procedure for internal pilot study can be described as follows: 

• A reasonable guess 0σ  of the variability is used to calculate a preliminary sample size 

per group 0n .  

• After observation of 01 nn ≤ units per group, we use these observations to obtain an 

update estimate 1σ  of the variability. The new estimate, is employed in the sample size 

formula to obtain an updated sample size per group n̂ . 

• The final sample size per group fn  is chosen. 

• After observation - if necessary - of 12 nnn f −=  more units per group, the hypothesis 

test is performed using all the fn  observations per group. 

This procedure is also called the two-stage design. It has been introduced by Stein (1945). 

Stein’s procedure uses only the pilot variance estimate in the final statistic. Accordingly, Wit-

tes and Brittain (1990) proposed a two-stage design like Stein’s, but using the t-test at the end 

of the study (all the data are used for the final variance estimate). 

 

4.1.1 The proposal of Wittes and Brittain 

 

We used the same notation as in section 3.1. The internal pilot study approach proposed by 

Wittes and Brittain (1990) proceeds as follows. 

• A preliminary sample size 0n  per group is computed by using a reasonable guess of 

the variance 0σ . 

• After observation of 01 nn ≤ units per group, we use these observations to obtain an 

update estimate 1σ  of the variability. This estimate of the variability  is obtained by 

computing  the observed variance within each group and pooling them: 

2
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• The new estimate of the variance is employed in the sample size formula to obtain an 

update sample size per group n̂ : 
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• The final sample size per group fn  is chosen equal to )ˆ,max( 0 nn  

• After observation if necessary of 12 nnn f −=  more units per group, the hypothesis test 

is performed using all the fn  observations per group. The test statistic is expressed as 

f

SEf

S

XXn
T

−
=

2
, 

where fS  is the pooled variance estimate using all the fn  units per group and EX  and 

SX  are computed using all the fn  units per group. 

• 0H  is rejected for )1(2,2/1 −−>
fntT α . 

For Wittes and Brittain procedure, the final sample size per group fn  should not be smaller 

than the originally planned sample size. Birkett and Day (1994) pointed out that this could 

result in an unnecessarily large sample size if the prior estimate of the variance 0σ  is too 

large. They proposed the rule ( )nnn f
ˆ,max 1=  so that the final sample size cannot be smaller 

than the size of the internal pilot study. 

Simulations done by Wittes and Brittain (1990) and later by Birkett and Day (1994) show that 

the type I error rate may exceed the nominal level. Wittes et al. (1999) conducted the type I 

error rate using numerical integration and their proposed adjustments. Denne and Jennison 

(1999) proposed a test based on Stein’s two-stage test by using an internal pilot study to esti-

mate variance and thus the final sample size. Kieser and Friede (2000) quantified the maxi-

mum excess of the type I error rate for normally distributed outcomes. 

 

4.1.2 Choice of the pilot sample  

 

The choice of the sample size of the pilot study is very important for the experiment. Low 

pilot sample, which represents adaptation early in the course of the experiment, has the advan-

tage of allowing timely reallocation of resources to the study, but it may lead to an imprecise 

estimate of the variance. Large pilot sample on the other hand has the benefit that one can 

estimate the variance quite precisely, but it may be impractical for economic or logistical rea-

sons.  

For the choice of the pilot sample, many proposals have been done by the researchers.  

For the Stein’s two-stage design, Seelbinder (1953) applied the minimax principle. He sug-

gested that 1n  should be chosen to minimise the maximum of ( ) nnE −ˆ  over some range of 
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values of σ . Following the same target, Moshman (1958) proposed a rule that not only keeps 

( )nE ˆ  small, but also the probability of an extremely large total sample size, over some range 

of values of σ . In order to control the relative weight given to each of the desired features, he 

included an additional parameter and suggested that this parameter should be chosen inde-

pendently from statistical considerations. Wittes and Brittain (1990) for the simulation studies 

used 01 5.0 nn = . Sandvik et al. (1996) proposed a method which aims to make the pilot as 

large as possible whilst controlling the probability of the pilot being larger than the appropri-

ate fixed sample size. These methods require a pre-estimate of the true variance gain from the 

experiment. Denne and Jennison (1999) proposed a rule for choosing the size of the internal 

pilot which also requires some pre-study knowledge about likely values for the true variance. 

They took a value that minimises the ratio  ( ) nnE /ˆ  for the true values of the variance and 

they proposed a strategy of finding a value for this ratio that is near to the minimum. 

 

4.2 Self-designing method  

 

We consider a balanced experiment comparing two production groups with independent nor-

mally distributed outcomes with expectations Eµ  for the experimental group and Sµ  for the 

standard group, and with common variance 2σ . EX  and SX  denote the normally distributed 

outcome of interest for the experimental and standard production groups respectively. 

SE µµθ −=  is the parameter of interest  and we desired to conduct an α -level test for the 

null hypothesis 0:0 =θH  against the one-sided alternative 0>θ . As developed in section 

3.1, the expression for the required sample size per group nnn ES ==  to give a power of 

β−1  when θθ
~

=   is 

 
( )

2

22

~
2

θ

σβα zz
n

+
= . 

Suppose that after observation of a fraction r  of the planned sample size n ,  the difference in 

means θθθ
~~

<= r , then after observing all the n  units, the conditional power is low if the 

true effect size is rθ
~

 rather than the hypothesized θ
~

 and it is unlikely that 0H  will be re-

jected. The sample size per group we would have required to give a power of β−1  at the 

alternative rθθ
~

=   is ( ) nr

2~
/

~
θθ , so that one may wish to increase the sample size to meet this 

condition. Therefore under 0H  the final test statistic Z  will not follow a normal distribution 
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because it is a function of the first stage data and the test that reject 0H  when αzZ >  does 

not have the level α . Fisher (1998) proposed a method which allows changes to the sample 

size at an interim analysis while still preserving the type I error rate. In the following, the 

proposal of building the test statistic of Shen and Fisher (1999) is presented. This proposal 

follows the general setting of self-designing trials introduced by Fisher (1998). This will be 

followed by the self-designing method of Hartung (2001). 

 

4.2.1 The proposal of Shen and Fisher 

 

The experiment is divided into an infinite number of stages. The maximal size sample pro 

group of each stage { }L,2 ,1  , =lK l  of the experiment is fixed for the beginning. As men-

tioned above the aim is to test the null hypothesis 0:0 =θH  against the one-sided alterna-

tive 0>θ . We denote lEX ,  and lSX ,  the means of the experimental or standard group in the 

l-the block with size lK  respectively and the difference of the means in the l-the block 

lSlEl XXX ,, −= . The test statistic of the l-the block of data is given by 

 
σ

lSlEl

l

XXK
Z

,,

2

−
= . 

The mean of lZ  is  

 
σ
θ

2

lK
 

and the variance is one.  The final test statistic Z  has the form 

 ∑∑
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where the nonnegative weights lw  are functions of  11 ,, −lZZ L . With probability one, there 

exists a positive finite random number L  such that 

 1
1

2

1

2 ==∑∑
=

∞

=

L

l

l

l

l ww  ( Llwl >∀=     0 ). 

Theorem 1 of Fisher (1998) states that under the null hypothesis Z  is standard normally dis-

tributed. Therefore the weights affect only the variance of the test statistic and not the mean. 

At a given level α  of the test, the null hypothesis 0H  is rejected, if αzZ >  . The weight at 

the l-the stage is computed based on the accumulated data prior to the l-the stage and 1w  is 

estimate from the initial design parameters. That implies the weight at each stage will be de-
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termined iteratively. The decision of going to the next stage or stopping the experiment will 

be taken using a lower stopping boundary )(lz . The experiment will be stopped at the l-the 

stage if 

 ( )lz
N

Z
K

l

j l

j

j <∑
=1

, 

where )(lz  is a lower stopping boundary and  
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=

=
l

j

jl KN
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, 

otherwise the procedure will be continued as long as  

1
1

2 <∑
=

l

j

jw .  

There is not a rule for the selection of  )(lz , that is why this selection is based on subjective 

opinion. Because the weight functions are constructed iteratively, we need a weight for the 

first stage. This can be obtained using pre-specified design parameters. The weight for the 

first block can be chosen equal to 
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where the minimum fixed sample size per group 1n  to achieve a power of β  at the alternative 

θ
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 is given by 
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The additional sample size at the l-the stage to ensure a power of β−1  given the observations 

up to stage 1−l  can be obtained by solving the following equation for ln  
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where ∗
lX  is the mean difference of two groups in ln samples per group, 1

~
−lθ  is the sample 

mean up to the l-1-the stage. 
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where Φ  denotes the cumulative distribution function of the standard normal distribution. 

The additional sample size per group in the l-the stage to ensure power of β−1  is then given 

by 
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and the weight at the i-the stage is defined to be 
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Another proposal is the following class of weight function with the particularity that the early 

stages have more weight. The weight at the first stage is defined above and the later one are 

given by 
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For logistical and economical reasons, it may be necessary to allow early termination of the 

experiment and “failed to reject” 0H . Explicitly, we will continue the experiment as long as 

 ( )lz
N

Z
K

l

j l

j

j >∑
=1

 and ml < . 

If  

 ( )lz
N

Z
K

l

j l

j

j ≤∑
=1

, 

then stopped the experiment without rejecting 0H  and set ml = . 

The lower boundary ( )lz  at the l-the stage is the Wald-type constant likelihood boundary and 

is given by 

 ( )
l

l

NC

NC
lz










−
+=

α
β

1
log

2
, 

where lNC  denotes the noncentrality parameter which is 

 
σ
θ
~

2

l

l

N
NC = . 

 

4.2.2 The proposal of Hartung  

 

The aim is to test the null hypothesis 0:0 =θH  against the one-sided alternative 0>θ . The 

experiment is formally divided into an infinite number of   disjoint stage LL  , , ,2 ,1 l . Only a 

random finite number of stages will be observed according to a self-designing procedure. ln  

specimens are enrolled in the experiment and randomised across the two production groups in 

the stage l . Based on their responses the test statistic lT  of the l the stage is computed. 
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Under the null hypothesis, lT  has a continuous distribution function 0,lF . Therefore, the p-

values 

 ( )
lkl TFp 0,1−=  

are uniformly distributed on the interval ( )1,0 , such that  

 ( )ll pu −Φ= − 11  

is normally distributed with mean 0 and variance 1, where 1−Φ  denotes the inverse of the 

standard normal distribution function Φ . The final test statistic U  has the form 

 ∑∑
∞

==

==
11 l

ll

L

l

ll uwuwU  ( Llwl >∀=     0 ), 

where the nonnegative weights lw  are functions of  11 ,, −luu L . With probability one, there 

exists a positive finite random number L  such that 

 1
1

2

1

2 ==∑∑
=

∞

=

L

l

l

l

l ww .  

Theorem 1 of Fisher (1998) states that under the null hypothesis U  is standard normally dis-

tributed. Therefore the weights affect only the variance of the test statistic and not the mean. 

At a given level Gα  of the test, the null hypothesis 0H  is rejected, if ( )GU α−Φ> − 11 . 

If the number of specimens in the l th stage  ln  are determined upon knowledge of the previ-

ous study stages, the distribution of the lu  and the independence of  kl uu , , kl ≠  still holds. 

Given the global type I and II error rates GG βα , , the number of specimens in the first stage 

1n , 1w 1≤ , the type II error rate gβ for generating the sequential additional number of speci-

mens ln 1
ˆ −= ln , 2.0≥gβ  and can also be determined as a function of l , the self-designing 

rule is characterized by the formula 

 ( )
LgGG ßwnRR αεβα ;,;; ;, 11= , 

where ε  is a lower bound for the weights lw , that is lw≤ε  and Lα  as defined by ( )Lα1−Φ , 

is a lower bound for 

 ∑
=

l

j

ju
l 1

1
. 

6.0=Lα  or ( )lLL αα = , increasing with l  starting even at zero. The notation 1
ˆ −= ll aa  indi-

cates that la  is estimated upon all the knowledge obtained in the previous study stages before 

the beginning of stage l . If 
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 ( )
L

l

j

ju
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α1

1

1 −

=

Φ≤∑ , 

0H  is not rejected and the experiment stops at that stage.  

Now, let jjj upw ,,  be given for 1,,1 −= lj L , with 

∑
−

=
− =

1

1

1

l

j

jjl uwU , 

then if for stage l  in the equation 
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we put Gββ =  and  
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we would have 

 1
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,

1

1

2 =+∑
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=
Gl

l

j

j ww  

and the final test statistic 

 ( )
GlGllGl uwUU β⋅+= − ,1,  

would hold level Gα  and power Gβ−1  conditional on 0ˆ
1 >−lθ .  ( )Glu β  results from ( )Gln β  

specimens in stage l . If we put Gg βββ >= , we take Glgll www ,, <=  so that the experiment 

does not stop after stage l , when the test results obtainable with ( )
gln β  specimens of 

( ) ( )
glGl nn ββ >  specimens in stage l  is reduced. Therefore, letting  

( )lgg ββ = G
Ll

β
→
→ , 

the termination of the experiment can be accelerated. 

The potential additional number of specimens lm  and lM  for stage l  are defined by Hartung 

(2001) as 

 ( )
glll pSm β,ˆ=  and ( )Glll pSM β,ˆ= , 

where 
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and ( )βα ,lSq =  means that q is the smallest, finite number such that in a sample of size q  

the test of 0H  by the statistic lU  has level α  and power β−1 , 1
ˆ

−lθ  given. 

For power Gβ−1  these potential additional number of specimens in stage l  would lead to the 

levels ( )ll mα̂  and ( )ll Mα̂  respectively, given by the following implicit equations 

 ( )( )Gllll mSm βα ,ˆ=  and ( )( )Gllll MSM βα ,ˆ= , 

lm  and lM  given. 

Defining the weight function lW  by 
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,  111 ≤= wW  given,   (4.2) 

the weight lw  and the additional number of specimens ln  in stage l  are then given respec-

tively by 
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and 
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     if     

.        (4.4) 

If  ε<lW , then put Ll =  and the experiment stops at the L th stage. With ln  specimens in 

the l th stage, the test statistic lT  and p-value lp , we obtain the intermediate result 

 ( )llll pwUU −Φ+= −
− 11

1  

or for Ll =  the final result LU .  

 The adaptation procedure can be summarized as follows: 

1. Define the global type I and II error rates Gα  and Gβ , the type II error rate gβ  for 

generating the sequential  number of specimens ln ,  the lower bound ε  for the 

weights lw  and finally Lα . 

2. Choose the starting configuration 1n  and 1w  for the first stage. 

3. After study  part “stage l ” 1≥l , calculate lT , lll upw ,, ,  
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∑
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 If 

  ( )
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=

Φ≤∑ , 

0H  is not rejected and the experiment stops at that stage. 

If 

  ( )
L

l

j

ju
l

α1

1

1 −

=

Φ>∑ , 

then go to the next step. 

4. Compute the weight function 1+lW  and finally the weight 1+lw  and the number of 

specimens 1+ln  for stage 1+l . 

5. If ε<+1lW , the study stops and 0H  is rejected, if the final test statistic 

( )GU α−Φ> − 11 .  If ε≥+1lW , then go to step 3 and replace l  by 1+l .  

 

4.3 Combining the adaptive self-designing of Har-

tung with the classical group sequential design 

 

The following discussion is based on the idea of Yin and Shen (2005). We consider a bal-

anced experiments comparing two production groups with independent normally distributed 

outcomes with expectations Eµ  for the experimental group and Sµ  for the standard group, 

and with common variance 2σ . EX  and SX  denote the normally distributed outcome of in-

terest for the experimental and standard production groups respectively. SE µµθ −=  is the 

parameter of interest  and we wish to conduct an α -level test for the null hypothesis 

0:0 =θH  against the one-sided alternative 0>θ . 

By the self-designing method, we only have the possibility to stop the experiment for futility 

and not for efficacy like in group sequential method. The null hypothesis is tested for rejec-

tion only at the final stage. We investigated the fact of introducing one more interim analysis 

into the self-designing procedure of Hartung (2001), using techniques of group sequential 

method for early stopping for efficacy. Let us make a short review of classical group sequen-

tial design. 
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4.3.1 Classical group sequential design 

 

We denote lEX ,  and lSX ,  the means of the experimental or standard group in the l-the stage 

respectively and the difference of the means in the l-the stage lSlEl XXX ,, −= . The maxi-

mum number of stages to be performed L  is prespecified at the beginning of the experiment. 

The test statistic of the l-the stage of data is given by 

 ∑
=

−⋅
=

l

i

iSiE

l

XXni
T

1

,,

2 σ
.  

At the l-the stage, 1,2 ,1 −= Ll L , the null hypothesis 0H  is rejected and the experiment is 

stopped if ll bT ≥  for a properly chosen boundary lb . Otherwise the null hypothesis is not 

rejected and the experiment continues to stage 1+l . At the last stage L , the null hypothesis is 

rejected if LL bT ≥ , otherwise, the null hypothesis is not rejected. 

Now, how do we choose the boundaries lb , Ll ,2 ,1 L=  so that the overall significance level 

is α ? Of interest is the probability of rejecting the null hypothesis when it is true to be α .  

The testing procedure will have level α  if the boundaries are chosen such that under the null 

hypothesis, 

 { } α−=<<< 1,,, 2211 LL bTbTbTP L . 

Two boundaries have been discussed extensively in the literature. Those are the Pocock 

boundary; Pocock (1977) and the O’Brien and Fleming boundary; O’Brien and Fleming 

(1979). The Pocock boundary used the same critical value at each stage (Reject 0H  at stage l  

if Pl bT ≥ ) and the O’Brien and Fleming boundary used smaller critical value at each stage  so 

that it is hard to reject the null hypothesis early in the study and the final test as similar as 

possible to a fixed sample test (Reject 0H  at stage l  if lbT OFl /≥ ). 

Values of Pb and OFb  are obtained for given α and L . 

 

4.3.2 Adaptation procedure 

 

In the self-designing procedure, the experiment can be terminated at the second stage due to 

futility or spending all the weight. Therefore we have to perform only one interim analysis 

after observing the data of the first stage and the second and last efficacy test at the end of the 

experiment. After observing the data of the first stage, we compute the test statistic 1T  . 
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• If ( )LT α1

1

−Φ< , 0H  is not rejected and the experiment stops. 

• If 11 bT ≥ , 0H  is  rejected and the experiment stops 

If  ( )LT α1

1

−Φ≥  and 11 bT < ,  then go to the next step. 

• Compute the weight function 2W  and finally the weight 2w  and the number of speci-

mens 2n  for stage 2. The procedure continues normally as described in the last section 

where only a stop for futility is applied at the end of the observation of the data of 

each stage. 

 

4.3.3 A simulation study 

 

The operating characteristic of the new design is compared by simulation to those of the self-

designing of Hartung (2001) in terms of empirical size, empirical power, average sample 

number and the number of stages performed. We want to detect an improvement of 5.0  in the 

difference of the means of the experimental and the standard group. In the adaptive self-

designing of Hartung, the parameters are set as follows: 05.0=Gα , 6.0=Lα , 1.0=Gβ , 

1.0=ε , 2=σ , 2/1 Nn =  = 138, where N is the sample size for the fixed-sample design 

when θ  is correctly specified, 8/1min nn = , 2/21 =w . The upper bounds for the sample 

size spending functions lm  and lM  are set to 275 in a first time and 200 in the second time, 

corresponding to two different strategies. For the new design, the Pocock boundary (Design 

1) and the O’Brien and Fleming boundary (Design 2) are used for stop for efficacy at the end 

of the first stage. Specifically for 05.0=α  and 2=L , the Pocock boundary is 178.21 =b and 

the O’Brien and Fleming boundary is 797.21 =b . θ  vary from 0.1 to 0.7 under the alternative 

hypothesis. For each case, 100000 independents replications were performed. The results of 

the simulations are summarized in table 4.1 and table 4.2 for the two strategies, respectively. 
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                      Hartung (2001) Design 1 Design 2 

θ  Size ASN Stage Size ASN Stage Size ASN Stage 

0 0.044 257.7 1.6 0.050 254.7 1.5 0.043 257.5 1.6 

                         

θ  Power ASN Stage Power ASN Stage Power ASN Stage 

0.1 0.16 307.2 2.0 0.17 299.6 1.9 0.16 305.6 2.0 

0.2 0.38 341.9 2.6 0.40 329.8 2.2 0.38 340.8 2.5 

0.3 0.63 348.6 3.1 0.65 329.0 2.5 0.63 344.9 3.0 

0.4 0.81 327.4 3.4 0.84 300.6 2.5 0.82 320.5 3.2 

0.5 0.90 290.3 3.5 0.93 256.8 2.3 0.92 279.0 3.0 

0.6 0.94 250.9 3.3 0.97 214.9 1.9 0.96 235.2 2.7 

0.7 0.96 216.7 3.0 0.99 180.4 1.6 0.98 197.8 2.2 

 

Table 4.1: Empirical Size (Size), Empirical power (Power), Average sample number (ASN), 

Number of performed stages (Stage) for different design methods with the strategy 275≤lM , 

275≤lm . 

 

                      Hartung (2001) Design 1 Design 2 

θ  Size ASN Stage Size ASN Stage Size ASN Stage 

0 0.045 224.5 1.6 0.051 221.5 1.5 0.046 224.2 1.6 

                          

θ  Power ASN Stage Power ASN Stage Power ASN Stage 

0.1 0.14 261.2 1.9 0.16 255.7 1.8 0.14 260.7 1.9 

0.2 0.33 290.3 2.4 0.35 279.0 2.1 0.34 288.5 2.3 

0.3 0.57 300.9 2.9 0.60 282.3 2.3 0.58 297.8 2.8 

0.4 0.77 291.93 3.2 0.80 266.0 2.3 0.78 284.8 3.0 

0.5 0.88 267.6 3.3 0.92 235.5 2.1 0.90 257.0 2.9 

0.6 0.93 238.2 3.2 0.97 203.1 1.8 0.95 223.3 2.6 

0.7 0.95 211.1 3.0 0.99 174.8 1.5 0.98 192.4 2.2 

 

Table 4.2: Empirical Size (Size), Empirical power (Power), Average sample number (ASN), 

Number of performed stages (Stage) for different design methods with the strategy 200≤lM , 

200≤lm . 
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The simulations suggest that under the null hypothesis, the new designs yield a test with the 

specified size and use quite the same sample size as the self-designing of Hartung. Evidently 

the empirical size by Design 2 (O’Brien and Fleming boundary) is larger than by Design 1 

(Pocock boundary) because of the more stringent stopping conditions of the O’Brien and 

Fleming procedure at early stages. The fact of using different upper bound for the sample size 

function lm  and lM  does not have important impact on the size property of all the designs. 

The largest difference between the size is observed by Design 2 with values of 0.043 (strategy 

275≤lM , 275≤lm )  and 0.046  (Strategy 200≤lM , 200≤lm ). Under the alternative hy-

pothesis, the new designs for both strategies lead to a gain of power near the adaptive self-

designing of Hartung with smaller sample size. The difference between the power is larger 

when the true difference between the means is underestimated as when the true underlying 

difference between the means is overestimated. A larger upper bound for the sample size 

functions lm  and lM  results in a larger power. It is not surprising that the number of per-

formed stages in the new designs is smaller than in the design Hartung due to the fact that the 

first one results by the insertion of another stopping rule in the later one. The choice of the 

strategy has no relevant influence in the average number of stages to be performed.  
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5 Sample size adaptation for the one-sided equiva-

lence test 

 

We consider experiments comparing two production groups with independent normally dis-

tributed outcomes with expectations Eµ  for the experimental group and Sµ  for the standard 

group, and with unknown but common variance 2σ . For simplicity and without loss of gen-

erality we consider a balanced design, which is an equal sample size in both production 

groups with a total of N  observations. 

Let EX  and SX  designate the normally distributed outcome of interest for the experimental 

and standard production groups respectively. For equivalence testing, it is reasonable to as-

sume that the sign of the corresponding population means Eµ  and Sµ  are both positive. 

Recall that for the additive model, SE µµθ −= , the one-sided-equivalence hypotheses are 

typically as follows: 

 aSEH δµµ ≥−:0  versus    aSEH δµµ <−:1 . 

The test statistic involved is the usual statistic for testing the difference between two popula-

tion means with unknown variance. For the first one-sided test, the test statistic is 

 
p

aSE

a
S

XXN
T

δ−−
=

4
,        (5.1) 

where S  is the pooled standard deviation of the two samples, EX  and SX  the sample means 

of the experimental and standard production group.  

The null hypothesis can be rejected at level α  if  2,1 −−−≤ Na tT α  where 2,1 −− Nt α  is the )1( α−  

percentile of the central −t distribution with 2−N  degrees of freedom. 

The sample size per group required for the rejection of 0H  to give a power β−1  of an α -

level test at a specified alternative SEa µµθ −=
~

 is expressed as 

 
( )

( )2

22

~2

aa

zz
n

δθ

σβα

−

+
= .         (5.2) 

In the following, two methods of sample size adaptation are presented. The first using the 

internal pilot study procedure and the second the self-designing procedure 
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5.1 Sample size adaptation using internal pilot study 

 

The sample size adjustment procedure considered for our investigation can be described as 

follows: 

• A reasonable guess of the variability is used to calculate a preliminary sample size per 

group 0n . To do this, we replace the population standard deviation σ  in the formula 

(5.2) by an estimate 0σ . 

•  After observation of 01 nn ≤ units per group, we use these observations to obtain an 

update estimate 1σ  of the variability. The new estimate, respectively, is employed in 

the sample size formula (5.2) to obtain an update sample size per group n̂ . 

• The final sample size per group fn  is chosen equal to )ˆ,max( 0 nn  if the final sample 

size can not be lower than initially planned (Wittes and Brittain, 1990) or equal to 

)ˆ,max( 1 nn  as proposed by Birkett and Day (1994). After observation if necessary of 

12 nnn f −=  more units per group, the hypothesis test is performed using all the fn  

observations per group. 

 

5.1.1 Variance estimator, distribution of the test statis-

tic and actual type I error rate 

 

The sample size of the one-sided test problem aSEH δµµ ≥−:0   versus  aSEH δµµ <−:1  is 

recalculated according to formula (5.2) by replacing the unknown true variance by an esti-

mated gain from the data of the pilot study. In the following, some methods for variance esti-

mation and the derived distribution of the test statistic, sample size and the actual type I error 

rate are given. 

 

Pooled sample variance 

 

The usual pooled variance estimate is expressed as 

 
2

22
2 SE
p

SS
S

+
= . 

Therefore the test statistic obtained for all the fn  observation per group is given by 
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Because 1n  is chosen arbitrary, the total simple size per group fn  is no more a constant but 

depends on the data of the pilot study. Therefore aT  no longer follows under 

aSEH δµµ ≥−:0 a central t-distribution. To avoid this problem, we consider the test statistic
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with (Kieser und Friede: 2000) 
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where 2 ,1  ,2 =iSi  are the pooled variance estimate of the observations before )1( =i  and after 

)2( =i  the interim analysis: 
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2

,iES  and 2

,iSS  denote the variance of the experimental or standard group before ( 1=i ) or after 

( 2=i ) sample size adaptation. 

In the fixed sample situation with fn observations per group, *

aT  followed under the null hy-

pothesis the central t-distribution with 42 −fn  degrees of freedom. 

 

Distribution of the test statistic *

aT  

 

The key idea is to decompose the test statistic into components for which the joint density can 

be derived. 

Let 
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then the test statistic *

aT  can be written as  
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iEX ,  and iSX ,  denote the means of the experimental or standard group before ( 1=i ) or after 

( 2=i ) sample size adaptation. 

Furthermore if we use the following notation 
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then the test statistic can be written as 
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1V  is 2χ -distributed with )1(2 1 −n  degrees of freedom. Conditional on 1V , 2V  is 2χ -

distributed with )1(2 2 −n  degrees of freedom. Under the null hypothesis, 1D is normally dis-

tributed with expectation zero and variance one. Conditional on 1V , 2D  is normally distrib-

uted with expectation zero and variance one. 1D  and 1V  are independent, 2D  and 2V are inde-

pendent given 1V . Therefore, under the null hypothesis the joint density of 2211 ,,, VDVD can be 

written as  

 )( )( )( )(),,,( 22112211 2
)12(2

2
)11(2

vgdvgdvdvdf
nn −−

=
χχ

φφ , 

where φ  denotes the density of the standard normal distribution and 2
n

g
χ

the density of the 

chi-square distribution with n degrees of freedom. 

Furthermore if we use the following notation 

 ( )aSE

f

ff

XX
n

D
n

n
D

n

n
D δ

σ
−−=+=

2

1
  2

2
1

1 , 

D  will be normally distributed with mean ( )
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2

1
 and variance 1. The test 

statistic will be written as 

42

21

*

−

+
=

f

a

n

VV

D
T . 

 Under the null hypothesis the joint density of 21,, VVD  will be written as  

 )(  )(  )(),,( 2121 2
)12(2

2
)11(2

vgvgdvvdf
nn −−

=
χχ

φ . 

The pooled variance estimator used for sample size recalculation can be written as 
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Therefore, the sample size adaptation formula reads 
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where n  denotes the true required sample size per group. 

The actual type I error aα  can be calculated by integration of the joint density f  over the 

rejection region of the test. 
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It is a function of 1 , nα , n  and σδ /a . Because aα  is a function of the true required sample 

size n , it is possible to obtain an upper bound max

aα by maximising  aα  over n ( Kieser and 

Friede, 2000). 

 

Simulation studies have been conducted to assess the distribution of the reestimated sample 

size per group n̂  for different design parameters. The simulation has been run 100000 times 

in the statistical package R. 
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Mean:   214.20       214.20 

Std:   34.3419      15.1565 

Median:  212.50       213.8 

Figure 5.1: Distribution of n̂  for 05.0=α ,  90.01 =− β , 2=σ , 1.0=aδ , 5.0
~

=aθ , that 

is 215=n  
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Figure 5.2: Distribution of n̂  for 05.0=α ,  90.01 =− β , 2=σ , 4.0=aδ , 5.0
~

=aθ , that 

is 3426=n  
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Mean:   137.10      137 

Std:   31.3711     12.57982 

Median:  134.80      136.60 

Figure 5.3: Distribution of n̂  for 05.0=α ,  90.01 =− β , 2=σ , 1=aδ , 5.0
~

=aθ , that is 

137=n  

 

Figure 5.1, 5.2, 5.3 shows the results of the simulation of the distribution of the reestimated 

sample size for different value of the equivalence bound. If we compare the standard devia-

tions for all the cases considered (equivalence bound smaller, bigger or near to the true alter-

native aθ
~

), it appears that it is bigger for small internal pilot size than for large ones. The ad-

aptation rule leads to a final sample size near to the true sample size. 

 

One-sample variance procedure  

 

The following discussion is based on the work of Friede and Kieser (2003). The idea is to 

estimate the variance, ignoring the group assignments. 

The one-sample variance calculated from the data merged over the two production groups is 

given by 
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with  





∈

∈
=

S group   if 

E group   if 

jSj

jEj

j XX

XX
X . 

X denotes the overall mean of the merged sample. 

Considering the fact that the equal sample size in both production groups, 2

OSS  can be written 

as (Friede and Kieser, 2003) 
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Using the fact that 1,1, SE XX −  is normally distributed with mean θ  and variance 1

2 /2 nσ , 
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But in the case of equivalence study, the alternative hypothesis states an irrelevant distance 

between the groups. Therefore θ  tends to zero and  2

OSS  tends to be an unbiased estimate of 

the variance 2σ . 

Introducing the variance 2σ , 2

OSS  can be written as  
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With the same notation as in the case of “pooled sample variance” and noting that 
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Therefore, the sample size adaptation formula reads 
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The test statistic obtained for all the fn  observation per group is given by 
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Then the one-sample variance calculated from the data merged over the production groups 

can be written as  
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Under the null hypothesis 1D  is normally distributed with expectation zero and variance one. 

1V  is 2χ -distributed with )1(2 1 −n  degrees of freedom. Conditional on 1V   and 1D  is ∗
2V  2χ -

distributed with 22n  degrees of freedom. Conditional on 1V  and 1D  is 2D  normally distrib-

uted with expectation zero and variance one. 1D  and 1V  are independent, 2D  and ∗
2V are inde-

pendent given 1V  and 1D . Therefore, under the null hypothesis the joint density of 

∗
2211 ,,, VDVD can be written as  

 )( )( )( )(),,,( 22112211 2
)12(2

2
)11(2

∗∗

−−
= vgdvgdvdvdf

nn χχ
φφ , 

where φ  denotes the density of the standard normal distribution and 2
n

g
χ

the density of the 

chi-square distribution with n degrees of freedom. 

The actual type I error rate can be computed by integration of the density f  over the 

rejection region of the one-sided test. According to the adjustment procedure described in the 

section 3, the sample size can or cannot increase after the internal. 

If the sample size is not increased, then 02 =n and therefore 0  ,0 22 == ∗VD . 
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The test statistic becomes 
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and the value of 1D  for with 0H  is rejected after the first stage is 
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The maximum value of 1V  for which the adjusted sample size per group is 1n , is 
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If the sample size increases after the first stage, the value of 2D  for which 0H  is rejected after 

the second stage is expressed as  
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The remaining part  2b  of the variance not already spent by 1V  is 
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The actual type I error rate is therefore given by (Friede and Kieser: 2003) 
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A simulation study has been conducted to assess the distribution of the reestimated sample 

size per group n̂  for different design parameters. The simulation has been run 100000 times 

using the statistical package R. 
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Figure 5.3 : Distribution of n̂  for 05.0=α ,  90.01 =− β , 2=σ : Boxplots 

 

Figure 5.3 shows us the same phenomena as in the case of pooled variance estimate. The stan-

dard deviation is bigger for small internal pilot sample size than for large one. 

  

5.1.2 Comparison of the two variance procedures 

 

In other to compare the characteristics of the two variance estimators, we conduct a simula-

tion study with the following parameters: 05.0=α , 1.0=β , 2=σ , 1 ,4.0 ,1.0=aδ , 
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5.0
~

=aθ , and various values of the pilot sample size per group 1n . The simulations were done 

with the statistical package R and 100000 replications were run for each situation. The fol-

lowing tables (Table 5.1, Table 5.2, Table5.3) show mean standard deviation (SD), mean 

square error (MSE) of the adjusted sample size for various pilot sample 1n  and various 

equivalence bound aδ . The MSE should be kept as small as possible. It is given by the sum of 

variance and squared bias, 

 2
BiasVarMSE += . 

 

1n  
Pooled variance procedure One-sample variance proce-

dure 

 n̂  SD MSE n̂  SD MSE 

40 214.10 34.27351 1174.676 220.90 35.09456 1278.289 

80 214 24.11959 581.761 220.7 24.81638 659.9911 

120 214 19.67539 387.1233 220.8 20.24449 454.1485 

160 214 16.92681 286.5216 220.7 17.43219 347.9556 

200 214 15.20718 231.2657 220.7 15.66028 289.2108 

 

Table 5.1 : Simulated  expected sample size per group n̂ , SD, MSE for pilot size 1n  

( 05.0=α , 1.0=β , 2=σ , 5.0
~

=aθ , 1.0=aδ  ⇒ 0962.214=n ) 

 

1n  
Pooled variance procedure One-sample variance proce-

dure 

 n̂  SD MSE n̂  SD MSE 

500 3426 153.5648 23582.16 3533 158.0700 36491.92 

1000 3425 108.4648 11764.68 3532 111.6419 23880.48 

1500 3426 88.17925 7775.585 3533 90.88672 19779.84 

2000 3426 77.0680 59339.541 3533 79.3399 17819.63 

2500 3426 68.4965 4691.803 3533 70.5663 16488.64 

3000 3426 62.3672 3889.771 3533 64.2653 15664.56 

 

Table 5.2 : Simulated  expected sample size per group n̂ , SD, MSE for pilot size 1n  

( 05.0=α , 1.0=β , 2=σ , 5.0
~

=aθ , 4.0=aδ  ⇒ 539.3425=n ) 
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1n  
Pooled variance procedure One-sample variance proce-

dure 

 n̂  SD MSE n̂  SD MSE 

20 137.20 31.5411 994.888 141.60 32.1025 1051.583 

40 137 21.9528 481.9282 141.40 22.5074 525.421 

60 137.10 17.8133 317.3176 141.40 18.2840 353.2460 

80 137.10 15.4949 240.0942 141.40 15.9233 272.4941 

100 137 13.7444 188.9108 141.30 14.1386 218.4283 

120 137 12.6025 158.8261 141.30 12.9619 186.3363 

150 137 11.2306 126.1285 141 11.5739 152.2625 

 

Table 5.3: Simulated  expected sample size per group n̂ , SD, MSE for pilot size 1n  

( 05.0=α , 1.0=β , 2=σ , 5.0
~

=aθ , 1=aδ  ⇒ 0216.137=n ) 

 

• The pooled variance procedure leads to mean sample sizes very close to the true sample 

size even for small pilot sample sizes. It is not the case for the one-sample variance where 

the mean sample size is larger than the true sample size. This phenomenon is more power-

ful in the case where the equivalence bound is close to the effect size because evidently 

we needed more observations to detect equivalence. 

• The standard deviation of the pooled variance procedure is the smallest for every choice 

of the pilot sample size in comparison to the one-sample variance procedure, however the 

difference becomes smaller and smaller with increasing pilot sample size. 

• The pooled variance procedure has a high precision in terms of mean square error. 

 

5.2 Sample size adaptation using the self-designing of  

Hartung 

 

We considered experiments comparing two production groups with independent normally 

distributed outcomes with expectations Eµ  for the experimental group and Sµ  for the stan-

dard group, and with unknown but common variance 2σ . We are interested in the one-sided 

equivalence test problem 

aSEH δµµ −≤−:0  versus    aSEH δµµ −>−:1 ,   
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which is  the test problem 

 0:0 ≤′θH  versus  0:1 >′θH , 

with aδθθ +=′ , SE µµθ −= . 

The experiment is formally divided into an infinite number of disjoint stage LL  , , ,2 ,1 l . 

Only a random finite number of stages will be observed according to a self-designing proce-

dure. ln  specimens are enrolled in the experiment and randomised across the two production 

groups in the stage l . We denote lEX ,  and lSX ,  the means of the experimental or standard 

group in the l-the stage respectively and the difference of the means in the l-the stage 

lSlEl XXX ,, −= . The test statistic lT  of the l the stage is given by 

l

p

all

l
S

Xn
T

δ+
=

4
, 

where l

pS  denotes the pooled variance estimate in the l the stage. 

Under the null hypothesis, lT  is t-distributed with 2−ln  degrees of freedom ( 2−lnF ), which is 

a continuous probability distribution. Therefore, the p-values 

 ( )
lnl TFp

l 21 −−= , 

where are uniformly distributed on the interval ( )1,0 , such that  

 ( )ll pu −Φ= − 11  

is normally distributed with mean 0 and variance 1 (Hartung: 2001).  

The adaptation procedure follows as in section 4.2.2 with the same notations. The sample size 

spending function ( )βα ,lS  for stage l  is given by 
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where the estimator of the effect size at the end of the l-1the stage is 
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 the estimated effect size in the l-the group of data, and the update-estimate of the variance in 

the l the stage is  
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In order to assess the operating characteristics of the proposed adapted-sample design and for 

comparison with the fixed-sample design, a small simulation study has been conducted for 

different design parameters. As type I and II error rates we take 05.0=α  and 1.0=β . Then 

1.0=aδ  and we need a sample size of 191 to obtain the desired power at 5.0=θ . The pa-

rameters in the proposed adaptation procedure are set as follows: 05.0=Gα , 6.0=Lα , 

1.0=Gβ , 1.0=ε , 2=σ , 2/1 Nn =  = 96, where N is the sample size for the fixed-

sample design when θ  is correctly specified, that is 192, 8/1min nn = , 2/21 =w . The upper 

bounds for the sample size spending functions lm  and lM  are set to 190. We simulated the 

two designs mentioned above 100000 times. Under the null hypothesis 1.0−=−= aδθ  the 

fixed-sample design and the adapted-sample design results in an empirical size of 0.049 and 

0.047 respectively. In table 5.4 we put together various power values of the fixed-sample de-

sign and the adapted-sample design. The average sample size number (ASN) of the adapted-

sample design is also reported. 

 

 Fixed-sample design Proposed adapted-sample design 

θ  Empirical Power Empirical Power ASN 

0.2 0.430 0.497 227.066 

0.3 0.621 0.688 223.043 

0.4 0.788 0.822 208.366 

0.5 0.899 0.899 188.511 

0.6 0.961 0.936 168.056 

0.7 0.988 0.954 149.883 

0.8 0.997 0.964 135.802 

 

Table 5.4: Simulated empirical power and average sample size number for the fixed-sample 

design and the adapted-sample design 
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The adapted-sample design achieves the desired power at 5.0=θ  with a slightly small aver-

age sample size number. When the true underlying difference θ  is overestimated, the 

adapted-sample design results in a larger power. The largest difference between the two em-

pirical powers is given at 3.0=θ  with values of 0.621 and 0.688 for the fixed-sample design 

and the adapted-sample design respectively. These phenomena change when the true underly-

ing difference θ  is underestimated and the adapted-sample design results in a smaller power. 
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6 Sample size adaptation for reliability studies 

 

In many industrial experiments, it is of interest to compare the failure time distribution of 

different production machines or processes. For censored survival data, linear rank statistics 

are commonly used for this purpose. These statistics pertain to the survival distribution over 

the entire follow-up period. With staggered entry and long-term follow-up, partial but increas-

ing information for the experiment becomes available at successive monitoring times. The 

information is contained not only in the sample size, but also in the number of failures ob-

served during the experiment. Sequential designs for monitoring reliability data are difficult 

because the martingale structure that underlies most techniques for reliability analysis relates 

to the internal time scale for units and does not apply to the monitoring time scale. (Oakes, 

2001). Recent years have seen a growing interest in combining sequential designs and tests 

for censored reliability data. The current literature include Tsiatis (1982), Slud and Wei 

(1982), Tsiatis, Rosner and Tritchler (1985), Lan und Lachin (1990), Lin (1991), Lin, Shen, 

Ying and Breslow (1996), Lin, Yao and Ying (1999). It is very useful to know the joint distri-

bution of the test statistic at different points of time in order to adjust for the effect of repeated 

significance testing. In the following, asymptotic joint distribution of the more general effi-

cient scores test (Log-rank test is a special case) for the proportional hazards model calculated 

at different points in time is presented. This methodology was established by Tsiatis (1981, 

1982). With little additional effort, the results of the properties of the test statistics are used 

for sample size adaptation using a self-designing rule similar to those of Hartung and Knapp 

(2003). 

In subsection 1, we presented the general theory of sequential reliability as introduced by 

Tsiatis (1981, 1982). In subsection 2, we developed and illustrated a method of updating sam-

ple size using a nonparametric linear rank test, based on the idea of Hartung (2001) and Har-

tung and Knapp (2003).The test statistic is similar to that proposed by Shen and Cai (2003). 

The accrual duration and the follow-up duration are the parameters on which the strategies for 

adjustment are based. An example is given to illustrate the adaptation procedure. The per-

formances of the method and the strategies are evaluated and compared to the usual log-rank 

test with fixed sample design under exponential failure time distribution (proportional haz-

ard). The case of non proportional hazard is discussed in subsection 3 and illustrated with an 

example under the Weibull failure time distribution. 
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6.1 General theory of sequential reliability analysis 

 

6.1.1 Notation and Formulas 

 

Let the nonnegative random variable Y  denote the real time of entry into the experiment and 

let the random variable V  denote failure time. Let C  denote the time from entry to censoring. 

We assumed that the hazard rate for failure is related to a covariate Z in a log linear fashion, 

 )exp()()|( zxhzxh β= , 

where )|( zxh  denotes the hazard rate at time x  given that the covariate Z  is equal to z . The 

covariate Z  is assumed to be a random variable with finite mean and variance. For the com-

parison of two machines or processes, the variable Z  is equal to either zero or one, represent-

ing one machine or another. We wish to test the null hypothesis  

 0:0 =βH  or )()|(:0 xhzxhH =  

for all 0≥x . Under the null hypothesis the survival distribution of V  at any time x  can be 

expressed as 

 ( ))(exp xΛ−  

and the density as 

 ( ) ( ))(exp xxh Λ− , 

where 

 ∫=Λ
x

0

 )()( duuhx  

denotes the cumulative hazard function. 

The time of entry into experiment, Y , is assumed to be a bounded positive random variable 

with distribution function 

 ( ) ( )zZyYPzyH =≤= || , 

which may depend on Z . 

The distribution of the time to censoring also depends on Z  and is given by 

 ( ) ( )zZcCPzcG =<= || . 

( ) ( ))|1| zcGzcG −=  denotes the survival distribution. It is assumed that given the covari-

ate Z , the random variables CYV ,,  are conditionally independent. 

Suppose that the experiment involves n  units, which enter serially and are assigned to ma-

chines according to some random mechanism. Under the null hypothesis, the data can be ex-
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pressed as n  identically and independently distributed random vectors ( )iiii ZCYV ,,,  for 

ni ,,1 L= . 

If the data were to be examined at time t , the following variables could be observed: 

• Time to failure or censoring 

{ } 0 ), ,, min( max)( CYtVtX −=  

• Indicator variable for failure 

( )


 −<

=∆
otherwise                0

),min( if  1 CYtV
t  

At time t  and under the null hypothesis, the data can be expressed as n identically and inde-

pendently distributed random vectors ( )iii ZttX ),(),( ∆  for ni ,,1 L= . 

It is clear that at time t , some of the units may yet not have entered the experiment, which is 

why it will be seen later that the statistics computed at time t  will depend only on the data 

observed up to that time. 

The class of tests Θ  of testing 0H , which are similar to that in Tarone and Ware (1977) is 

characterized by statistics of the form (Tsiatis: 1982) 

 ( ) ( )

( )∑
∑

=

∈

















−∆=
n

i i

tXtRj

j

iiin
tXtn

Z

ZttXtQtS i

1

)(,

)(,
)()(,ˆ)( , 

where 

 ( ) { }{ }xtXnjxtR j ≥∈= )(|,1, L  

denotes the risk set at time x  if the data where observed at real time t , tx ≤ , and  

 ( ) ( )∑
=

≥=
n

j

j xtXIxtn
1

)(, , 

( )⋅I  denoting the indicator function. 

The random function ( )xtQ ,ˆ , tx ≤ , corresponds to the weighting functions described by Tar-

one and Ware (1977) and is assumed to converge in probability in sup norm to a function 

( )xtQ ,  such that 

 { }∫ ∞<Λ−
t

dxxxhxtQ
0

2      )(exp )( ),( . 

 

For the log-rank test,  

 ( ) ( ) 1,,ˆ == xtQxtQ  for all txt ≤≤> 0    ,0 . 



ADAPTIVE SAMPLE SIZE CALCULATION FOR INDUSTRIAL EXPERIMENTS  

 

82 

For the modified Wilcoxon test, 

 ( ) ( )
n

xtn
xtQ

,
,ˆ = , 

which converge in probability to the function 

 ( ) ( )( )xtXPxtQ ≥=,  ( ){ }ZxtXPE |)( ≥=  

    ( ){ }ZxCxYtxVPE |  ,  , ≥≥−≥=  

    { } ( ) ( ){ }ZxGZxtHEx | | )(exp −Λ−= . 

In the following section, the asymptotic distribution of the test statistic will be derived. All 

calculations are made assuming the null hypothesis is true and therefore the variables 

ZCYV  , , ,  are mutually independent. 

 

6.1.2 Asymptotic distribution of the statistic 

 

The key to deriving the joint distribution of the statistic ( )tSn  over time is to approximate it 

by a sum of identically and independently distributed random variables. Because at any time 

t  a positive probability of the failure must be, it is assumed that 

 { }CVYtVtYP <−<<   ,  , 0>  

for any time t  that ( )tSn  is to calculate. 

Denoting 

 ( ) ( )1)(  ,)(, =∆≤= txtXIxtN iii , 

we get 

 ( )∫ ∆=
t

ii txtdN
0

)(,  

and the statistic ( )tSn  can be written as 

 ( ) ( ) ( )
( )( )

∑∫ ∑
= ∈ 








−=
n

i

t

xtRj

j

iin
xtn

Z
ZxtQxtdNtS

1 0 , ,
,ˆ, . 

Noting that 

 ( ) { }{ }xtXnjxtR j ≥∈= )(|,1, L  

and therefore 

 
( )

( )∑∑
=∈

≥=
n

i

ii

xtRj

j xtXIZZ
1,

)( , 

The expression of ( )tSn  can be rewrite as 
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 ( ) ( ) ( ){ } ( )
( )( )

∑∫ ∑
= ∈ 








−≥−=
n

i

t

xtRj

j

iiin
xtn

Z
ZxtQdxxtXIxhxtdNtS

1 0 , ,
,ˆ)()(, . 

It can be easily shown by using the law of large numbers that 

 
( )
∑

∈ xtRj

jZ
n ,

1
 

converges in probability to 

 ( ){ } ( ){ }[ ]ZxtXZPExtXZIE |)()( ≥=≥  

and  

 
( )
n

xtn ,
 

converges in probability to 

 ( )( )xtXP ≥ . 

Therefore 

 
( )

( )xtn

Z
xtRj

j

,

,

∑
∈

 

converges in probability to 

 ( ) ( ){ }[ ]
( )( )xtXP

ZttXZPE
xt

≥

≥
=

|)(
,µ  

  
{ } ( ) ( ){ }
{ } ( ) ( ){ }ZxGZxtHEx

ZxGZxtZHEx

| | )(exp

| | )(exp

−Λ−

−Λ−
=

( ) ( ){ }
( ) ( ){ }ZxGZxtHE

ZxGZxtZHE

| | 

| | 

−

−
= . 

For fixed t , ( )xtNi ,  is a counting process with intensity process ( ) ( )( )xtXIxh i ≥ . 

Therefore ( ) ( ) ( )∫ ≥−=
y

iii duutXIuhytNytJ
0

 )()(,,  is a martingale. 

By adding and subtracting similar terms, 

 ( ) ( ) ( ){ } ( )
( )( )

∑∫ ∑
= ∈ 








−≥−=
n

i

t

xtRj

j

iiin
xtn

Z
ZxtQdxxtXIxhxtdNtS

1 0 , ,
,ˆ)()(,  

  )()( tEtS nn += , 

where 

 ( ) ( ) ( ) ( ){ }∑∫
=

−=
n

i

t

iin xtZxtQxtdJtS
1 0

,,, µ  

and 
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 ( ) ( )
( )

( )
( )

∑∫ ∑
= ∈ 








−−=
n

i

t

xtRj

j

in xt
xtn

Z
xtdJxtQtE

1 0 ,

,
,

,,)( µ  

  ( ) ( ){ } ( ) ( ){ }∑∫
=

−−+
n

i

t

ii xtZxtdJxtQxtQ
1 0

,,,,ˆ µ  

  ( ) ( ){ } ( )
( )( )

( )∑∫ ∑
= ∈ 








−−−
n

i

t

xtRj

j

i xt
xtn

Z
xtdJxtQxtQ

1 0 ,

,
,

,,,ˆ µ . 

It can be shown that 

 ( )tE
n

n

1
 

is a second-order term that is asymptotically negligible (Tsiatis: 1981, lemma 3.1 and Breslow 

and Crowley: 1974, Theorem 4). Hence the asymptotic distribution of 

 
n

tSn )(
 is the same as that of 

n

tSn )(
. 

The statistic )(tSn  can be written as 

     ( ) ( ) ( ) ( ){ }∑∫
=

−=
n

i

t

iin xtZxtQxtdJtS
1 0

,,, µ  

  ( ) ( ) ( ) ( ){ }∑∫ ∫
=

−








≥−=
n

i

t

i

x

ii xtZxtQduutXIuhxtNd
1 0 0

,, )()(, µ  

  ( ) ( ) ( ){ }∑ ∫
=









−=

n

i

t

ii xtZxtQxtdN
1 0

,,, µ  

   ( ) ( ) ( ){ }∑ ∫ ∫
= 











−









≥−−
n

i

t

i

x

i xtZduutXIuhdxtQ
1 0 0

, )()(, µ  

( ) ( ) ( ){ }∑ ∫
=









−=

n

i

t

ii xtZxtQxtdN
1 0

,,, µ  

   ( ) ( ) ( ){ }∑ ∫
=









−≥−

n

i

t

ii xtZdxxtXIxhxtQ
1 0

, )()(, µ  

( ) ( ){ } ( ) ( ){ }∑ ∫
= 











−−−∆=

n

i

tX

iiiii dxxhxtZxtQtXtZtXtQt
i

1

)(

0

)(,,)(,)(,)( µµ . 
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)(tSn  is a sum of identically and independently distributed random variables and the asymp-

totic distribution can be derived by application of the central limit theorem. Therefore the 

following fundamental theorem can be proved. 

 

Theorem 1: (Tsiatis: 1982, Theorem 3.1): Defining the statistics in the class of tests Θ  

 
( ) ( ) ( )

( )∑
∑

=

∈

















−∆=
n

i i

tXtRj

j

iiin
tXtn

Z

ZttXtQtS i

1 11

)(,

11111

1

)(,
)()(,ˆ)( 11  

and 

 
( ) ( ) ( )

( )∑
∑

=

∈

















−∆=
n

i i

tXtRj

j

iiin
tXtn

Z

ZttXtQtS i

1 22

)(,

22222

2

)(,
)()(,ˆ)( 22 , 

where 12 tt ≥ , then the random vector 

 

( ) ( ){ }
n

tStS nn )(),( 2

2

1

1

 

converges in distribution to a bivariate normal distribution with mean zero and covariance 

matrix 

 







=Ω

2221

1211

σσ

σσ
, 

where 

 ( ) ( ) ( )∫ Φ=
1

0

11

2

111 ,,

t

dxxhxtxtQσ  

 ( ) ( ) ( )∫ Φ=
21

0

22

2

222 ,,

t

dxxhxtxtQσ  

 ( ) ( ) ( ) ( )∫ Φ=
1

0

1221112 ,,,

t

dxxhxtxtQxtQσ  

and 

 

 ( ) { } ( ){ } ( ) ( ){ }ZxGZxtHxtZExxt | |, )(exp,
2 −−Λ−=Φ µ . 
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Proof 

 

Recalling that the asymptotic distribution of the statistic  

 
n

tSn )(
 

is the same as 

 
n

tSn )(
. 

The differences   

 

( ) ( )

n

tStS nn )()( 1

1

1

1 −
 and 

( ) ( )

n

tStS nn )()( 2

2

2

2 −
 

converge in probability to zero. Therefore, the difference between any linear combination of  

 

( )

n

tSn )( 1

1

  and 

( )

n

tSn )( 2

2

 

and the same linear combination of  

 

( )

n

tSn )( 1

1

  and 

( )

n

tSn )( 2

2

 

will also converge in probability to zero. By an application of the Cramer-Wold device, the 

asymptotic joint distribution of 

 

( ) ( ){ }
n

tStS nn )(),( 2

2

1

1

 

will be the same as that of 

 

( ) ( ){ }
n

tStS nn )(),( 2

2

1

1

, 

which is equal to 

 ( ) ( ){ } ( ) ( ){ } ,)(,,)(,)(,)(
1

1

)(

0

111111111

1


















−−−∆∑ ∫

=

n

i

tX

iiiii dxxhxtZxtQtXtZtXtQt
n

i

µµ  

 

( ) ( ){ } ( ) ( ){ }

















−−−∆∑ ∫

=

n

i

tX

iiiii dxxhxtZxtQtXtZtXtQt
i

1

)(

0

222222222 )(,,)(,)(,)(
2

µµ . 
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This quantity is a normalized sum of identically and independently distributed random vari-

ables; which by application of the multivariate central limit theorem converge in distribution 

to a bivariate normal distribution. The next step of the proof is to calculate the first and sec-

ond moment of the random vector 

 ( ) ( ){ } ( ) ( ){ } ,)(,,)(,)(,)(

)(

0

111111111

1


















−−−∆ ∫ dxxhxtZxtQtXtZtXtQt

tX

µµ  

  ( ) ( ){ } ( ) ( ){ }

















−−−∆ ∫ dxxhxtZxtQtXtZtXtQt

tX

)(,,)(,)(,)(

)(

0

222222222

2

µµ . 

The appropriate expectations shall be calculated by finding the mean of the conditional expec-

tations with respect to Z because the entry rate and censoring distribution may depend on Z . 

Defining  

 ( ) ( ){ }xtzxtQxQ iiii ,,)( µ−= .  2 ,1=i , 

the conditional expectation, given zZ =   

• ( ) ( )( ) ( ) ( )
( )












=













−∆ ∫ zZdxxhxQtXQtE

tX

|
0

11  = 0  

• ( ) ( )( ) ( ) ( )
( )

( ) ( )( ) ( ) ( )
( )












=













−∆












−∆ ∫∫ zZdxxhxQtXQtdxxhxQtXQtE

tXtX

|
21

0

2222

0

1111   

= ( ) ( ) ( ) { } ( ) ( )∫ −Λ−
1

0

121 | | )(exp

t

dxzxGZxtHxxhxQxQ . 

In fact, 

 ( ) ( )( ){ }[ ] ( ) ( ) { } ( ) ( )∫ −Λ−==∆
t

dxzxGZxtHxxhxQzZtXQtE
0

11 | | )(exp| . 

 ( ) ( )
( )

( ) ( ) ( ){ }∫ ∫∫ ≥








−=











=

t xtX

xtXPdduuhuQzZdxxhxQE
0 0

1

0

1 )(|  

           ( ) ( ) ( ){ } ( ) ( )[ ]∫ ∫ −Λ−








−=
t x

zxGzxtHxdduuhuQ
0 0

1 ||)(exp . 

Integrating this quantity by parts we obtain  
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( ) ( )
( )

( ) ( ) ( ){ } ( ) ( )
t

xtX

zxGzxtHxduuhuQzZdxxhxQE

00

1

0

1 ||)(exp | 







−Λ−⋅−=












= ∫∫    

      ( ) ( ) { } ( ) ( )∫ −Λ−+
t

dxzxGZxtHxxhxQ
0

1 | | )(exp . 

But 

 ( ) ( ) ( ){ } ( ) ( ) 0||)(exp 

00

1 =







−Λ−⋅∫

t
x

zxGzxtHxduuhuQ  

because 

 ( ) ( ) 0|0|0 ==≤= zZYPzH  and ( ) ( ) 0

0

0

1 =∫ duuhuQ . 

Therefore 

 ( ) ( )
( )

( ) ( ) { } ( ) ( )∫∫ −Λ−=











=

ttX

dxzxGZxtHxxhxQzZdxxhxQE
0

1

0

1 | | )(exp         |  

     ( ) ( )( ){ }[ ]zZtXQtE =∆= |1  

and the first point is established. 

For the second point, 

 ( ) ( )( ) ( ) ( )
( )

( ) ( )( ) ( ) ( )
( )


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









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( ) ( )( ) ( ) ( )
( )













=∆− ∫ zZdxxhxQtXQtE
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( ) ( )( ) ( ) ( )( ){ } ( ) ( )( ) ( )( ){ }zZtXQtXQtEzZtXQttXQtE =∆==∆∆ || 22111222111  

  ( ) ( ) ( ) { } ( ) ( )∫ −Λ−=
1

0

112 | | )(exp 

t

dxzxGZxtHxxhxQxQ . 
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Denoting for simplification of notation 

 ( ) ( ) ( )∫ =
x

ii xduuhuQ
0

ψ , 

( ) ( )( ) ( ) ( )
( )

( ) ( ) ( ) { } ( ) ( )∫∫ −Λ−=
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0

1222  

is evaluated by computing the integral in two regions, namely when 

 ( ){ }11 =∆ t  and ( ) ( ){ }1   ,0 21 =∆=∆ tt , 

therefore is equal to 

 ( ) ( ) ( ) { } ( ) ( )∫ −Λ−
1

0

121 | | )(exp

t

dxzxGZxtHxxhxQxψ  
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−
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211 || )(exp

t t

yt

y

zydxdHzxGxxhxQytψ . 

( ) ( )
( )

( ) ( )
( )














=

























∫∫ zZdxxhxQdxxhxQE

tXtX

|
21

0

2

0

1  

is computed in three parts, namely when 

 ( ){ }11 =∆ t , ( ) ( ){ }1   ,0 21 =∆=∆ tt , ( ){ }02 =∆ t . 

The region ( ){ }02 =∆ t  can be further divided into three sub regions: 

1. { }11 0for   ,  , tCCVYtC ≤≤>−<  

2. { }CVYtCYt >−<<−   ,21  

3. { }YtVYtC −>−> 22   , . 

Therefore,  

 ( ) ( )
( )

( ) ( )
( )














=

























∫∫ zZdxxhxQdxxhxQE

tXtX

|
21

0

2

0

1  

  ( ) ( ) ( ) { } ( ) ( )∫ −Λ−=
1

0

112 | | )(exp

t

dxzxGzxtHxxhxx ψψ    

  ( ) ( ) ( ) { } ( ) ( )∫ ∫
−

−

Λ−−+
1 2

10

211 || )(exp

t t

yt

y

zydxdHzxGxxhxyt ψψ  
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  ( ) ( ) { } ( ) ( )∫ −Λ−−
1

0

112 | | )(exp

t

zxGdzxtHxxx ψψ  

  ( ) ( ) { } ( ) ( )∫ ∫
−

−

Λ−−−
1 2

10

211 || )(exp

t t

yt

y

zydHzxGdxxyt ψψ  

  ( ) ( ) { } ( ) ( )∫ −−Λ−−−+
1

0

222211 || )(exp

t

zydHzytGytytyt ψψ . 

After some long calculations including integration by parts, 

( ) ( )( ) ( ) ( )
( )













=∆− ∫ zZdxxhxQtXQtE

tX

|
2

0

2111 ( ) ( )( ) ( ) ( )
( )













=∆− ∫ zZdxxhxQtXQtE

tX

|
1

0

1222  

( ) ( )
( )

( ) ( )
( )














=

























+ ∫∫ zZdxxhxQdxxhxQE

tXtX

|
21

0

2

0

1  

is equal to zero and the second point is established. 

 

The covariance 12σ  is obtained by finding the expectation of 

 ( ) ( ) ( ) { } ( ) ( )∫ −Λ−
1

0

121 | | )(exp

t

dxzxGZxtHxxhxQxQ . 

This yields 

( ) ( ) ( ){ } ( ){ } ( ) ( )[ ] ( ) ( ){ }∫ Λ−−−−=
1

0

121221112 exp||,,,,

t

dxxxhzxGzxtHxtZxtZExtQxtQ µµσ  

       ( ) ( ) ( ){ } ( ) ( )[ ] ( ) ( ){ }∫ Λ−−−=
1

0

1

2

12211 exp||,,,

t

dxxxhzxGzxtHxtZExtQxtQ µ  

    ( ) ( ) ( ) ( ){ }∫ −+
1

0

212211 ,,,,

t

xtxtxtQxtQ µµ  

 ( ){ } ( ) ( )[ ] ( ) ( ){ }dxxxhzxGzxtHxtZE Λ−−−× exp||, 11µ . 

 

Using the fact that 

 ( ) ( ) ( ){ }
( ) ( ){ }ZxGZxtHE

ZxGZxtZHE
xt

| | 

| | 
,

−

−
=µ , 
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( ) ( ) ( ) ( ){ }∫ −
1

0

212211 ,,,,

t

xtxtxtQxtQ µµ  

 ( ){ } ( ) ( )[ ] ( ) ( ){ }dxxxhzxGzxtHxtZE Λ−−−× exp||, 11µ  =  0 . 

Therefore 

 ( ) ( ) ( ){ } ( ) ( )[ ] ( ) ( ){ }∫ Λ−−−=
1

0

1

2

1221112 exp||,,,

t

dxxxhzxGzxtHxtZExtQxtQ µσ . 

11σ  and 22σ  are special cases of 12σ . This completes the proof of the theorem.   

 

12σ  can be estimated by (Tsiatis: 1982) 

 ( ) ( )( )
( )( ){ }

( )( )( )( ) 

























 −
∆∑ ∑

= ∈

n

i tXtRj i

ij

iii

i
tXtn

tXtZ
tXtQtXtQt

n 1 , 11

2

11

1221111

11
,

,ˆ
,ˆ)(,ˆ)(

1 µ
, 

where 

 ( )
( )( )

∑
∈

=
xtRj

j

xtn

Z
xt

, 1

1

1
,

,µ̂ . 

In fact, 12σ  can be written as 

 ( ) ( ) ( ){ } ( )( )[ ] ( )∫ Λ≥−
1

0

1

2

12211 ,,,

t

xdxtXIxtZExtQxtQ µ . 

A consistent estimate of 12σ  can be obtained by replacing the quantities in this expression by 

their appropriate estimates yielding to 

 ( ) ( ) ( ){ } ( )( )[ ] ( )∫ Λ≥−
1

0

1

2

12211
ˆ,ˆˆ,ˆ,ˆ

t

xdxtXIxtZExtQxtQ µ , 

where 

 ( ){ } ( )( )[ ] ( ){ }
( )
∑

∈

−
=≥−

xtRj

j

n

xtZ
xtXIxtZE

,

2

1

1

2

1

1

,ˆ
,ˆˆ

µ
µ  

and 

 ( ) ( )
( )∫=Λ

x

i

utn

utdN
x

0 1

1

,

,ˆ  

is the estimate of the cumulative hazard function given by Nelson (1969). 

The random vector 

 ( ){ }kitS
n

i

i

n ,,1  ;
1

L=  

will converge to a multivariate normal with mean zero and covariance matrix with elements 
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 kjiij ,,1,  ; L=σ , 

that can be estimated by ijσ̂ . It can be shown using a multivariate version of Slutsky’s theo-

rem (Shorack, 2000), that the normalized score statistics 

 
( )













== ki
tS

n
Z

ii

i

i

n

i ,,1  ;
ˆ

1
)(

L

σ
 

will converge in distribution to a multivariate normal with mean zero and covariance matrix 

with element that can be estimated by (Tsiatis, 1982) 

 kji

jjii

ij
,,1,  ;

ˆˆ

ˆ
L=

σσ

σ
. 

An important remark given in Tsiatis (1982) is the fact that if the weighting function ( )xtQ ,ˆ  

converge to a function ( )xQ  independent of t , then 1112 σσ = , which indicates that the proc-

ess ( )tSn  has asymptotically independent increments.  

Theorem 1 can help us to construct adaptive test by using test statistic within the class of  Θ  

at time determinate by observing predetermined number of failures.  

 

6.2 Adaptation under proportional hazard 

 

6.2.1 Test statistic 

 

Let ( )thE  be the hazard function for the experimental group and ( )thS  be the hazard function 

for the standard group. Assume that we have a proportional hazard model with constant log 

ratio 

 
( )
( )








=

th

th

S

Elnθ . 

A one-sided test will be performed with a significance level of α  to detect a log-hazard ratio 

of θ
~

0> . The null hypothesis to be tested is 

 0:0 =θH  against  0:1 >θH . 

The study is characterized by an accrual period and a follow-up period. Subjects enter the 

experiment sequentially and are allocated symmetrically to the two groups and are followed 

until either they fail or are administratively censored at the end of the follow-up period. In 

these studies we distinguish theoretically between two time scales: 
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• Calendar time is the usual measure of time relative to some fixed event such as the 

start of the experiment. 

• Follow-up time is the time of each unit, measured individually from entry until it ei-

ther fails or is administratively censored. 

 We intend to monitor the experiment at calendar time lt , Ll ,,2 ,1 L= .  The study is formally 

divided into L  disjoint study stages. After observing every ≤lf lK  failures during the l th 

stage or the lth observation period ( ]ll tt ,1− , where 00 =t , Ll ,,2 ,1 L= , a test statistic ( )ln tS  

is computed, based on all cumulated data up to time lt . Using the same notation as in the last 

section, the score statistic at calendar time lt , ( )ln tS  is given by 

 
( )

( )∑
∑

=

∈

















−∆=
n

i lil

tXtRj

j

ililn
tXtn

Z

ZttS lil

1

)(,

)(,
)()( ,      (6.1) 

which is  a special case of  the general class of test statistic Θ given in the last section 

 ( ) ( )

( )∑
∑

=

∈

















−∆=
n

i lil

tXtRj

j

ilililln
tXtn

Z

ZttXtQtS lil

1

)(,

)(,
)()(,ˆ)( , 

with 

( ) ( ) 1,,ˆ == xtQxtQ  for all txt ≤≤> 0    ,0 .  

From the preceding section, we know that the random vector 

 
{ }

n

tStS knln )(),(
 for  kl ≠  

converges in distribution to a bivariate normal distribution with mean zero and covariance 

matrix with elements lkσ and that the process ( )tSn  has asymptotically independent incre-

ments.  

Gail, DeMets and Slud (1982) verified by simulations that under the null hypothesis, ( )ln tS  

given by the formula (6.2.1) (score log-rank statistic) has asymptotically independent incre-

ments. The extension to 0≠θ  is based on arguing that under local alternatives (θ  close to 

zero), the variance and covariance structure of the ( )ln tS  process will be preserved. Therefore 

for any kl ≠ , 

 ( ) ( ) ( ) ( )( )11   ,cov −− −− knknlnln tStStStS  

converges to zero . 

This assumption might deteriorate if θ  is far from zero. 
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Thus, under the null hypothesis, the distribution of 

 
( ) ( )( )

n

tStS lnln 1−−
 

converges to a normal distribution with mean zero and variance 
2

1

2

−− ll σσ , where  

 lll σσ =2
. 

 

We considered the statistic (Shen and Cai, 2003) 

 ( ) ( ) ( ){ }
2

1

2

1

ˆˆ

1

−

−

−

−
==

ll

lnln

ll

tStS

n
tTT

σσ
, L,2 ,1=l , 

where 
2

ˆ
lσ  is a consistent estimate of 

2

lσ  as given in the last section. 

lT   can express the standardized information cumulated during ( )ll tt ,1− . 

 

Theorem 2 

Under the null hypothesis lT  and kT  are asymptotical independent for any kl ≠ . 

 

Note that a direct application of the Slutsky’s theorem shows that lT  is asymptotically nor-

mally distributed with mean zero and variance 1. Now we have to prove that the random vec-

tor { }kl TT ,  converges in distribution to a standard bivariate normal distribution.  

The proof follows by application of theorem 1 with the fact that, ( ) 0,cov ≈kl TT  for any 

kl ≠ . 

 Using the fact that 
2

ˆ
lσ  can be approximated by (Tsiatis et al., 1985) 

 ( )
n

d
t l

lZ

2σ̂ , 

where ld  denotes the expected number of failures at time lt  and ( )
lZ t

2σ̂  the empirical vari-

ance of the indicator variable Z  as observed up to time lt , the standardized test statistic can 

be rewritten as 

 
( ) ( )
( ) ( )11

1

ˆˆ −−

−

−

−
=

lZllZl

lnln

l
tdtd

tStS
T

σσ
, Ll ,,2 ,1 L= ,     (6.2) 

Because in reliability analysis, the number of failures carry primary information, the adapta-

tion procedure is based on the number of failures, rather than on the actual simple size. Using 

ideas similar to those of Hartung and Knapp (2003), the adaptation procedure is as follows: 
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Under the null hypothesis, the lT  have a continuous distribution function 0,lF . Therefore, the 

p-values 

 ( )
lll TFp 0,1−= , Ll ,,2 ,1 L=  

are uniformly distributed on the interval ( )1,0 , such that  

 ( ) ( ) ( )lll pFu
l

−= − 11
2 νχ

ν         (6.3) 

is chi-square distributed with lν  degrees of freedom ( ( )lνχ 2 ) (Hedges and Olkin, 1985), 

where ( )
1
2

−

l

F
νχ

 denotes the inverse of the standard chi-square distribution function with lν  de-

grees of freedom and ( )llu ν  is the ( lp−1 )-quantile of the ( )lνχ 2 -distribution.  

The final test statistic up to stage l  has the form 

 ( )∑
=

=
l

j

jjl uU
1

ν ,         (6.4) 

which under the null hypothesis 0H  follows a ( )( )lΣνχ 2 -distribution, 

 ( ) ∑
=

Σ =
l

j

jl
1

νν  Ll ,,2 ,1 L= .        (6.5) 

It is clear that ( ) 0≥jju ν , j  ∀  and therefore { }
Ll

UULl ≤∈∀ ∗
∗     ,,2 ,1  L .  If 

 ( )( ) ανχ −Σ≥∗ 1

2
LU

l
, 

the null hypothesis is rejected at level α  and the study can be stopped after stage ∗
l  

( )( ) ανχ −Σ 1

2
L  denotes the ( α−1 )-quantile of the ( )( )LΣνχ 2 -distribution. 

 

6.2.2 Adaptive designing 

 

We begin the study by defining the total degrees of freedom to be available in the whole se-

quential trial 

 ( ) ∑
=

Σ =
L

j

jL
1

νν . 

The global critical value is defined as ( )( ) ανχ −Σ 1

2
L  and the minimum number of degrees of 

freedom, minν  assigned to each stage, which will be realized, is defined. 

For easy of representation, 1min =ν  and ( ) LL =Σν . Therefore, the global critical value is  

 ( ) αα χ −= 1

2
Lcv  . 
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The available degrees of freedom is divided into 1ν  and ∗
2ν  degrees of freedom in the first 

step with 

 L<≤ 11 ν  and 12 νν −=∗ L , 

so that under 0H  

 ( ) ( ) ( )Luu 2

2211 ~ χνν ∗+ . 

1ν  is the  prespecified non-random degrees of freedom of the first stage and the null hypothe-

sis 0H  is rejected at level α  and the experiment stops if 

 ( ) αν cvuU ≥= 111 . 

Otherwise, the experiment will continue. 

If 12 =∗ν , we set 122 == ∗νν  (because of 1min =ν ) and the experiment definitely stops after 

the second stage. If 22 ≥∗ν , it can be divided into two parts 2ν  and ∗
3ν  with 

 12 ≥v   and 223 ννν −= ∗∗  

so that under 0H  

 ( ) ( ) ( ){ } ( )Luuu
2

232211 ~ χννν ∗++ . 

2ν  is the degrees of freedom assigned the second stage and the null hypothesis 0H  is rejected 

at level α  and the experiment stops if 

 ( ) ( )22112 νν uuU += αcv≥ . 

Otherwise, the experiment will continue. 

If 13 =∗ν , we set 133 == ∗νν  and the experiment definitely stops after the third stage. 

If 23 ≥∗ν , it can be divided again into two parts 3ν (degrees of freedom assigned to the third 

stage) and ∗
4ν  with  

 13 ≥v   and 334 ννν −= ∗∗ , 

and so on. 

After the ( )1−l , the following scheme is obtained: 

 ( ) ( ) ( )LLuu 2

1211 ~ χνν −+  under 0H  

 ( ) ( ) ( )[ ] ( )LLuuu
2

2132211 ~ χνννν −−++  under 0H  

 …  …  …  … 

( ) ( ) ( ) ( ) ( )LLuuuuu
l

j

jlll

2
1

1

11332211 ~ χννννν





























































−+++++ ∑

−

=
−−L  under 0H  
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with  

 1
1

1

≥−∑
−

=

l

j

jL ν  and  1≥jν . 

Let us introduce the notation 1
ˆ −= ll aa , which indicates that la  is determinate or estimated 

upon knowledge of all the information obtained in the previous study stages before the begin-

ning of stage l . Then 1
ˆ −= ll νν . 

The adaptation procedure is based on the number of failures, not the number of units because 

it is the first one which determines the power of the study. Given the a priori fixed number of 

failures of the first stage 1f , the additional number of failures in the l th stage 1−− ll dd  lf=  is 

determined upon knowledge of the previous study stages, lf 1
ˆ

−= lf . Under the null hypothesis 

the distribution of the p -values lp  and the independence of  lp  and kp , kl ≠ , still hold 

provided the continuity of the distribution of the test statistics. If the distribution of the test 

statistic under 0H  is not continuous, in order to ensure that the combination test does not 

exceed the pre-chosen type I error rate, the distribution of 1p  and the conditional distributions 

of lp  given ( )11  ,, −lpp L  have to be stochastically larger than the uniform distribution. 

(Brannath, Posch and Bauer, 2002) 

In the following, an algorithm for determining the degrees of freedom and the additional num-

ber of failures in each stage based on the available knowledge prior to the stage that will be 

performed is given. 

Denoting lS  the sample size spending function used after stage ( 1−l ), the minimum addi-

tional number of failures lM  for stage l (will be the last stage), holding the given power 

β−1  and type I error rate α  conditionally on the results of the previous study parts is de-

fined by Hartung and Knapp (2003) 

 ( ){ }( )( )βανχ
,1 111 2 −−−− −−=

Σ
llLll UcvFSM .      (6.6) 

lM  is the additional number of failures to achieve a conditional power of β−1  because, in 

the conditional error function 

 ( ){ }( )1121 −−−
−−

Σ
llL

UcvF ανχ
, 

the whole remaining degrees of freedom is used. 

At each stage, the parameter of interest θ   will be estimated based on the knowledge of all the 

previous study parts as well as update estimates of other parameters like variances, 1
ˆ

−= ll θθ .  
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These parameters are directly or indirectly involved in 1−lS  and may not yet have stabilized. 

Therefore, only a part of lM  should be used as additional number of failures, that is  

 lll Mf ⋅= ε ,  with  10 << lε .       (6.7) 

Hartung and Knapp (2003) proposed as degrees of freedom associated to stage l  

 ( ){ } ( ){ }
l

l

l

l lL
M

f
lL εννν ⋅−−=⋅−−= ΣΣ 11 .      (6.8) 

The sequence { }lε  may be defined before the beginning of the study and is defined as  

 { }








=
l

l

l
m

M
ε ,          (6.9) 

where  

lm ( ){ }( )( )
gllLl UcvFS βανχ

,1 111 2 −−−− −−=
Σ

                (6.10) 

for a fixed type II error rate gβ , which is larger than β .  In a similar way is the power spend-

ing approach discussed in Bauer (1992). In other to adjust the effect of a too large chosen gβ , 

one may choose a minimum number of failure minf  to be observed in each stage, because a 

too large gβ increases the number of stages to be performed. 

  

The adaptation procedure can be summarized as follows: 

6. Define the type I and II error rates α  and β , the type II error rate gβ  for generating 

the sequential  number of observed failures lf ,  the minimum number of observed 

failure in each stage minf , the maximal number of observed failures in each stage lK , 

the minimum number of degrees of freedom minν and finally the total number of de-

grees of freedom ( )LΣν . 

7. Choose the starting configuration 1f  and 1ν  for the first stage. 

8. After study  part “stage l ” 1≥l , calculate  

( )∑
=

=
l

j

jjl uU
1

ν . 

 If αcvU l ≥ , 0H  is rejected and the experiment stops. 

 If ( ) ( )Ll ΣΣ =νν , the experiment stops and 0H  is rejected if  αcvU l ≥ . 

 If αcvU l <  and ( ) ( )Ll ΣΣ <νν  then go to the next step. 
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9. Compute the weight function 1+lW , the degrees of freedom 1+lν  and the number of ob-

served failures 1+lf  for stage 1+l . The weight function is given by 

( )( ) 















⋅−=

+
+Σ+

1

min
11 ,max  ,1max

l

ll
M

f
lLW εν                 (6.11) 

and the degrees of freedom and the additional number of observed failures are set as 

follows (Hartung and Knapp, 2003) 

( )

( )






−

+≥−
=

Σ

+Σ+

+

                    otherwise       

1   if              11

1

lL

WlLW ll

l

ν

ν
ν                 (6.12) 

 and 

( ) 








−

⋅
=

Σ

++
+ min

11

1   ,max f
lL

M
f ll

l ν
ν

.                 (6.13) 

10. Then go to step 3 and replace l  by 1+l . 

 

In the following, some strategies for adjusting the design under our self-designing method are 

presented. 

 

6.2.3 Strategies for adjustment 

 

Recall that the units enter the experiment sequentially and symmetrically and are followed 

until they fail or the study is terminated. There are three main factors that determine the num-

ber of failures for censored survival data. These are: 

• The hazard rates for both groups (standard and experimental) 

• The accrual rate 

• The accrual time 

Therefore, when the experimenter decides to continue the experiment, he can extend the fol-

low-up duration after accrual, the accrual duration or increase the accrual rate. Evidently there 

are many other possibilities which are out of the scope of this work. 

With fixed accrual rate and duration and the follow-up period varying, it is clear that by ex-

tending the follow-up time, we may observe extra failures and therefore more failures should 

be observed in a later stage of the study. 
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The second possibility is when we assume that the accrual rate and the follow-up dura-

tion are fixed. Therefore we can increase the number of failures observed by extending the 

accrual duration. 

The last possibility is to fix the accrual and follow-up duration. By increasing the ac-

crual rate, we may increase the number of failures observed. If we accrue more units to the 

experiment, we obtain the required number of failures sooner and the total study duration is 

reduced. 

The design problem is solved by making the following assumptions: 

• Uniform accrual during the accrual period of A  years and the follow-up period is of  

τ additional years 

• The survival time distributions for the standard and experimental group are exponential 

with hazard rates Sh  and Eh . 

• Unit accrual is according to a Poisson process with rate a  (>0). Therefore the number of 

units entering the experiment will be distributed as a Poisson variable with mean Aa ⋅ . 

The empirical type I error rates and power estimates are based on simulating 10000 independ-

ent experiments for various combinations of accrual rate, accrual duration, follow-up duration 

and hazard rates. For equal randomisation with fixed sample design, George & Desu (1974) 

formula for the total number of failures needed to achieve a power of β−1  at the alternative 

0
~

>θ  is given by 

 
( )

2

2

11

~
4

θ
βα −− +

=
zz

d .                   (6.14) 

Let ( )th  be the hazard function. Recall that the probability of surviving beyond time t  is 

 ( ) ( )( )ttVP Λ−=> exp , 

where  

 ∫=Λ
t

0

 )()( duuht  

denotes the cumulative hazard function. 

The expected number of failures at calendar time lt  is  

 ( )[ ]{ }∫ −Λ−−=
A

0

 exp1 duutad ll . 

For exponential survival with constant hazard h , the expected number of failures in each 

group at calendar time lt    is given by 
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     if                        
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.             (6.15) 

For equal randomisation, the expected number of failures at time lt , under the alternative hy-

pothesis is 

  
( ) ( )( )SE h

l

h

lll ddtdd +==
2

1
)(                   (6.16) 

and the accrual rate a  can be easily computed. For an accrual duration A , the required sample 

size is aAn ⋅= . 

Since we required d  failures to achieve the desired power, the minimum accrual duration 

must be  

a

d
A =min .  

It is not necessary to keep the accrual open beyond time maxA , where maxA  satisfies 

 dd A =
max

. 

Therefore, the range of duration of the accrual period is 

 maxAA
a

d
≤≤ . 

Given the accrual period A , we can estimate the follow-up period τ  by solving the equation 

 dd A =+τ .                     (6.17) 

For equal randomisation with fixed sample design, George & Desu (1974) formula for the 

total sample size needed to achieve a power of β−1  at the alternative 0
~

>θ  is given by 
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,               (6.18) 

with  

 ( ) ( )( )Ahh
Ah

P ii

i

i −−−−= exp1exp
1

1 τ , SEi ,=               (6.19) 

the probability of observing a failure in the ith group. 
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In the following sections, we used the following sample size spending function to compute 

formula (6.6) and (6.2.10); 

 ( )
( )

2

1

2

11

1 ˆ

4
,

−

−−
−

+
=

l

l

zz
S

θ
βα βα

,                  (6.20) 

with 

 

∑

∑
−

=

−

=
− =

1

1

1

1

1

ˆ

ˆ
l

j

j

l

j

jj

l

n

n θ

θ ,                   (6.21) 

where jθ̂  is the Maximum Likelihood Estimate for θ  and jn  is the number of units enrolled 

in the study up to the calendar time jt . 

 

6.2.4 Example 

 

An engineer wishes to compare the time until stress corrosion crack initiation for a standard 

material manufactured by a company A with the time until crack initiation of a new formula-

tion of this material manufactured by the company B. Let  ( )thA  be the hazard function for the 

standard material of company A and ( )thB  be the hazard function of the material manufac-

tured by company B. The engineer is interested in the test problem 

 0:0 =θH  vs. 0:1 >θH  

with 

 
( )
( )








=

th

th

A

Blnθ . 

More precisely, the engineer wants 90% power to detect an improvement of 0.597 on the log 

hazard ratio scaled by conducting a 5%-level one-sided test. Based on data collected from one 

historical study using the standard material, the value 1.0=Ah  has been observed. The total 

degrees of freedom to be available in the whole sequential test is 10=L . The type II error 

rate for generating the sequential number of observed failures is 8.0=gβ . The minimum 

number of observed failures in each stage is 12min =f . The global critical value is given by 

( ) 307.1810 95.0

2 == χαcv .  

Data from one historical stress corrosion crack initiation study suggest the exponential distri-

bution as a model for this type of data. That means, the exponential distribution is chosen to 
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model the time to crack initiation. The test conditions need to be accelerated to ensure crack 

initiation failures without introducing a failure mode not usually experienced under normal 

operating conditions. The materials are then tested under stressful conditions, so that each 

hour of testing is equivalent to 10000 hours of actual use in the field. Specimens from both 

the standard and new material will be tested simultaneously using a machine loaded stress test 

at a single high stress condition and these are followed until either they fail or are administra-

tively censored at the end of the follow-up period. The maximum number of specimen the 

engineer can test at one time is 200. Specimens are allocated uniformly during the accrual 

period of 4 hours and the follow-up period is of 6 additional hours. Allocation is according to 

a Poisson process with rate 50 per hour. The starting configuration for the first stage are cho-

sen as 241 =f  and 21 =ν . 

After observing 24 failures in both groups in the first stage, we compute the statistic 
1nS = 

3.0414 according to formula (6.1), with 1n  representing the number of specimens enrolled in 

the study up to that time ( 22.31 =t  hours 1621 =n ). We observe then a test value of T  as 

2378.11 =T  according to formula (6.2) with ( ) 00 =tSn  and ( ) 5015.01 =tZσ . Thus the corre-

sponding p-value is 1078.01 =p and ( ) ( ) 4532.42111 == uu ν . 3070.184532.41 =<= αcvU . 

From the first stage we obtain the maximum likelihood estimate of θ  , 7386.0ˆ
1 =θ . Accord-

ing to formula (6.6) 

 { }( )( ) { }( )( ) ( )( )
53

ˆ

14
,1

2

1

21

18

1

1812

2

2 ≅
−Φ+−Φ

=−−=
−−

θ

β
β

αχ
αχ

UcvF
UcvFSM , 

and  formula (6.3.10) 

 { }( )( ) { }( )( ) ( )( )
3

ˆ

14
,1

2

1

21

18

1

1812

2

2 ≅
−Φ+−Φ

=−−=
−−

θ

β
β

αχ
αχ

g

g

UcvF
UcvFSm . 

Because the maximum number of failures to observe in each stage is set to 50, we decided to 

take 502 =M . Therefore the sequence for the second stage 06.0/ 222 == Mmε  and we com-

pute the weight function 92.12 =W  (formula (6.11)) and the degrees of freedom of the second 

stage 22 =ν  (formula (6.12)). The additional number of failures to observe in the second 

stage is then 132 =f . After observing 13 more failures, we compute the statistic 
2nS = 4.5613 

with 2n  representing the number of specimens enrolled in the study up to that time ( 86.32 =t  

hours, 1942 =n ). We observe then a test value 8409.02 =T  with ( ) 5012.02 =tZσ  and the 

corresponding p-value is 2001.02 =p , which implies ( ) ( ) 2169.32222 == uu ν . Therefore 
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( ) ( )22 212 uuU += = 7.6701. αcvU <2 =18.3070 and the update estimate of θ  is =2θ̂ 0.7290 

(6.21).  Hence, by (6.6), we obtain 503 =M  and by (6.10) 23 =m . The sequence for the third 

stage 04.03 =ε , the weight function is 44.13 =W  and by (6.12) 23 =ν . By (6.13), the addi-

tional number of failures to observe in the third stage is 173 =f . After observing 17 more 

failures, we compute the statistic 
3nS = 7.1246 by 77.43 =t  hours, 2002 =n  and the test 

value is 2402.13 =T  which correspond to a p-value of  1074.03 =p . ( ) ( ) 4616.42333 == uu ν  

and ( ) ( ) ( ) 1318.12222 3213 =++= uuuU . αcvU <3 =18.3070 and ( ) 1063 <=Σv , Therefore, 

the fourth stage must be performed. The update estimate of θ  is =3θ̂ 0.7347 . Hence, we ob-

tain 354 =M , 14 =m . The sequence for the fourth stage 0285.04 =ε , the weight function is 

3714.14 =W  and 24 =ν . The additional number of failures to observe in the fourth stage is 

then 184 =f . After observing 18 more failures, we compute the statistic 
4nS = 6.7858 by 

74.54 =t  hours, 2004 =n  and we obtain a test value of 1593.04 −=T  which corresponds to a 

p-value of 5632.04 =p . ( ) ( ) 1479.12444 == uu ν  and ( ) ( ) ( ) ( )2222 43214 uuuuU +++=  = 

13.2797. αcvU <4 =18.3070 and ( ) 1084 <=Σv , Therefore, the next stage must be performed. 

The update estimate of θ  is =4θ̂ 0.7046. Hence, we obtain 585 =M  and we decided to take 

505 =M  35 =m . The sequence for the fourth stage 06.05 =ε , the weight function is 15 =W  

and 15 =ν . The additional number of failures to observe in the five stages is there-

fore 255 =f . After observing 25 more failures, we computed the statistic 
5nS = 12.1119 and 

the test value is 1251.25 =T  which corresponds to a p-value of 0167.05 =p . 

( ) ( ) 7183.51555 == uu ν  and ( ) ( ) ( ) ( ) ( )12222 543215 uuuuuU ++++=  = 18.9980. αcvU <5  = 

18.3070. Thus 0H  is rejected at level 05.0=α  and we stopped the test. We need about 24 + 

13 + 17 + 18 + 25 = 97 failures to observe in the study to detect an improvement of 0.597 

with power 0.9. In a fixed-sample design, we would have needed to observe about 96 failures 

if the estimate of the log hazard ratio θ   would have been known in advance. 

 

6.2.5 Simulation 

 

In this section, simulations are carried out to give an impression of the operating characteris-

tics of the adaptation procedure for different cases and a comparison with the usual log-rank 
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test with fixed sample size. In each simulation, a log-rank statistic is computed based on the 

calculated sample size from the fixed sample design at the determinate termination time. The 

performance of the log-rank from the fixed sample design is compared with the proposed 

procedure in terms of error rate, power, average number of failures and average study dura-

tion by simulation. The simulated values are based on 10000 independent replications.  For 

the proposed procedure, for the computation of ( )ln tS  , n  is replaced by the number of 

specimens enrolled in the study up to the end of the l th stage. Specimens, which enter the 

study at that time but have not failed, are censored. 

Specimens are equally randomised, in each stage, to the two groups. The type I error 

rate 05.0=α  and a power of 9.01 =− β  is specified. We use one-quarter of the number of 

failures required in the fixed sample design as 1f . The total number of available degrees of 

freedom are set equal to 10=L . The minimum number of failures to be observed in each 

stage is set equal to 2/1min ff = . The required number of failures for the l-th stage is com-

puted using (6.7) where the sequence { }lε  is determined as in (6.9) with 8.0=gβ .  

 

First Strategy: Fixed accrual rate and accrual period and varying follow-up 

duration 

 

We want to detect an improvement of 5.0
~

=θ  on the log hazard ratio scale with 0607.0=Eh  

and  1.0=Sh . The number of failures required in the fixed sample design is equal to 138 (cf 

(6.13)) when the true log hazard ratio is correctly specified. With a 4 months accrual duration 

and a 3 months follow-up after accrual, the fixed accrual rate is computed according to for-

mula (6.16) and is equal to 106=a  units per month. The follow-up period τ  vary from 4 to 7 

months. The usual log-rank test is computed at the end of 7 months for 424 accrued units. A 

log-rank score statistic  ( )ln tS  given by (6.1) is calculated after observing  

∑
=

l

i

if
1

 

failures and the procedure works as described before. 

Preliminary simulations showed that the global critical value given by  

 ( ) αα χ −= 1

2
Lcv  

was very conservative; therefore we adjust as 

 ( ) 5.61

2 −= −αα χ Lcv . 
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We also introduce a lower bound for an early acceptance of 0H , that is  

 ( )( )
L

lU l ανχ −Σ≤
1

2 , 

where 6.0=Lα . 

We considered here with two different cases corresponding to the upper bounds in the sample 

size functions lM  and lm . The first case is given with 

120≤lM , 120≤lm  and the second with 100≤lM , 100≤lm . The use of upper bounds for 

lM  and lm  influences directly not only the degrees of freedom, but also the number of fail-

ures to be observed in the next stage which are functions of the sequence lε  (Hartung and 

Knapp, 2003). 

The results of the simulations are given in table 6.2.1 with the following abbreviation: 

ES: Empirical Size 

EP: Empirical Power 

ANF: Average Number of Failures 

ASD: Average Study of Duration 

 Here for the proposed method, the use of a larger bound for  lM  and lm  results in a larger 

power, a greater average number of failures and greater average study duration. The greater 

difference between the power is observed at θ = 0.45 and is more than 3%. The average num-

ber of failures with 120≤lM , 120≤lm  is considerably larger when the true underlying al-

ternatives, θ , are overestimated by 5.0
~

=θ  than with 100≤lM , 100≤lm . Comparing now 

the proposed procedure and the fixed-sample design, considering the bounds 100≤lM , 

100≤lm , we observed that when the alternative hypothesis is correctly specified, the pro-

posed procedure achieves power similar to that from the fixed-sample design with a consid-

erably smaller average number of failures and a smaller average study duration. The differ-

ence between the average number of failures is greater when the true underlying alternatives, 

θ , are considerably overestimated or underestimated. In general, the proposed procedure re-

sults in a smaller average study duration. For small values for θ , the proposed procedure re-

sults in a slightly loss of power and  a slightly gain of power for greater values of  θ . Consid-

ering the bounds 120≤lM , 120≤lm , the proposed strategy which allows an  increase in  the 

number of failures by extending the follow-time results in a larger power. 
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θ  Characteristics 120≤lM  

120≤lm  

100≤lM  

100≤lm  

Fixed-sample 

design 

Under 0H  

( 0=θ ) 

ES 

ANF 

ASD 

0.0501 

142.7387 

6.1847 

0.0539 

132.8587 

5.8376 

0.0476 

165.1637 

7 

 

0.35 

EP 

ANF 

ASD 

0.572 

151.6892 

7.3079 

0.5462 

134.216 

6.5669 

0.5603 

145.0005 

7 

 

0.4 

EP 

ANF 

ASD 

0.6883 

151.2503 

7.4049 

0.6588 

133.3302 

6.6290 

0.666 

142.4735 

7 

 

0.45 

EP 

ANF 

ASD 

0.7859 

150.2099 

7.4829 

0.7553 

132.2322 

6.6821 

0.7607 

140.033 

7 

 

0.5 

EP 

ANF 

ASD 

0.8638 

148.3828 

7.5240 

0.8358 

130.399 

6.7071 

0.8351 

137.6446 

7 

 

0.55 

EP 

ANF 

ASD 

0.9188 

145.6095 

7.5270 

0.8977 

127.5866 

6.6897 

0.8911 

135.333 

7 

 

0.6 

EP 

ANF 

ASD 

0.9518 

142.3617 

7.5046 

0.9375 

124.8595 

6.6711 

0.9309 

133.1214 

7 

 

0.65 

EP 

ANF 

ASD 

0.972 

138.7742 

7.4638 

0.9646 

121.6478 

6.6309 

0.959 

130.9758 

7 

 

0.7 

EP 

ANF 

ASD 

0.9855 

134.4241 

7.3862 

0.9829 

117.9606 

6.5650 

0.976 

128.90 

7 

 

Table 6.2.1: Empirical size and Power, Average Number of failure for the design with the 

first strategy 
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Second Strategy: Fixed accrual rate and follow-up duration, but varying 

accrual duration 

 

We considered the same hazard rates for the standard and the experimental group as in the 

first strategy. With an accrual rate varying from 4 to 7 months and a fixed follow-up of 3 

month, the fixed accrual rate is computed according to formula (6.2.16) and is equal to 84=a  

per months. The results are summarized in table 6.2.2 and will help us to compare the two 

strategies. We can observe a slightly gain of power compared to the first strategy. The average 

study duration is also a bit lower in this case. For the rest, the observed phenomena is similar 

to that of the first strategy.  

 

 

θ  Characteristics 120≤lM  

120≤lm  

100≤lM  

100≤lm  

Fixed-sample 

design 

Under 0H  

( 0=θ ) 

ES 

ANF 

ASD 

0.0475 

142.7717 

6.3725 

0.0505 

132.9402 

6.1516 

0.0422 

165.0002 

7 

 

0.3 

EP 

ANF 

ASD 

0.4518 

152.0618 

7.1053 

0.4312 

134.7154 

6.6416 

0.444 

147.0837 

7 

 

0.4 

EP 

ANF 

ASD 

0.6966 

151.3941 

7.2289 

0.6637 

133.4563 

6.7354 

0.6702 

141.7929 

7 

 

0.45 

EP 

ANF 

ASD 

0.7988 

150.2331 

7.2645 

0.7615 

131.9816 

6.7535 

0.7656 

139.2836 

7 

 

0.5 

EP 

ANF 

ASD 

0.873 

148.2141 

7.2712 

0.843 

130.1936 

6.7571 

0.8391 

136.8714 

7 

 

0.55 

EP 

ANF 

ASD 

0.9253 

146.0274 

7.2695 

0.9011 

128.0235 

6.7450 

0.8944 

134.5749 

7 
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0.6 

EP 

ANF 

ASD 

0.9603 

143.0786 

7.2397 

0.9448 

125.431 

6.7148 

0.933 

132.3658 

7 

 

0.65 

EP 

ANF 

ASD 

0.9774 

139.2037 

7.1764 

0.9695 

122.0988 

6.6562 

0.9608 

130.2026 

7 

 

0.7 

EP 

ANF 

ASD 

0.9889 

135.0838 

7.0979 

0.9842 

118.5523 

6.5844 

0.9766 

128.1318 

7 

 

Table 6.2.2: Empirical size and Power, Average Number of failure for the design with the 

second strategy 

 

The second strategy may work more effectively when hazard rates are high because the num-

ber of failures increases. The performance of the second strategy are now evaluated with rela-

tively high hazard rates 25.0=Eh  and  5.0=Sh  corresponding to 693.0
~

=θ . The number of 

failures required in the fixed sample design is equal to 72 (cf (6.2.13)) when the true log haz-

ard ratio is correctly specified. With accrual duration varying from 4 to 7 months and a 3 

months follow-up after accrual, the fixed accrual rate per month is computed according to 

formula (6.2.16) and is equal to 18=a  per months. The usual log-rank test is computed at the 

end of 7 months for 126 accrued units. We adjust the global critical value as 

 ( ) 51

2 −= −αα χ Lcv  

and we also introduce a lower bound  for an early acceptance of 0H , that is  

 ( )( )
L

lU l ανχ −Σ≤
1

2 , 

where 6.0=Lα . 

The upper bounds in the sample size functions lM  and lm  are given with 

72≤lM , 72≤lm  and the second with 60≤lM , 60≤lm .  The results are summarized in 

table 6.2.3. We observed that extending the accrual period is effective for high hazard rates 

because a slight gain in power is achieved compared to low hazard rates given in table 6.2.2. 
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θ  Characteristics 72≤lM  

72≤lm  

60≤lM  

60≤lm  

Fixed-sample 

design 

Under 0H  

0=θ  

ES 

ANF 

ASD 

0.0501 

90.8462 

6.82.89 

0.0523 

84.2982 

6.5379 

0.0419 

91.1127 

7 

 

0.45 

EP 

ANF 

ASD 

0.533 

87.4881 

7.2486 

0.5174 

77.08 

6.5947 

0.537 

83.3331 

7 

 

0.5 

EP 

ANF 

ASD 

0.6274 

86.7372 

7.2615 

0.603 

76.1244 

6.5806 

0.6292 

82.4085 

7 

 

0.55 

EP 

ANF 

ASD 

0.7118 

85.8742 

7.27024 

0.6861 

75.0941 

6.5647 

0.7071 

81.4685 

7 

 

0.6 

EP 

ANF 

ASD 

0.7875 

84.3906 

7.2427 

0.7597 

73.9449 

6.5383 

0.7789 

80.5266 

7 

 

0.65 

EP 

ANF 

ASD 

0.8459 

82.8645 

7.2092 

0.8251 

72.3906 

6.4849 

0.8371 

79.57 

7 

 

0.693 

EP 

ANF 

ASD 

0.8915 

81.3651 

7.1735 

0.8692 

71.220 

6.4481 

0.877 

78.7732 

7 

 

0.75 

EP 

ANF 

ASD 

0.931 

79.2352 

7.1130 

0.9141 

69.339 

6.3820 

0.9213 

77.7067 

7 

 

0.8 

EP 

ANF 

ASD 

0.9558 

77.2976 

7.0512 

0.9448 

67.6589 

6.3168 

0.9464 

76.7568 

7 

 

Table 6.2.3: Empirical size and Power, Average Number of failure for the design with the 

second strategy with relative high hazard rates 
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6.3 Sample size adaptation under non proportional 

hazard 

 

The log-rank statistic is the commonly used two-sample nonparametric test statistic and is 

adequate in situation of proportional hazard (the ratio of the hazards is constant over time). 

But in non proportional case, it does not have a good interpretation with respect to any par-

ticular alternative of interest. More precisely, it is not sensitive to the duration and magnitude 

of the difference in survival over time; that is why it behaves poorly. To overcome this prob-

lem, Pepe and Fleming (1989) proposed a class of test based on the integrated weighted dif-

ference in the Kaplan-Meier estimates. In this section we develop and illustrate a method of 

updating sample size using a test statistic which belongs to the class of test based on the inte-

grated weighted difference in the Kaplan-Meier estimates proposed by Pepe and Fleming 

(1989, 1991). The adaptation method is based on the work of Hartung and Knapp (2003). 

Accumulating data will be reviewed sequentially to adjust the sample size and the study can 

be terminated early if a large group difference is observed. The proposed test statistic is a 

linear weighted Kaplan-Meier which can update the sample size based on the observed data. 

In subsection 1, notation required in the sequential framework and the test statistic is intro-

duced. The asymptotic joint distribution of the test statistic at different calendar time or dif-

ferent interim analysis time is also derived. Particular attention will be given on the conditions 

under which the test statistic has a joint independent increments structure. In subsection 2, we 

present methods for adapting the test statistic to the adaptation procedures. A simulation study 

to obtain the operating characteristics of the proposed method and for a comparison with the 

sequential log-rank test will close this section. 

 

6.3.1 Notation and test statistic 

 

Let the nonnegative random variable Y  denote the real time of entry into the experiment and 

let the random variable V  denote failure time. Let C  denote the time from entry to censoring. 

The survival distribution of V  at any time x  can be expressed as 

 ( ))(exp xΛ−  

and the density as 

 ( ) ( ))(exp xxh Λ− , 
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where )(xh  denotes the hazard rate at time x  and 

 ∫=Λ
x

0

 )()( duuhx  

denotes the cumulative hazard function. 

The time of entry into experiment, Y , is assumed to be a bounded positive random variable 

with distribution function 

 ( ) ( )yYPyH ≤= . 

The distribution of the time to censoring is given by 

 ( ) ( )cCPcG <= . 

( ) ( ))1 cGcS −=  denotes the survival distribution. It is assumed that the random variables 

CYV ,,  are independent within each group. 

Denoting ( )tSE  and ( )tSS  the survival function of the experimental and standard groups re-

spectively, we want to test if the two survival functions are equal. Considering the median 

survival of the specimens of the two groups Em  and Sm , SE mm /=θ  can express the differ-

ence between the two groups. A one-sided test will be performed with a significance level of 

α  to detect a median ratio of θ
~

1> . The null hypothesis to be tested is 

 1:0 =θH  against  1:1 >θH . 

The study is characterized by an accrual period A  and a follow-up period τ . Subjects enter 

the experiment sequentially and are allocated symmetrically to the two groups and are fol-

lowed until either they fail or are administratively censored at the end of the follow-up period.

  

Suppose that the experiment involved for each group i , in  units, SEi  ,= , which enter the 

experiment serially and are assigned to machines according to some random mechanism. The 

data can be expressed as identically and independently distributed random vectors ( )
ijijij CYV ,,  

for SEi  ,= , inj ,,1L= . 

If the data were to be examined at time t , the following variables could be observed: 

• Time to failure or censoring 

{ } 0 ), ,, min( max)( ijijijij CYtVtX −=  

• Indicator variable for failure 

( )


 −<

=∆
otherwise                     0

),min( if  1 ijijij

i

CYtV
t  
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At time t , the data can be expressed as n identically and independently distributed random 

vectors ( ))(),( ttX ijij ∆  for SEi  ,= , inj ,,1L= . 

Defining the counting process 

 ( ) ( )1)(  ,)(, =∆≤= txtXIxtN ijijij , 

which is the indicator function that unit j  in group i  was observed to fail at calendar time t   

before duration x , tx ≤ , ( )⋅I  denoting the indicator function and define 

 ( )∑
=

=
in

j

iji xtNN
1

, , SEi  ,= . 

and 

 ( ) ( ) ( )xtNxtNxtN SE ,,, += . 

Similarly, define the number of units at risk at calendar time t  and at failure time x , tx ≤ , 

 ( ) ( )( )∑
=

≥=
in

j

iji xtXIxtn
1

,  

and let 

 ( ) ( ) ( )xtnxtnxtn SE ,,, += . 

We define the Kaplan Meier estimate of the survival function ( )tS i , if we used the data avail-

able at calendar time t  as 

 ( ) ( )
( )∏

≤ 







−=
xw i

i

i
wtn

wtNd
xtS

,

,
1,ˆ , SEi  ,= . 

Define the σ -algebra ( )xt,ℑ  generated by failures happening before calendar time t  and 

failure time x , tx ≤ ; formally: 

 ( ) ( ) ( ) ( )( ) ( )( ){ }
ijijijijijijijij VYtwCIYtwVItYIYtYIxt ,,min,,min, ,, −≤−≤≤≤=ℑ σ  

for SEi  ,= , inj ,,1L= , xw ≤≤0 . 

Under some independence conditions and for fixed t  

 ( ) ( ) ( )∫−
x

iii dwwtnwhxtN
0

,, , SEi  ,=  

is a martingale with respect to the filtration ( )( ) 0, ≥ℑ
x

xt . The Nelson-Aalen estimators are 

given by 

 ( ) ( )( )
( )

( )∫
>

=Λ
x

i

i

i

i dwwtN
wtn

wtnI
xt

0

,
,

0,
,ˆ , SEi  ,= . 

Note that 
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 ( ) ( )( )[ ]xtxtSn iii ,ˆexp,ˆ Λ−−  

converges in probability to zero as shown by Breslow and Crowley (1974). 

 

For tx ≤  and under the null hypothesis, we define the statistic 

 ( ) ( )
( )

dw
wtn

wtM
nxtZ

x

n ∫=
0

,

,
, , 

where 

 ( ) ( ) ( ) ( )∫−=
x

dwwtnwhxtNxtM
0

,,, . 

According to Murray and Tsiatis (1999), 

 ( ) ( )( ) ( )( )

∫=
21 ,min

0 2

2211
),()(

,,,cov

xx

nn dw
wtCwS

wh
xtZxtZ  

asymptotically, where 

 ( ) ( )xCxtYPxtC ijij >−<= ,,  

and 

 ( ) ( )( ) ( ) ( )( )[ ] ( ) ( )
( )

( )( )

∫≈−−
21 ,min

0 22

21
222111

),()(
,ˆ,,ˆcov

xx

dw
wtHwS

wh

tn

xSxS
xSxtSxSxtS , 

where 

 ( ) ( )∑∑
= =

≤=
2

1 1i

n

j

ij

i

tYItn  

is the total sample size enrolled at calendar time t  and  

 ( )
( )

( ) tYP

xCxtYP
xtH

ij

ijij

≤

>−<
=

,
,  

is the censoring reliability distribution amount specimens entered by calendar time t . 

If we considered the case where only one analysis is performed at the end of the study, we can 

focus our attention only on the internal time of the specimens. Let maxt be the last point where 

a consistent reliability estimate ( )max
ˆ tS  may be defined, the statistic 

 ( ) ( ){ }∫ −
⋅

=
max

0

ˆˆ
t

SE

SE dwwSwS
n

nn
Q  
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compared the reliability functions of the two groups during the first maxt  periods of study. 

Pepe and Fleming (1989) show that under the null hypothesis, Q  converge in distribution to a 

normal distribution with mean zero and variance given by 

 
( ){ } ( )

( ) ( )
dw

wHwS

whwA
p

i

t

i

t

i∑ ∫
=

−=
2

1 0

2

3

2
max max

σ . 

ip  is the probability of failing in group i , ( )xh  and ( )xS  are the hazard and reliability func-

tions, respectively, common to the two groups under the null hypothesis, and maxt
A  is given by 

 ( ) ( )∫=
max

max

t

x

t
dwwSxA . 

A natural estimator of 2σ  can be obtained by replacing the unknown quantities by their con-

sistent estimates, 

 
( ){ }

( ) ( ) ( )
( )wNd

wnwHwS

wA
p

i

t

i

t

i∑ ∫
=

−=
2

1 0

2

3

2
max max

ˆ~

ˆ
ˆσ̂ . 

n

n
p i

i =ˆ , ( )xS
~

 is the pooled Kaplan-Meier estimate of groups E  and S , iĤ  is the estimate of 

the censoring time  reliability probability, ( )xN  is the observed number of failures at time x , 

( )xn  is the observed number of specimens still at risk at time x  and  

 ( ) ( )∫=
max

max
~ˆ

t

x

t
dwwSxA . 

We consider the test statistic Q  evaluated at calendar time lt  (Murray and Tsiatis, 1999) 

 ( ) ( ) ( )
( )

( ) ( ){ }∫ −
⋅

==
τ

0

,ˆ,ˆ dwwtSwtS
tn

tntn
tQQ lSlE

l

lSlE

ll . 

Without loss of the generality, we consider a balanced design at each calendar time, that is 

 ( ) ( )lSlE tntn =  lt  ∀ , 

then 

 
( ) ( ) ( ){ }∫ −=

τ

0

,ˆ,ˆ
4

dwwtSwtS
tn

Q lSlE

l

l .                (6.22) 
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Under the null hypothesis 

( )
( ) ( )

( ) ( ){ } ( ) ( ){ } 







−−

⋅
= ∫∫ −−−−−

−
−

ττ

00

11111

1

1 ,ˆ,ˆ,,ˆ,ˆcov
4

,cov lllSllElllSllE

ll

ll dwwtSwtSdwwtSwtS
tntn

QQ

 

( ) ( )
( ) ( )( ) ( ) ( )( ) 








+

⋅
= ∫ ∫∫ ∫ −−−−−−

−
llllSllSllllEllE

ll
dwdwwtSwtSdwdwwtSwtS

tntn τ ττ τ

0 0

111

0 0

111

1
,ˆ,,ˆcov,ˆ,,ˆcov

4

 

( ) ( )
( ) ( )( ) ( ) ( )( ) 








+

⋅
= ∫ ∫∫ ∫ −−−−

−
llllSllSllllEllE

ll
dwdwwtSwtSdwdwwtSwtS

tntn τ ττ τ

0 0

11

0 0

11

1
,ˆ,,ˆcov,ˆ,,ˆcov

4
 

 

( ) ( ) ( ) ( )
( )

( )( )

( ) ( )
( )

( )( )


















+

















⋅
=

∫ ∫ ∫

∫ ∫ ∫

−
−

−
−−

−

−

     
),()(

                          

                  

   
),()(

  
4

0 0

1

,min

0

1

0 0

1

,min

0

11

1

1

ll

ww

lSlS

ll

ll

ww

lElE

llll

dwdw
wtHwS

dwwh

tn

wSwS

dwdw
wtHwS

dwwh

tn

wSwStntn

ll

ll

τ τ

τ τ

 

 

( )
( )

( )[ ] ( ) ( )[ ] ( )

















+


















= ∫∫

−       
),()(

      
),()(

   
2

1

0

2

0

2

1

τ ττ τ

dw
wtHwS

whwA
dw

wtHwS

whwA

tn

tn

lSlEl

l . 

 

Therefore  

 
( )[ ] ( ) ( )[ ] ( )


















+


















= ∫∫       

),()(
      

),()(
   

2

1
)var(

0

2

0

2 τ ττ τ

dw
wtHwS

whwA
dw

wtHwS

whwA
Q

lSlE

l
            (6.23) 

and 

 ( ) ( )
( )

( )
l

l

l

ll Q
tn

tn
QQ var,cov 1

1

−
− = , 

so that it relates directly to the variance of lQ . 

If we considered the standardized statistic 

 ( ) ( ) ( )
( )( )tQ

tQtn
tQ

var2
=∗  , 

then 

 
( )

( )( )
( )

( )( )tQ

tQ

tQ

tQ

varvar
=

∗

∗

, 

so that the two statistics can be used interchangeably. 
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 ( ) ( )( ) ( ) ( )
( )( )

( ) ( )
( )( )













=

−

−−∗
−

∗

l

ll

l

ll

ll
tQ

tQtn

tQ

tQtn
tQtQ

var2
,

var2
cov,cov

1

11

1  

 

    
( ) ( ) ( )

( ) ( )ll

llll

QQ

QQtntn

varvar

,cov

22 1

11

−

−− ⋅⋅=  

 

    
( ) ( )

( )
( )

( )

( ) ( )ll

l

l

l

ll

QQ

Q
tn

tn

tntn

varvar

var

22 1

1

1

−

−

− ⋅⋅=  

 

    
( )

( )1

1

var

1

4 −

− ⋅=
l

l

Q

tn
 

 

    ( )( )1var −
∗= ltQ . 

 

Therefore, the test statistic Q  has an independent increment structure and for any kl ≠ , 

( )11 ,cov −− −− kkll QQQQ  converge in probability to zero. 

( )
xx Qvar

2 =σ  can be estimated consistently by 
2

ˆ
xσ  which is obtained by replacing the corre-

sponding quantities with their empirical estimators. Thus, under the null hypothesis, 1−− ll QQ  

can express the information cumulated during the period ( )ll tt ,1− .  1−− ll QQ  converge in dis-

tribution to a normal distribution with mean zero and variance 
2

1

2

−+ ll σσ .  By a direct appli-

cation of the Slutsky’s theorem, the test statistic 

 
2

1

2

1

ˆˆ −

−

+

−
=

ll

ll

l

QQ
T

σσ
                   (6.24) 

is asymptotically normally distributed with mean zero and variance one. Furthermore, for any 

kl ≠  the random vector { }kl TT ,  converge in distribution to a bivariate standard normal dis-

tribution. Therefore lT  and kT  are asymptotically independent for any kl ≠ . 
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6.3.2 Adaptation procedure 

 

The procedure for sample size adaptation used is the self-designing procedure of Hartung and 

Knapp (2003) as described in section 6.2.2. Depending on the underlying reliability distribu-

tion, we will use two strategies to adjust the design: The strategy of fixing the accrual period 

and varying the follow-up period and the strategy of fixing the follow-up period and varying 

the accrual period. The design problem is solved by making the following assumptions: 

• Uniform accrual during the accrual period of A  years and the follow-up period is of  

τ additional years 

• Unit accrual is according to a Poisson process with rate a  (>0). Therefore the number 

of units entering the experiment will be distributed as a Poisson variable with mean 

Aa ⋅ . 

The expected number of failures at calendar time lt  is given by 

 ( )[ ]{ }∫ −Λ−−=
)tmin(A,

0

l

 exp1 duutad ll , 

where  

 ∫=Λ
t

0

 )()( duuht  

denotes the cumulative hazard function. For equal randomisation, the expected number of 

failures at time lt , under the alternative hypothesis is given by 

  
( ) ( )( )SE h

l

h

lll ddtdd +==
2

1
)(  . 

Then we will consider three configurations of the design: 

• The reliability time distributions for the standard and experimental group are Expo-

nential with medians respectively  Sm  and Em  (Configuration I). 

• The reliability time distributions for the standard and experimental group are Weibull 

with medians respectively  Sm  and Em  (Configuration II) 

• The reliability time distributions for the standard group is Exponential with median re-

spectively Sm   and that for the experimental group is Weibull with median Em  (Con-

figuration III). 

For equal randomisation with fixed sample design, formula for the total number of failures 

needed to achieve a power of β−1  at the alternative 0
~

>θ  is given by 
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( )

2

2

11

~
4

θ
βα −− +

=
zz

d . 

Under configuration I and II θ
~

 is expressed as 

 







=

S

E

m

m
log

~
θ  and 








=

S

E

m

m
log

~
κθ  

respectively. κ is the shape parameter common to the two groups to be compared. 

 

6.3.3 Simulation 

 

This methodology will be illustrated via a simulation study. We want 90% power to detect an 

improvement of 0.5 on the median ratio scaled ( 1=Sm , 5.1=Em ) by conducting a 5%-level 

one-sided test. We use one-quarter of the number of failures required in the fixed sample de-

sign as 1f . The total number of available degrees of freedom are set equal to 10=L . The 

minimum number of failures to be observed in each stage is set equal to 2/1min ff = . The 

required number of failures for the l-th stage is computed using (6.3.7) where the sequence 

{ }lε  is determined as in (6.3.9) with 8.0=gβ .  The reliability curves used in simulation are 

displayed in figure 6.1. The curve of the experimental group has a red colour and that for the 

standard group a green colour. The parameters of the underlying reliability distributions cor-

respond to the medians 1=Sm  and 5.1=Em  for the standard and experimental group respec-

tively. 

For the Weibull distribution, the shape parameter κ  is set to 1.5 corresponding to an increas-

ing hazard function. 
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Configuration I:  

Exp(0.462), Exp(0.693) 

Configuration II:  

Weibull(1.915, 1.5), Weibull(1.276, 1.5) 
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Configuration III:  

Exp(0.693), Weib(1.915, 1.5)   

 

 

Figure 6.1: Reliability curves used in simulation under the tree configurations 

 

The simulated values are based on 1000 independent replications run in the statistical soft-

ware R. 

 

 

 



ADAPTIVE SAMPLE SIZE CALCULATION FOR INDUSTRIAL EXPERIMENTS  

 

121

Configuration I 

 

In the case, we considered that the reliability of the experimental group and the standard 

group are exponentially distributed with medians 5.1=Em  and 1=Sm  respectively. There-

fore the total number of failures requires achieving a power of 90% for a 5% level test is 209. 

We considered the strategy of varying the accrual period for 4 to 7 months. Therefore, accord-

ing to formula (6.16), we need to enrol 40 specimens per group and per month in the study so 

that at the end of the 7 th month, the total sample size will be equal to 560. After observing lf  

failure during the lth stage, we compute the test statistic lT  for the new procedure and the 

procedure works as described in section 6.2.2. For purposes of comparison, we also compute 

the test statistic for the procedure based on the log-rank test (Log-rank) developed in section 

6.2 under the same design. Preliminary simulations showed that the global critical value given 

by  

 ( ) αα χ −= 1

2
Lcv  

was very conservative; therefore we adjust in the new procedure as 

 ( ) 5.01

2 −= −αα χ Lcv  

and in the Log-rank as 

 ( ) 7.71

2 −= −αα χ Lcv . 

We also introduce a lower bound for an early acceptance of 0H , that is  

 ( )( )
L

lU l ανχ −Σ≤
1

2 , 

where 6.0=Lα . 

We considered here the upper bounds in the sample size functions lM  and lm  as 

180≤lM , 180≤lm . The empirical size, the empirical power, the average number of failures 

observed, the average study duration are presented in table 6.4 for both the new procedure and 

the Log-rank. The new procedure gives a type I error rate of 0.049 and the Log-rank a type I 

error rate of 0.046. This indicates that the new procedure maintains the type I error rate to the 

pre-specified degree. The new procedure provides a power of 0.893 which is very good al-

though it is slightly lower than the power for the Log-rank. It is not surprising that the Log-

rank has a very high power because it is known that the log-rank test is locally most powerful 

against the proportional hazards alternatives. The average study duration and the average 

number of observed failures are not significantly different for the two procedures. This indi-
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cates that the new procedure is comparable to the procedure based on the log-rank test under 

the proportional hazard alternatives. 

 

Hypotheses Characteristics New procedure Log-rank 

 Empirical Size 0.049 0.046 

Null Hypothesis  Average Number of Failures 201.659 218.04 

( 1=θ ) Average Study Duration 3.803 4.054 

 Empirical Power 0.893 0.917 

Alternative Hypothesis Average Number of Failures 232.26 224.07 

( 5.1=θ ) Average Study Duration 4.526 4.400 

 

Table 6.4: Empirical size, empirical power, average number of failures and average study 

duration for the new procedure and the Log-rank under configuration I 

 

Configuration II 

 

We considere that the reliability function of the experimental group and the standard group 

are Weibull distributed with medians 5.1=Em  and 1=Sm  respectively. More precisely, the 

reliability of the experimental group follows a Weibull(1.915, 1.5) and that for the standard 

group a Weibull(1.276, 1.5). Therefore the total number of failures requires achieving a power 

of 90% for a 5% level test is 93.  We considered the strategy of fixed accrual period for 1.5 

months and follow-up duration varying for 1.5 to 2.3 months.  Therefore, according to for-

mula (6.16), we need to enrol 50 specimens per group and per month in the study so that at 

the end of the 2.3th month, the total sample size will be equal to 230. We adjusted the critical 

value in the Log-rank procedure as 

 ( ) 5.11

2 −= −αα χ Lcv . 

We also introduce a lower bound for an early acceptance of 0H , that is  

 ( )( )
L

lU l ανχ −Σ≤
1

2 , 

where 6.0=Lα . 

We considered here the upper bounds in the sample size functions lM  and lm  as 

500≤lM , 500≤lm . The empirical size, the empirical power, the average number of failures 

observed, the average study duration are presented in table 6.5 for both the new procedure and 

the Log-rank. The new procedure gives a type I error rate of 0.054 and the Log-rank a type I 
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error rate of 0.05. This indicates that the new procedure maintains the type I error rate to a 

satisfactory degree. The new procedure does not attained high efficiency in this case although 

its power is slightly bigger than the Log-rank. The average number of failures in the new pro-

cedure is smaller than in the Log-rank and the new procedure stops the study earlier than the 

Log-rank.  

 

Hypotheses Characteristics New procedure Log-rank 

 Empirical Size 0.054 0.05 

Null Hypothesis Average Number of Failures 266.315 449.691 

( 1=θ ) Average Study Duration 2.90 3.991 

 Empirical Power 0.758 0.749 

Alternative Hypothesis Average Number of Failures 95.124 126.982 

( 5.1=θ ) Average Study Duration 2.275 2.633 

 

Table 6.5: Empirical size, empirical power, average number of failures and average study 

duration for the new procedure and the Log-rank under configuration II 

 

Configuration III 

 

We considered that the reliability of the standard group is exponentially distributed with me-

dians 1=Sm   and that of the experimental group follows a Weibull(1.915, 1.5) with median 

5.1=Em . We considered the strategy of varying the accrual period for 2 to 4 months.  

In this case, there is no formula for determining the total number of failures requires achiev-

ing a power of 90% for a 5% level test. Therefore we used the usual log-rank test in the fixed-

design to determine the number of failures needed. A power of 90% and 5% type I error is 

reached with the usual log-rank with fixed-sample in the same study design when 270 failures 

occurred. Therefore, according to formula (6.16), we need to enrol 54 specimens per group 

and per month in the study so that at the end of the 4 th month, the total sample size will be 

equal to 432. We adjusted the critical value in the Log-rank procedure as 

 ( ) 41

2 −= −αα χ Lcv . 

We considered here the upper bounds in the sample size functions lM  and lm  as 

180≤lM , 180≤lm . The empirical size, the empirical power, the average number of failures 

observed, the average study duration are presented in table 6.6 for both the new procedure and 
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the Log-rank. The new procedure gives a type I error rate of 0.051 and the Log-rank a type I 

error rate of 0.051. The Log- rank results in a substantial loss of power. In contrast, the pro-

posed procedure is effective to achieve a larger power. The new procedure gains 5.3% more 

power than the Log-rank. The Log-rank tends to end the experiment earlier than the new pro-

cedure.  

 

Hypotheses Characteristics New procedure Log-rank 

 Empirical Size 0.051 0.051 

Null Hypothesis Average Number of Failures 361.728 246.781 

( 1=θ ) Average Study Duration 6.821 4.292 

 Empirical Power 0.928 0.874 

Alternative Hypothesis Average Number of Failures 199.002 159.482 

( 5.1=θ ) Average Study Duration 3.398 3.075 

 

Table 6.6: Empirical size, empirical power, average number of failures and average study 

duration for the new procedure and the Log-rank under configuration III 

 

These results clearly indicate the advantages of the new procedure over the Log-rank under 

nonproportional alternatives. 
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7 Conclusion 

 

Sample size determination is a vital tool for experiment planning and almost always difficult. 

It requires care in eliciting scientific objectives and in obtaining suitable quantitative informa-

tion prior to the experiment. We presented in chapter 3 formulas for sample size for some 

currently used statistical methodologies and study designs in industry for the purpose of test-

ing of hypothesis. Performing a valid sample size determination requires estimates of the 

variability in the data, as well as defining the effect size sought. Misspecification of these two 

parameters results in either an over-sized study, that is neither economical nor time-

consuming to the experimenter, or an under-powered study, that may give inconclusive re-

sults. Two methodologies to avoid this problem have been presented in chapter 4: The inter-

nal pilot study as proposed by Wittes and Brittain that allows recalculation of the sample size 

during an ongoing experiment using the estimated variance obtained from an interim analysis. 

The self-designing procedure is the second methodology. The proposal of Shen and Fisher 

(1999) and the proposal of Hartung (2001) have been described. Furthermore, following the 

idea of Yin and Shen (2005), a design has been proposed, that combined the advantages of 

self-designing of Hartung and classical group sequential design by introducing a stop for effi-

cacy in the self-designing procedure of Hartung (2001). The resulting design can update the 

sample size at each stage, the maximum number of stage to be performed is not fixed in ad-

vance and the experiment can be stopped with rejection of the null hypothesis after the first 

stage. Compared to the self-designing procedure of Hartung (2001), the proposed design pre-

sents better characteristics in terms of average sample number and power.  

In chapter 5 the methods of internal pilot study and self-designing have been used for sample 

size adaptation in equivalence study. Two methods of estimating the variance in the internal 

pilot study procedure have been compared through simulations. The comparison was for the 

situation where the data follow a normal distribution and the equivalence is formulated in 

terms of difference between the means of the outcome variable of interest. Here are some 

important conclusions: 

• Since the effect size is expected to be quite small in non-inferiority or equivalence ex-

periments, the within-group variance is under the alternative hypothesis close to the 

total variance estimated by the one-sample variance. Therefore if the initial variance 

guess is right, it results in too large sample size as needed. 

• In both cases, the type I error rate can be quantified and can be controlled. 
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• In general, we suggest the use of the pooled variance estimated because it presents 

better characteristics in terms of power and average sample number. 

By the adaptation using the self designing procedure, the illustrated method in comparison to 

the fixed-sample design has small average sample number when achieving the same power.  

In chapter 6, a self-designing rule similar to that of Hartung and Knapp (2003) has been used 

for sample size reestimation for censored reliability data with a staggered entry. To do that, 

we needed for the case of proportional hazard functions the results of the work of Tsiatis 

(1981, 1982) for the construction of the test statistics that we used in each stage, and those of 

Gail, DeMets and Slud (1981) and Tsiatis (1982) to proof the asymptotical independency of 

the test statistic at each stage and therefore the use of the self-designing procedure. The test 

statistic is linear rank statistic based on the log-rank test. The number of failures is determined 

sequentially based on observed data or cumulated information. For the two strategies of ad-

justing the design investigated by simulations, the strategy of continuing the experiment by 

extending the accrual period and fixing the follow-up period works well than the strategy of 

extending the follow-up period and fixing the accrual period. Because the log-rank test be-

haves poorly for nonproportional hazards, a method of updating sample size using a test sta-

tistic which belong to the class of test based on the integrated weighted difference in the Kap-

lan-Meier estimates proposed by Pepe and Fleming (1989, 1991) has been developed and 

illustrated. The asymptotically independency of the new statistic was proved using results of 

the work of Murray and Tsiatis (1999). Simulation results show the advantages of this new 

statistic over the later one based on the log-rank statistic under some alternatives. The new 

adaptive procedure to compare two reliability curves based on the Kaplan-Meier estimates 

provides a useful alternative to adaptive procedure based on rank statistics for censored reli-

ability data. 

In chapter 5, we investigated the sample size reestimation for equivalence experiments using 

the internal pilot study procedure. More attention needs to be given to situations where the 

variances in the two groups are not equal or the outcomes of interest are not normally distrib-

uted. Of interest will be also the case where more than two groups are to be compared.  

 The adaptation procedure for censored reliability data proposed in chapter 6 may not be com-

pletely efficient. It would be desirable to investigate more efficient weight functions and 

strategies. Moreover, it would be interesting to generalize the approach in the following way: 

Divide the calendar time into a finite number of intervals and consider the situation where the 

accrual rate is piecewise constant over each interval or the hazard rates for failure are piece-
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wise constant over each interval but the hazard ratio is constant. These are situations which 

may happen in the production process. 
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