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Some methods from statistical machine learning and from robust statistics have
two drawbacks. Firstly, they are computer-intensive such that they can hardly
be used for massive data sets, say with millions of data points. Secondly, robust
and non-parametric confidence intervals for the predictions according to the fitted
models are often unknown. Here, we propose a simple but general method to over-
come these problems in the context of huge data sets. The method is scalable to
the memory of the computer, can be distributed on several processors if available,
and can help to reduce the computation time substantially. Our main focus is
on robust general support vector machines (SVM) based on minimizing regular-
ized risks. The method offers distribution-free confidence intervals for the median
of the predictions. The approach can also be helpful to fit robust estimators in
parametric models for huge data sets.

1. Introduction

Data sets with millions of observations occur nowadays in many areas, e.g. insurance com-
panies or banks collect many variables to develop tariffs and scoring methods for credit
risk management, respectively. Other examples are large observational data sets in data
mining projects and data from micro-arrays. Although such big data sets contain a lot of
valuable information, the analysis of such data sets can not only be cumbersome due to
computer memory or computational time problems. Classical parametric assumptions are
often violated for such data sets which contain probably some outliers. We give only to three
citations for these facts. J.W. Tukey, one of the pioneers of robust statistics, mentioned
already in 1960 (citet from Hampel et al. (1986, p. 21)): ”A tacit hope in ignoring devi-
ations from ideal models was that they would not matter; that statistical procedures which
were optimal under the strict model would still be approximately optimal under the approx-
imate model. Unfortunately, it turned out that this hope was often drastically wrong; even
mild deviations often have much larger effects than were anticipated by most statisticians.”
Le Cam (1980, p.478) concluded for data sets with n = 105 to n = 108 data points: ”Thus
the asymptotics fail precisely when one would feel that they are applicable.” Hampel et al.
(1986, p. 27f) made the following comment on data quality and gross errros. ”There are
often no or virtually no gross errors in high-quality data, but 1% to 10% of gross errors in
routine data seem to be more the rule than the exception”. Hence, it is no surprise that the
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data quality in large data mining problems is often far from being optimal, cf. Hand et al.
(2001) or Hipp et al. (2001).

The application of robust statistical methods is therefore important in such situations.
Unfortunately, many robust methods proposed in the literature have the following draw-
backs which are serious limitations for their application. (a) They are computer-intensive
such that they can hardly be used for massive data sets, say for several millions of ob-
servations with hundreds of explanatory variables. (b) Robust standard errors and robust
confidence intervals for the estimated parameters or for robust predictions are often un-
known. (c) Some statistical software packages like S-PLUS or R contain state-of-the-art
algorithms for robust statistical methods, but the implemented numerical algorithms usu-
ally require that the whole data set fits into the memory of the computer.

In this paper a simple but quite general method for robust estimation in the context of
huge data sets is proposed. The main goal of the proposal is to broaden in application of
robust general SVM methods for massive data. The idea is to partition the huge data set S
by random into disjoint subsets Sb, b = 1, . . . , B. Then a robust method is applied to each
subset, and the results are summarized in a robust manner. The proposal yields robust
predictions. If the median is used to aggregate the B single predictions then we also get
robust and distribution-free confidence intervals.

The rest of the paper is organized as follows. Section 2 gives the proposed method and
Section 3 describes its properties. Section 4 given some numerical examples for the case of
robust linear regression and kernel logistic regression. Section 5 contains a summary and
compares RLB with competing methods. All proofs are given in the Appendix.

2. Method

In this section we describe a simple but rather general method for robust estimation for
huge data sets. We restrict attention to classification and regression problems although
the method can be used in other fields as well. The proposal has two goals: making
robust general SVM methods usable for data sets which are too large for currently available
algorithms due to memory or time limitations and offering robust and distribution-free
confidence intervals based on the median for the predictions.

In classification and in regression problems one assumes an approximate functional re-
lationship between an explanatory random variable X and a response random variable Y
using n observations (xi, yi) ∈ X × Y ⊂ Rd ×R drawn independently from the same prob-
ability distribution P of the pair (X,Y ). In a non-parametric setting the distribution P is
totally unknown. For technical reasons we assume throughout this work that X and Y are
closed or open subsets of Rd and R, respectively. Hence we can split up P into the marginal
distribution PX and the regular conditional probability P( · |x), x ∈ X , on Y. For the case
of binary classification we have Y = {−1,+1}.

For regression one often imposes the classical signal plus noise assumption, i.e. the as-
sumption that Yi|(X = xi) is distributed as f(xi)+ εi, where f is an unknown function and
εi are independent and identically distributed error terms, 1 ≤ i ≤ n. In the linear (para-
metric) setup we additionally assume f(x) = fθ(x) = x′θ, θ ∈ Θ ⊂ Rd, and in the general
non-parametric setup f is simply a measurable function, i.e. f : (X ,B(X )) → (R,B(R)).
A possible intermediate case is based on the assumption that f belongs to some Hilbert
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space H of all measurable functions f : (X ,B(X )) → (R,B(R)). In our case H can be a
(typically infinite dimensional) reproducing kernel Hilbert space (RKHS).

We assume that the statistical method of interest can be written as a function of the
empirical distribution 1

n

∑n
i=1 δ{(xi,yi)} based on the data set S having data points (xi, yi),

i = 1, . . . , n.1 Here δ{z} denotes the Dirac-distribution in {z}. More general we assume that
TP is the quantity of interest for any distribution P, where

T : P 7→ TP (1)

is a measurable function defined on the space of probability distributions M(X ×Y,B(X ×
Y)). Examples are the mean TP = EP(X) =

∫
XdP (if existent) and the minimizer TP =

fP,λ , λ > 0, of the regularized theoretical risk defined in (8).
In this paper we always assume that the sample size n is large. The whole data set is

often partitioned by random into two or three disjoint parts for training, validation, and
testing purposes. Instead of modelling the full training data set, we split the training data
set by random into B ≥ 1 parts Sb (called ’bites’) of approximately the same sub-sample
sizes nb ≈ n/B. Then we fit each bite with the robust method. Finally, we compute a
robust location estimator of the estimators TSb

and summarize the predictions from the B
fitted models.

Definition 1 Let S = ((x1, y1), . . . , (xn, yn)) be a sample of size n from a probability dis-
tribution P on (X × Y,B(X × Y )). Let TS be the estimator of interest. Consider a random
partition of S into B non-empty subsets, i.e.

S = S1 ∪ . . . ∪ SB , (2)

where Sb ⊂ S, nb := #Sb ≈ bn/Bc ∈ N, n =
∑B

b=1 nB, b = 1, . . . , B, B ∈ {1, . . . , n},
B ¿ n. An RLB estimator of type I is defined by

TRLB
S,B = g(TS1 , . . . , TSB

) , (3)

where g : HB → H is a measurable map. An RLB estimator of type II is given by

TRLB
S,B (x) = g∗(TS1(x), . . . , TSB

(x)) , ∀x ∈ X, (4)

where g∗ : RB → R is a measurable map.

Remarks. (i) An RLB estimator of type I can obviously be used to define an RLB
estimator of type II. (ii) An RLB estimator of type II does not necessarily define an RLB
estimator of type I, because the related function g∗ does not necessarily correspond to a
function g mapping onto the Hilbert space H. (iii) The class of RLB estimators of type I
− and due to part (i) the class of RLB estimators of type II − is non-empty, because for g
equal to the mean be obtain: g(TS1 , . . . , TSB

) := 1
B

∑B
b=1 TSb

∈ H.

1. If misunderstandings are improbable, we will use the symbol S for the data set and for the corresponding
empirical distribution.
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We will mainly consider RLB estimators of type I which are convex combinations

TRLB
S,B =

B∑

b=1

cbTSb
(5)

with weights cb ∈ (0, 1) and
∑B

b=1 cb = 1 (cb ≡ 1
B gives the mean), and RLB estimators of

type II based on the median. Of course, L–estimators such as α-trimmed means, M–, S–,
and R–estimators can also be used on the aggregation step.

If B is large enough, say above 15, precision estimates can additionally be obtained by
computing standard deviations of the predictions TRLB

S,B (x) using the central limit theorem.
However, in general we favor a distribution-free method based on the median. If B is small
or if the distribution or the variance of TRLB

S,B (x) is unknown, one can construct distribution-
free confidence intervals for the median of TRLB

S,B (x) and distribution-free tolerance regions
based on selected order statistics, see David and Nagaraja (2003, Chap. 7). Table 1 lists
some values of B, the corresponding pair of order statistics determining the confidence
interval, the lower bound of the actual confidence level which is 0.5B

∑s
j=r(

B
j ), and the

finite sample breakdown point ε∗B = min{r − 1, B − s}/B of the confidence interval, see
Definition 10. In Section 3 it will be shown that RLB inherits robustness properties from
the original estimator and from the estimator used in the aggregation step. The actual
confidence intervals based on the median can be conservative for small choices of B, see
Table 1. If B is not too small, say B > 15, this breakdown point is high enough for many
practical applications. E.g. fix B = 17. Then the 5th and the 13th order statistics give a
confidence interval at the level 95% for the median which is valid for all distributions on
(R,B(R)). The breakdown point of this confidence interval is 4/17 = 0.235 because the
values of the four lowest and the four highest predictions are not used.

3. Properties of RLB

In this section properties of robust learning from bites are investigated. Computational
time and memory space are considered in Section 3.1. RLB for general SVM estimators is
investigated in Section 3.2, and robustness properties are proved in Section 3.3. In Section
3.4 some arguments are given how to choose the number of bites. All proofs are given in
the appendix.

We will assume in this section that min1≤b≤B nb →∞, n →∞.

3.1 General properties

Denote the estimator based on the whole data set by TS and denote the corresponding
RLB estimator based on B bites, B fixed, with sub-sample sizes nb, where n =

∑B
b=1 nb, by

TRLB
S,B .
The estimators TSb

, 1 ≤ b ≤ B, from the bites are stochastically independent because
they are computed from disjoint parts of the data set. The computation time and the
memory space for RLB can be obviously approximated in the following way. Denote the
number of available CPUs by k and let kB be the smallest integer which is not smaller than
B/k.
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1− α B r s lower bound of finite sample
confidence level breakdown point

0.90 8 2 7 0.930 0.125
10 2 9 0.979 0.100
13 4 10 0.908 0.231
18 6 13 0.904 0.278
30 11 20 0.901 0.333
37 14 24 0.901 0.351
44 17 28 0.904 0.364
53 21 33 0.902 0.377
62 25 38 0.902 0.387
71 29 43 0.904 0.394
82 34 49 0.903 0.402
93 39 55 0.903 0.409

104 44 61 0.905 0.413
0.95 9 2 8 0.961 0.111

10 2 9 0.979 0.100
17 5 13 0.951 0.235
37 13 25 0.953 0.324
51 19 33 0.951 0.353
58 22 37 0.952 0.362
67 26 42 0.950 0.373
74 29 46 0.953 0.378
83 33 51 0.952 0.386
92 37 56 0.953 0.391

101 41 61 0.954 0.396
0.99 10 1 10 0.998 0.000

12 2 11 0.994 0.083
26 7 20 0.991 0.231
39 12 28 0.991 0.282
49 16 34 0.991 0.306
61 21 41 0.990 0.328
73 26 48 0.990 0.342
80 29 52 0.990 0.350
94 35 60 0.990 0.362

101 38 64 0.991 0.366

Table 1: Selected pairs (r, s) of order statistics for non-parametric confidence intervals at
the (1− α)-level for the median.

Proposition 2 (Computation time, k CPUs) Assume that the computation time of TS
for a data set with n observations and d explanatory variables is of order O(h(n, d)), where
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h is some positive function. Then the computation time of TRLB
S,B with subsample sizes

nb ≈ n/B is approximately of order O(kB · h(n/B, d)).

Proposition 3 (Memory space, k CPUs) Assume that the estimator TS for a data set
with n observations and d explanatory variables needs memory space and hard disk space
of order O(h1(n, d)) and O(h2(n, d)), respectively, where h1 and h2 are positive functions.
Then the computation of TRLB

S,B for subsample sizes nb ≈ n/B needs approximately memory
space and hard disk space of order O(k · h1(n/B, d)) and O(k · h2(n/B, d)), respectively.

Proposition 4 (Consistency) Consider an RLB estimator TRLB
S,B of type I based on a

convex combination with cb ∈ (0, 1) and
∑B

b=1 cb = 1.
(i) If E(TSb

) = E(TS) for all b ∈ {1, . . . , B}, then E(TRLB
S,B ) = E(TS).

(ii) If TS converges in probability (or almost sure) to TP for n →∞ and if (n/nb) → B, B
fixed, then TRLB

S,B converges in probability (or almost sure) to TP.

(iii) Let cb ≡ 1
B . Assume that n

1/2
b (TSb

− TP) converges weakly to a multivariate normal
distribution N(0, Σ), where Σ ∈ Rd×d is positive definite, and that (n/nb) → B, 1 ≤ b ≤ B,
B fixed. Then n1/2(TRLB

S,B − TP) converges weakly to a multivariate normal distribution
N(0, Σ), n →∞.

Proposition 5 (Consistency) Consider an RLB estimator TRLB
S,B of type II where the

median is used in the aggregation step. If TS(x) converges in probability (or almost sure) to
TP(x), x ∈ X , and if limn→∞ (n/nb) ≡ B, B fixed, then TRLB

S,B (x) converges in probability
(or almost sure) to TP(x).

3.2 Properties of RLB using the mean for general SVM methods

Now we consider general SVM estimators

fS,λ := arg min
f∈H

1
n

n∑

i=1

L(yi, f(xi)) + λ||f ||2H , (6)

where L : Y × R → [0,∞) is a convex loss function, i.e. a measurable function which
is convex in its second argument, H is the reproducing kernel Hilbert space defined via
the kernel k : X × X → R, and regularizing parameter λ > 0, see Vapnik (1998) and
Schölkopf and Smola (2002). Special cases of such general SVM methods are the support
vector machine: L(y, t) = max{0, 1 − yt}, y ∈ {−1, +1}, t ∈ R, kernel logistic regression:
L(y, t) = ln(1 + exp[−yt]), y ∈ {−1, +1}, t ∈ R, and ε-support vector regression: L(y, t) =
max{|y − t| − ε, 0}, y, t ∈ R, where ε > 0 is fixed. The general SVM estimator fSb,λnb

(x),
x ∈ X , defined as the solution of (6) for bite Sb is a kernel based estimator and can be
written as

fSb,λnb
(x) =

nb∑

i=1

αi,b k(x, xi), i ∈ Sb, x ∈ X , (7)

where αi,b ∈ R. If αi,b 6= 0, then (xi, yi) is called a support vector (SV). Obviously, the min-
imization problem (6) can be interpreted as a stochastic approximation of the minimization
of the theoretical regularized risk

fP,λ := arg min
f∈H

EP L(Y, f(X)) + λ‖f‖2
H ∈ H , (8)
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where the minimizer fP,λ exists under rather general assumptions on H and L, see e.g. Stein-
wart (2005a) and Christmann and Steinwart (2005).

Theorem 6 (RLB for general SVMs) Assume that the estimator fS,λ is a general SVM
estimator defined by (6) for the whole data set with n =

∑B
b=1 nb observations, B fixed.

Consider an RLB estimator of type I based on a convex combination with cb ∈ (0, 1) and∑B
b=1 cb = 1. Then the RLB estimator is itself a kernel based estimator and can be written

as

fRLB
S,B,(λnb

)(x) =
n∑

i=1

αi,RLB k(x, xi) (9)

=
∑

i∈SV (S1)∪ ...∪SV (SB)

αi,RLB k(x, xi), x ∈ X , (10)

where αi,RLB =
∑B

b=1 cb αi,b , i ∈ S.

We have αi,RLB = cb αi,b in (10) if all support vectors are different.
Let us now investigate the number of support vectors in more detail for the case of pattern

recognition, i.e. Y = {−1, +1}. For part (ii) of our next result we need the following
quantities. Denote the marginal distribution of X by PX . Let X0 := {x ∈ X ; P(1|X =
x) = 1/2}, Xcont := {x ∈ X ; PX({x} = 0)}, and let ∂2L denote the subdifferential operator
of the loss function L with respect to the second variable. Further, define the set-valued
function

F ∗
L(α) := {t ∈ R; [αL(1, t) + (1− α)L(−1, t)] = min

s∈R
[αL(1, t) + (1− α)L(−1, t)]}, α ∈ [0, 1] ,

the set
S = {(x, y) ∈ Xcont × Y; 0 /∈ ∂2L(y, F ∗

L(P(1|X = x))) ∩R} ,

and the quantity

SL,P =

{
P(S) if 0 /∈ ∂2L(1, F ∗

L(0.5)) ∩ ∂2L(−1, F ∗
L(0.5))

P(S) + 1
2PX(X0 ∩ Xcont) else ,

see Steinwart (2003, p.1082). We also need the notion of a classification calibrated loss
function. Such loss functions were called admissible by Steinwart (2003), but we think that
the notion of classification calibrated is more precise. A loss function is called classification
calibrated if for every α ∈ [0, 1] we have

F ∗
L(α) ⊂ [−∞, 0) if α < 1/2
F ∗

L(α) ⊂ (0,∞] if α > 1/2 .

For more information on this and related concepts we refer to Bartlett et al. (2006) and
Steinwart (2005b).

Finally, we need a way to describe the richness of the reproducing kernel Hilbert space
H. In this work we use the following definition taken from Steinwart (2001):
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Definition 7 Let X ⊂ Rd be compact and k : X × X → R be a continuous kernel with
reproducing kernel Hilbert space H. Then k is universal if H is dense in the space of
continuous functions C(X ) equipped with ‖ . ‖∞.

Now we can formulate the following theorem on the number of support vectors:

Theorem 8 (Number of support vectors) Consider an RLB estimator of type I based
on a convex combination with cb ∈ (0, 1) and

∑B
b=1 cb = 1. Under the assumptions of

Theorem 6 the RLB estimator has the following properties.
(i) The number of support vectors, i.e. αi,RLB 6= 0, of the RLB estimator is given by

# {SV (S1) ∪ . . . ∪ SV (SB)} . (11)

(ii) Consider a binary classification problem, i.e. Y = {−1, +1}. Let B be fixed, and
consider n := B · nb → ∞. Let L be a classification calibrated and convex loss function, k
be a universal kernel and λnb

> 0 be a sequence of regularization parameters with λnb
→ 0

and nbλ
2
nb

/|Lλnb
|21 →∞. Then for all Borel probability measures P on (X × Y,B(X × Y))

the RLB-classifier based on (6) with respect to k, L and (λnb
) satisfies

Pr∗n
(
S1 ∪ . . . ∪ SB ∈ (X × Y)n;#SV(fRLB

S,B,(λnb
)) ≥ (SL,P − ε)n

)
→ 1 . (12)

Here Pr∗n denotes the outer probability measure of Pn in order to avoid measurability con-
siderations.

Note that part (ii) of the above result gives for the RLB estimator the same asymptotical
bound for the number of support vectors as the one for B = 1 derived by Steinwart (2003).
The result given in (12) has the following interpretation: with probability tending to 1 if the
total sample size n = Bnb converges to ∞, but B is fixed, the fraction of support vectors
of the kernel based RLB estimator fRLB

S,B,(λnb
)(x) in a binary pattern recognition problem is

essentially greater than the Bayes risk.
Now we investigate conditions to guarantee that RLB estimators using general SVM

estimators are L−risk consistent, i.e. that they are able to learn. If P is a probability
distribution on X × Y, the L-risk of a measurable map f : X → R with respect to P is
defined by

RL,P(f) :=
∫

L(Y, f(X)) dP =
∫

L(y, f(x)) P(dy|x) PX(dx).

The above integral is always defined since L is non-negative and continuous, although it
may be infinite. Consider a general SVM estimator fS,λ defined by (6) for the whole data
set S. The estimator fS,λn is called L-risk consistent, if

RL,P(fS,λn) →R∗L,P := inf
{RL,P(f) ; f : X → R measurable

}
(13)

holds in probability for n →∞ for suitable chosen regularization sequences (λn)n∈N. Several
authors have given conditions to guarantee that general SVM estimators are L−risk con-
sistent, cf. Steinwart (2002, 2005a), Zhang (2004), and Christmann and Steinwart (2005).
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If fS,λn is L-risk consistent, B ≥ 1 fixed, and limn→∞min1≤b≤B nb = ∞, we obtain by
Slutzky’s theorem for an RLB estimator of type I based on a convex combination with
weights cb ∈ (0, 1) and

∑B
b=1 cb = 1 that

B∑

b=1

cbRL,P(fSb,λnb
) → R∗L,P (14)

in probability for n → ∞. The next result gives L-risk consistency of RLB estimators of
type I using a convex combination.

Theorem 9 (L−risk consistency) Let fS,λn be an L-risk consistent general SVM esti-
mator based on (6) with a convex loss function. Then the RLB estimator of type I defined
by fRLB

S,B,(λnb
) =

∑B
b=1 cbfSb,λnb

with cb ∈ (0, 1) and
∑B

b=1 cb = 1 is L-risk consistent, i.e.

RL,P

(
B∑

b=1

cb fSb,λnb

)
−→P R∗L,P , n →∞ . (15)

From the no-free-lunch theorem by Devroye (Devroye et al., 1997) our proof given in the
appendix can in general not be modified in a simple way to cover the case that the number
B of bites depends on the sample size, because we have no uniform rate of consistency
without restricting the class of probability distributions, see also Tsybakov (2004).

3.3 Robustness properties of RLB

Now we derive results which show that certain robustness properties are inherited from the
original estimator TS to the RLB estimator. We will restrict attention to two robustness
approaches. The finite sample breakdown point proposed by Donoho and Huber (1983) mea-
sures the worst case behavior of a statistical estimator. Then influence function proposed
by Hampel (1968, 1974), measures the impact on the estimation due to an infinitesimal
small contamination of the distribution P in direction of a Dirac-distribution.

Definition 10 (Finite-sample breakdown point) Let Sn = {(xi, yi), i = 1, . . . , n} be a
data set with values in X × Y. The finite-sample breakdown point of an estimator TSn is
defined by

ε∗n(TSn) = min
{m

n
; Bias(m; TSn) is finite

}
, (16)

where
Bias(m; TSn) = sup

S′n
‖ TS′n − TSn ‖ (17)

and the supremum is over all possible samples S ′n that can be obtained by replacing any m
of the original data points by arbitrary values in X × Y.

Theorem 11 (Finite-sample breakdown point of RLB) Consider RLB with B bites
where nb ≡ n/B. Denote the finite sample breakdown point of the estimator TSb

for bite b by
ε∗nb

(TSb
) and denote the finite sample breakdown point of the estimator µ̂ = µ̂(TS1 , . . . , TSB

)

9
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in the aggregation step by ε∗B(µ̂). Then the finite sample breakdown point of the RLB
estimator is given by

ε∗RLB,S,B =
1
n

(
k∑

b=1

(
nbε

∗
nb

(TSb
) + 1

)
(b:B)

− 1

)
, (18)

where k is the smallest integer not less than Bε∗B(µ̂) + 1 and z(1:B) ≤ . . . ≤ z(B:B) denote
the ordered values of {z1, . . . , zB}.

Remark. If all values nbε
∗
nb

(TSb
) are equal, we obtain

ε∗RLB,S,B =

(
nbε

∗
nb

(TSb
) + 1

) dBε∗B(µ̂) + 1e − 1
n

≥ ε∗nb
(TSb

)ε∗B(µ̂) . (19)

If the mean or any other estimator with ε∗B(µ̂) = 0 is used in this situation, then the RLB
has a finite sample breakdown point of ε∗nb

(TSb
)/B → 0, if B →∞. Hence B should not be

too large.

Example 12 (Univariate location model) Consider the univariate location problem,
where xi ≡ 1 and yi ∈ R, i = 1, . . . , n, n = 55. Assume that yi 6= yj for i 6= j. The finite
sample breakdown point of the median is [[n/2]]/n = 0.49. The mean has a finite sample
breakdown point of 0. Let us investigate the robustness of RLB with B = 5 and nb = 11,
b = 1, . . . , B. (a) If the median is used as the location estimator in each bite and if the
median is used in the aggregation step, then ε∗RLB,Sn,B = 0.309. This value is reasonably
high, but lower than the finite sample breakdown point of the median for the whole data set.
Note that in a fortunate situation the impact of up to (2× 11 + 5× 3)/55 = 0.672 extreme
large data points (say with values equal to +∞) is still bounded for the RLB estimator
in this setup: modify all data points in Bε∗B(µ̂) = 2 bites and up to nb ε∗nb

(TSb
) = 5

data points in the remaining B(1 − ε∗B(µ̂)) = 3 bites. This is no contradiction because
the breakdown point measures the worst case behavior. (b) If the median is used as the
location estimator in each bite and if the mean is used in the aggregation step, then we
obtain ε∗RLB,Sn,B = (1/B)ε∗nb

(TSb
) = 0.09. (c) If the mean is used as the location estimator

in each bite and also in the aggregation step we have ε∗RLB,Sn,B = 0. ¢

Now we investigate the influence function of an RLB estimator TRLB
S,B =

∑B
b=1 cbTSb

of
type I with weights cb ∈ (0, 1) and

∑B
b=1 cb = 1.

To this end we assume the existence of a map T which assigns to every distribution P on
a given set Z an element T (P) of a given Banach space E such that our RLB estimator for
a data set S = S1 ∪ . . . ∪ SB has the representation

TRLB
S,B =

B∑

b=1

cbT (PSb
). (20)

Here PSb
denotes the empirical distribution of the data points in bite Sb, b = 1, . . . , B. We

have T (P) = θ ∈ E = Rd for parametric models and E = H and T (P) = fP,λ for general
SVM methods defined by (6).

10
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Definition 13 (Influence function) The influence function of T at a point z for a dis-
tribution P is the special Gâteaux derivative (if it exists)

IF (z;T, P) = lim
ε↓0

T
(
(1− ε)P + εδz

)− T (P)
ε

, (21)

where δz is the Dirac distribution at the point z such that δz({z}) = 1.

The influence function has the interpretation, that it measures the impact of an (in-
finitesimal) small amount of contamination of the probability distribution P in direction of
a Dirac distribution located in the point {z} on the theoretical quantity of interest T (P).
Therefore, in the robustness approach based on influence functions it is desirable that a
statistical method which can be written as T (P) has a bounded influence function.

Theorem 14 (Influence function of RLB) Assume that the original estimator TS has
the representation T (Pn), where Pn is the empirical distribution of the sample S, and that
the influence function of the map T (P) exists for the probability distribution P. Then the
RLB estimator of type I using the weights cb ∈ (0, 1) and

∑B
b=1 cb = 1 with a fixed number

B of bites and n/nb ≡ B exists and equals the influence function of T (P).

Hence, if T (P) has a bounded influence function, the same is true for RLB. The influence
function is one of the cornerstones of robust statistics. Many robust estimators in para-
metric statistical methods have a bounded influence function, see e.g. Hampel et al. (1986)
for M-estimators and GM-estimators and Davies (1990, 1993) for S-estimators. Recently,
Christmann and Steinwart (2004, 2005) showed that the influence function of many gen-
eral SVM methods exists for the case of classification and regression. Further the influence
function of such methods is bounded if a loss function L with bounded first derivative and a
bounded and universal kernel k are used. An example is kernel logistic regression in combi-
nation with a Gaussian radial basis function kernel k(x, x′) = exp(−γ||x− x′||2), x, x′ ∈ X ,
where γ ∈ (0,∞).

3.4 Determination of the number B of bites

From the results given in Sections 3.1 to 3.3 it is obvious, that the number of bites has
some impact on the statistical behavior of the RLB estimator and also on the computation
time and the necessary computer memory. An optimal choice of the number B of bites will
in general depend on the unknown distribution P. But some informal arguments are given
how to determine B in an appropriate manner.

One should take the sample size n, the computer resources (number of CPUs, RAM)
and the acceptable computation time into account. The quantity B should be much lower
than n, because otherwise there is not much hope to obtain useful estimators from the
bites and because the finite sample breakdown point is generally decreasing with increasing
values of B. Further, B should depend on the dimensionality d of the explanatory vectors
xi ∈ X . E.g. a rule of thump for linear regression is that n/d should be at least 5.
Because the function f is completely unknown in nonparametric regression assumptions on
the complexity of f are crucial. The sample size nb for each bite should converge to infinity,
if n →∞, to obtain consistency of RLB. The results from some numerical experiments not

11



A. CHRISTMANN, I. STEINWART, M. HUBERT

given here can be summarized as follows. (i) If B is too large, the computational overhead
and the danger of bad fits increase because nb is too small to provide reasonable estimators.
(ii) A major decrease in computation time and memory saving is often already present,
if B is chosen in a way such that each bite fits nicely into the computer (CPU, RAM).
Nowadays robust estimators can often be computed for sample sizes up to nb = 104 or
nb = 105. In this case B = dn/nbe can be a reasonable choice. (iii) If distribution-free
confidence intervals at the (1− α) level for the median of the predictions, i.e. TRLB

S,B (x) =
median1≤b≤B TSb

(x), x ∈ X , are needed, one should take into account that the actual
confidence level of such confidence intervals based on order statistics can be conservative,
i.e. higher than the specified level, for some pairs (r, s) of order statistics due to the
discreteness of order statistics. (iv) In our examples B = 17 gave good results.

4. Examples

In this section we give a few numerical results for RLB. We apply our proposal for a
parametric and for a non-parametric method, namely robust linear regression by MM-
estimation (Yohai, 1987) and kernel logistic regression (Wahba, 1999). The computations
are done on a PC with a 2.8 GHz processor.

Let us begin with robust estimation in linear regression. We simulated data sets
with n = Bnb independent observations (xi, yi). The explanatory variables where xi =
(xi,1, xi,2, xi,3) were independent and identically simulated from a Student distribution with
3 degrees of freedom. The responses were taken independently from the mixture model
P = 0.8P1 + 0.2δ{(x,y)}, where P1 denotes a Student distribution with 3 degrees of freedom
and location parameter f(xi) =

∑3
j=1 xi,j and δ{(x,y)} is a Dirac distribution in the point

x = (50, 50, 50) and y = 1000. Obviously the distribution P produces approximately 20%
bad leverage points in (x, y) with respect to a linear regression model with parameter vector
θ = (0, 1, 1, 1). Here the first component of θ is zero because the intercept term was set
to zero. Further, this model contains extreme values in y−direction due to the use of a
Student distribution.

Table 2 shows the computation times in seconds, the bias of an MM-estimator computed
for the whole data set and of the RLB estimator for B = 17, and the width of the com-
ponentwise distribution-free confidence intervals based on the median at the 95%-level for
different sub-sample sizes nb. The MM-estimates were computed with the function rlm
from the R-library MASS (Venables and Ripley, 2002). This function first computes an S-
estimate as a starting point which has an approximate finite sample breakdown point of
0.5. Then an M-estimator with Tukey’s biweight and fixed scale is iteratively computed
using this starting value that will inherit this breakdown point from the S-estimator. The
time-consuming phase of MM-estimators is the computation of the highly robust starting
value. The confidence intervals for the original MM-estimator were computed due to the
asymptotical normality assumption. The distribution-free confidence intervals for the RLB
estimator were based on the 5th and the 13th order statistics. Because the bias terms and
the width of the confidence intervals are very small due to the large sample size, the values
in Table 2 are multiplied by 103.

In the considered situations RLB gave good results: the bias values are small, which
shows that the RLB method indeed gave robust estimates, and the width of the confidence

12
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nb = 10000 nb = 100000 nb = 200000
RLB MM RLB MM RLB MM

seconds 33.89 44.64 348.78 460.95 684.61 −
Bias(θ̂0) (×1000) 2.32 0.35 0.17 0.17 0.31 −

width of c.i. (×1000) 17.42 15.36 5.15 4.87 5.27 −
Bias(θ̂1) (×1000) 1.21 1.18 -2.02 -1.44 0.46 −

width of c.i. (×1000) 8.78 7.39 3.29 2.31 1.39 −
Bias(θ̂2) (×1000) 0.62 0.23 0.09 -0.32 0.90 −

width of c.i. (×1000) 8.06 7.38 2.32 2.30 2.82 −
Bias(θ̂3) (×1000) -1.60 -2.22 0.31 -0.16 -0.54 −

width of c.i. (×1000) 8.72 7.36 5.19 2.28 1.86 −

Table 2: Results for robust linear regression with MM-estimator and RLB with B = 17. The
computation of the MM-estimates for the whole data set with n = 17 · 200000 =
3.4 · 106 data points was not possible due to memory problems.

intervals is of similar size than for the original MM-estimator. It is not surprising that the
distribution-free confidence intervals for the RLB estimator are somewhat larger (often by
a factor between 1.1 and 1.2) than the confidence intervals of the MM-estimator based on
the assumption of asymptotic normality. If the total sample size n is not too big, such
that the MM-estimates can be computed with rlm only using the RAM of the computer,
RLB only saves a little bit of computation time. However, one can fit much larger data
sets using RLB for which the algorithm used by rlm would need much more RAM than the
available PC has (2 GB), such that the computation of the MM-estimates for the whole
data set was impossible. In contrast to that, the computation time of RLB increased only
approximately linearly in nb, and the used RAM was low in contrast to the used RAM to
compute the MM-estimates for the whole data set. No memory problems occurred for RLB
with n = 3.4 · 106 and B = 17.

Now we apply the RLB approach to kernel logistic regression (KLR), see (Wahba, 1999).
KLR is a flexible method for classification problems and provides also estimates for the
conditional probabilities P(Y = 1|X = x), x ∈ X , which is not true for the support vector
machine, see Bartlett and Tewari (2004). Christmann and Steinwart (2004) showed KLR
has good robustness properties, e.g. a bounded influence function. All computations are
done with the program myKLR (Rüping, 2003) which is an implementation in C++ of the
algorithm proposed by Keerthi et al. (2004) to solve the dual problem. We choose KLR for
two reasons. Firstly, the computation of KLR needs much more time than for the support
vector machine because the latter solves a quadratic instead of a convex program in dual
space. Therefore, the need for computational improvements is greater for KLR than say for
the SVM, and the potential gains of RLB can be more important. Secondly, the number of
support vectors of KLR is approximately equal to n which slows down the computation of
predictions.

13
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sample size CPU time used cache available cache
n in MB in MB

2000 4 sec 33 200
5000 25 sec 198 200

10000 5 min, 21 sec 200 200
10000 1 min, 33 sec 787 1000
20000 24 min, 11 sec 1000 1000
20000 14 min, 35 sec 1000 1000

100000 9 h, 56 min, 46 sec 1000 1000

Table 3: Computation times for kernel logistic regression using myKLR.

The simulated data sets contain n data points (xi, yi) ∈ R8 × {−1, +1} simulated in the
following way. All 8 components of xi = (xi,1, . . . , xi,8) are simulated independently from a
uniform distribution on (0, 1). The responses yi are simulated independently from a logistic
regression model according to P(Yi = +1|Xi = xi) = 1/(1 + exp[−f(xi)]). We define

f(xi) =
8∑

j=1

xi,j − xi,1xi,2 − xi,2xi,3 − xi,4xi,5 − xi,1xi,6xi,7 ,

such that there are 8 main effects and 4 interaction terms. The data points are saved as
ASCII files where xi,j is stored with four decimal places. The numerical results of fitting
kernel logistic regression to such data sets is given in Table 3. It is obvious that in this
situation RLB can save a lot of computation time. If the whole data set has n = 105

observations, approximately 10 hours were needed to compute KLR. If RLB with B = 10
bits are used each with a sub-sample size of nb = 104, one needs approximately 10 × 93.3
seconds, i.e. 16 minutes, 1 GB of kernel cache available. This is a reduction by a factor of
38. If there are 5 CPUs available and each processor can use up to 200 MB kernel cache,
RLB with B = 10 will need approximately 11 minutes which is a reduction by a factor of
55.

Christmann (2005) describes a strategy combining ε-support vector regression and kernel
logistic regression to construct insurance tariffs. The whole data from 15 German motor
vehicle insurance companies contains data from around 4.6 million customers with dozens
of explanatory variables. A direct use of kernel logistic regression with myKLR is unfeasable
due to the computation time, see Table 3. Although a strategy was used to reduce the
computational effort by exploiting certain characteristic features of such data sets, RLB
offers an additional substantial reduction of the computation time. Fitting the model to
the whole data set would need more than six months on a PC with 2.8 GHz CPU, whereas
RLB with B = 17 using 2 CPUs was able to provide a good fit within 4 days: this is a
reduction by a factor of 45. If RLB is allowed to use 8 CPUs the computation can be done
in approximately one day and the reduction factor is around 180.

Concluding, RLB proved to be quite useful for kernel logistic regression for large data
sets.
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5. Discussion

In this paper robust learning from bites (RLB) was proposed to broaden the usability of
computer-intensive robust estimators in the case of large data sets which occur nowadays
often in data mining projects. RLB is especially designed for situations under which the
original robust method cannot be used due to excessive computation time or due to memory
space problems. In these situations RLB offers robust estimates and additionally robust
confidence intervals. RLB estimators will in general not fulfill certain optimality criteria,
but the method has four nice properties. Scalability: the number B of bites can be chosen
such that the algorithm used to fit the bites needs less memory than the computer offers.
Performance: the computational steps for different bites can easily be distributed on several
processors because they are independent and use disjoint parts of the data set. Robustness:
we considered the finite sample breakdown point and the influence function. These proper-
ties are inherited from the original robust estimator computed for each bite and from the
location estimator used to aggregate the results from the bites. Confidence intervals: no
complex formulae are needed to obtain distribution-free (componentwise) confidence inter-
vals for the estimates or for the predictions if the median is used in the aggregation step
because the estimators computed from the B bites are independent and identically dis-
tributed. Such confidence intervals for the predictions are especially interesting for general
SVM methods (e.g. support vector machines and kernel logistic regression), because such
methods have nice properties but finite sample confidence intervals for the predictions based
on applying such methods once for the whole data set are typically unknown.

The subsampling approach used by RLB has connections to the remedian proposed by
Rousseeuw and Bassett (1990) for univariate location estimation. The remedian with base
B computes medians of groups of nb observations, and then the medians of these medians
etc., until only a single estimate remains. The remedian needs only O(log(n)) total storage
for fixed B which makes it especially useful for robust estimation in large data bases,
for real-time engineering applications in which the data are not present at the same time
and perhaps not stored, and for resistant aggregation of curves. RLB has also similarities
to Rvote proposed by Breiman (1999) and DRvote with classification trees using majority
voting proposed by Chawla et al. (2004). Bootstrapping computer-intensive robust methods
for huge data sets is often impossible due to computation time and memory limitations of the
computer. The focus of the present paper was on robustness aspects and the computation
of robust distribution-free confidence intervals for the median of the predictions even for
very large data sets. Such confidence intervals are often a problem for robust estimators
and general SVM methods based on Vapnik’s convex risk minimization principle. These
topics were not covered in the papers mentioned above. RLB has also some similarity to the
algorithms FAST-LTS and FAST-MCD developed by Rousseeuw and Driessen (1999, 2000)
for robust estimation in linear regression or multivariate location and scatter models for
large data sets. FAST-LTS and FAST-MCD split the data set into sub-samples, optimize
the objective function in each sub-sample, and use these solutions as starting values to
optimize the objective function for the whole data set. This is in contrast to RLB which
aggregates estimation results from the bites to obtain robust confidence intervals.

Some good robust estimators are not n−1/2-consistent having a complicated non-normal
limiting distribution or are hard to compute for large data sets, see e.g. Rousseeuw (1984),

15



A. CHRISTMANN, I. STEINWART, M. HUBERT

Davies (1990), Kim and Pollard (1990), Rousseeuw and Hubert (1999), Bai and He (1999),
Aelst et al. (2002), Croux et al. (2003), and Zuo and Cui (2005). Then RLB can be useful if
distribution-free confidence intervals for the median of the predictions are needed for large
data sets.
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Appendix

The appendix contains the proofs for the results given in Section 3.

Proof of Proposition 2. Obvious. ¤

Proof of Proposition 3. Obvious. ¤

Proof of Proposition 4. (i) follows from the linearity of the expectation operator.
(ii) and (iii) follow from Slutzky’s theorem. ¤

Proof of Proposition 5. By construction of RLB the bites are disjoint and the estima-
tors from the bites are independent. Assume that the original estimator TS is consistent in
probability for TP. Then we have for all ε > 0 that

P (|medianb=1,...,B TSb
(x)− TP(x)| < ε)

≥ P (|TSb
(x)− TP(x)| < ε for all b = 1, . . . , B)

=
B∏

b=1

P (|TSb
(x)− TP(x)| < ε) → 1, n →∞ , x ∈ X ,

because B is fixed and limn→∞ (n/nb) = B. Now, assume that the original estimator TS is
strongly consistent to TP. Then we obtain analogously

P
(

lim
n→∞medianb=1,...,B TSb

(x) = TP(x)
)
≥

B∏

b=1

P
(

lim
nb→∞

TSb
(x) = TP(x)

)
= 1 , x ∈ X ,

because B is fixed and limn→∞ (n/nb) = B. ¤

Proof of Theorem 6. By assumption each bite Sb is fitted with a general SVM estimator
having the representation

fSb,λnb
(x) =

nb∑

i=1

αi,b k(x, xi), i ∈ Sb , b = 1, . . . , B, xi ∈ X . (22)
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Because the bites Sb, b = 1, . . . , B, are disjoint, the RLB estimator of type I using a convex
combination in the aggregation step is given by

fRLB
S,B,(λnb

)(x) =
B∑

b=1

cb

nb∑

i=1

αi,b k(x, xi) (23)

=
n∑

i=1

B∑

b=1

cb αi,b k(x, xi) , x ∈ X . (24)

The formula (10) follows immediately. ¤

Proof of Proposition 8. (i) This follows immediately from (10).
(ii) Steinwart (2003, Th.9) proved that the general SVM estimator evaluated for the whole
data set S has the property

Pr∗n (S ∈ (X × Y)n;#SV(fS,λn) ≥ (SL,P − ε)n) → 1 , n →∞ , (25)

if the conditions of the proposition are satisfied. Denote the outer probability measure of
the product measure Pb,nb by Pr∗b,nb . The pairs (Xi, Yi) in the bites Sb, b = 1, . . . , B, are
independent and identically distributed by construction of RLB. Using (25) and n ≡ Bnb

we obtain

Pr∗n
(
S = (S1, . . . ,SB) ∈ (X × Y)n; #SV(fRLB

S,B,(λnb
)) ≥ (SL,P − ε)n

)
(26)

= Pr∗n
(
S = (S1, . . . ,SB) ∈ (X × Y)n; #SV(fSb,λnb

) ≥
B∑

b=1

(SL,P − ε)nb

)
(27)

≥ Pr∗n
(

for all Sb ∈ (X × Y)nb , b = 1, . . . , B ; #SV(fSb,λnb
) ≥ (SL,P − ε)nb

)
(28)

=
B∏

b=1

Pr∗b,nb

(
Sb ∈ (X × Y)nb ;#SV(fSb,λnb

) ≥ (SL,P − ε)nb

)
→ 1 , n →∞ , (29)

because cb ∈ (0, 1), b = 1, . . . , B, B is fixed, and nb →∞. ¤

Proof of Theorem 9. The RLB estimator fRLB
S,B,(λnb

) of type I is a convex combination

of fSb,λnb
, b = 1, . . . , B, because cb ∈ (0, 1) and

∑B
b=1 cb = 1. Therefore,

0 ≤
∫

L(Y, fRLB
S,B,(λnb

)(X) dP−R∗L,P

=
∫

L

(
Y,

B∑

b=1

cbfSb,λnb
(X)

)
dP−R∗L,P

≤
∫ B∑

b=1

cbL
(
Y, fSb,λnb

(X)
)

dP−R∗L,P (30)

=
B∑

b=1

cb

[∫
L

(
Y, fSb,λnb

(X)
)

dP−R∗L,P

]
−→P 0, (31)
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if limn→∞min1≤b≤B nb →∞. Here we used the convexity of L in (30), the L-risk consistency
of the original estimator in (31), and (14). ¤

Proof of Theorem 11. The minimum number of points needed to modify TSb
in bite

b such that there is breakdown is given by nb · ε∗nb
(TSb

) + 1, b = 1, . . . , B. The RLB
estimator breaks down if at least Bε∗B(µ̂) + 1 of the estimators TS1 , . . ., TSB

break down.
This gives the assertion. ¤

Proof of Theorem 14. Let z = (x, y) ∈ X × Y and P be a probability distribution
on (X × Y,B(X × Y)). By assumption the RLB estimator has the property (20), i.e.
TRLB
S,B =

∑B
b=1 cbT (PSb

), where PSb
denotes the empirical distribution of bite Sb, b =

1, . . . , B. Further, the influence function IF(z; T, P) exists by assumption of the theorem.
It follows

IF(z;TRLB
B , P) = lim

ε↓0
TRLB

B

(
(1− ε)P + εδz

)− TRLB
B (P)

ε

= lim
ε↓0

∑B
b=1 cbT

(
(1− ε)P + εδz

)−∑B
b=1 cbT (P)

ε

=
B∑

b=1

cb lim
ε↓0

T
(
(1− ε)P + εδz

)− T (P)
ε

= IF(z; T, P) ,

which gives the assertion. ¤
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