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Summary

The first part of this work deals with the formulation of a three-dimensional crystallographic
lifetime rule for face-centered cubic (fcc) single crystals. The damage contribution rate of
each slip system to the total damage is governed by the current values of the resolved shear
stress and the slip rate on the corresponding slip system. The damage rule is combined with a
modified version of the crystallographic viscoplastic deformation model of Cailletaud (Meric et
al., 1991). For the nickel-base single crystal superalloy CMSX4 at 950 °C, various strain- and
stress-controlled uniaxial cyclic tests with and without hold-times can be described for different
crystal orientations by one set of material parameters. For verification, simulation results for
a single crystal specimen with a notch have been compared with corresponding experimental
results. The predicted lifetime is within the factor of two of the measured one.

Non-homogeneous slip deformation in the direction of slip is accommodated in the mate-
rial by the development of excess dislocations of the same sign, the so-called geometrically-
necessary dislocations (GNDs) (Ashby, 1970). The purpose of the second part is the formula-
tion of a non-local extension of standard crystal plasticity accounting for the effects of GNDs
on the material behaviour. To this end, following Nye and many others, local deformation
incompatibility in the material is adopted as a measure of the density of GNDs. Their develop-
ment is assumed to contribute to the energy being stored in the material, resulting in additional
kinematic-like hardening effects. A thermodynamic formulation of the model in the context of
the dissipation principle facilitates the derivation of the corresponding hardening relation.

In the third part, the effect of such additional hardening on the formation of glide and kink
bands at a crack tip in face-centered cubic (fcc) single crystals as well as on the crack tip open-
ing is examined. The results show that this additional hardening retards kink-band formation,
but has no influence on glide-band development. It also influences the crack tip opening dis-
placement (CTOD). It turns out that the simulated CTOD correlates well with experimentally
determined crack propagation rates for different crack growth directions in the crystal.

In the last part, the resolution of the deformation at the crack tip is refined compared to the
mesoscopic analysis of the preceding section. The spatial crack propagation in a polycrystal
as well as in a fcc single crystal under cyclic loading is simulated by progressive large defor-
mations at the crack tip due to plastic blunting and re-sharpening after load reversal. Using
repeated remeshing for severely distorted elements at the advancing crack tip, deformation pat-
terns in the sense of Laird’s mechanism (Laird and Smith, 1962) for fatigue crack propagation
with striation formation were obtained in the case of the polycrystal simulation as well as in
the case of the single crystal simulation for [110] crack growth direction. The simulation for
[100] crack growth direction with the same stress level as for [110] direction also yielded crack
extension by progressive large deformations but without striation formation. The dependence
of the fatigue striation formation on the crack growth direction as predicted by the simulation of
crack propagation in single crystals is verified by the experimental results of Neumann (1974)
on pure copper single crystals.






Uberblick

Der erste Teil dieser Arbeit beschéaftigt sich mit der Formulierung einer dreidimensionalen
kristallographischen Lebensdauerregel fir flichenkubischzentrierte Einkristalle. Die Rate des
Schadigungsbeitrages jedes Gleitsystems zur Gesamtschadigung wird kontrolliert durch die
momentanen Werte der Schmidt Spannung und der Gleitrate auf dem entsprechenden Gleit-
system. Die Lebensdauergleichung ist kombiniert mit einer modifizierten Version des Kristal-
lographischen viskoplastischen Deformationsmodels von Cailletaud. (Meric et al., 1991). Fir
die Nickelbasissuperlegierung CMSX4 ist es gelungen mit einem einzigen Parametersatz di-
verse verschiebungs- und kraftkontrollierte eindimensionale unterschiedlich orientierte zyklis-
che Versuche ohne und mit Haltezeiten zu beschreiben. Zwecks der Verifizierung des Modells
wurde die Lebensdauer einer einkristallinen gelochten Probe simuliert. Der Vergleich mit dem
Experiment zeigt, dass die vorhergesagte Lebensdauer innerhalb des Faktors von Zwei liegt.

Nichthomogene plastische Deformation mit dem Gradienten in die Gleitrichtung werden
im Material durch Uberschussversetzungen gleichen Vorzeichens, sogenannte geometrisch not-
wendige Versetzungen (GNV) realisiert (Ashby, 1970). Das Ziel des zweiten Teils dieser Arbeit
ist eine nichtlokale Erweiterung der Standardkristallplastizitét, die den Einfluss der GNV auf
das Materialverhalten berticksichtigt. In Anlehnung an Nye und viele andere Autoren wird
die lokale Deformationsinkompatibilitat als MaRfur die Dichte der GNV eingefihrt. Es wird
angenommen, dass die Entwicklung der GNV zur Energiespeicherung beitragt. Das Ergebnis
der Auswertung des Dissipationsprinzips unter Berlicksichtigung der zusétzlichen Energiespe-
icherung ist dann eine zusétzliche Verfestigung kinematischer Natur.

Im dritten Teil untersuchen wir den Einfluss dieser zusatzlichen kinematischen Verfestigung
auf die Entwicklung von Gleit- und Knickbéandern an der Rissspitze in einem flachenkubisch-
zentrierten Einkristall. Die Simulationsergebnisse zeigen, dass die zusatzliche Verfestigung in-
folge nichthomogener plastischer Deformationen zur Abschwéchung der Intensitat der Knick-
béander fihrt, aber die Gleitbander nicht beeinflusst. Sie hat ebenfalls Einfluss auf die Rissoff-
nungsverschiebung. Es stellt sich heraus, dass im Gegensatz zur klassischen Kristallplastizitat
die simulierten Rissoffnungsverschiebungen ganz gut mit den experimentellen Rissausbreitungs-
geschwindigkeiten fiir verschiede Kristallrichtungen korrelieren.

Im letzten Teil der Arbeit wird die Auflésung an der Rissspitze im \Vergleich zur mesoskopis-
chen Betrachtung des vorherigen Kapitels noch mehr verfeinert. Die rdumliche Rissausbreitung
unter zyklischer Belastung in einem Polykristall sowie in einem KFZ Einkristall wird mit Hilfe
progressiver groRer Deformationen begleitet von der plastischen Abstumpfung und Wiederzu-
spitzung nach der Belastungsumkehr simuliert. Unter Benutzung der Neuvernetzung fir stark
verzerrte Elemente an der Rissspitze ist es moglich, die Lairdschen Deformationsmuster (Laird
and Smith, 1962) der Ermiidungsrissausbreitung mit Schwinglinien im Falle der polykristalli-
nen und einkristallinen Simulation fiir [110] Rissausbreitungsrichtung zu erhalten. Die Sim-
ulation fur [100] Rissausbreitungsrichtung bei gleicher Belastung ergab ebenfalls Risswachs-
tum durch fortschreitende grof3e Deformationen aber ohne Schwinglinien. Die Abhangigkeit
der Schwinglinienentwicklung von der Rissorientierung im Falle der einkristallinen Simulation
wurde durch den Vergleich mit den Experimenten von Neumann (1974) an Kupfereinkristallen
verifiziert.
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Chapter 1

Macroscopic fatigue modeling of single crystals*

Abstract— This work deals with the formulation of a three-dimensional crystallographic time-
incremental lifetime rule for face-centered cubic (fcc) single crystals used for gas turbine blade
applications. The damage contribution rate of each slip system to the total damage is governed
by the current values of the resolved shear stress and the slip rate on the corresponding slip sys-
tem. The damage rule is combined with a crystallographic viscoplastic deformation model. For
the nickel-base single crystal superalloy CMSX4 at 950 °C, various strain- and stress-controlled
uniaxial cyclic tests with and without hold-times can be described for different crystal orientations
by one set of material parameters. For verification, simulation results for a single crystal specimen
with a notch have been compared with corresponding experimental results. The predicted lifetime
is within the factor of two of the measured one.

1.1 Introduction

In the report entitled General Principles for Fatigue Testing of Metals, which was published in
1964 in Geneva, fatigue of materials is defined as a term which applies to changes in properties
which can occur in a metallic material due to the repeated application of stresses or strains,
although usually this term applies specially to those changes which lead to cracking or failure”.
This description is also generally valid for the fatigue of nonmetallic materials. The fatigue
failure is generally caused by cyclic loads whose peak values are considerably smaller then the
corresponding static failure loads.

There are also different stages of fatigue damage evolution in a structural component where
defects may initiate in an initially defect-free region and propagate in a stable manner before
catastrophic fracture occurs. This is the most general situation. In such a case, the evolution of
fatigue damage can be broadly classified into the following stages (Suresh, 1998): substructural
and microstructural changes which cause the initiation of permanent damage; the creation of
small cracks; the growth and coalescence of small flaws to form a "dominant” crack, which
may eventually lead to catastrophic failure; stable propagation of the macro-crack; structural
instability or complete fracture.

The conditions for the initiation of microdefects and the rate of the dominant fatigue crack
propagation are strongly influenced by a wide range of mechanical, microstructural and envi-
ronmental factors. The principal differences among different design philosophies often rest on
how the crack initiation and propagation stages of fatigue are quantitatively treated.

Material scientists concerned with the microscopic mechanisms of fatigue regard the initi-
ation of micrometer-size flaws along slip bands and grain boundaries and the roughening of
fatigued surfaces as the crack initiation stage of fatigue failure. A practical engineer, on the

*accepted 2006 in International Journal of Fatigue under the title:
”Simulation of deformation and lifetime behavior of a fcc single crystal superalloy at high temperature under
low-cycle fatigue loading”.



4 CHAPTER 1

other hand, relates the limit of resolution of the (nondestructive) crack detection equipment
(typically a fraction of millimeter) with the initiation of a fatigue macro-crack and with the ini-
tial crack size used for design. Scattered within the limits of this broad range of choices, there
lies a variety of definitions for crack initiation, which are specific to certain classes of fatigue-
critical engineering applications. The total fatigue lifetime is defined as a sum of the number of
cycles to initiate a fatigue crack and the number of cycles to propagate it subcritically to some
final crack size. Thus, it is very important to make a clear demarcation between crack initiation
and propagation stages.

In the "defect-tolerant approach”, it is assumed that all engineering structures are inherently
flawed. The size of a pre-existing flaw is generally determined by nondestructive testing meth-
ods. In that case, fatigue life is defined as the number of fatigue cycles needed for the crack
to reach its critical size. On the other hand, in the "total-lifetime approach”, it is assumed that
a specimen is initially uncracked and that the major part of the fatigue process is spent in the
initiation of a macrocrack. Classical "total-lifetime approach” methods (also called algebraic
lifetime rules) describe the fatigue time to failure in terms of a single cyclic parameter such
as the cyclic stress (Basquin, 1910) or strain range (Coffin, 1954; Manson, 1954). The stress
based life analysis is appropriate in the case of elastic and unconstrained deformation. At highly
stressed regions near a notch, plastic deformation is controlled by the surrounding elastic neigh-
borhood. Thus, a strain-controlled test is a good approximation of the conditions experienced
by the material at locations of stress concentrations and a strain-based life approach seems to
be more appropriate in such situations.

The stress- (Basquin, 1910) or strain-based criteria (Coffin, 1954; Manson, 1954) do not
account for a possible interaction between the stress and strain in a deformation process. There-
fore they cannot reflect the path dependence of the material response. An appropriate measure
which considers both, the stress and the strain, would be the plastic work performed per cycle
(Ellyn and Kujawski, 1986).

Various techniques are available to account for the effects of mean stress, stress concen-
tration, environment, multiaxial stress states and variable amplitude stress fluctuations on the
fatigue process using these classical approaches (see e.g., Li and Smith, 1995; MacLachlan
and Knowles, 2001; Chaboche and Gallerneau, 2001). Since such approaches rely on the cycle
concept they can be applied only under loading conditions, where the stress or the strain range
are given. However, due to complex shapes of real structural components, thermomechanical
processes taking place inside such a component can lead to very complex multiaxial local load-
ing (Cailletaud et al., 2003). In order to apply a lifetime rule a local deformation analysis has
to be conducted first. For viscoplastic materials this entails the usage of a history-dependent
constitutive model. Under such circumstances, a much better choice is offered by an incremen-
tal lifetime rule, in which the total damage is evaluated in each time increment and thus, being
governed by an evolution relation (Majumdar and Maiya, 1980; Satoh and Krempl, 1982). Due
to their time-incremental nature, such lifetime rules can be applied also to complex multiaxial
loading paths, for which the definition of a single loading parameter describing the entire cycle
could be difficult. Instead, time-incremental lifetime rules can simply be integrated along with
the other evolution relations. In the case of periodic loading, one saturated cycle needs to be
considered, as in the case of algebraic laws. Since an incremental lifetime rule is coupled with
a constitutive model for the cyclic deformation behavior, it can be represented in terms of the
current stress-strain behavior of the material, in contrast to classical models, and thus, be used
to investigate the connection between stress state and fatigue (Yeh and Krempl, 1993; Sermage
et al., 2000).



1.1 Introduction )

The generalization from uniaxial to multiaxial fatigue implies the use of suitably-defined
equivalent measures of the three-dimensional stress and strain states instead of their uniaxial
counterparts. Such quantities, which influence the fatigue process, include the maximum shear
strain range and the strain range in the direction perpendicular to the plane of the maximum
shear strain range. These were introduced by Brown and Miller (1973) due to the fact that
fatigue crack initiation and early growth take place along activated crystallographic slip planes
and are as such shear-controlled processes.

The goal of the present work is to describe the low-cycle fatigue failure of the single-crystal
superalloy CMSX4 under complex loading at elevated temperatures. CMSX4 is used, for ex-
ample, in the manufacturing of turbine blades (Bullough et al., 1998; Arakere and Orozco,
2001). Due to the complex geometry and operating conditions for such blades, the material
undergoes a complex loading history during the lifetime of a blade. A reliable lifetime analysis
should account for the complex deformation processes taking place in the material. Thus, both
the material model and the lifetime rule should be formulated in a time incremental fashion.
The additional difficulty arising in the context of using single crystals is the strong orientation
dependency of the deformation and fatigue damage behavior.

As a basis for the material modeling, we use the crystallographic model of Cailletaud (e.g.,
Meric et al., 1991) which applies the one-dimensional form of the standard viscoplastic Cha-
boche model for isotropic and kinematic hardening to each slip system. Here, this model is
slightly modified to account for the “fast” softening effect observed in tensile tests for different
directions.

In this context, next we develop a three-dimensional anisotropic time-incremental lifetime
rule on the basis of the approach of Satoh and Krempl (1982), adapted in the same way as
the Cailletaud model to the current case. To this end, instead of working with the concept of
the maximum plastic shear as done by Yeh and Krempl (1993), we use the crystallographic
slips. These are much more natural in the case of single crystals and represent in any given case
the quantities controlling fatigue crack initiation and early growth. Consequently, the damage
evolution in our model is driven by the resolved shear stress in combination with the inelastic
strain-rate on each slip system. At the same time, the use of the crystallographic slips allows us
to capture the orientation-dependence of the fatigue failure, just as a crystallographic deforma-
tion model enables us to describe an anisotropic stress-strain response of a single crystal.

As originally introduced by Majumdar and Maiya (1980), the proposed lifetime rule cor-
responds directly to a crack propagation law. It is assumed here, that crack initiation occurs
early in life at an already initially present defect, as, e.g., a casting pore (Miller et al., 2004).
The influence of the position of the crack relative to the crystal (secondary orientation) on the
crack growth behavior was considered by Henderson and Martin (1996), Miller et al. (2004)
and Levkovitch et al. (2005).

At high temperature also oxidation is important. The influence of oxidation on the lifetime
can be taken into account indirectly by the accumulation of damage with time (see the compar-
ison of the time-incremental lifetime rule of Danzer (1987) with the oxidation rule of Reuchet
and Remy (1983)). The time needed to oxidize and finally break a volume element ahead of
a crack tip represents a strongly time-dependent damage process (Rezai-Aria and Remy, 1989;
Remy, 2001).



6 CHAPTER 1

1.2 Deformation model for single crystals

1.2.1 The crystallographic model of Cailletaud

Crystallographic models use the fact that in single crystals the inelastic deformation results from
slip processes due to the dislocation motion on a given set of crystallographic planes. In this
case, the inelastic strain rate & , is expressed as the sum

) 1 .
€p = 527& (na®sa+sa®na) (11)

over the inelastic shear strain rates 7, on all slip systems. Here, s, denotes the slip direction
and mn, the slip-plane normal. With the decomposition

E=¢,t¢g, (1.2)

of the total strain into elastic and inelastic parts, the stress tensor o is determined by the linear
relation
oc=Ceg, (1.3)

where C represents the fourth-order elasticity tensor. In the case of cubic symmetry, C is given
by three independent constants C;41, ;195 and Cy5;5.

Now, we consider the crystal plasticity model of Cailletaud (e.g., Meric et al., 1991). The
model assumes a face-centered cubic (fcc) symmetry and accounts for 12 octahedral slip sys-
tems of type {111}(110) and 6 cubic slip systems of type {100}(011). The 12 octahedral slip
systems define the octahedral slip family and the 6 cubic slip systems the cubic slip family.
The constitutive relations of each family are of the same form with the material parameters tak-
ing distinct values. The Cailletaud model is actually the one-dimensional form of the isotropic
Chaboche model (Chaboche, 1977) on each slip system. So, the viscoplastic flow rule

H = < 7o = Za| = (e F10) > sign (7, — ) (1.4)

k

determines the inelastic shear strain-rate 5, on the slip system « as a function of the resolved
shear stress 7, = o - (s, ® i, ), the back stress =, and the isotropic self-hardening contribution
r,, to the yield stress, all on the same slip-system. In particular, the power-law form involves the
strain-rate exponent n representing an additional dynamic contribution to hardening here. The
evolution of kinematic hardening x, accounts for growth as well as dynamic and static recovery
in the standard form

iy = c{aD(vy)y — zalial} — d| 22| sign (2,) (1.5)

Lo
a

where
O(v,) =P, 4 (1 — D )e = (1.6)

is a function of the accumulated plastic slip v, with 7, = |§,|. While static recovery allows
the simulation of stationary creep, the function ®(v,) takes the change of the saturation value
a regarding the kinematic hardening with advancing inelastic deformation into account. Lastly,
the evolution of r, is given by the equation

7204 = b(Q - 7ﬁoz)])a : (17)

Isotropic self-hardening allows the modeling of phenomena such as the increase of the stress
amplitude during a displacement controlled cyclic test with a constant strain amplitude (cyclic
hardening).
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1.2.2 Modification of the Cailletaud model

Studying the deformation behavior of the fcc single crystal superalloy CMSX4 at 950 °C on the
basis of uniaxial tensile tests with different strain rates for three orientations (100), (111) and
(110) (Figure 1.1)%, a rarely observed effect of rapid softening behavior is revealed (compare,
e.g., Busso et al., 2000). The tensile curves for all three orientations show a drop in the flow
stress shortly after the beginning of yielding. Furthermore, this softening behavior is rate-
dependent, since the magnitude of the stress drop decreases for the tests with lower strain rates.
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Figure 1.1: Tensile tests in different orientations

Using the Cailletaud model a rapid softening behavior can be described only by the variable
r,, Which is responsible for the change of the initial flow stress r, on the slip system «.. However,
if we solve the flow rule (1.4) with respect to the resolved shear stress

To = o+ sign (3) (ro + 70 + ") (L8)

it becomes obvious that a negative r,, leads to a softening which is independent of the strain
rate. Since the Cailletaud model is deduced from the Chaboche model, we can use the version
in which the isotropic hardening doesn’t act on the yield stress but on the viscosity constant %

%=<@%%fﬁ>$@m—%>, (L9)

whereby the Schmid stress is expressed now as

To = 0 +sign (3,) [ro + (B +72) Hal "] (1.10)
In this case, the yield stress and the inelastic shear strain rate appear as the product r, |%|1/"
and allow the simulation of rate-dependent softening for negative values of . Integrating the
equation (1.7) the variable r, can be expressed as a function of the accumulated plastic strain

Vo

ro(v,) =Q(L—e ™) . (1.11)
Using this equation and by denoting the expression (|7, — z,| — r,) as effective stress 7, the
modified flow rule (1.9) for monotonic processes can be written as

’j/a - cnff [k + ra(”a)]_n : (112)

1This work was a direct cooperation with Rolls-Royce Germany. Because of this industrial dependence, the
loading values of the test and the determined material parameter values are unfortunately not allowed to be given.
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In this form the flow rule represents a particular form of the more general Orowan equation

i = o(r)pW)b (113)

In this case, b represents the burger’s vector, v the velocity of the dislocation motion as a func-
tion of the effective stress and p the density of mobile dislocation as a function of the cumulated
plastic slip. On the one hand, we have seen that negative values of r, can describe the rapid
rate dependent softening effect observed in the experiments. On the other hand, comparing the
equations (1.12) and (1.13), we identify negative changes of -, as an increase in the number of
mobile dislocations on the slip system «. Thus, within this theory such rapid, rate dependent
softening behavior can be explained by dislocation multiplication on the slip systems, where
the plastic deformation takes place. This statement leads to a direct consequence for the inter-
action between the octahedral and cubic slip families if one takes into account the fact that the
cubic slip used in the Cailletaud model is actually macroscopic. That means that from the mi-
croscopical point of view the cubic slip does not originate from dislocation movement on cubic
planes but from zigzag cross slip of screw dislocations on octahedral planes in the matrix chan-
nels which then leads to a macroscopic cubic slip, the so-called cube slip (Bettge and Osterle,
1999). Therefore now we use the word “cube” instead of ”cubic” throughout the work. Thus,
for example, the slip process on the cube system (100)[011] is actually a zigzag slip of screw
dislocations with the Burger’s vector [011] on the octahedral systems (111)[011] and (111)[011].
Now we recall that the rapid softening behavior observed in tensile tests was interpreted as a
formation of new mobile dislocations. But the creation of new mobile dislocations due to the
octahedral slip leads to a higher number of mobile screw dislocations capable to cross slip. That
facilitates the cube slip on the corresponding systems and, thus, results in a softening of those
cube slip systems. On the same account a softening on a cube slip system leads to a softening
on both corresponding octahedral systems and we obtain the effect of cross softening between
a cube slip system and two octahedral slip systems, whereby all three systems have the same
slip direction. In the case of fcc single crystals there are six of such triple sets with the same
slip direction.

Now we try to develop the constitutive equations for the above mentioned effect of cross
softening. In the Cailletaud model the interaction between slip system is introduced at the level
of isotropic hardening. To understand how it works we investigate two slip systems interacting
with each other, denoted here by 1 and 2. First, we consider the influence of the system 1 on
the system 2. The additive contribution ¢,_,, of the slip system 1 to the total hardening on
the system 2 is given by the self hardening r, on the system 1 multiplied by the interaction
parameter f,,

Qg = hypmy (1.14)
with
P =b(Qy — 1)y . (1.15)
In the case of the rapid softening behavior, however, like for CMSX4, such description of the
interaction leads to the problem that for orientations, where the slip system 1 compared to 2
is much less active, the self hardening on the system 2 rapidly reaches its saturation value @,
while the system 1 provides a softening contribution long after that and results in further stress
decrease, which contradicts the test results. This can be avoided by the assumption that after
the saturation of the self hardening ¢, no softening contribution comes from the system 1. It
can be achieved by using a new internal variable r, _, instead of the self hardening r, with the
evolution equation

1 = by(Qy — 11 0) 01 [(Qy — 13)/Qs] (1.16)
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This variable has the desired property to vanish when the self hardening on the system 2 reaches
the saturation value (@), = r,). At this point the contribution ¢, ., of the slip system 1 to the
total hardening on the system 2 is given by the product of the variable r, ., with the interaction
parameter h,,

Q1o = hyoT1o (1.17)

As mentioned above we postulate the interaction between one cube and two octahedral slip
systems so that all three have the same slip direction but different slip planes. In this case the
model has two additional parameters. One controls the influence of the octahedral slip system
on the corresponding cube one and the other the influence of the cube on the both corresponding
octahedrals. To verify these assumptions we have to consider tests in directions, for which both
slip families show an approximately equally strong slip activity. Due to comparable Schmid
factors (011) is such a direction.

1.2.3 Parameter identification for CMSX4

The identification of the material parameters is usually performed on (001) and (111) oriented
tests. Since these orientations produce a pure octahedral and predominantly cube slip, respec-
tively, the determination of the parameters can be carried out for each slip family separately.
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Figure 1.2: Simulation of (001) oriented tests
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Figure 1.5: Simulation of (011) oriented tests

recovery parameters (d, m) are obtained by the classical optimization technique using uniaxial
tensile, cyclic and creep tests in the (001) and (111) directions. Once separated, the parame-
ters of both slip families can be identified in the same manner as in the case of the isotropic
Chaboche model (Nouailhas, 1989). The results of the fitting procedure are shown in Figures
1.2 and 1.3. Particularly in the case of the (001) tensile tests, the rapid rate dependent softening
behavior could be simulated very well by assuming that the hardening variable ¢, acts on the
viscosity instead of on the flow stress (1.9). Furthermore, it is worth noting that with only one
kinematic hardening variable per slip system both the tensile tests and the hysteresis shape in
the cyclic tests could be described. And the usage of the static recovery concept allowed an
acceptable fitting of the creep tests over a wide stress range.

However, to study the interaction between the octahedral and cube slip families we need
to consider an orientation other then (001) and (111), since for these directions only one slip
family is active in each case. Due to the equally strong slip activity on slip systems of both
families, the orientation most frequently used for this purpose is (011). Now we try to simulate
tensile tests in this direction, first by assuming no interaction and using the material constants
fitted to the (001) and (111) oriented experiments. While for both these orientations the tensile
tests could be described very well (Figures 1.2 and 1.3), the stresses for the tensile tests in the
(011) direction are overestimated significantly if no interaction is used (Figure 1.4).
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In contrast, using the constitutive equations (1.16) and (1.17) and fitting both interaction
parameters to the tensile and LCF tests in the (011) direction the simulation can be improved
significantly (Figure 1.5).

While for the parameter fitting the most simple tests are used in order to separate different
deformation mechanisms and, thus, to facilitate the optimization procedure (Nouailhas, 1989;
Sievert et al., 1997), tests with complex loading history are used to verify the capabilities of the
chosen model and the quality of the fitted parameter values. So called creep-fatigue interaction
tests (cyclic tests with hold-times at the load reversals) belong to the standard tests used in the
case of viscoplastic material behavior. In our case we used a strain-controlled nonsymmetric
(R = 0) cyclic test with 120 sec hold-time at the point of the maximum strain and a stress-
controlled nonsymmetric (R = 0) cyclic test with 100 sec hold-time at the point of maximum
stress, both in the (100) direction. As one can see in Figure 1.6 a good agreement with the
experiment could be achieved in both the strain- and stress-controlled tests.
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Figure 1.6: Simulation of creep-fatigue-interaction tests; left: strain controlled, right: load
controlled
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Figure 1.7: Simulation of randomly oriented tests
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Furthermore, in the case of an anisotropic model, it is essential to verify how the model can
predict other directions than those used for the parameter optimization. Simulation results of a
randomly oriented tensile test and a randomly oriented LCF test (Figure 1.7) demonstrate in an
impressive way the capability of the Cailletaud model to describe the orientation dependency
of the material behavior.

1.3 Lifetime assessment

1.3.1 Multiaxial fatigue

Multiaxial stress states are encountered in the majority of structural components. The motiva-
tion for multiaxial fatigue investigations has been to produce design guidelines. To generalize
from uniaxial to multiaxial fatigue where multiaxial data do not exist, most designers use the
octahedral shear strain

2
Yoct = g\/(gl - 52)2 + (52 - 53)2 + (53 — 82)2 s (118)

where ¢4, e, and 3 are the principal strain components as the effective quantity controlling the
life in low cycle fatigue. However, with the increasing amount of biaxial fatigue data it becomes
apparent that a single load parameter, such as the octahedral shear strain, cannot correlate uni-
axial with multiaxial fatigue under complex multiaxial loading. So, Blas and Zamrik (1976) and
Kanazawa et al. (1977) plotted the octahedral shear strain range against fatigue lives of Type
304 stainless steel and 1Cr-Mo-V steel, respectively, under a variety of axial-torsional loadings
to show that on such a plot the fatigue data do not collapse onto a single curve, thus proving that
the octahedral shear strain alone cannot correlate fatigue data generated under various biaxial
loadings for these two materials. It thus appears that at a minimum two loading parameters will
be necessary to uniquely correlate biaxial fatigue data.

Since fatigue crack initiation and early growth take place along activated crystallographic
slip planes, these two processes are shear-controlled. Based on this, Brown and Miller (1973)
have suggested the use of the maximum shear strain range and the strain range in the direction
perpendicular to the plane of the maximum shear strain range as the two parameters controlling
the fatigue life. Accordingly in this approach, the crack is assumed to initiate and then to
propagate along the plane of the maximum plastic shear strain range intersecting the surface
specimen.

1.3.2 Time-incremental approaches based on the critical plane concept

Since the algebraic approaches use mean values over a cycle, such as strain or stress ranges, they
can only be applied in conjunction with the concept of a cycle. In contrast, time-incremental
approaches use a damage variable which is described by an evolution equation that prescribes
the damage evolution rate as a function of current values of stress, strain, and strain rate. These
approaches can be applied to any complex loading history. Failure is said to occur when the
damage variable reaches a predefined critical value. The damage variable D is considered as a
lifetime consumption variable that does not influence the deformation behavior of the material.

Majumdar and Maiya (1980) have proposed an uniaxial incremental lifetime rule in which
fatigue damage is measured by the current crack length a. It is assumed that a crack of an initial
length a is initiated early in the life. The rate of crack growth is controlled by the current values
of plastic strain and plastic strain rate. Using the idea of Brown and Miller, Majumdar (1981)
has extended the uniaxial rule of Majumdar and Maiya (1980) to the case of multiaxial fatigue.
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In the absence of cavities, the uniaxial version of the fatigue life rule can be generalized for the
multiaxial case to provide the crack damage on the plane of maximum plastic shear strain range
as

D = Coley "l (119)

with &5 and &; being the current plastic shear strain and strain rate, respectively, on the plane
of the maximum plastic shear strain range. As in the uniaxial approach, the plastic shear strain
is measured from the previous point of reversal of the plastic shear strain. The coefficients C
as well as the exponents m and £ are assumed to be functions of two dimensionless loading
parameters defined as Ael/Ae? and p/oex, where Ae? is the maximum plastic shear strain
range, Aep the maximum plastic strain range perpendicular to the plane on which A&} acts, p
the hydrostatic pressure and o.¢ the von Mises effective stress.

Satoh and Krempl (1982) have modified Majumdar and Maiya’s law. Essentially, the plastic
strain was replaced by the stress. Thus, the time-incremental approach of Satoh and Krempl
can account for possible interaction between stress and plastic strain. To extend this uniaxial
rule, Yeh and Krempl (1993) have also exploited the idea of Brown and Miller (1973) for
multiaxial loading. However, their approach is not based on the maximum shear strain range but
on the maximum shear strain rate and, thus, can be applied to any complex loading path without
using a single parameter, such as the maximum shear strain range, in order to characterize the
damage effect of a whole cycle. The fatigue damage rate is described by the following evolution

equation -
{1 +a (1 b <"))} , (1.20)

O eff

~S
“p

Ef

ne
O eff

Df = Lf(W) o
f

where o is the von Mises effective stress, tr (o) = o1 + 04 + 0 is the first invariant (trace) of
the stress tensor, ¢; = 2/3 ]éé - éf;} and ep = 2 {s’%, + éi’i} are the normalized maximum shear
strain rate and the normalized inelastic strain rate perpendicular to the plane on which &7 acts,
respectively. The word “normalized” denotes that their values in the multiaxial case reduce to
the uniaxial values for uniaxial loading. L; is a non-negative function of the quantity w = €7 /2.
In the case of pure torsion, w is equal to zero and equal to unity for uniaxial loading. &¢, o, ng,
m¢ and a are material constants, whereby &; is introduced only for dimensional consideration.

It should be emphasized that the quantity <7, used in Yeh and Krempl’s approach, is different
from the one in Majumdar’s approach. So, ¢; from equation (1.19) is not the maximum plastic
shear strain rate as it is the case in equation (1.20) but the plastic shear strain rate on the plane of
the maximum plastic strain range. Thus, in contrast to Majumdar’s approach, Yeh and Krempl’s
life rule does not require the determination of any “ranges” and, consequently, is independent
of the cycle concept. The other advantage of the Yeh and Krempl’s life rule is the fact that it can
account, via dependence on both the stress and the plastic strain, for their possible interaction.

In the next section we will derive an anisotropic lifetime rule for single-crystal superalloys.
In doing so we will try to adopt these both advantages.

1.4 A three-dimensional lifetime rule for single crystals
1.4.1 Model formulation

Just like the deformation behavior, the fatigue failure of single crystals is orientation dependent.
Since the low cycle fatigue is mainly controlled by the plastic deformation, one would expect
that, e.g., in a strain controlled cyclic test the specimen with the orientation exhibiting a lower
yield strength will fail earlier due to a higher plastic deformation portion if both orientations are
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tested at the same strain range. So, (111) oriented specimens of the CMSX4 superalloy exhibit
lower life then (100) oriented tests due to the lower yield stress in the (111) direction. Thus,
to capture the orientation dependent multiaxial fatigue behavior of a single crystal such as the
superalloy CMSX4 an anisotropic multiaxial failure criterion is needed.

As originally proposed by Majumdar and Maiya (1980) we base the lifetime rule on a time-
incremental propagation law for a dominant small crack

a=af(14,%), a=1,..N . (1.21)

However, we do not use the concept of the maximum plastic shear strain rate but work with the
crystallographic slips that are much more natural in the case of single crystals and represent the
actual quantities controlling fatigue crack initiation and growth in the early stage. We assume
that the nonlinear function f (7., 4. ), controlling the crack growth rate, depends on macroscopic
resolved shear stresses 7, and crystallographic slip rates .. At the same time, the use of the
crystallographic quantities allows us to capture the orientation dependency of the fatigue failure,
just as an crystallographic deformation model enables us to describe the anisotropic stress-strain
response of a single crystal.

a is the length of a dominant small crack. No crack growth on a certain slip plane is meant.
It is assumed that the crack is created early in the life at an already initially presented defect,
e.g., a casting pore (Miller et al., 2004) with size aq. With such an initial crack length aq (1.21)

can be rewritten as J In(a/as)
nia/a .
— = (e e) (1.22)

and normalized by the relation of the failure crack length «; to the initial crack length ag

d In(a/ag)  f(Ta)ra)

— = : 1.23
dt In(ag/ag)  In(ag/ag) (1.23)
With the lifetime consumption variable
1
p .= /) o p g (1.24)
In(ag/ag)
(1.23) represents a time incremental lifetime rule
D= F(Ta:7a) (1.25)
In(as/ag)

The lifetime consumption corresponding to the increase of the crack length from a; to as is
according to (1.24) evaluated as

D, D, — In(ay/ag) — In(ay /ag) _ In(ag/ay) ‘ (1.26)

In(as/agp) In(as/ap)

In the section on the deformation behavior of single crystals, we mentioned that the anisotropic
deformation model of Cailletaud is the transformation of the one-dimensional form of the
proved isotropic Chaboche model to each slip system. We will use the same procedure to ob-
tain a concrete expression for the function f (7, 7,) in order to take the advantages of the Yeh
and Krempl’s approach, consisting in accounting for a possible interaction between the stress
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and plastic strain. Keeping the functional structure of equation (1.20) and using the crystallo-
graphic quantities instead of the invariant effective stresses and strains we arrive at the following
crystallographic counterpart to the Yeh and Krempl’s lifetime rule (Levkovitch et al., 2004)

. 12 |7_a | Moct ‘,ya | Noct . 6 |Ta | Mcub |70¢ | Ncub )
D - . ry()oct + Z . 70 cub (1'27)
Soct Yooct a—1 Scub Y0 cub

a=1

with 7, and 4, being the resolved shear stress and the inelastic shear strain rate on the slip sys-
tem «, respectively. Similar to the material model of Cailletaud, we use the octahedral and cube
slip families for single crystal superalloys. Thus, the resolved shear stresses and the inelastic
shear strain rates are obtained from the deformation analysis. In view of the definition (1.24)
of the damage variable D, leading via (1.25) to crack propagation law (1.21), each summand
on the right hand side of (1.27) represents just the loading contribution of each slip system.
Using the Cailletaud model the damage evolution equation (1.27) is integrated alongside with
the constitutive equation of the material model. As in the deformation model, each slip family
has its own damage constant set, consisting of three independent parameters s, m and n (%, is
just a normalization constant), which enables us to model the dependence of the lifetime on the
crystal orientation.

The material parameters s and m describe the stress-dependence of the lifetime behavior.
They are determined essentially by LCF tests with different strain or stress ranges but without
hold-times. The parameter n describes the time-dependence of the lifetime due to creep and
oxidation: for rate-independent behavior n is equal to 1; n equal to zero means that a fully
time-dependent lifetime behavior is present. The parameter n is determined essentially by the
influence of the hold-times in the LCF tests on the lifetime. n was found to be positive but
significantly lower than 1 for the investigated high temperature loading.

1.4.2 Application to CMSX4

A gas-turbine blade is a cyclically loaded component part. Therefore strain- and stress-controlled
cyclic tests with and without hold-times are used to characterize the lifetime behavior. The
hold-times approximate the service loading conditions. The damage parameters of the octahe-
dral slip family are calibrated by (100) oriented specimens and those of the cubic family by
(111) and (110) oriented specimens using an optimization procedure. The difference between
the measured and evaluated number of cycles to failure is used as the objective function of the
optimization.

Formally, the evaluation of the number of cycles to failure requires the integration of the
damage evolution equation (1.27) along with the constitutive equations of the material model
(the damage evolution equation needs as an input stresses and inelastic strains obtained from
deformation analysis) until the life consumption variable D reaches the value one. Since the life
of many fatigue tests lies in the range between 10000 and 100000 cycles, this formal integration
procedure would lead to computational times whose usage in an optimization process, where
the objective function must be calculated many times before the optimum solution is found,
would be completely unrealistic. Therefore, we used the concept of a steady-state cycle. The
integration of the evolution equation (1.27) shows that the accumulated damage value A D dur-
ing one cycle reaches a constant value (cyclic saturation state) after a certain number of cycles.
Thus, in fact we need to integrate the damage evolution equation only up to the saturated cycle.
Admittedly, the number of cycles to saturation can still be too high to be used in an optimization
process. However, the number of cycles up to saturation can usually be neglected in compari-
son to the number of cycles to failure. That means that the cyclic life Ny can be approximated
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by taking the inverse of the damage value A Dsg;e.q, accumulated during a steady-state cycle
Ni = 1/ADsgteaqy. To Obtain ADgicaqy the damage evolution equation (1.27) has, of course,
to be integrated over the full saturated cycle. For this damage integration we need to know the
stress and strain values from the deformation analysis. Since the Cailletaud model is history
dependent, to obtain these values we need to integrate the constitutive equation of the material
model up to the saturation. However, this integration of the material model up to the saturation
needs to be done only once, since the variations of the damage parameters during the damage
optimization process have no influence on the deformation behavior. Thus, once integrated up
to the saturation state, the integration of the constitutive equation of the material model can be
resumed from this point on in order to deliver the input for the damage evolution equation in
the saturated cycle. Proceeding in such a way, the time needed for the optimization process
can be reduced significantly and allows to include a very high number of experiments into the
optimization.

Using this approach we applied the lifetime rule (1.27) to the nickel-base superalloy CMSX4
subjected to a variety of loading conditions, i.e., stress and strain controlled cyclic tests at
different rates, different R values (R value is the ratio of the minimum to the maximum value
of the controlled quantity in a cyclic test) as well as without and with hold-times. A good
agreement could be achieved with only one set of damage parameters (Figure 1.8).

In order to test the life rule for multiaxial loading conditions, simulation results for a cycli-
cally loaded single crystal flat specimen with a hole have been compared with corresponding
experimental results. Such a flat specimen with a hole represents in a coarse approximation a
surface segment of a gas turbine blade with a film cooling channel which is required to form
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Figure 1.8: Fatigue lifetime assessment for CMSX-4 at 950° C for different crystal orientations
and various load profiles (test environment: air)
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Figure 1.9: Location of maximum lifetime consumption D in a CMSX4 flat specimen with a
hole after cyclic loading at 950°, edges oriented along the crystal axes

a thin film of cooling air on the surface (see, eg., Pan et al., 1999). The predicted lifetime is
within the factor of two compared to the measured one. As shown in Figure 1.9 the maximum of
the damage measure D is located not directly in the notch root at external loading in the (100)
direction. Such a shift relative to the notch root is also present for the location of the initiation of
a macro-crack at a notch found experimentally for another precipitation-strengthened fcc single
crystal (Boubidi and Sievert, 2002).

1.5 Conclusion

We have presented a three-dimensional anisotropic time-incremental lifetime rule that was ap-
plied to describe the low-cycle fatigue of the single crystal superalloy CMSX4 at high tem-
peratures. The life time rule was developed on the basis of the Satoh and Krempl (1982)
one-dimensional damage accumulation equation in which the damage rate is controlled by the
current values of the stress and inelastic strain rate. To convert this approach into a three-
dimensional anisotropic damage law suitable for single crystals we assumed that the damage
contribution rate of each slip system to the total damage is governed by the current values of the
resolved shear stress and the slip rate on this slip system, whereby the functional form is adopted
from the Satoh and Krempl equation. The damage law was coupled with the crystallographic
Cailletaud model which was modified in order to describe a fast” softening effect observed
in tensile tests for different orientations. With only one parameter set fairly good results could
be achieved in the simulation of the deformation behavior in one-dimensional tensile tests with
different strain rates, strain-controlled LCF tests with different strain ranges and creep tests with
different stress levels for the three orientations (100), (110) and (111). The capability of the
model was also confirmed by the simulation of randomly oriented tests and of LCF tests with
hold times.

The same is valid for the fatigue life simulation. Using a broad range of loading conditions,
i.e., stress and strain controlled cyclic tests at different rates, different R values and with and
without hold-times we could achieve a good agreement with only one set of damage parameters.
The damage model was also tested for the case of multiaxial loading conditions. To this end,
the life time of a cyclically loaded single crystal flat specimen with a hole was evaluated with
the proposed damage model. The predicted lifetime was within a factor of two compared to the
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measured one.
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Chapter 2

Extended deformation modeling of single crystals:
effect of geometrically necessary dislocations®

Abstract— The purpose of this work is the application of continuum thermodynamics to the exten-
sion of standard crystal plasticity to account for the effects of the development of geometrically-
necessary dislocations (GNDs) on the material behaviour. To this end, following Nye and many
others, local deformation incompatibility in the material is adopted as a measure of the density
of GNDs. Their development results in additional energy being stored in the material, resulting
in additional kinematic-like hardening effects. The current approach generalized previous ones in
that the thermodynamic formulation is based on the notion of generalized energy flux. A detailed
comparison of the current approach and its results with previous such approaches and their results
is given.

2.1 Introduction

The lengthscale- or size-dependence of material behaviour in materials and structures in which
characteristic continuum dimensions approach characteristic microstructural lengthscales (e.g.,
grain size) is by now well-documented (at least in fcc-based systems), having been repeatedly
confirmed in different experiments. For example, in torsion tests on thin wires with diameters
between 12 to 170 um, Fleck et al. (1994) observed increasing hardening with the decreasing
wire-thickness. Stdlken and Evans (1998) observed this as well in bending experiments on thin
beams as the beam thickness decreases from 50 to 12.5 um. Microindentation tests on sin-
gle crystals displayed the same tendency. In the case of indentation tests, Stelmashenko et al.
(1993) showed that the measured indentation hardness increases as the depth of the indentation
decreases from 10 to 1 um. All these tests show the same tendency, i.e., the smaller the specimen
size, the larger the increase in hardening. Since standard plasticity models do not account for
such a lengthscale or size-dependent hardening behaviour, they predict flow stresses indepen-
dent of this. In addition, tests exhibiting size-dependence behaviour have in common the fact
that, in contrast to conventional tests (e.g., tensile tests), material anisotropy and the imposed
kinematic constraints (e.g., at grain boundaries) lead to instability of the initially-homogeneous
deformation field and to the emergence of energetically more-favorable localized inhomoge-
neous deformation in the form of, e.g., dislocation substructures (e.g., Ortiz et al., 2000).

As has been pointed out in many works, the phenomena of increasing hardening due to in-
creasing deformation inhomogeneity can be explained (e.g., Ashby, 1970) by the fact that such
deformation is accommodated locally via the generation of additional, so-called geometrically
necessary dislocations (GNDs). These arise via the net build-up of single-sign “polar” or “ex-
cess” dislocations at local obstacles to dislocation motion, e.g., precipitates or grain boundaries,

*submitted 2005 to International Journal of Solid and Structures under the title:
”On the large-deformation- and continuum-based formulation of models for extended crystal plasticity”.
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facilitating local inhomogeneous and incompatible deformation which would otherwise take
the form of energetically less-favorable local lattice deformation. In contrast to the build-up of
“non-polar” or “neutral” dislocation dipoles, then, that of “polar” or “charged” GNDs results
in a net Burgers vector. Together with the random trapping of dislocation dipoles resulting in
so-called statistically-stored dislocations (SSDs), then, the buildup of GNDs leads to a further
increase in the total dislocation density. As such, the emergence of GNDs results in both addi-
tional hardening in the system and its lengthscale-dependence (Ashby, 1970). In his pioneering
work, Nye (1953) introduced the dislocation density tensor whose three diagonal components
can be interpreted as excess screw contributions, and the six off-diagonal components as excess
edge contributions, to the dislocation density. Since the production of excess dislocations im-
plies local closure failure, they result in Burgers vector production and in local incompatibility
in the deformation field. Consequently, such incompatibilty can be taken as a continuum mea-
sure of the presence of such dislocations. In the small deformation context, Nye established in
addition a relation between the dislocation density and the lattice curvature tensors. In particu-
lar, he showed that edge-type GNDs result in the lattice bending, and screw-type GNDs lead to
lattice twisting. Exactly this connection between the dislocation density tensor and the lattice
curvature has been used in Sun et al. (1998) or El-Dasher et al. (2003) to determine the GND
density with the help of electron back scattering diffraction and (lattice) orientation image mi-
croscopy. In addition, the correlation between decrease of specimen size and the increase of
local deformation inhomogeneity and so of local deformation incompatibility would imply that
the GND density increases with decreasing specimen size, leading to the observed correlation
between specimen size and additional hardening.

Even in such “simple” tests as microtorsion or microbending, GND development due to
local deformation incompatibility results in size-dependent material behaviour. More generally,
phenomena such as precipitate hardening of metallic materials (higher yield stresses in the case
of smaller particle but unchanged volume-fraction precipitation/matrix: Ashby, 1970) and the
Hall-Petch effect (hardening of polycrystals by decreasing the grain size) can be explained using
the GND concept. In both cases, local deformation incompatibility results from the contrast in
kinematic and/or material properties at phase boundaries (e.g., at the interface between the
precipitates and matrix, or at grain boundaries), and is accommodated by GND development.
Since a decreasing particle or grain size implies a higher percentage of such interfaces, a fine-
precipitate or fine-grained material is generally harder. In addition to their role in hardening,
GNDs may also play a significant role in deformation localization in metallic materials. In
single crystals, for example, one observes the development of slip bands parallel to the active
slip plane, and that of kink bands inclined to the active slip plane (e.g., Flouriot et al., 2003). In
contrast to slip-band formation, kink-band formation involves local lattice rotation and bending,
resulting in local lattice curvature. To accommodate such local deformation inhomogeneity in
the form of lattice curvature, GNDs accumulate at kink-band boundaries. Because kink band
formation always involves strong lattice curvature, it is energetically less favorable than slip
band formation, which involves none. That is the reason why slip bands are observed much
more frequently than kink bands. Because it does not account for the presence of GNDs and
their effect on the material behaviour, standard crystal plasticity does not distinguish between
the different nature of slip and kink bands. Indeed, it predicts similar resistance against the
developing of the both types of shear bands in spite of their different nature (Asaro and Rice,
1979).

The fact that standard crystal plasticity accounts only for the effect of the history of crystal-
lographic slip, i.e., of SSDs, on the hardening behaviour, has motivated a number of workers to
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propose a number of extensions to standard phenomenological plasticity and crystal plasticity.
Prominent among these is the Mindlin-continuum- or strain-gradient-based extension of phe-
nomenological plasticity of Fleck and Hutchinson (e.g., Fleck and Hutchinson, 1993; Fleck et
al., 1994; Fleck and Hutchinson, 1997), which has also been applied to crystal plasticity (e.g.,
Shu and Fleck, 1999). Alternatively, the association of GNDs with local lattice rotation and
bending has motivated the use of Cosserat theory for this purpose (e.g., Forest et al., 1997,
2001, 2002). With regard to extensions of crystal plasticity, by far the largest number have been
based on continuum dislocation concepts, and in particular on the idea of Nye (1953) that the
incompatibility of local inelastic deformation represents a continuum measure of dislocation
density (see also Kroner, 1960; Mura, 1987). These include Steinmann (1996); Dai and Parks
(1997); Shizawa and Zbib (1999); Acharya and Bassani (2000); Menzel and Steinmann (2000);
Svendsen (2000); Cermelli and Gurtin (2001); Gurtin (2002); Svendsen (2002); Evers et al.
(2004). In addition, the recent work of Ortiz et al. (2000) on dislocation substructures in duc-
tile single crystals demonstrates the fundamental connection between the incompatibility of the
local inelastic deformation and lengthscale of dislocation microstructures in fcc single crystals.
Except for the works of Acharya and Bassani (2000) and Cermelli and Gurtin (2001), which are
restricted to kinematics, all of these presume directly or indirectly a particular dependence of
the (free) energy and/or other dependent constitutive quantities (e.g., yield stress) on the gradi-
ents of inelastic state variables, and in particular on that of the local inelastic deformation, i.e.,
that determine its incompatibility. In the simplest case (e.g., Dai and Parks, 1997; Acharya and
Bassani, 2000; Acharya et al., 2003), one simply introduces the GND density as an additional
dislocation density into standard (i.e., SSD-based) hardening models, resulting in an additional
increase in the yield stress and no change in the boundary-value problem to be solved. In these
approaches, the yield stress increase due to GNDs doesn’t depend on the dislocation sign, al-
though simple arguments based on the elastic properties of dislocations reveal that nonhomoge-
neous distribution of excess dislocation of the same sign lead necessarily to directional internal
stresses. This fact was used by Evers et al. (2004) in a non-thermodynamic approach including
both short-range (nondirectional) and long-range (directional) internal stresses due to GNDs. In
particular, they introduced GND densities for each slip system determined by glide-system slip
gradients in the sense of Ashby (1970).

If one assumes that GND development and more generally local deformation incompabil-
ity results in energy storage in the material, then the free energy necessarily depends® on the
dislocation density tensor. In particular, in the crystal plasticity context, this assumption leads
to a generalized, non-local glide-system flow rule representing an evolution field relation for
the glide-system slips. In particular, this field relation contains terms depending on the sec-
ond spatial derivatives of these slips (e.g., Svendsen, 2000, 2002) or their rates (e.g., Gurtin,
2000, 2002). Like the resolved shear stress, these additional terms are signed and influence
the effective resolved stress driving glide-system dislocation motion. Consequently, they are
of back-stress character. In both the thermodynamic and non-thermodynamic approaches, the
standard flow rule for the glide system slip generalizes to an evolution field relation, such that
each scalar (active) glide-system slip represents an additional continuum degree of freedom for
which additional boundary conditions are required. In this regard, the approach of Gurtin (2002)
is based on the concept of a microforce or configurational force balance (e.g., Gurtin, 2000) for
each glide-system slip. On the other hand, Svendsen (2000, 2002) showed that exploitation of

1That this isn’t “absolutely” necessary in order to account for directional hardening effects is demonstrated both
by the crystal plasticity model work of Evers et al. (2004) and the very interesting phenomenological approach of
Acharya (2004).
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the invariance of the energy balance and of the dissipation principle results in additional such
evolution field relations for the glide-system slips having a generalized Ginzburg-Landau or
Cahn-Allen form. As such, the glide-system slips can be interpreted as a type of phase-field in
this context (as discussed in detail in Svendsen and Reese, 2003; Svendsen, 2004). Such an ap-
proach has been applied in a number of contexts, e.g., to the modeling and simulation of glide-
and kink-banding at the crack-tip in single crystals (Levkovitch et al., 2005). In particular, the
GND-related hardening is shown there to influence only kink band development (i.e., reduces
their intensity).

In the current work, a non-local thermodynamic single-crystal model is formulated which ac-
counts in particular for additional kinematic hardening due to GNDs. This approach is based on
direct exploitation of the dissipation principle to derive all field relations and (sufficient) forms
of the constitutive relations as based on the free energy density and dissipation potential. The
current formulation falls within the framework of inelastic gradient formulations, which sets
it apart from the strain-gradient-based approach to crystal plasticity of Shu and Fleck (1999).
Before we begin, a word on notation. If W and Z represent two finite-dimensional linear
spaces, let Lin(WW, Z) represent the set of all linear mappings from W to Z. If W and Z are
inner product spaces, the inner products on 1 and Z induce the transpose A" € Lin(Z, W)
of any A € Lin(W, Z), as well as the inner product A - B = tr, (A"B) = tr,(AB™) on
Lin(W, Z) for all A, B € Lin(W, Z). In particular, let V' represent three-dimensional Euclid-
ean vector space, Lin(V, V') the set of all linear mappings of V' into itself (i.e., second-order
Euclidean tensors), and Lin™(V, V) the subset of all elements of Lin(V, V') with positive de-
terminant. Elements of V' and Lin(V, V'), or mappings taking values these spaces, are denoted
here as usual by bold-face, lower-case a, ... and upper-case A, ..., italic letters, respectively.
In particular, let I € Lin(V, V') represent the second-order identity tensor. As usual, the tensor
product @ ® b of any two a,b € V can be interpreted as an element a ® b € Lin(V, V) of
Lin(V,V) via (a ® b)c == (b- c)a forall a,b,c € V. In addition, sym(A) = 1 (A + A7),
skw(A) =1 (A—A"),sph(A) =1 tr(A) I,and dev(A) := A —sph(A) represent the sym-
metric, skew-symmetric, spherical, and deviatoric, parts, respectively, of any A € Lin(V, V).
Let axv(W) x a = Wa represent the axial vector of any skew-symmetric tensor W, and
axs = axv oskw the extension of the axial vector mapping to arbitrary second-order tensors.

Third-order tensors are denoted in general in this work by upper-case slanted sans serif letters
A, B, ... and interpreted as elements of Lin(V?, V) 2 Lin(Lin(V, V), V) = Lin(V, Lin(V, V)).
Note that any third-order tensor A induces a third-order tensor A°® defined by (A°b)c = (Ac)b.
In particular, this operation induces the split A = sym(A) + skw,(A) of any third-order tensor

A into “symmetric” sym,(A) = 3(A + A°) and “skew-symmetric” skw,(A) = (A —
A®) parts. In addition, the latter of these induces the second-order “axial” tensor axi (A)(b x
c) = 2(skwy(A)b)ec = (Ab)c — (Ac)b formally analogous to the well-known axial vector.

Turning next to field relations, let £ Euclidean point space with translation vector space V' and
u be a differentiable Euclidean vector field. We work with the definition? (curlT)a :=
curl(T"a) for the curl of a differentiable second-order Euclidean tensor field T' as a second-
order tensor field. Using this definition, one obtains the identity (curl T')(a x b) = (V,T)b
— (V,T')a for curl T in terms of the Euclidean gradient operator V, directional derivative
V,T = (VT)a, third-order Euclidean tensor field VI". On the basis of these definitions, one
obtains in particular the compact form curl T' = axi (skw,(VT')) = axi,(VT') for the curl of a
differentiable second-order tensor field T" as a function of its gradient VT'.

2This is of course a matter of convention. Indeed, in contrast to this, Cermelli and Gurtin (2001) define
(curl T)a = curl(T™b).
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2.2 Large-deformation continuum constitutive setting

According to Ashby (1970), dislocations in a crystal can be separated into two different types
depending on how they are stored. While statistically-stored dislocation (SSDs) accumulate by
trapping each other in a random way, geometrically-necessary dislocations (GNDs) are required
to maintain deformation compatibility between all parts of the crystal in the case of non-uniform
slip. In this vein, Ashby (1970) derived a relation between the density of GNDs and the gradi-
ents of plastic shear. This has been discussed in detail in the context of small deformation in
many later works (e.g., Arsenlis and Parks, 1999; Shizawa and Zbib, 1999). The question is,
how does this generalize to the large-deformation continuum setting? In the phenomenological
large-deformation context, local inelastic deformation is invariably represented by the inelastic
part F, of the usual multiplicative decomposition of the deformation gradient. From this point
of view, the extension of crystal plasticity to be considered here should involve the gradient of
F, in some way. In this sense, such extensions of crystal plasticity fall under the continuum
rubric of gradient theories. Formulations of crystal plasticity involving a (general) dependence
of the free energy on the gradient of the local inelastic deformation can be found in, e.g., Naghdi
and Srinivasa (1993, 1994); Le and Stumpf (1996); Gurtin (2000).

To have a first look at the consequences of this for the formulation of constitutive models,
consider the simplest case, i.e., ideal isothermal phenomenological gradient inelasticity. To this
end, we require some notation and concepts. Let B represent a material body (manifold) and
Kk : B — E aplacement of B into E, i.e, a global placement. The image B, = k[B] C E
of k represents the corresponding configuration of B in E. If v: B — FE is a second such
placement, v, = k,y=vo0ok ! : B, — B_, represents the change of global placement
from k to ~. Alternatively, ~,, can be interpreted as the deformation of B, into B.. On this
basis, a motion of B with respect to £ in some time-interval I can be represented in the form
X : I x B — E,where,ateacht € I, x, = x(t,-) : B — B, represents the global placement
of B into its current configuration B, := x,[B] in E. Note that any global placement « induces
the representation ¢, = k., = ok ! : B, — Zofanyfield¢(: B — Zon B
taking values in some fixed linear or point space Z. Further, any smooth « induces the form
V¢ = k*V(k, () = V(¢ o k1) o k of the gradient of ¢ taking values in Lin(V, Z). For
example, x,. : I x B,, — E represents the deformation of B, into the current configuration
B, at each t € I. From this, we have in particular the deformation gradient E.(¢,b) =
(VEx)(t,b) € Lin™(V, V) relative to «.

In this framework, relative to any global placement «, the behaviour of a material point
b € B atagiventime ¢ € [ is determined in particular by the history of the local deforma-
tion represented in terms of the local continuum deformation or deformation gradient E. (¢, b),
the local inelastic deformation E, (¢,b), and now (V*E..)(t,b), all at b relative to «. These
determine in particular the corresponding extended form

Y = wn(Ew Fl:‘K'J VR‘FI;K,’ b) (21)
of the free energy density at each b € B, again for arbitrary « determining in particular the first
Piola-Kirchhoff stress P,, = 0 v, hyperelastically. Later in this work, we will be considering
a number of indirect or direct evolution-field relations for F,,,. (which will depend in addition
on a dissipation or other potential as well as the free energy, but this is not directly relevant
here). In this case, x,. and this latter field represent the degrees-of-freedom of our continuum.

Consider now the effect of a change of global reference placement on the form of ¢, above.
As discussed by Cermelli and Gurtin (2001), this can be alternatively interpreted as the effect
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of the corresponding compatible (i.e., curl-less) deformation on the form of ¢,.. Such com-
patible deformations have been shown (e.g., Davini, 1986; Davini and Parry, 1989) to leave
crystallographic dislocation measures unchanged, representing as such “elastic” changes of lo-
cal reference placement. The idea here is that the form of the free energy and other consitutive
relations depending on such measures should then be invariant with respect to such changes
of global reference placement, or alternatively, with respect to compatible deformations. One
obtains the transformations

E = AL E

K ety

VPR, = A [VYE,+E A (VFAL)],

Py Ty K*

770"6 = det(A’yn) ¢7 )

using the above notation, with

A, =V"y (2.3)
and
A;HF’;’ = F’;’ A’YKD ’ B B (24)
(Aye(VRAL))@)b = ((VRAL)ASLa)ASLD.

Substituting these results into (2.1), we obtain

Uo(B By VR, D) = det(Ay,) vy (B, B, V7E

K)TPK v TPy Yy
+ E*y A'yn* (VK/A"YK,)’ b) (25)
7& det(Awn)¢7(Ey7E77V7E77b) :

Due to the non-tensorial nature of V*E,_, then, the form (2.1) of v, will depend in general on

the choice of global reference placement. To examine this result more closely, consider the split
V*E, =symy(V*E,) + skw,(V*E,,) (2.6)

of V*E,. into symmetric and skew-symmetric parts. In particular, the result
axig(V®E,.) = axii(skwy(V®E,,)) = curl"E,, (2.7)

implies that skw,(V*E,.) represents the incompatibility of E.,, with respect to x. Combining
(2.2)3 and (2.6), then, one obtains

symg(VEE, ) = AL [symy(VYE,) + B A (VEAL],

Py YR* 28
o (VRE,) = AL,k (V7E,) . &9

since V®A,, = V*(V"+) is symmetric. Note that (2.8), takes the alternative form
curl*E,. = det(V®y) (curl" B )(V®y) ™" (2.9

in terms of curl®E,.. So, we see that the dependence of the form of ¢, on the choice of
reference placement is due in particular to its dependence on the symmetric part sym,(V*E,.)
of VX E,. . For special changes of reference placement, e.g., when ~, is affine (i.e, V* (V")
vanishes), sym (V*E,,.) transforms tensorially as well. More generally, (2.8), implies that, if
~ satisfies the field equation

VF (V) = ' sym (VFE,) (2.10)
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at each time® during the deformation process, sym, (V™ E,,) vanishes identically, in which case
¢, as given by (2.1) would depend only on the skew-symmetric part of VY E . In general,
however, these results shows that, for the form (2.1) of ¢, to be independent of change of
global reference placement, or of compatible deformation, in general, it can only depend on the
incompatibility skw,(V*E.,) of E, from the start. This is in agreement with conclusions of
Cermelli and Gurtin (2001), who showed in a different fashion that constitutive functions for
any b € B depending on V* F},,. must reduce to a dependence on curl” E,,_ alone for their form
to be independent of a compatible or “elastic” deformation.

Going now one step further in this context, consider next the generalization of the modeling
of E,. as (deformation-history-dependent) change of local reference placement (Svendsen et
al., 2001) to gradient inelasticity. In this case, there exists a reduced form ¢, of ¢, such that

U (E., B, skw,(V®E,),b) =det(F,,.) Y. (E..E., E,.,skw,(V*E,),b) (2.11)

K’ PR PR*xTK?)? TPRx*

holds. Here,

E.. (2.12)

represents the local elastic deformation in the material relative to the so-called (local) interme-
diate (inelastic) configuration, and

(B V"E.)a)b=((V*E,)E 'a)E.'b (2.13)

Pr*
the push-forward of V*E,_ by F, to the intermediate configuration. In the standard non-
gradient context, such a model for E,. clearly implies that the usual elastic part E, of the de-
formation gradient is the measure of energy storage in the material due to lattice deformation.
Noting that ., skw,(V*E,,) = skw (E,. (V*E,.)), from (2.2) follows in turn the transfor-
mation relations

E=EE, = E

K Er

Substituting these results into (2.11), we obtain analogously ¢, = 4., i.e,, the form of the free
energy density with respect to the intermediated configuration is independent of the choice of
global reference placement. In particular, with the help of the result

axis (B, V™ E,.) = axig(skw (B, V")) = det(E,) " (cwrlE)E, ,  (2.15)

Prx PKx*
note that the axial form of skw,(E ., V*E, ) represents the so-called geometric dislocation
tensor

G, = det(E,) ! (cwl"E,)EL = det(E,) " (cul E. ) E, (2.16)
of Cermelli and Gurtin (2001). As follows from (2.14), and as indicated here, this tensor is
independent of the choice of k.

In the sequel, attention will be focused on an arbitrary reference configuration B, = B, , the
local intermediate one induced by F, = F,,., and the current one B, = B,. As indicated, for
notational simplicity, we now drop the notation « for the reference configuration. Further, use
will be made of the notation V" = V* for the gradient operator relative to the arbitrary reference
configuration B,, and that V¢ relative to the current configuration 5., in what follows. Lastly,

all forms of the free energy to follow will be consistent with the reduction
v = %(0,F, E, G, ¢)

— det(F) (0 B, Gy e) (17)

3Resulting over the process time interval I in a time-dependent or time-parameterized change of reference
configuration.
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independent of compatible deformations and consistent with the modeling of F as a material
isomorphism as discussed above, with

G, = axi (skwy(V'F,)) = curl [F, (2.18)
the referential form of the dislocation density tensor. The class of free energy functions (2.17)
considered by Svendsen (2000, 2002), and the isothermal special case of (2.17), for plastic
incompressibility det(F,) by Gurtin (2002). Here, we have included a dependence on the
temperature 6 as well as on a set € := (€, ...,¢,) of scalar-valued internal variables (e.g.,

accumulated inelastic deformation on each glide system) whose development leads to additional
energy storage in the material.

2.3 Finite dislocation density and lattice curvature measures

Assuming that the crystalline material in question contains dislocations which can be treated
as being “continuously-distributed” in a material point at the continuum or macroscopic level,
one can formulate (average) dislocation density and lattice curvature measures with respect
to continuum (infinitesimal) line, area and volume elements of the material in question (e.g.,
Kroner, 1960). This is done here in the context of finite deformation and (later) small elastic
strain. As usual, in the phenomenological context, as well as in the case of crystal plasticity,
this is based on the multiplicative decomposition

F =F.,F, (2.19)

(e.g., Lee, 1969; Mandel, 1971; Rice, 1971) of the deformation gradient into elastic and plastic
parts. This is generally completed by the flow rule

F,=L,F, . (2.20)

For example, in the case of single crystals, we have

Lo=) Ju(s,@m,) (2.21)

the sum being taken over all (active) slip systems as usual. Here, s, is the slip direction, n, the
slip plane normal and +, the slip rate on the slip system a. As usual, we interpret F,, as defining
the local intermediate configuration which is on average stress-free and as such characterized
by zero mean lattice (i.e., elastic) strain. Since F}, is not the gradient of a vector field, the
intermediate configuration is in general not compatible. As such, a closed circuit C' in the
reference configuration is mapped via F;,, on one generally open circuit. The closure failure of
the circuit, representing the net sum b(C') of the Burgers vectors of all dislocation lines piercing
the area S enclosed by the circuit C', is given by

b(C) = j{ F,dx, = /(curler)nr da, :/Gm,r da, (2.22)
c s S

(Nye, 1953; Bilby et al., 1955; Kroner, 1960; Landau and Lifshitz, 1970) via Stoke’s theorem,
i.e, assuming no jumps in F,. As such, G.n, represents the corresponding vectorial surface
density of GND lines piercing the referential surface element n_ da, and curl F,. The van-
ishing of b(C') implies that there are no excess dislocations around C, such that the material
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experiences no net bending around this circuit. Noting the analogy of (2.18) with the expres-
sion b = curl a for the magnetic field (or more precisely, flux density) b as the curl of the vector
potential a, one could perhaps refer to F}, as the potential for the dislocation (density) “field”
G.. On this basis, the conservation of dislocation (field) lines in the material is given by

div,G, =0 | (2.23)

a relation formally analogous to Faraday’s law for conservation of magnetic flux. Like F;,
itself, G, represents a mixed (i.e., intermediate-referential) second-order tensor field. On the
other hand, the related measure

G, = det(F; 1) (curl, FL,)F! = det(F, ') G.FY (2.24)

representing the dislocation density tensor of Cermelli and Gurtin (2001), is purely intermediate
in character. Indeed, with the help of the standard area-element transformation n, da, = det(F},)
F; " n,da,induced by F},, one obtains

Gn,da, = Gmn, da, . (2.25)
G, can also be expressed in terms of F}, as
G, = det(F,) (cwl F; ') F," = —F, " (curl,F,) (2.26)

via the compatibility of F'. Note that the curl operator curl, is defined relative to the intermediate
configuration via V¢ = (V*¢)F, L. Lastly,

G, =cwl F,' =det(F ') G.F" = det(F; ") G,F; (2.27)

C

represents the dislocation density tensor with respect to the current configuration, with curl,
the corresponding curl operator based on V¢. More generally, this last result follows from the
symmetry of V' F' as

G(axb) = (cwlF,)(F;'ax F;'b)
= (VuFp)F'b = (VF,)Fla
= (Vi,oF: b — (Vi F ') Fra
= F{(VFy)a — (V,F;)b}

(2.28)

via the definition of the curl of a second-order tensor field being used here. Analogous to (2.23),
we have
div.G, =0 (2.29)

for the conservation of dislocation lines relative to the current configuration.

To take into account the effect of the motion of dislocations on the state of deformation in the
material, consider next the evolution relations arising for the dislocation density tensors above
on the basis of the relation (2.20) for the (negative of the) “dislocation flux density” F,,. We
have _

G, = curl(L,F,),
G, = GL!—(I-L,)G,+ det(F;"){curl (L,F,)}F7T, (2.30)
G. = GL"—(I-L)G, + cul (L,F.; "),
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from (2.20) and the above definitions. Note that

curl (L, F,) = L,G,+det(F,)(curLlL,)F;",
det(F;Y){curl (L F.)}FY = L,G,+ curl,L,, (2.31)
curl (L F;') = L,G.+ det(F;")(cur,L,)F7 .

In particular, in the case of crystal plasticity, I - L, = 0 and det(F,,) = 1. More generally, in
the incremental context, the “non-locality” of these dislocation density measures is expressed
in terms of the incompatibility of L, with respect to the intermediate configuration. In the case
of crystal plasticity, for example, we have

det(F,) (L) F* = 3 5,0 (V'5, x Fin,).
a

O (2.32)

CurliLP = Za Sa @ (v 7a X na) )
via (2.21). This crystal plastic form for the incompatibility of L, displays clearly the depen-
dence of the evolution of the dislocation density measures on that projection of the inhomogene-
ity Vi, of v, with respect to the intermediate configuration onto the glide plane. Alternatively,
in the crystal-plastic context, G, can be expressed in the finite form

G, =G,+bY s,®g, (2.33)

(Svendsen, 2000, 2002) in terms of its initial value G,, and the glide-system-based vector-
valued GND measure g, , with evolution relation

gra - b_l Curlr (7a ana)

e , T (2.34)
=0 lv Va X ana_f—’Ya{GrO—l_Zb#asb@grb} ng.

In the hardening context, the first two terms contribute to self-hardening, and the last term to la-
tent hardening. In particular, G, is due to orientation mismatch at grain boundaries and results
is an initial lengthscale-dependent yield stress (e.g., due to geometric necessary boundaries:
Evers et al., 2004). Note that div,G,, = 0 and div,g,, = 0 for each a follow from (2.23).

As has been discussed in detail in many works (e.g., Ashby, 1970; Arsenlis and Parks,
1999), simple geometrical considerations imply that GNDs of edge and screw type cause lattice
bending and warping, respectively. In his pioneering work, Nye (1953) introduced the small-
deformation dislocation density tensor

o = curl H, = curl(sym(H,)) + curl(skw(H,)) (2.35)

in terms of the local lattice distortion H, and linked it to the corresponding small-deformation
lattice curvature k = V axs(H,,) (see also Kafadar and Eringen, 1971; Forest et al., 1997).
More generally, consider the case of small elastic strain, i.e.,

U, ~ I+hU,,
F =~ R

E

(2.36)

E

with R, the mean rotation of the crystal lattice from the polar decomposition

F.=R,U, (2.37)
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of F,, and U, the mean stretching of the lattice. In this case, we have the split
F (VoFy) = Ry (Vo R,) + Vo InU, (2.38)

of F,'(V.F,) into parts determined by the inhomogeneity of the lattice rotation R, and by
that of the lattice distortion InU . In particular, the former is related to the third-order lattice
curvature tensor K, defined by

Ka = (ViR;)R, = —Ri(V,R,) (2.39)
for all vectors a. Note that, from (2.28) and (2.38), one obtains the expression

(Ka)b = 5{[(Sa)—(Sa)"]b— (5b)"a}

- - (2.40)
+ 5{l(Aa) - (Aa)"]b— (Ab)"a}
for this tensor in terms of those
(Sa)b = F7Y{(ViF,)a— (VF,)b} = Gi(axb), (2.41)
(Aa)b = (VinU,)b— (VimU,)a = curl(lnU,)(a x b), '

determined by G, and the incompatibility curl,(InU,) of the lattice strain InU,, with respect
to the intermediate configuration. Consequently, lattice curvature results in general from both
this latter incompatibility and GND development. In particular, if InU,, is in fact compatible,
the lattice curvature is directly related to G;. Since it can be experimentally determined (at
least for fcc systems), e.g., with the help of electron back-scattering diffraction and orientation
imaging microscopy (e.g., Sun et al., 1998; El-Dasher et al., 2003), lattice curvature offers at
least in principle the possibility to compare theoretical predictions of G, and its development
with experimental results via relations such as (2.41).

2.4 Standard-continuum-based extensions of crystal plasticity

Among the proposed approaches on how to incorporate the effects of GNDs into the hardening
modeling, the simplest simply accounts for GND density in otherwise *“conventional” hardening
modeling, resulting in the retention of the standard continuum setting. Consider for example the
approach of Dai and Parks (1997), which has been used by, e.g., Busso et al. (2000) to model
the additional hardening in two-phase nickel super-alloys. In their approach, G, = curl F;, is
considered as the generalization of Nye’s dislocation density tensor to large deformation. In
particular, Dai and Parks (1997) assumed that a given slip system consists of three dislocation
families: a set of screw dislocation with the tangent vector in the direction s, a set of edge
dislocation with the tangent vector in the direction ¢, = s, x n,, and a set of edge dislocation
with the tangent vector in the direction s,. The Burgers vector of all 3 types lies in the direction

s, The corresponding densities pf(s), pf(e)l and pf(e)Q are assumed to be fully determined by

b(pS s, + p5 Mt + ¢ n,) = curl (4, Finy,) (2.42)

In the context of (2.33) and (2.34), we see that this is equal to b g,,, Where again b represents
the magnitude of the Burgers vector. The total GND density on slip system a is then

pS = o) + [pGO| +]p2| . (2.43)
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This field of GNDs can act as obstacles to the motion of any glissile dislocation in the same
way as statistically-stored dislocations do, and so produce enhanced hardening. The effective
slip-system resistance s& resulting from GNDs is evaluated as

s = cuby / Zb agps . (2.44)

with a,, characterizing the a — b dislocation interaction strength (Franciosi and Zaoui, 1982).
With the slip system resistance due to SSDs s the overall glide resistance s, on the slip system
a is taken to depend on both according to

sa=[(9)F + (5" (2.45)

where k is taken as a positive constant £ = 1 or £ = 2. Note the slight formal inconsistency
here. On the one hand, the slip system resistance due to SSDs s is obtained from the slip
system shears ~,, which are intermediate-configuration quantities. On the other hand, s¢ is
evaluated using the slip system GNDs” p¢ from (2.43) as based on curl (7,F*n,), which are
mixed intermediate-referential quantities.

Let us consider a FCC single crystal with its 12 slip systems. The slip planes are of the type
{111} and slip directions of (110). We examine now the situation where two slip systems with
the same slip directions are loaded symmetrically so that the inelastic shear rates on the both
are equal. In this case, the time derivative of the plastic deformation can be written as

FP:(73®n1+’y8®n2)FP:fy(3®n)Fp (246)

with n = n,+n,. Since both n, and n, are orthogonal to s the vector n is as well. Furthermore,
if we assume that there is no plastic deformation at the beginning, then F,, is initially equal to
the identity, and (2.46) can be integrated to yield

F,=1+vs®n . (2.47)
From this, one obtains
G =cul(ys®@n)=s® (Viyxn) | (2.48)

since s and n are constant. Further, (2.23) is satisfied identically. Assuming next that v varies
only in the direction n, i.e, that V' || 2, (2.48) implies that G, vanishes identically, in which
case F,, is compatible. This situation arises for example in plane strain, where two symmetri-
cally loaded slip systems with the same slip direction result in a glide band whose slip direction
is the same as of the both slip systems and whose normal points into the direction of the bisector
of the normals of the both slip systems.

Let us now use the formula (2.42) to determine the GND density on the both active slip
systems 1 and 2 in the sense of Dai and Parks (1997). With a taking the values 1 or 2, we obtain

Curlr(ﬁanna) = (Vr’y ’ n) nxXn,= _<vr7 ’ n) ('I’L ) ta)s = (vr,y ’ n) ag$ (249)

where a, = —n - t,. Since n = n, + n,, we have a; = —a, = a. Comparing then (2.42) and
(2.49), we conclude

. S . S a T .

P = =TV A0 (2.50)
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Consequently, in this model, we have the same number of screw dislocations on system 2 as
on system 1 with the same Burgers vector but opposite sign. So, this approach results in the
presence of GNDs leading via (2.43) and (2.44) to additional slip system resistance although the
plastic deformation is compatible! This shortcoming stems from the fact that screw dislocations
with the same Burgers vector but gliding on different slip planes are treated here as different
dislocations although screw dislocations are characterized by their Burgers vector alone, regard-
less of the slip plane. Indeed, if such dislocations have the same Burgers vector, they should be
combined together in order to evaluate the net resulting polarity.

In the approach of Dai and Parks (1997), only the first spatial derivatives of the plastic de-
formation enters the constitutive equations via the dependence of the slip resistance on the
“crystallographic GND densities” p;” whose evolution is given by the history of the slips via the
equations (2.43) and (2.43). Thus, only the constitutive form of the slip resistance is influenced
by the presence of GNDs, other constitutive equations retain their form. This and the fact that
no additional boundary conditions are needed in this case makes this approach very attractive
for engineering applications. Admittedly, that in this theory, as was shown above, a compatible
plastic deformation, which implies no GNDs, can lead to additional hardening. Consequently,
the quantities p< are not solely GND-related, and the nature of this additional hardening is ques-
tionable. Analogous approaches in which the standard boundary-value problem and the form
of the constitutive equations are retained include Acharya and Bassani (2000) and Acharya et
al. (2003). This they achieve by introducing additional GND hardening via a dependence of the
hardening moduli on a particular GND measure. Like the approach of Dai and Parks (1997),
their approach is non-thermodynamic and presumes the GND hardening process is purely dis-
sipative in nature, i.e., leads to no energy storage. In particular, Acharya and Bassani (2000)
utilized a frame-invariant GND density measure which is essentially equivalent to the small-
elastic-strain form of G, and takes into account short-range interactions between GNDs and
mobile dislocations which arise when the GNDs intersect the slip plane of the mobile disloca-
tions. Since from (2.22) and (2.25) we know that G,n, represents the surface density of excess
dislocations threading the surface element n, da;, the corresponding scalar density for the slip
plane a is given by

Ao =G| (2.51)

with n, being the plane normal of the slip system a. These GND forest measures can than
be used alongside with the slips in the evolution of the critical shear stress 77" = 3" hy7s
via the dependence of the hardening moduli A, (v,, A,) on their values. In contrast to Dai and
Parks (1997), the GND measure A, used in Acharya and Bassani (2000) vanishes in the case
of compatible elastic and plastic deformation and so results in no additional hardening.

2.5 Continuum thermodynamic extension of crystal plasticity

The extensions of crystal plasticity discussed in the previous section were all characterized by
the retention of the standard continuum setting and boundary-value problem. They reflect the
fact that the buildup of excess dislocations in the material results in a dependence of the the
material (i.e., hardening) behaviour on the history of the gradient of the local inelastic defor-
mation. Otherwise, they treat the local inelastic deformation as a “standard” internal variable
whose spatial variability is derived “directly” from the deformation field itself. Such an ap-
proach clearly does not account directly for the influence of internal boundaries (e.g., grain
or phase boundaries) and the microstructure in general on GND development. More general
continuum-mechanics-based approaches of this nature for crystal plasticity have been devel-
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oped in a thermodynamic context for large deformation by, e.g., Menzel and Steinmann (2000);
Svendsen (2000); Gurtin (2000); Svendsen (2002); Gurtin (2002) and in a non-thermodynamic
setting by Evers et al. (2004). In this section, we pursue a generalization of the approach of
Svendsen (2000, 2002). As in all other continuum-thermodynamic-based approaches, the es-
sential physical assumption here is that additional GND-based hardening results in additional
energy storage in the material. That this aspect of GND-based material behaviour can be ac-
counted for without extending ¢, to depend on measures such as G, has been shown in the very
elegant continuum thermodynamic phenomenological approach of Acharya (2004).

For simplicity, the formulation here is restricted here to the supply-free case. As shown by
§i|havy (1997), under mild additional assumptions (e.g., local solvability), the Coleman-Noll
dissipation principle is applicable to the supply-free case. In any case, from a physical point
of view, momentum, energy and entropy supplies should be negligible in the curren context of
crystal plasticity. On this basis, the local energy balance takes the form

¢ = div.h (2.52)

in referential form. Here, e = ¢ + k represents the referential total energy density, « the corre-
sponding internal energy density, & the corresponding Kinetic energy density, and h the corre-
sponding energy-flux density. The analogous form of entropy balance is given by

n=m—dvg |, (2.53)

with 7 the entropy density, ¢ the entropy flux density, and 7 the (hon-negative) entropy production-
rate density. Multiplying (2.53) by the absolute temperature & and combining the result with
the energy balance (2.52), one obtains

S=div,f—tv—m-x—¢ -V0—n0 (2.54)

for the dissipation rate density § = #r in terms of

Y = e— 977 )
f = h+og, (2.55)
o= m-x,

with m the momentum density. Since 7 is restricted to be nonnegative, and 6 is by definition,
the entropy principle (now in terms of the dissipation) requires ¢ to be as well. On this basis,
consider now the class of thermoelastic, viscoplastic behaviour as based in particular on the
form (2.17) of the free energy density depending in particular on the dislocation density tensor
G, from (2.18). From this, one has

b= 0y 0+ 0pty - F 4+ 0p - B+ 04, - €+ 0.4, - G,
= (%%)9 - din@F@Dr) "X .
+ {0p U +curl (9g, 1)} - F + 0.4 - €
+ div {(Oph) X + 2 axs[(0g )" F]}

for the material time derivative of ¢ via the identity curlA- B = A-curlB+div|2 axs(A"B)].
Substituting (2.56) into (2.54), we obtain

+ X FE -0 -é€—0¢- -V,

(2.56)

(2.57)
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via the constitutive assumption

f = 0pth)"x +2 axs{(0g 14)"F}. } (2.58)

for the energy flux density, with
2r = {8prr + Curlr<aGr’l/}r)} (259)

the generalized thermodynamic force driving the evolution of FP. In what follows, we also
work with the form
. =X F; (2.60)

of 3, in the intermediate configuration conjugate to L. In particular, the thermodynamic force
3., is related to the internal stresses resulting from lattice distortion, bending, and warping, the
latter two due to the presence of GNDs.

Consider next the dissipation principle (e.g., éilhavy, 1997) in the context of (2.57). This
requires 6 to remain nonnegative for all admissible thermodynamic processes. Assuming in
particular that f, ¢, n, and the evolution relations for the internal variables are independent of
x and 6, note that ¢ is linear in these. Necessary for the fulfillment of § > 0 in this case is the
vanishing of the corresponding coefficients, yielding the linear momentum balance

m = div,(0p,) (2.61)

and the thermoelastic form
n=—0 , (2.62)
for the entropy density. These reduce the dissipation-rate density to its so-called residual form

§=%-F, -0 -é—¢-VO=%-L,—0-é—¢ V0 . (2.63)
In terms of the dissipation potential
d=d,(0,F F, G,s,F, éV0) =d(0, F, G, L,,é Vo) (2.64)

and corresponding sufficient constitutive forms*

S, = 0.d,,
-0, = 0., (2.65)
_¢ = aVerr )

(2.63) reduces further to

>0 (2.66)

T

6= (0 dy) - F, +(0.d) - é + (Ogupd,) - V'0 > d

The latter conditions hold here since x is by definition non-negative and convex in the “non-
equilibrium” quantities FP, € and V'0. In (2.64), note that ¢ = (¢, ...) represents a set of
internal variables associated with dynamic, i.e., dissipative, hardening processes. Combination
of (2.62) with the entropy balance (2.52) and this last result yields the field relation

¢l =w + div, [0 (Ogryd,)] (2.67)

“In case of non-differentiability at zero, the partial derivatives here should be interpreted as subdifferentials.
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for the temperature, with ¢ .= — 6 (9,0,,), and

w = 0(00p%) F+{0;d.+00,05,%)} F,

| (2.68)
+ {aédr +0 (aGaewr)} 6 +0 (8 aGﬂ/’) ’ Gr

the rate of mechanical heating.

In summary, on the basis of the above results, one obtains the momentum balance (2.61) for
the deformation field x, (2.67) for the temperature field ¢, as well as that

0= 81-71‘) dr + aFP wr + Curlr(acurler wr) (269)

for F, from (2.65), via (2.18) and (2.59). All of these are determined by the forms of v,
and d, as given above. For the formulation of initial-boundary-value problems and numerical
implementation, the corresponding weak forms

/ m- X* + / (aer) ' va* = / t- Xx
B 0B,

T

/ (cb—w)6, + / 0 (Dongd.) - V'O, = / 79, . (2.70)
B, B, 9B,
/ (aF dr + aF wr) ’ FP* + / (acurl F wr) ’ CU_I‘ler* = @ - FP* )

B, F v o OB

T T T

with respect to arbitrary test F,, and corresponding flux ® fields mutually exclusive on 0B,..
As discussed in Svendsen (2000, 2002), in applications, F;, is “specified” everywhere including
0B, (i.e, via solution of the local flow rule on 9B,), in which case ® vanishes identically. At
the phenomenological level, this would be the basic result of the current formulation, leading
to a structured continuum characterized by the fields (x, 6, F,,), where F, represents in general
nine additional inelastic degrees-of-freedom . Analogous to the case of active and passive glide-
systems in the case of crystal plasticity, however, in applications, these additional degrees-of-
freedom would not necessarily all be active everywhere in the structure at all times.

The dependence of the referential free energy density on G, results in particular in the back-
stress-like contribution curl (J ¢,) to X, from the incompatibility of 0 ¢,. Note that this
stress is in general non-symmetrirc. The form (2.60) of 32, implies as well that additional contri-
butions from G, to 3. may also be supplied by the other term 6prr if F,, and G, are coupled
in ¢, (which in general will be the case). Consider in particular the form (2.17), of ¢, obtained
when one models F, phenomenologically as a history-dependent change of local reference
placement. Assuming plastic incompressibility det(F,) = 1, this yields the form

> =M-X (2.71)
for 3, from (2.59) and (2.60) in terms of the Mandel stress
M = F} (05, %) 272)

and the back stress
X =2 sym(9gh)G; + curly(0g ) - (2.73)

Likewise, one obtains the form

f=F, ' (0p )X + 2 axs{F} (0g1)"F,} (2.74)
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for the energy flux f from (2.58). The form (2.71) for X, implies that, even if G, were com-
patible with respect to the intermediate configuration, a non-trivial dependence of ¢ on G, will
lead to additional hardening in the material. In any case, these example make it clear that, from
a phenomenological point of view, in the large-deformation context, the modeling of the effect
of GND development on the hardening behaviour is configuration-dependent.

Next, we embed the above formulation into crystal plasticity. In the current large-deformation
non-linear continuum thermodynamic framework, perhaps the most “straightforward” approach
in this regard is Svendsen (2000, 2002). Rather than proceeding as above, he exploited the
Euclidean frame-indifference of the energy balance together with the dissipation principle to
derive basic field relations such as (2.61) or (2.69). To begin, consider the evolution relations

Fp = Za(3a®F§na)7av
G = > (5,9GIm) o+ Y (8,0 (I x FIn,)}V',,

from (2.20)-(2.21) and (2.30)—(2.32) for F, and G,, respectively. For simplicity, to these we
add the general crystal-plastic form

€a= D hao [T6l = D Fao 580(76) 7 (2.76)

for the evolution of each non-dimensional SSD-based measure ¢, of hardening, with &k, the
corresponding quasi-static hardening modulus matrix, assumed symmetric. The key observation
here is that these last three relations can be expressed in the general form

(2.75)

a = Ky +J[V'y] (2.77)

quasi-linear in the glide-system slip rates v = (v, . . ., ) and their gradients V', with « = (F,,, G,, €).
Here, K and 7 represent constitutive quantities which may depend in particular on . In terms
of the corresponding form

v =1(0,V'x,F,, G, €) (2.78)

for ¢/, (writing now F' = V"x), we then have
U= (05%,) 0+ Ogegh - VX + D 05 0V + Y Ogrs Uy Vi, (2.79)
for the rate of energy storage in the material, with

a@ &r = 89 ¢r )
8vrxq/}r — 8erwr 5

: . . _ (2.80)
a"yawr = Sa- {<8prr)FP + <8err)Gr }na + Zb kab (86b2/}r) Sgl’l("}/b) ’
avw'awr = FF:Fna X (aGrz/Jr)TSa )
via (2.77) and (2.78). The corresponding form
d= dr<97VrX7Fp7Gr7§777vr0) (281)

of the dissipation potential determines as before the residual form

§ = (05d,) -4 + (Dgegd,) - V'O > d, >0 (2.82)



2.5 Continuum thermodynamic extension of crystal plasticity 39

analogous to (2.66). Again, by definition, d, is convex in its non-equilibrium arguments and
vanishes in equilibrium. Using these results, then, the non-local flow rule (2.69) for F, is in
effect projected onto the glide-system-level Ginzburg-Landau/Cahn-Allen phase-field form

0;, d, = div,(Ogrs 1),) — 0, 1, (2.83)
for each ~,. Using the result
div, (Oges 1) = 84 {(0g, %) G — curl, (g, ) F }ng (2.84)
this relation can be expressed in the more familiar form
05 dy = div,(Oges ) — 05 1),

= —5,-{0g, % + cul (agw VFrn, Z kao (D, 4:) sen(y) (2.85)
= Ta— =) k(O 1h) sen(7y) .

from (2.71)—(2.73) in terms of the glide-system Schmid

Ta = Sa- Mnu = Sg- Fg(aFE¢l)nu (286)

a

and back
Ty = 8q- Xy =8, {2 sym(0g 1) G; + curli(0g ¥3) I, (2.87)

a a

stresses, respectively. In the context of crystal plasticity, then, the phenomenological system
(2.70) is replaced by that

/ m- X* + / (8F¢r) ’ VYX* = / t- Xx
B OB,

T

/ (cb—w)0,  + / 0 (Dergd,) - V', = / ¢, (2.88)
B, 0B,
/{a o+ 00}, + /amw'r.vr% _ / o
B, OB,

in terms of the test field array v, = (v4,,-..) and corresponding normal boundary flux array

= (¢4, ...). These are coupled to the evolution relations (2.75) for F,, and G, respectively,
as well as that (2.76) for ¢,. As such, G,, like F,, is treated as a “standard” internal vari-
able, and each v, € ~ is treated as a field (i.e., non-local) variable or additional continuum
degree-of-freedom. Analogous to the phenomenological case (2.70) in terms of F}, discussed
above, each ~ is determined by the local form of the flow rule on 9B,, such that ¢ vanishes
identically (Svendsen, 2000, 2002). In summary, then, the continuum is characterized by the
fields (x, 0, ~) in the current approach to extended crystal plasticity. As has been shown in the
application of such models as this to numerical simulation of additional hardening due to defor-
mation incompatibility (e.g., Svendsen and Reese, 2003; Svendsen, 2004; Evers et al., 2004),
in most structural problems, only a few of the additional degrees of freedom ~ are generally
active in only some parts of the structure at any time. Consequently, the use of material model
adaptivity techniques in the numerical implementation makes the use of such extended models
tractable for structural simulations.
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2.6 Comparison with some other extended continuum approaches

Some of the results of the current approach, in particular as based on G,, are formally similar
to those derived by Gurtin (2002) using the concept of microforces (e.g., Gurtin, 2000) and the
pure mechanical version of dissipation inequality. Gurtin’s theory is based on the assumption
that the power expended by each independent rate-like kinematical variable can be expressed in
term of an associated force system consistent with its own balance. The basic rate-like variables
are the material velocity x, describing the macroscopic motion of the body, L, describing the
instantaneous lattice rotation and stretching, and ,, describing the plastic deformation in each
glide system due to motion of dislocations. In his approach, each change of state of the material
is associated with macroscopic and microscopic force systems. The macroscopic force system
is defined by a traction ¢ and a body force density b including external and inertial forces.
The microscopic system is defined by a lattice (Kirchhoff) stress K work-conjugate to L, an
internal microforce 7, work conjugate to ,, a microstress &, work-conjugate to V*5,, and a
microtraction =, work-conjugate to v,. The main idea of his approach is the assertion that the
external power expended on any (referential) subbody P

Wext:/ t-Xdar+/b~der+Z / ZaYa da, (2.89)
P P “Jop

is equal to internal power expended within the same subbody

Wi = / K- -L_dv + Z /(wa+ £, V', dv, . (2.90)
P “Jp
Here, the kinematic variables x, L, and v, have to fulfill the kinematic restriction
L=FF'+F) 4,(5,0n)F, = L+ 7,8, ®nq (2.91)

following from (2.19), with 5, = F,, s, and n, = F,"n,.
Consider first the case without slip, i.e., 7, = 0. In this case, the equivalence of the external
and internal power in combination with integration by parts yields

/ (t—Pn,)- - xda, = — / (div.P 4+ b) - x dv, (2.92)
oP P

with P := K F~" the first Piola-Kirchhoff stress. For this to hold for arbitrary P and xx, the
usual traction condition ¢ = Pn and the classical local momentum balance

div.P +b =0 (2.93)

follow. Next, consider a rigid-body motion x = a + w x «, with a and w constant. Assuming
in this case that there is no internal working, i.e., W._. = 0, one obtains

int
/(wa).Kdurzo . (2.94)
P

Since the tensor w x I is skew and w arbitrary, K must be symmetric. The microscopic force
balance is obtained by setting x = 0 and letting +, be arbitrary. Then from (2.91) follows

Za%(ga@@ fa) = —L, (2.95)
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and consequently
K L, =— Zama : (2.96)
with the resolved shear stress

7, =8, Kn,=s,-F,KF, 'n, . (2.97)

Using this and integrating by parts one obtains from the the equivalence of the external and
internal power

)

This yields

[1]

0« —&a M)V, da, = — Za /P(divr Eat To— )V dv, . (2.98)

2 —¢ on | (2.99)

a ra "o

representing the microtraction condition on the boundary, as well as
div,& o+ 7 —m =0 (2.100)

representing the microforce balance.

To formulate constitutive relations, Gurtin uses the purely mechanical form of the second
law in which the temporal increase in free energy of any subbody P is less than or equal to the
power expended on P. In terms of the referential free energy density ¢, the second law takes
the form

[t <o (2.101)
P

Since P is arbitrary, one obtains

. —K-D, — Zu(ﬁm V', +71,) <0 (2.102)

via the symmetry of K, with D, the symmetric part of L. In terms of the “true” lattice stress
S, = F;'KF_;", the above inequality can be rewritten as

o= 8o By (6 Va7l <O (2.103)
a
where E represents the elastic Green deformation tensor. Assuming plastic incompressibility,
Gurtin assumes the simple additive form

1
P = §EE -C,E, +V(G)) (2.104)

for ¢ in terms of the usual elasticity tensor C,. Substituting this into (2.103), the dissipation
inequality reduces to

{051 — S} - By
i Za{sa ' [(aG‘\IJ>G? + (aGi\I])TGi]nu - ﬂ-a}fya (2105)
+ Zu{FP_l[nq X (aci‘lf)TSa] — €ra} . vrfj/a < 0

again with plastic incompressibility. Requiring that (2.105) holds for all choices of E_, v, and
V*7,, the linearity of the left-hand side of (2.105) in these variables implies the constitutive
restrictions (i), the stress-strain relation S, = dg, ¢ = C,E,, (i), the microstress relation

£ra = Fp_l €ia = Fp_l [na X (aGi\Ij)Tsa] ) (2106)
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and (iii), the residual inequality

Z {7Ta — Sq° [(aGl\Ij)GlT + (aGi\P)TGi]na}va 2 (U (2107)
A sufficient condition fulfilling this inequality is given by
T — [(aG )GT (aGi\D)TGi]na = H(W‘/a)a-a ) (2108)

where H (7,) represents a standard, invertible strain-rate-dependent viscosity function, and the
hardening variable o, is given by the evolution relation

G, _Z hoo(0, G|, (2.109)

Here, the hardening matrix 5, depends in general on the dislocation density tensor via, e.g., the
forest dislocation measures A, as given in (2.51) from Acharya and Bassani (2000). Substituting
then (2.106) and (2.108) into the microforce balance (2.100) yields

7., =H()o, +x, (2.110)

with
T = 8g - {2 sym(9g V)G, + cwrli(9g V) In, (2.111)

the glide-system back stress in Gurtin’s formulation formally analogous to (2.87) in the for-
mulation of the previous section. In particular, (2.110) can be derived from (2.85) from the
last section when we specialize it to isothermal conditions and work with the special forms
v = %h(F,, G;) and d = d,(s,y) of the free energy density and dissipation potential, respec-
tively. Indeed, with the identification ¢, = o,,, we have that 0, d, = H(v,)o,. Solving (2.110)
for 5,, one obtains the flow rule

.= H! (Ta - x) (2.112)

Oa

with H~! being the inverse function of 7. On this form one can see that accounting for the
presence of GNDs leads to additional hardening with two different mechanisms. The hardening
which arises from the energy storage is represented by the GND-based back stress s, ® n,, -
{(8G TGy + curli(Og ¥ )} having as such a long-range character. It is ascribed to the elastic
interaction between dislocations. The other mechanism which influences the hardening rate via
(2.109) is purely dissipative and nondirectional, and so has a short-range character.

A non-thermodynamic approach to the formulation of extended crystal plasticity models for
FCC systems taking into account as well both short-range and long-range GND-based harden-
ing effects was developed by Evers et al. (2004). In their approach, which relies on a mixture
of phenomenology and dislocation dynamics, the viscoplastic flow rule is given by the relation

: : Ta — ba '
Ya = Yao (|87|) sgn(r, — b,) - (2.113)

Here, 7, is the resolved shear stress of the elastic second Piola-Kirchhoff stress tensor T}, =
CEy, b, is the resolved back stress, assumed to arise from GNDs, and s, is the slip resistance,
assumed to depend in contrast to classical models also on GND density. In (2.113), note that the
effective stress is given by the difference between the the resolved shear stress calculated in the
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intermediate configuration and the back stress calculated in the reference configuration. This
is possible due to the non-thermodynamical developing of the theory. In a thermodynamically
developed theory only combination of variables defined in the same configuration are possible.
This notwithstanding, their flow rule is otherwise analogous to Gurtin’s flow rule (2.112), or to
that of the current work. In contrast to the current approach, Evers et al. (2004) formulated their
constitutive relation for the back stress by considering the elastic stress around a dislocation.
The short-range interactions between dislocations including both SSDs and GNDs are taken
into account by the slip resistance s,. The type and number of short-range interactions can be
described by a set of interaction coefficients forming the interaction matrix a,, (Franciosi and
Zaoui, 1982) that was already mentioned in the context of the Dai and Parks (1997) model. The
slip resistance of the system a is then given as the square root of the effective obstacle density
according to Ashby (1970)

S0 = cub\/ D s T ap§ (2.114)

The total back stress tensor is then defined in their model in the reference configuration as the
sum of the resulting long-range shear stress contributions (77 and 77 from the edge and screw
GND density fields, respectively) on the corresponding slip system q, i.e.,

X =) (mt+m)(s.0n,+n,0s,) (2.115)

The determination of the resolved long-range shear contributions 7 and 7 in the undeformed
configuration stems from the equation for the stress concentration near individual edge and
screw dislocations. In order to quantify that effect, the resulting long-range stress on the slip
system a is computed by an analytical integration procedure of the equation for individual
dislocations over a circular domain with radius R assuming that GND density varies linearly in
space, yielding

pubR?

LA v O 2.11
Ta 8(1 _ V) Sa v pa ( 6)
and VB2
e = —“T IVl (2.117)

Here, pf(e) represents a GND density of edge type having Burgers vector parallel to s, and a line
vector parallel to I, = s, x n,. Further, pf(s) is a GND density of screw type with both Burgers
and line vector in s, direction. In turn, crystallographic GND densities (12 of edge type and 6
of screw type for FCC single crystalls) are extracted from the gradients of the crystallographic
slips

1
pSle) = 75V (2.118)
G(s) __ 1 r r
Pa - 7 (Sa XNy - \Y VYot 8a X Ny - \4 ’Ya) : (2119)

b

Since a screw dislocation can glide in a FCC single crystal on two slip planes, the equation
(2.119) contains two parts, the one from the incompatible slip on the plane n, the other on the
plane n,, whereby these two slip planes intersect each other on the line tangent to the screw
dislocation of type a. In contrast to the Dai and Parks approach, Evers et al. (2004) do not
consider screw dislocations with the same Burgers vector but gliding on different systems to be
distinct. Note that (2.118) and (2.119) yield non-vanishing results if the overall deformation is
compatible curl F, = 0.
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2.7 Discussion

Although the general formulation in this work has been a continuum thermodynamic one, little
has been said about the possible role of non-mechanical processes related to the temperature or
to heat conduction in all this. Starting with the latter, note that the reduced form (2.58) for the
total energy flux can be compared with the standard form

h, = P™x —q (2.120)

of this flux involving the first Piola-Kirchhoff stress P and heat flux g. As has been discussed in
Svendsen (2000, 2002), we have conceptually here two choices. Taking the approach of Maugin
(1990), for example, the constitutive assumption

¢ =q/0 +2 axs{(0g,1,)"F, }/0 (2.121)
for the entropy flux yields h = h. On the other hand, the Clausius-Duhem constitutive form
¢ =4q/0 (2.122)

for the entropy flux implies that kA from (2.58) is non-standard, i.e., h # h,. As pointed out
by Svendsen (2000, 2002), this dichotomy is an old one, going back in essence to the modeling
of diffusion, classical mixture theory, the interpretation of “entropy flux” and “heat flux” in
phenomenology and the relation between these two (Gurtin, 1971, Footnote 1). There, the issue
was one of whether diffusion flux is to be interpreted as a flux of energy (e.g., Eckhart, 1940;
Gurtin, 1971) or a flux of entropy (e.g., Meixner and Reik, 1959; DeGroot and Mazur, 1962;
Miiller, 1968). In the current context, the flux (density) of interest is 2 axs{ (9 ;)" . } related
to energy storage due to GND development. In the context of (2.121), this fiux (i.e., divided
by ) is being interpreted as an entropy flux. On the other hand, in the context of (2.122), it is
being interpreted as an energy flux (analogous formally to the abstract idea of “interstitial work”
from Dunn and Serrin (1985)). Returning to the current context of metal plasticity, generally this
latter interpretation is followed by (e.g., Gurtin, 2000; Svendsen, 2000; Gurtin, 2002; Svendsen,
2002). In this vein, note that, in some earlier works (e.g., Steinmann, 1996), terms analogous
to 2 axs{(@Grzpr)TFp} were treated as part of a non-negative boundary dissipation. Since the
dissipation inequality must hold for every subdomain of the body, however, and no boundary
conditions can be formulated which could ensure the nonnegativity of such surface dissipation
in general, contributions such as 2 axs{ (g v,)" F,} should be treated as part of the energy flux
as done in (2.58). )

All of the extensions to crystal plasticity discussed in this work including the current one are
based on continuum and phenomenological considerations in the context of crystal plasticity
and continuum dislocation theory extended to include the effects of deformation inhomogene-
ity. One basic shortcoming of such a “purely” phenomenological approach is the lack of spe-
cific, derived forms for the constitutive relations. For example, this leads in applications to the
assumption that characteristic material lengthscales are constant. More fundamental consider-
ations show, however, that this is not the case. In the small-deformation continuum dislocation
context, for example, Mesarovic (2005) recently showed that such lengthscales depend in par-
ticular on “non-local” dislocation-dislocation interactions. Alternatively, dislocation dynamics
treated with the help of statistical mechanics leads to such results. For example, by using a
statistical-mechanics description of the collective behavior of pure edge dislocations, Groma
(1997); Groma et al. (2003) obtained in the small-deformation context a back stress based on
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a non-constant lengthscale arising from the nonhomogeneous distribution of GNDs. Such an
approach has also been pursued by Malygin (1999) and El-Azab (2000). Restricting atten-
tion to the glide-system level, the theory is the over-damped motion of an ensemble of parallel
edge dislocations moving in the glide plane. With the help of statistical mechanics and results
from discrete dislocation simulations (e.g., Zaiser et al., 2001), in particular the observation
that systems with different densities become “self-similar” when the spatial scaling is given by
the dislocation spacing, i.e., 1//p, Groma et al. (2003) showed that the characteristic material
lengthscale is not constant but depends on the total dislocation density p. When combined with
small deformation crystal plasticity (e.g., Yefimov et al., 2004), one can show that the structure
of the resulting flow rule is similar to that of models based on the premise that GND develop-
ment results in additional energy storage (e.g., Gurtin, 2002; Svendsen, 2002) as well to that of
micromechanical models such as Evers et al. (2004). Again, the main difference is the internal
length which determines the nonlocal behavior. The investigation of this and many other issues,
together with the generalization of such statistical-mechanics-based and transport-theory-based
approaches to large deformation, is the focus of ongoing research, and will be reported on in
future work.
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Chapter 3

Application to crack tip*

Abstract— In this work, the influence of the development of geometrically-necessary dislocations
(GNDs) at a crack tip in single crystals on the hardening and crack propagation behaviour is inves-
tigated. In particular, we are interested in examining the effect of such additional hardening on the
development of glide and kink bands at the crack tip as well as on the process of crack opening.
To this end, following Nye and many others, local deformation incompatibility in the material is
adopted as a measure of the density of GNDs. Their development results in additional energy
being stored in the material, leading to additional kinematic-like hardening. A thermodynamic
formulation of the model in the context of the dissipation principle facilitates the derivation of
the corresponding hardening relation. Results suggest that this additional hardening retards kink-
band development, but has little or no influence on glide-band development. It also influences
the crack tip opening displacement (CTOD). It turns out that the simulated CTOD correlates well
with experimentally-determined crack-propagation rates for different crack growth directions in
the crystal.

3.1 Introduction

Standard micromechanical modeling of the inelastic material behaviour of metallic single crys-
tals and polycrystals (e.g., Hill and Rice, 1972; Asaro, 1983; Cuitino and Ortiz, 1992) is com-
monly based on the premise that resistance to glide is due mainly to the random trapping of
mobile dislocations during locally homogeneous deformation. Such dislocations are generally
known as statistically stored dislocations (SSDs), and act as obstacles to further dislocation mo-
tion, resulting in hardening. As anticipated in the work of Nye (1953) and Krdner (1960), and
discussed by Ashby (1970), an additional contribution to the density of immobile dislocations
and so to hardening can arise when the continuum lengthscale (e.g., grain size) approaches that
of the dominant microstructural features (e.g., mean spacing between precipitates relative to the
precipitate size, or mean spacing between glide planes). Indeed, in this case, the resulting de-
formation incompatibility between, e.g., “hard” inclusions and a “soft” matrix, is accomodated
by the development of so-called geometrically-necessary dislocations (GNDs). Experimentally
observed effects in a large class of materials such as increasing material hardening with de-
creasing (grain) size (i.e, the Hall-Petch effect) are commonly associated with the development
of such GNDs.

These and other experimental results have motivated a number of workers over the last few
years to formulate various extensions to existing local models for phenomenological plasticity,
some of which have been applied to crystal plasticity (see reviews in Forest et al. (2002) or in
Svendsen (2002)). In the current work, we pursue one application of such modeling pertaining

Ipublished 2005 in Computational Material Science under the title:
”Application of extended crystal plasticity to the modeling of glide and kink bands and of crack opening in single
crystals”.
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to kink and glide band development at a crack tip in single crystals. In particular, the model-
ing of such bands using a micropolar Cosserat model Forest et al. (2001) for lattice rotation
as additional continuum degree or freedom implies that lattice curvature develops at kink band
boundaries but not at slip bands. As such, additional hardening due to GNDs retards kink, but
not slip, band development at a crack tip. The purpose of this work is to study such kink and
glide band development at a crack tip in single crystals using a continuum thermodynamic ex-
tension of crystal plasticity (e.g., Svendsen, 2002; Levkovitch et al., 2005) to include the effects
of lengthscale-dependendent inelastic processes such as GNDs (and more generally dislocation
substructure) development on the macroscopic material behaviour and crack development. In
addition, the approach is used to model crack propagation for different crystal orientation using
the crack tip opening displacement (CTOD) as the correlation parameter. As it turns out, the
corresponding simulation results agree well with experiment.

3.2 Model formulation

As usual, in the context of phenomenological crystal plasticity, any material element of a mate-
rial body is endowed with a set of s glide systems. The geometry and orientation of each such
glide system is described as usual by an orthonormal basis (s,, n,. t,) (a = 1,...,s). Here, s,
represents the direction of glide in the plane, n, the glide-plane normal, and ¢, = s, x n, the
direction transverse to s, in the glide plane. Since we neglect in this work the effects of any
processes involving a change in or evolution of either the glide direction s, or the glide system
orientation n, (e.g., texture development), these referential unit vectors, and so ¢, as well, are
assumed constant with respect to the reference configuration. With respect to the glide-system
geometry, then, the (local) deformation of each glide system takes the form of a simple shear.
From a phenomenological point of view, the basic local inelastic deformation at each material
point in the material body in question is represented by an invertible second-order tensor field
F,. As usual, the evolution of this field is given by

F,=)  Auls,®@ny)F, (3.1)

in the context of crystal plasticity. On the basis of F',, the continuum theory of dislocations
(e.g., Nye, 1953; Kroner, 1960) works with the effective Burgers-vector-like measure

1,(C) = ]iFP te = /S(curle)nS (3.2)

whose magnitude is interpreted as of the net length of GNDs in the material around any material
curve C enclosing the material surface S in a body without singular surface. This measure
involves the incompatibility curl F, of the local inelastic deformation F', or Nye dislocation
tensor. In particular, the phenomenological GND model of Dai and Parks (1997), utilized by
them to model grain-size effects in polycrystalline metals, applied as well recently in Busso
et al. (2000) to model size effects in nickel-based superalloys, is of this type. In a different
context, the incompatibility of F', has also been used recently in Ortiz et al. (2000) to model
in an effective fashion the contribution of the dislocation self- or core energy to the total free
energy of ductile single crystals. Note that the evolution relation (3.1) for F', induces the glide-
system decomposition

,(C) = Zalca(c) Sq (3.3)
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of I,(C) in terms of the set [, (C), .. ., of glide-system GND lengths with respect to C', where

i ()= fg i Frn -t (3.4)

Alternatively, the evolution of I, (C') can be expressed at the glide-system level with respect to
the measure

Goa =0V, x F.'n,+ b7 (curl F,)"n, v, (3.5)
of surface GND density in the context of (3.2), such that
culF, =5 s, ®4a, - (3.6)

Ignoring for example grain-boundary contributions to local inelastic incompatibility, such that
F, is initially homogeneous, taking the curl of (3.1) and integrating the result in time yields the
expression

curll F, = Y~ bs, @ geq (3.7)
for the incompatibility of F, in terms of the characteristic Burgers’ vector magnitude b and the
set (g, - - -, ) of vector-valued GND surface (number) densities determined by the evolution
relation

gGa - b_l V’}./q X FPTna + Zb;&a(na ) Sb) Gao ’ya (3-8)

(Svendsen, 2002), with o, - s, = 0and >, = D () (2, ON this basis, inhomogeneity
in 7, results in a contribution to glide-system self-hardening, i.e., from the first term in (3.8).
Resulting from interaction with other glide systems, the second term in this last expression
represents a contribution to glide-system latent hardening. As implied by (3.2) and (3.7), the
projection g, - ng of g, onto any material surface S with unit normal n 4 gives the (scalar)
surface (number) density of such GNDs piercing S. As it turns out, one can use g, to define
the measure

Yoa = |'Sa ’ gGa‘ + |ta ’ gGu| + |na ’ gGa| (39)

employed in essence by Dai and Parks (1997) to represent the total surface number density of
GNDs associated with glide system a. In this context, the GNDs on a slip-system fall into one
of three categories: the set of screw dislocations with tangent in the s, direction, the set of edge
dislocations with tangent in the ¢, direction, and the set of edge dislocations with tangent in the
n, direction, whereby the Burgers vectors of all 3 are in the s, direction.

The above local deformation and dislocation measures have been used in Svendsen et al.
(2001) and Levkovitch et al. (2005) to extend the Cailletaud model Meric et al. (1991) for
crystal plasticity to the case of additional hardening due to GNDs. In particular, this extension

is based on the form )
¢ = 3 EE : CE EE

+ % Zauez +% Zacaaz (3.10)
+ Lpllewl Fy|?

E

I) the elastic Green strain determined by the corresponding right Cauchy-Green tensor C, :=
F"CF, "' with C = F"F the right Cauchy-Green deformation, and F' the deformation
gradient. Further, ., represents the initial glide-system yield stress, ;. the shear modulus, and

for the free energy density ¢». Here, C, represents the referential elasticity tensor, E, := %(C —
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€, ‘= by/n, anon-dimensional effective dislocation density associated with isotropic hardening.
In particular, in the Dai and Parks case, we have

Ny = P+ Joa (3.11)

and otherwise
Ng = Psa (3.12)

Psq Deing the standard SSD density. Further, ¢, is the linear hardening modulus for constitutive
glide-system kinematic hardening, and «, the corresponding equivalent back strain. Lastly, ¢
represents a characteristic lengthscale for deformation incompatibility in the material. Beyond
the stress, the free energy density ¢» determines the quantities

T, = w’% = cy 0y,

3.13
T = w,ea = ME, ( )

representing contributions to the glide-system back- and yield stresses, respectively.

The model is completed by the evolution relations for the remaining internal variables. In
particular, the evolution of the glide-system effective SSD dislocation density €., := by/ps, IS
given by

émz@{ﬁfﬁ—%$% (3.14)

in the context of the Cailletaud model. Here, ¢, and 3, represent material parameters for
isotropic self-hardening, and v, represents the accumulated glide-system slip, i.e.,

Uy =l (3.15)
The evolution relation for the back strain «, is given by the Armstrong-Frederick form

Gy =Ty — dyuVy (3.16)
again in the context of the Cailletaud model. Here, the saturation parameter d, mediates dy-
namic recovery.

On the basis of the above relations, the formulation of the generalized flow rule follows via
the approach described in Svendsen (2000) leading to a field relation for the glide-system slips
having a generalized Ginzburg-Landau or Cahn-Allen form. In the current context, this relation
simplifies to that

%—@%[“>¥@@> (3.17)

a

for the glide-system flow rule and evolution of ~,. Here, (z) = 3 (x + |z|) represents the
ramp function, and o, the effective driving stress for dislocation motion in the glide systems. In
particular, we have

0, = —8,@m, Y p F —x, (3.18)

for o, in the standard case, with the first term here representing the Schmid stress. Analogously,
one obtains the result

O == — 8¢ ® n,- (1/J,FP + curl w,curle)FPT — Ty (319)
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for this stress in the extended thermodynamic formulation in which there is an additional contri-
bution s,-curl ) 1 g, F_.'n_to glide-system back stress from energy storage due to deformation
incompatibility. This completes the model formulation.

In summary, in the Dai and Parks approach, the effect of GNDs on hardening is assumed to
be isotropic in nature via (3.11), with the thermodynamic driving force for dislocation motion
being given by (3.18). On the other hand, in the current extended thermodynamic approach,
isotropic hardening as based on (3.12) is due solely to SSDs. Indeed, the GND contribution
via (3.19) is here kinematic in nature and leads to a reduction in the effective thermodynamic
driving force for dislocation motion. Beyond the hardening modeling itself, a major distinction
between the two approaches is the fact that the Dai and Parks measure g, takes in a sense
only a single glide-system into account, whereas |curl F,,| includes contributions from all such
systems.

The above model has been implemented in the commercial finite-element code ABAQUS via
the user-material (UMAT) and user-element (UEL) interfaces. This implementation involves in
particular the numerical evaluation of the first and second spatial derivatives of the glide-system
slip 7,. Indeed, in the context of the Dai and Parks approach, the flow stress r, given by (3.13),
depends implicitly on the first spatial derivatives of v, via (3.9), (3.11) and the flow rule (3.17).
Analogously, the effective stress measure o, in the form (3.19) depends implicitly on the second
spatial derivatives of , via its dependence on curl (curl F,). In the context of continuum crystal
plasticity, both of these cases lead in general to the treatment of the glide-system slips v, as
additional continuum degrees-of-freedom (e.g., Svendsen, 1999; Gurtin, 2000; Svendsen, 2000;
Gurtin, 2002; Svendsen, 2002). Since we are interested here solely in the additional hardening
effects, however, these spatial derivatives are evaluated numerically. In particular, using bilinear
elements in the Dai and Parks case, and biquadratic elements for the general case, the spatial
derivatives of the glide-system slips can be approximated within an element using the values at
the Gauss points. With the values for the deformation incompatibility and so the non-local back
stress determined in such a manner, the flow rule can be evaluated. On this basis, we now turn
to a comparison of these two approaches in the context of the applications.

3.3 Glide- and kink-banding at a crack tip

Two types of strain localization bands are observed to develop in single crystals: slip bands
parallel to the active slip plane and kink bands nearly perpendicular to the active slip plane
(Figure 3.1).

In particular, kink bands form gradually by a progressive rotation of the lattice within a nar-
row region with respect to the rest of the crystal about an axis lying in the operative slip plane
and perpendicular to the slip direction leading to the evolution of two well-defined kink planes
AB and C'D of severe lattice curvature which separate the kinked region from the unkinked
rest of the crystal (Figure 3.2). To accommodate such local deformation inhomogeneity as lat-
tice curvature, GNDs accumulate at kink-band boundaries. Because kink bands always require
a strong lattice curvature and, thus, imply a high concentration of GNDs, formation of such
bands is energetically less favorable than that of slip bands. That’s, why slip bands are observed
much more frequently than kink bands. In this regard, standard crystal plasticity does not dis-
tinguish between the different nature of slip and kink bands. Asaro and Rice (1979) performed
a bifurcation analysis at large strains for elastoplastic single crystals undergoing single slip and
found out that the both localization modes, corresponding to slip and kink banding, become
possible for similar values of the critical hardening modulus. Thus, the classical crystal plastic-
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Figure 3.1: Kink bands in an aluminum crystal deformed 17.5 % in tension (after Honeycomge,
1968)

Figure 3.2: Dislocation distribution in a kinked crystal (after Honeycomge, 1968)

ity predicts similar resistance against the developing of the both types of shear bands in spite of
their different nature.

Given the fact, that, while slip bands are associated with no lattice distortion, the develop-
ment of kink bands requires strong lattice curvature, which is tantamount to high concentration
of GNDs, it seems to be essential to incorporate an additional hardening either directly by virtue
of lattice curvature or due to an appropriate measure of GNDs, into the material description, in
order to account for different energetic statuses of slip and kink bands. So, it has been shown
in Forest et al. (2001) that, using the Cosserat model with the lattice rotation as an additional
degree of freedom, the development of kink bands can be made more difficult without affecting
slip bands. Our goal is to investigate what measure of GNDs will have a similar effect (reducing
the intensity of kink bands without influencing slip bands). To this end we compare simulation
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Figure 3.3: Results for (001)[110], local model: a) total accumulated slip > v, (left), b) lattice
rotation (right)

Figure 3.4: Results for (001)[110], local model: a) |Curl F;| (left), b) Dai and Park’s GND
measure (right)
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Figure 3.5: Results for (001)[110], extended model: a) total accumulated slip > v, (left), b)
lattice rotation (right)

results from the continuum thermodynamic extension of crystal plasticity discussed in the pre-
vious section with those from the approach of Dai and Parks (1997), which has been applied
in a number of works (e.g. Busso et al., 2000) to the modeling of additional hardening due to
GNDs.

More specifically, we examine in this section patterns of localized deformation arising at the
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Figure 3.6: Results for (011)[100], local model: a) total accumulated slip > v, (left), b) lattice
rotation (right)
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Figure 3.7: Results for (011)[100], extended model: a) total accumulated slip > v, (left), b)
lattice rotation (right)

tip of differently oriented cracks in C(T) (compact-tension) specimens of an fcc single crystal
under plain strain conditions for loading mode I. Two different crystal orientations (001)[110]
and (011)[100] in the CT specimen are considered. Here, the parentheses denote both the crack
plane orientation and the loading direction because of mode I loading conditions, and brackets
denote the initial crack growth direction. For the simulation, 12 octahedral slip systems are
taken into account. The following material parameter values were chosen: ¢;; = 182900, ¢y, =
125000, ¢,y = 91850, r,, = 500, ¢, = —30, ¢, = 0, k, = 100 (all in MPa), as well as
B, = 200, n, = 5, and d, = 0. Lastly, uf?* = 20 MPa mm? was assumed for the extended
case. In particular, to trigger glide band development more quickly, slight isotropic softening
is assumed here, as reflected in the negative value (g, = —30) of g,. Further, for simplicity,
kinematic hardening beyond that associated with GND development is ignored here (i.e., by
assuming ¢, = 0 and d, = 0). As such, kinematic hardening is accounted for only in the
extended case (i.e., due to GND development).

The simulation results for crystal orientation (001)[110] in the C(T)-specimen are repre-
sented in Figures 3.3 to 3.5. In what follows, the total accumulated slip is that for all glide
systems, and the lattice rotation represents the rotation angle obtained from the elastic rotation
R,. In Figure 3.3, three glide bands are evident. The two bands lying at an angle are slip bands
exhibiting little spatial variation in lattice rotation, whereas the vertical band is a kink band be-
cause of its strong lattice rotation (Figure 3.3). Consider next the GND density development. In
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the Dai and Parks case, these are represented by the *crystallographic’ GND densities g,,, given
by (3.9). In the current extended approach, the GND density is given by |curl F,|. As shown
in Figure 3.4, |curl F,| is larger in the kink band than in both slip bands, where it is practically
zero. On the other hand, g, (Figure 3.4) is non-zero in all three bands. As such, the use of g,
as a measure of additional hardening is expected to lead to the same degree of such hardening
in both the kink and slip bands. The simulation results confirm this.

On the other hand, the extended thermodynamic model based on curl F', as a measure of
additional energy storage due to GND development predicts that these develop only in kink
bands and so do not affect the hardening behaviour in slip bands. In particular, additional
hardening due to increasing GND density in the kink bands then leads to significant reduction
in the amount of plastic deformation developing in these, which must be then taken up by the
slip bands (compare Figures 3.3 and 3.5). Note also that lattice rotation in the kink band in the
extended case is reduced (Figure 3.5), implying less distortion of the crystal lattice.

The application of the local model to the crack orientation (011)[100] results again in the
development of three shear bands (Figure 3.6a). However, in this case the vertical one is a
slip band (no lattice rotation) and the both inclined are kink bands due to strong lattice rotation
(Figure 3.6b). And again the application of the extended model leads to a reduction in the
intensity of the kink bands while letting the slip band unaffected (Figure 3.7).

It is interesting to note that the same glide band formation and lattice rotation development
(Figure 3.5) is also predicted using the above-mentioned Cosserat model for single crystals in
Forest et al. (2001), which assumes the lattice rotation directly as additional degree of freedom
in the material.

3.4 Ductile crack propagation

Crack tip opening displacement (CTOD) is widely used in fracture mechanics as a correlation
parameter for crack propagation. In anisotropic systems such as single crystals, CTOD is also
expected to be sensitive to crack orientation with respect to the crystal. On the other hand, the
standard viscoplastic modeling of strain-controlled cyclically-loaded round bar specimens of
particle-reinforced fcc single-crystal SRR99 at 980°C carried out in Bauer et al. (2001) (Figure
3.8) showed no correlation between CTOD and the rate of crack propagation for (001)[100]
and (001)[110] crack orientations. Indeed, in contrast to the experimental results, the simulated
CTOD implied a larger CTOD for, and so faster crack propagation in, the (001) [110] direction.
Similar experimental observations for crack propagation have been made in Ziebs and Frenz
(1997) on the nickel superalloy SC16 at 650°C (Figure 3.9).

As shown by the results of the previous section, additional hardening due to deformation
incompatibility can have a significant effect on glide-band formation, something that may in-
fluence such crack propagation as well. And indeed, it turns out that the extended model brings
CTOD into agreement with experiment for sufficiently large values of the internal material
lengthscale 7.

To look into this in more detail, simulations were carried out taking both the 12 octahedral as
well as 6 cubic systems into account. From Bauer et al. (2001), the elastic constants are given by
cq; = 180000, cyy = 120000 and c,, = 93000 (all in MPa). Further, for the octahedral systems,
parameter values of ,, = 0, ¢, = 0, ¢, = 306510.9 and k, = 527.4 (all in MPa), as well as
B, =0,n, = 7.6,and d, = 2571.4, were determined. Likewise, for the cubic systems, values
of r, =0, k, =636.9, ¢, = 0, ¢, = 231658.2 (all in MPa), as well as 3, = 0, n, = 3.41, and
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Figure 3.8: Crack length over number of cycles for two different crack orientations for a cycli-
cally loaded specimen of single-crystal superalloy SRR99 at 980°C (after Bauer et al., 2001)
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Figure 3.9: Crack length over number of cycles for two different crack orientations for a cycli-
cally loaded specimen of single-crystal superalloy SC16 at 650°C (after Ziebs and Frenz, 1997)

d, = 1569.5, were determined. Lastly, the extended simulations were carried out for p/* = 40
MPa mm?,

The simulation results for the CTOD obtained with the standard Cailletaud model (Figure
3.10) as based on (3.11) and (3.18) show more vertical displacement of the nodes at the crack
tip in the (001)[110] direction than in the (001)[100], implying a higher growth rate. This is in
contrast to the experimental results, where the growth rate is larger in the latter direction. On
the other hand, in the extended Cailletaud case (Figure 3.12) as based on (3.12) and (3.19), the
CTOD (and so the growth rate) is larger in the (001)[100] direction, in agreement with experi-
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Figure 3.10: Results for total accumulated slip, local model: a) for (001)[100] (left), b) for

(001)[110] (right)
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Figure 3.11: Results for |Curl F';|, local model: a) for (001)[100] (left), b) for (001)[110]

(right)

L
Figure 3.12: Total accumulated slip, extended model: a) for (001)[100] (left), b) for (001)[110]
(right)

ment (Ziebs and Frenz, 1997; Bauer et al., 2001). These results are corroborated by those for
the crack-tip GND density, which is higher in the (001)[110] direction (Figure 3.11), imply-
ing that stronger additional hardening occurs in this orientation, resulting in reduced inelastic

deformation and a corresponding reduction in the CTOD.
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Chapter 4

Microscopic modeling of fatigue crack
propagation®

Abstract- Laird and Smith (1962) proposed a plastic sliding-off mechanism for the stage Il fatigue
crack growth via striation formation. In their view, the fatigue crack extension results solely from
the changing character of deformation at the crack tip during loading and unloading. In particular,
the crack tip blunts during the loading stage and folds into a double notch during the unloading
stage, resulting in striation formation. In order to verify Laird’s plastic blunting mechanism for
ductile polycrystals as well as for ductile fcc single crystals, FE calculations were performed for
a rectangular plate with an initially sharp crack under plane strain conditions. The plate was sub-
jected to a fully reversed tension-to-pressure cyclic load perpendicular to the crack plane (Mode
1). In the single crystal case the crack propagation simulations were carried out for cracks with
crack plane (001) for two different crack growth orientations [110] and [100]. The shape of the
crack tip followed from an initially sharp crack by repeated remeshing. To model the consti-
tutive behavior typical for polycrystalline ductile metals, J> hypo-elasto-plasticity model with
Armstrong-Frederick kinematic hardening was used. To model the constitutive behavior typical
for ductile fcc single crystals, a geometrically nonlinear version of Cailletaud’s model based on the
multiplicative elasto-plastic decomposition of the deformation gradient was implemented into the
FE program ABAQUS. Deformation patterns in the sense of Laird’s mechanism for fatigue crack
propagation with striation formation were obtained in the case of the polycrystal simulation as well
as in the case of the single crystal simulation for [110] crack growth direction. The simulation for
[100] crack growth direction with the same stress level as for [110] direction also yielded crack ex-
tension by progressive large deformations but without striation formation. The dependence of the
fatigue striation formation on the crack growth direction as predicted by the simulation of crack
propagation in single crystals is verified by the experimental results of Neumann (1974) on pure
copper single crystals.

4.1 Introduction

In the case of cyclic loading, subcritical crack growth can occur if the stress intensity factor
K is much lower than the fracture toughness K .. For most engineering alloys, the total crack
resistance curve (i.e., plot of the crack growth rate da/dN versus the stress intensity factor
range AK = K.x — K, On the logarithmic scale) exhibits a sigmoidal shape in which three
regimes can be distinguished. In regime A, the average crack growth per cycle is smaller than
a lattice spacing. Further, there exists a threshold stress intensity factor range K, below which
cracks remain dormant, and above which the crack growth rate increases with AK. Regime
B, known as the Paris regime, shows a linear variation of log da/dN with log AK. Regime C
pertains to the range of high A K values where the crack growth rate increases rapidly, causing
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catastrophic failure.

In ductile metals, regime B crack growth is controlled for the most part by a plastic sliding-off
process at the tip of the advancing crack (Ritchie, 1999). The sliding-off mechanism associates
crack extension with blunting of the crack tip during loading followed by re-sharpening upon
unloading. The fatigue crack extension results solely from the changing nature of deformation
at the crack tip during loading and unloading. This approach, which is usually used to explain
fatigue crack growth via striation formation (ripples on the fracture surface), was first proposed
by Laird and Smith (1962) for smooth blunting, and later by Neumann (1974) and Pelloux
(1970) for blunting via alternating shear. For cyclic loads in the Paris regime, it has been
found that the spacing between adjacent striations correlates with the experimentally measured
average crack growth rate per cycle. Since plastic blunting implies crack growth due to the crack
tip opening, the crack growth rate can be related to the cyclic crack tip opening displacement
da/dN o~ ACTOD. Using a simple model for striation formation, McClintock (1967) obtained
the following relation between CTOD and the stress intensity factor range

da AK?
2 ACTOD = g2
gy xACTo 5200E’

where o, and E are the appropriate flow stress and Young’s modulus, respectively, and [ is
a proportionality factor of order 0.1 — 0.5, reflecting the efficiency of crack tip blunting and
reversibility of slip. This approach provides a first-order description of crack growth rate be-
havior in the Paris regime (regime B) although it is an insufficient description at high growth
rates and in the near-threshold regime. At high growth rates (Regime C) the above equation
underestimates measured growth rates due to occurrence of monotonic fracture (static modes)
mechanisms which replace or are additional to plastic sliding-off process. Such mechanisms
include cleavage, intergranular cracking and microvoid coalescence.

To simulate crack growth by means of FE, different techniques have been proposed. The
propagation of a crack in a structure leads to a displacement discontinuity. This can be dealt with
using, e.g., node release schemes (Bouchard et al., 2003) or cohesive zone elements (Nguyen
et al., 2001). In the case of node release, the criterion for the crack propagation rate and direc-
tion are needed. Usually the crack extension per cycle is described in terms of the cyclic stress
intensity factor range AK for small scale yielding or of the cyclic crack tip opening displace-
ment ACTOD for the case of large-scale yielding. To determine the crack growth direction,
so called kinking criteria can be used (Bouchard et al., 2003). These can be local criterion,
that are based on local fields at the crack tip (e.g., maximum strain criterion), or global cri-
terion, that are based on the energy distribution throughout the cracked part (e.g., maximum
strain energy release rate). In the case of cohesive zone, special interface elements are intro-
duced whose constitutive behavior is described by a special traction-separation law for cyclic
loading (e.g., Nguyen et al., 2001). In this case, no criterion for the crack growth direction
are needed because the failure behaviour is described now by a kind of local damage criterion.
The most rigorous way to model numerically the crack propagation in ductile metals in Paris
regime would be to simulate the plastic sliding-off process on the tip of an advancing crack.
FE simulations of the crack propagation via smooth plastic blunting and re-sharpening (Laird
and Smith, 1962) under cyclic loading have been described in Gu and Ritchie (1999) as well
as in Tvergaard and Hutchinson (2002) for isotropic materials. These simulations were carried
out for moderately large deformations at the crack tip for two and three cycles, respectively, in
order to avoid severe distortions of the elements at the crack tip. No striations were obtained in
these papers. Recently, Tvergaard performed in Tvergaard (2004) calculations for 200 cycles
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using repeated remeshing and an isotropic material model in order to investigate crack closure
behaviour. Although Tvergaard used remeshing he also reports that no striations were obtained.
As a possible reason for this, he suggests that the mesh at the crack tip is not fine enough.

In this work, we will investigate the possibility of predicting striation development in ductile
poly- and single crystals. To this end, we simulate crack propagation by smooth plastic blunting
and re-sharpening mechanism using .J; elasto-plastic material model with Armstrong-Frederick
kinematic hardening for polycrystals as well as Cailletaud’s crystal plasticity material model
for face centered cubic single crystals and repeated remeshing for severely distorted elements
at the advancing crack tip. For single crystal simulations we will consider two different crack
orientations [110] and [100] following Neumann (1974) experiments on copper single crystals.

4.2 Models for crack propagation via striation formation

The most frequent feature of the fatigue fracture surface is the presence of striations. These
represent ripples on the fracture surface and are a unique characteristic of fatigue. Fatigue
striations can be clearly or poorly delineated, and can take several shapes, from almost perfectly
straight to very curved. The periodicity of the striations suggests a one-to-one correspondence
of striations and loading cycles. This assumption has been verified in some materials by low-
frequency cycling at two different stress levels, for a prescribed number of cycles at each level.
On the fracture surface, it was then possible to distinguish zones of smaller (lower stress level)
and larger striation spacing (higher stress level). The number of striations in zones was equal
to the number of cycles at the given stress level, implying that one striation spacing is equal
to the crack-length increase in one cycle. It offers means of determining fractographically
crack propagation rates and comparing them with macroscopic measurements on the specimen
surface. These two methods, i.e., macroscopic and microscopic, have not always been found
to yield the same results. The microscopic value of the crack rate is in some cases higher than
the macroscopic one. This means that each striation is formed during one cycle, but each cycle
does not necessarily result in formation of striations. Indeed, there are ”dead” cycles in which
the crack does not propagate. As a rule, fatigue striations can be observed in Stage Il crack
propagation, when their spacing becomes sufficiently large (of the order of 100 nm or more).

A number of conceptual models have been proposed over the years to explain the formation
of fatigue striations and the planar growth of Stage Il fatigue cracks. Descriptive models of
fatigue striations are based mainly on the micro-relief of the fracture surface and on the direct
observation of crack-tip behavior at high strain amplitude, low frequency cycling. The existence
of fatigue striations as a common feature of fatigue and of one-to-one correspondence (with
some exceptions) between striations and stress cycles means that fatigue crack propagation is a
repetitive process. To understand the crack propagation mechanism, it is sufficient to know the
processes in one loading cycle.

In order to explain the crack growth via striation formation, Laird and Smith (1962) observed
the development of the crack-tip geometry in some ductile metals corresponding to different
stages of the stress cycle. The mechanism of crack propagation deduced from these observations
is now known as plastic blunting or Laird’s model (see Figure 4.1). The initial (zero) load
corresponds to a well developed Stage 11 crack with the fracture surface exhibiting striations (a).
As the tensile load is applied, the metal yields plastically due to high stress concentration. This
plastic deformation is highly concentrated in the slip zones along the planes of maximum shear
stress (b). When the load is further increased, the slip zones at the tip broaden and the crack
tip blunts to a semicircular configuration. The crack tip thus is effectively shifted (c). If the
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Figure 4.1: Laird’s scheme for stage Il crack propagation via plastic blunting and re-sharpening
(Suresh, 1998).
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far-field stress is reversed, the crack tip re-sharpens by buckling and folding of the new created
surface into a double notch resulting in a striation formation (d) and (e). Since the closure of the
crack during compression cannot fully negate the blunting and the attendant extension of the
crack during the preceding tension load, net crack growth occurs during a fatigue cycle, leading
to the formation of a striation with the striation spacing equal to the crack length increment.

This mechanism of repeated plastic blunting and resharpening of the crack tip is probably
the most general descriptive model of fatigue crack propagation. Laird’s mechanism explains
in a compact way the formation of fatigue striations on the fracture surface. The model does
not make any assumption about the dislocation mechanism at the crack tip, or about the relation
between the substructure and the surface relief. This mechanism also works in polymers, where
the plastic processes are very different from those in metals. The only prerequisite here is
localized plastic (i.e., irreversible) deformation at the crack tip. The lack of any specialized
assumptions makes Laird’s mechanism very attractive.

On the other hand, in ductile metal single crystals, fatigue crack propagation can be modelled
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Figure 4.2: Geometry and orientation of the bending specimen (left) and of the push-pull spec-
imen (right) (Neumann, 1974).
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Figure 4.3: Optical micrograph of the fracture surface in the push-pull specimen from Figure
4.2 (Neumann, 1974).

Figure 4.4: SEM micrographs of the fracture surface in the middle of the bending specimen
with [001] notch orientation from Figure 4.2 (Neumann, 1974).

as taking place via alternating shear on two slip planes intersecting the crack front (Neumann,
1974; Pelloux, 1970). Neumann made use of copper single crystals subjected to bending or
tension-compression. In order to obtain a simple process of fatigue crack growth confined to a
single macroscopic plane, specimens with the principal stress direction [100] were used. The
bending specimens were notched, with the base of the notch in either the [001] or [011] direction
(Figure 4.2). Notched [100] crystals were also used for tension-compression tests with the notch
oriented in the [011] direction (Figure 4.2).
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Under these conditions, Neumann did the following observations. The crack tip was a V-
groove with a constant angle. The blunting process by plastic deformation took place through
widening of the ”V” at the constant crack tip angle. The macroscopic plane of crack growth was
(100) in the tension-compression test as well as in the bending tests for both notch orientations.
In the middle of both bending specimens, the macroscopic crack front orientation coincided
with the respective orientation of the notch. In the middle of the bending specimen with notch
orientation [011] as well as in the push-pull specimen long and straight striations lying along
the [011] direction were found (Figure 4.3). Thus, the microscopic and macroscopic crack front
orientations were identical in these tests. In contrast, the fracture surface of the specimen with
the notch direction [001] was covered with alternating narrow zones of striations oriented in
[011] and [011] directions (Figure 4.4). From these observations, he concluded that the fatigue
propagation take place through alternating shear on two (111) slip planes whose intersection
line builds the crack front.

4.3 Material modeling and finite element implementation

FE simulations of crack propagation via blunting and re-sharpening under cyclic loading have
been described in Gu and Ritchie (1999) and Tvergaard and Hutchinson (2002) for isotropic
materials. These simulations were carried out for moderately large deformations at the crack
tip in order to avoid the severe distortions of the elements at the crack tip. No striations were
obtained in their simulations. In order to simulate striation formation, much larger deformations
at the crack tip need to be considered which is only possible by usage of a repeated remeshing
technique.

In order to verify Laird’s plastic blunting mechanism for crack propagation via striation for-
mation for ductile poly- and fcc single crystals, FE calculations were performed for a quadratic
plate (Figure 4.5) with an initially sharp edge crack placed in the middle of the left side under
plane strain conditions using the FE code ABAQUS. The plate was subjected to a fully reversed
tension-to-pressure cyclic load (R = —1) perpendicular to the crack plane (Mode I), constantly
distributed over the upper and bottom plate edges.

Due to the cyclic nature of the plastic deformations at the crack tip, a plasticity model with
kinematic hardening is required. In the polycrystal case, incremental .J, elasto-plasticity based
on the Jaumann rate was used. With the Mises yield function

o=\ x) - x) -, @)
the plastic strain rate is determined by the associative flow rule
. Do
Dy =)\ r (4.2)

The kinematic hardening is described by the Armstrong-Frederick rule
. 2 .
X =0k (§ XgatDp — /\X) (4.3)

and the Jaumann rate of the Cauchy stress by the isotropic elastic relation

o

T =24 (D — D,) + Mtr (D — D) I (4.4)
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Figure 4.5: Geometry of the model used in the FE analysis.

Here, 0o = 500 MPa is initial yield stress, Xs.; = 150 MPa the saturation value and C'x = 400
the saturation rate parameter for the back stress as well as = 57692 MPa and A = 86538
MPa the Lame constants.

In the single crystal case, a geometrically nonlinear version of the crystallographic Cail-
letaud model (Meric et al., 1991) based on the multiplicative elasto-plastic decomposition of
the deformation gradient FF = F'x Fp was implemented into the FE program ABAQUS via the
user material interface UMAT. For simplicity, only octahedral slip systems were considered.
Accordingly, the second Piola-Kirchhoff stress in the intermediate configuration is given as

Si = C|[Ey] (4.5)

with By, = 1(Ug — I) being the elastic Green tensor, Uy, the elastic right stretch obtained from
the polar decomposition Fr = R Uy, of Fz. The plastic velocity “gradient” is determined by
the crystallographic relation

Ly=FpFy' =) Jasa ®na (4.6)
with the glide-system slips described by Norton type flow rule
o = <%> sign (7, — ,) (4.7)

and the glide-system back stress by Armstrong-Frederick rule
jjoa =Cx {xSatﬁ/oé - xah/a|} : (48)

Here, C is the cubic elasticity tetrad with C1;; = 200000 MPa, C}120 = 150000 MPa and
C1212 = 100000 MPa, 7, the slip rate, n,, the slip plane normal, s, the slip direction, 7, the
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crystallographic projection of Sy and x,, the back stress for the slip system «. £ = 10 MPa
and n = 5 are the viscosity parameters as well as zg,; =200 MPa the saturation value and
cx =100 the saturation rate parameter for the back stress. Such a low value for the viscosity
parameter k& was chosen in order to produce quasi rate independent behavior.

During the FE simulations no initial radius for the crack tip was assumed. The actual shape
of the crack tip followed from an initially sharp crack by repeated remeshing. The remeshing
was performed manually with the help of the commercial program Patran. The region with the
critically distorted elements was covered with a new mesh. The assessment of the degree of
distortion was purely by eye whereby attention was paid that the distortion of the elements was
moderate.

ABAQUS/Standard uses a Lagrangian-based finite-element formulation of the momentum
balance. Here, the mesh is attached to and deforms with the material. When the strains become
large, the elements may become overly distorted and lead to numerical problems. In this case,
one remedy is to remesh the deformed structure, and in particular refine the mesh in those areas
where mesh distortion is (too) extreme. To this end, data from the old mesh has to be mapped
onto the new one. This is done by first extrapolating the integration point data to each node and
averaging the result over all elements attached to a given node. Next, the new mesh and new
integration points are generated, the location of the new integration points in the old mesh is
determined (assuming that they all lie within the old mesh), and the data are projected from the
old nodes onto the new integration points via interpolation. All required data can be interpolated
in this way so that the algorithm can proceed using the new mesh.

Since all variables except the displacements are generally not continuous across element
boundaries, this interpolation procedure can change the values of interpolated variables signif-
icantly. In the case of an overstress model such as the Cailletaud model, in which the crystal-
lographic slip-rate is given by a polynomial (power law) in the difference between the resolved
shear and internal stresses, even a moderate change in the overstress can lead to very large
changes in the slip rate due to the power-law behavior. To avoid this, we proceed as follows.
The resolved shear stress on a given glide plane represents as usual the projection of the second
Piola-Kirchhoff stress onto the corresponding glide plane. In the metal plasticity/small elastic-
strain context, this stress is a linear function of the elastic Green tensor (4.5). In particular,
small elastic strains | Eg|| < 1 implies Ug ~ I and Fg ~ Rg. In order to preserve this
property, as well as the positive-definiteness of Uy and the orthogonality of Rg, Ug and Ry
are interpolated separately. In particular, the orthogonality of Ry is preserved with the help of
its Rodrigues form

Ry = I + sin g, axt(ng) + (1 — cos py) axt(ng)? (4.9

in terms of the rotation angle ¢ about the rotation axis (unit vector) ng. Here, axt(v) repre-
sents the (skew-symmetric) axial tensor of the vector v, defined by axt(v)a := v x a. Defining
the axial vector of a rotation by axv(R) x a := skw(R)a, we have

¢vp(Rg) = arccos {(tr(Rg) — 1)/2} (4.10)
and .

On this basis, ¢ (Rg) and ng(Rg) are used as described above to transfer the values of Ry
from the old mesh onto the new mesh.
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Figure 4.6: Polycrystal simulation results for crack propagation by blunting and re-sharpening.
These are for (i), peak tensile loading (first row) followed by (ii), zero loading (second row),
(iii), peak compressive loading (third row), and by (iv), zero loading (fourth row).

4.4 Simulation results

Turning now to the simulation results, we start with the polycrystal simulation. For this sim-
ulation the applied stress was varying linearly between the minimum and maximum values of
+260 MPa and, accordingly, the maximum stress intensity factor was K., = 29 MPa,/m.
Figure 4.6 shows the deformation evolution at the crack tip. Starting from an initially sharp
crack, increasing the tensile load results in crack blunting to a semicircular form (a). Due to the
changing nature of the deformation in the unloading stage, the crack tip then begins to buckle (b)
and folds up in the compressive stage (c). In the simulation, mutual penetration of the material
in the folded area at the crack tip is prevented by using a contact algorithm. As the compressive
load is removed (d), the folded area at the crack tip opens up, creating an ”ear”. This also results
in the crack lengthening. The subsequent load increase results in new blunting. In addition, a
fatigue striation, created during the compression in the previous cycle, is now visible (e). The
following stages (f), (g), (h) are a cyclically repetition of the re-sharpening process of the previ-
ous cycle, which leads to the creation of a new “ear” and thus to another striation, as well as to
a further increase in the crack length. The similarity to Laird’s idea (the last column in Figure
4.6) is remarkable.
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Figure 4.7: Single crystal simulation results for crack propagation by blunting and re-
sharpening for crack plane orientation (001) and crack growth direction [110]. These are for (i),
peak tensile loading (first row) followed by (ii), zero loading (second row), (iii), peak compres-
sive loading (third row), and by (iv), zero loading (fourth row).

Due to rather complicated deformation state at the crack tip (buckling) the quantitative re-
sults might be sensitive to the quality of the mesh. However, due to the complexity of the
remeshing procedure no mesh dependence study was carried out. This is also the reason why
not more than two cycles were investigated. The authors were interested rather in obtaining a
qualitative agreement between FE simulations and Laird’s scheme. We expect that the qualita-
tive deformation picture of the crack tip wouldn’t change much if considering further cycles or
using another mesh with comparable element size.
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Figure 4.8: Single crystal simulation results for crack propagation by blunting and re-
sharpening for the crack plane orientation (001) and crack growth direction [100]. The dis-
played sequence of results is the same as in Figure 4.7.

Now, we consider the single crystal simulation results. The crack propagation simulations
were carried out for cracks with crack plane (001) for two different crack growth directions
with respect to the crystal, i.e., [110] and [100]. These are the same as those used by Neumann
(1974) in his crack propagation experiments on single crystalline copper. The external cyclic
load was imposed in (001) direction. For both directions the applied stress was varying linearly
between the minimum and maximum values of £110 MPa and, accordingly, the maximum
stress intensity factor was K., = 12.3 MPa,/m.

The deformation patterns at the crack tip with the orientation (001)[110] are very similar to
those of the polycrystal simulation. Figure 4.7 shows the same qualitative behavior during a
loading cycle: blunting in the tensile stage and folding into a double notch in the compressive
stage attended by the creation of a fatigue striation and a crack extension.
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The crack growth simulation for the crack orientation (001)[100] with the same stress level as
for (001)[110] also yields crack extension via large deformation, however now without striation
formation. The corresponding results are shown in Figure 4.8.

Comparison of the FE simulations and Neumann’s experiments allows us to draw a number
of interesting conclusions. For example, in the tests with the notch orientation [011], Neu-
mann observed long straight striations lying parallel to the direction of the notch base. This
means that the macroscopic and microscopic crack front orientations are identical, and that the
crack growth direction in these tests was [011]. This is the same crack growth direction for
which we obtained striations in our FE simulations. As for the growth direction [100], compar-
ison between the plane strain FE simulations and Neumann’s bending tests with a macroscopic
crack front orientation [100] are non-trivial. This is because the deformation process in the
experiment is three-dimensional, such that is not possible to impose the orientation [100] on
the microscopic crack front. As we have seen in the previous section, microscopically, the
crack tends to propagate in [011] and [011] directions, and the crack surface is covered with
alternating narrow zones of striations oriented in these directions. Also visible in Figure 4.4
are, however, bright areas without any striations. These are transitions zones where the crack
front changes direction from [011] to [011]. Accordingly, at some point in these striationless
areas, the crack front becomes oriented in the [100] direction. This is in agreement with the FE
simulations, which yielded no striations in this direction.

45 Conclusion

The purpose of this work was to investigate Laird’s plastic blunting and re-sharpening mech-
anism for crack propagation via striation formation for ductile poly- and fcc single crystals.
In Laird’s theory, the fatigue crack extension results solely from the variable character of the
deformation at the crack tip during loading and unloading. In particular, the crack tip blunts
during the loading stage and folds into a double notch during the unloading stage, resulting in
striation formation. In order to verify Laird’s mechanism, FE calculations were performed for
a rectangular plate with an initially sharp crack under plane strain conditions. The plate was
subjected to a fully reversed tension-to-pressure cyclic load perpendicular to the crack plane
(Mode 1). No initial radius for the crack tip was assumed. The actual shape of the crack tip fol-
lowed from an initially sharp crack by repeated remeshing. To model the constitutive behavior
typical for polycrystalline ductile metals, .J, hypo-elasto-plasticity with Armstrong-Frederick
kinematic hardening was used. To model the constitutive behavior typical for ductile fcc single
crystals, a geometrically nonlinear version of Cailletaud’s model based on the multiplicative
elastic-plastic decomposition of the deformation gradient was implemented into the FE pro-
gram ABAQUS. Only octahedral slip systems were considered. In the single crystal case crack
propagation simulations were carried out for cracks with crack plane (001) for two different
crack growth orientations [110] and [100]. The external cyclic load was imposed in the (001)
direction. Using repeated remeshing for severely distorted elements at the advancing crack
tip, deformation patterns in the sense of Laird’s mechanism for fatigue crack propagation with
striation formation were obtained for the polycrystal simulation as well as the single crystal
simulation with [110] crack growth direction. The simulation for [100] crack growth direction
with the same stress level as for [110] direction also yielded crack extension by the progressive
large deformations, but without striation formation. The dependence of the fatigue striation
formation on the crack growth direction as predicted by the simulation of crack propagation in
single crystals is verified by the experimental results of Neumann (1974) on pure copper single
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crystals.
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