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Abstract

In the common linear and quadratic regression model with an autoregressive error
structure exact D-optimal designs for weighted least squares analysis are determined.
It is demonstrated that for highly correlated observations the D-optimal design is
close to the equally spaced design. Moreover, the equally spaced design is usually
very efficient, even for moderate sizes of the correlation, while the D-optimal design
obtained under the assumptions of independent observations yields a substantial loss
in efficiency. We also consider the problem of designing experiments for weighted least
squares estimation of the slope in a linear regression and compare the exact D-optimal
designs for weighted and ordinary least squares analysis.
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1 Introduction

The main purpose of the present paper is the construction of exact optimal designs for
weighted least squares estimation in the common linear and quadratic regression model with
correlated observations. Our research was motivated by an example from toxicology, where
in a factorial design, several ingredients at different doses were compared in their capacity
to inhibit bacterial growth. For each setting of the factorial design, a bacteria growth was
observed at three time points. The influence of the single ingredients on the regression curves
was measured. We assume that observations from different settings are independent, but
that observations at different time points of the same setting are correlated, with the same
covariance matrix for each setting. Therefore the covariance structure can be estimated from
the data and, if a parametric model for the bacterial growth has been fixed, each of these
curves can be fitted by weighted least squares. Note that this analysis is in accordance with
Potthoff and Roy’s (1964) generalized MANOVA (GMANOVA). The problem of experimen-
tal design now consists in the specification of the experimental conditions for the estimation
of each curve.

The problem of determining exact optimal designs has found considerable interest for models
with uncorrelated observations [see e.g. Hohmann and Jung (1975), Gaffke and Krafft (1982),
Imhof (1998, 2000), Imhof, Krafft and Schaefer (2000)]. These papers deal with D-, G-, A-
and Di-criteria for linear or quadratic regression. The determination of optimal designs for
models with a correlated error structure is substantially more difficult and for this reason
not so well developed. To the best knowledge of the authors the first paper dealing with the
optimal design problem for a linear regression model with correlated observations is the work
by Hoel (1958), who considered the weighted least squares estimate, but restricted attention
to equally spaced designs. Bickel and Herzberg (1979) and Bickel, Herzberg and Schilling
(1981) considered least squares estimation and determined asymptotic (for an increasing
sample size) optimal designs for the constant regression, the straight line through the origin,
and the estimation of the slope in the common linear regression model. Optimal designs
were also studied by Abt, Liski, Mandal and Sinha (1997, 1998) for the linear and quadratic
regression model with autocorrelated error structure, respectively. Following Hoel (1958)
these authors determined the optimal designs among all equally spaced designs. Miiller and
Pazman (2003) determine an algorithm to approximate optimal designs for linear regression
with correlated errors.

There is also a vast literature on optimal designs with correlated errors when the variance-
covariance structure does not depend on the chosen design. This generally is the case for
ANOVA-models, see e.g Martin (1996), but there are also some papers dealing with regression
models, see e.g. Bischoff (1995). In the present paper we relax some of these restrictions
and consider the problem of determining exact optimal designs for regression models in the
case, where the correlation structure depends on the covariate and the number n of available
observations for the estimation of each growth curve is relatively small.

In Section 2 we introduce the model and present some preliminary notation. In Section 3 we
concentrate on the linear regression model and derive properties of exact D-optimal designs



which simplify their numerical construction substantially. In particular we show that one
should always take an observation at the extreme points of the design space and that for
highly correlated data the exact D-optimal designs converge to an equally spaced design.
We also investigate similar problems for weighted least squares estimation of the slope in a
linear regression. In Section 4 we present several numerical results for sample sizes n = 3,4,5
and 6. In Section 5 several exact D-optimal designs for weighted least squares estimation in
a quadratic regression model with correlated observations are calculated.

We also investigate the efficiency of the design, which is derived under the assumption of
uncorrelated observations [see Hohmann and Jung (1975), Gaffke and Krafft (1982)] and the
equally spaced design. While the latter design is very efficient and can be recommended,
the design determined under the assumptions of uncorrelated observations yields to a sub-
stantial loss in efficiency, in particular if the correlation is small. Finally, in Section 6 some
exact optimal designs for ordinary least squares estimation are presented and compared with
the optimal designs for weighted least squares estimation. In particular, it is shown that
for highly correlated data the D-optimal designs for weighted and ordinary least squares
estimation differ substantially. On the other hand the equally spaced design is usually very
efficient for both estimation methods provided that the correlation is not too small.

2 Preliminaries

Consider the common linear regression model

Yoo = Bufilts) o+ Boflt) 20, i=1,.,m, (2.1)
where f1,..., f, (p € N) are given regression functions. The independent variables ¢; can be
chosen by the experimenter from a compact interval, say [0,1]. The parameters 3, ..., 0,
are unknown and have to be estimated from the data. We assume that the errors e, ..., &,

are centered and follow a stationary autoregressive process, where the correlation between
two measurements depends on the distance in ¢, that is Fle;] = 0 and

o5 = Cov(Yy, Ys) = Cov(ey, e5) = o2 \lt=sl, (2.2)

Here t,s € [0,1] and A is a known constant, such that 0 < A < 1. For the determination
of an optimal design we can assume without loss of generality that o> = 1. An exact
design & = {t1,...,t,} is a vector of n positions, say 0 < ¢t; < ... < t, < 1 describing the
experimental conditions in the regression model (2.1). If n observations are taken according
to the design £, model (2.1) can be written as

Y = Xgﬁ + 65,
where Y = [V},,...,Y;,]" denotes the vector of observations, 8 = (81,...,03,)7,

filt) oo fp(th)
Xe = L

filtn) oo Syltn)
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is the design matrix and the (random) vector ¢ = (gy,,...,e;,)" has expectation 0 and
covariance matrix

[ 1 At2—=t1)  A(s—t1) .. N\(Ea—t1) ]
A\(t2—t1) 1 \(ta—t2) A(tn—t2)
D¢ = Ata—t)  y\(ta—t2) 1 coe \(En—t3)
Atnt) At A=t

In the case t; = t; 1 for some 1 < i < n—1, the corresponding observations have correlation 1
and taking an additional observation under the experimental condition ¢;,1 does not increase
the information of the experiment. For this reason we assume throughout this paper that
t1 < ... <t,. In this case the matrix > is invertible and a straightforward calculation yields
Zgl = V{'Vg, where the matrix Ve is defined by

1 0 0 e 0 0
(ta—t1)
A L 0 0 0
\/1_>\2(t2—t1) \/1_)\2@2—*1)
0 _ A(t3—t2) 1 o 0 0
Vg _ \/1_)\2(t3*t2) \/1_,\2(753*'52)
(tn—tpn_—1) 1
0 0 0 "
L \/1,/\2(tn—tn71) \/1,/\2(tn—tn71) i

This is a straightforward generalization of the situation considered in ANOVA-models, see
e.g. Kunert (1985).
The weighted least squares estimate of 3 is given by B = (XngTngg)*ngTVéTVgY with
covariance matrix

Cov(5) = (XIV/VeXo) ™

~

An exact D-optimal design £* minimizes the determinant det(Cov(/3)) with respect to the
choice of the experimental design & = {ti,...,%,}. This is equivalent to maximize det M,
where the matrix M is given by

Me = X/ VI VeXe. (2.3)

In the following sections we will concentrate on the linear (p = 2, f1(t) = 1, fo(t) = t)
and the quadratic regression model (p = 3, fi(t) = 1, fo(t) = t, f3(t) = t*). We finally
note that asymptotic optimal designs for a regression model with correlated errors have
been studied by Bickel and Herzberg (1979) and Bickel, Herzberg and Schilling (1981) for
the constant regression and the regression through the origin. These authors considered
asymptotic optimal designs for the ordinary least squares problem and a correlation structure
of the the form Cov(Y},Y;) = vp(t — s) + (1 — v)dss, where v € [0,1], p is an appropriate
function defined on the interval [0,1] and ¢ denotes Kronecker’s symbol. Note that in the



case v < 1 the diagonal elements in this covariance matrix are always larger than the off-
diagonal elements, such that repeated observations at the same point would give additional
information. In contrast to these authors, who studied asymptotic optimal designs for least
squares estimation, we concentrate on exact optimal designs and the more general regression
model (2.1).

3 The linear regression model
We start with the simple linear regression model
i, =pu+0ti+e,, i=1,...,n, (3.1)

the quadratic model is investigated in Section 5. We first derive a more transparent represen-
tation of the determinant of the matrix M, defined in (2.3). For this purpose we introduce
the notation dy =0, d; =t;, —t;_1,2<i<n,a;=1,b =0

1 A%
CL]‘:—7 bJ: ’ j:27"'7n7
N Nierri
and find that
1 t
a9 — b2 tl (CLQ - b2) + dgCLQ
VeXe= | as—bs t1(as — bs) + da(asz — bs) + dsas

an —bp ti(an —by) + (do + ... + dno1)(an — byp) + dpay,

From the Cauchy-Binet formula [see Karlin and Studden (1966)] we obtain for the determi-
nant of the matrix (2.3)

det My = det XV VX

= Z det? ( — b ti(ai =) + (dy + -+ + dia) (@i — bi) + dia )
— b tl(a]’ — b]) + (dl + -+ dj,l)(aj — b]) + djaj

1<i<j<n

Ly we(nh (e nda)
1<ici<n j i (di+ -+ djn)(a — by) + djay

It therefore follows that a design é with points £, = 0, ty =ty — t1, ..., t, = t, — t; yields the

same value in the D-criterion as the design § with points ¢y,...,%,, l.e. det Mg = det M.

Note that all points #; are located in the interval [0, 1], and therefore the design € is in

fact of interest. We begin with a technical Lemma, that will be helpful for the numerical

determination of optimal designs in Section 4.
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Lemma 3.1. Let £ = {1 —t,,...,1 —t;} denote the design obtained from & = {t1,... t,}
by reflecting the points t; at t = 1/2, then det Mg = det M, where the matriz M is defined
in (2.3) with p =2, f1(t) =1 and f5(t) =t.

Proof. Note that the determinants in the representaion (3.2) can be rewritten as

det? (ai —bi aiti — biti > ‘

Clj — bj Cljtj — bjtj,1

Now a careful calculation of the expressions for a;,b; and d; for the design £ yields the
assertion of the Lemma. O

Proposition 3.2. Let & be an arbitrary design with points 0 < t; < ... <t, <1, and define
£* as the design which advises the experimenter to take observations at the points t7 = 0,
t; = tQ—tl = dQ, t; = tg —tl = d2+d3, ceey t:;_l = tn—l —t1 = d2+"'—|—dn_1, and

tr = 1. Then the design £ performs at least as good under the D-criterion as the design &,
i.e. det M¢ < det My-.

Proof. We have already seen that a design é defined in the previous paragraph yields the
same value of the D-criterion as . The only difference between the designs £* and € is that
the point ¢ € [0,1] is as large as possible and therefore £* has the largest possible value for
d,. We now show that the derivative of the function det(XgTVSTVng) with respect to the

variable d,, is positive which proves the assertion of the proposition. For the design é , define

fi(d;) = det (ai —bi (di+-+dima)(a — b) + dia )

aj —bj (d1+---+dj_1)(aj—bj)—i-djaj

for 1 <i < j <n. It follows from (3.2) that

det Mg= ) (fi(d))’

1<i<j<n

and, therefore,
0
— M: = E 2f. !
8dn det & = fl(dn)fz (dn)7

where f/(d,) is the derivative of f;(d,) with respect to the variable d,. Consequently, it is
sufficient to show that f;(d,) > 0 and f/(d,) > 0 for all 1 <i <n and for all 0 < d,, < 1.
For this purpose we note for 2 < j < nand d; > 0 that a; = (a;—b;)/(1 — A%). Consequently,
for 2 <14 < n, we can rewrite

1

a;—b;  (di+-+diy + _Lif{di)(ai_bi) >
an_bn (d1++dn—1+1_d#)<an_bn)

fi(d,) = det (

= (ai - bi)(an - bn)[diJrl +otdp + g(dn) + f(di)],



where the functions g and ¢ are defined as g(x) =
Note that a; — b; > 0 for all 7, which yields

fildn) = (ai = bi)(an — bn)[g(dn) + £(ds)].

—%% and ((x) = v — 55, respectively.

If # — 0 we have g(z) — —1/In A > 0, and the derivative of g equals

/ 1 T T

Let h(z) be the numerator of ¢’. Then h(0) = 0, while the derivative A’ fulfills
R(x) = —AIn(\) + A In(A) + 2A"(In \)? = 2A%(In \)? > 0,

for all > 0. Consequently, h(z) > 0 for all x > 0 and it follows that ¢’(x) > 0. Therefore
we obtain

I = ——
g(x) > limg(w) = ——

for all x > 0. On the other hand,

1 A*
4 = 1—— 1=\ AMInA)=———=(1- A\ In\).
Defining ¢(z) = 1 — A"+ xIn A, we find that its derivative equals ¢'(x) = =A*In A +1In A < 0,
which yields ¢(x) < ¢(0) = 0, for all z > 0. Therefore it follows that ¢'(z) > 0, for all > 0

and 1
((x) > lim ¢(x)

z—0 - m
for all > 0. In all, we have shown for all d; > 0 and for all d,, > 0 that g(d,) + ¢(d;) >
—1/In A+ 1/In A = 0. This, however, implies that

for all 2 < i < n and all d, > 0. Now consider f/(d,). We obtain for 2 <i < n that
fildn) = (ai = bi)(ay, = 0)(diss + -+ + dny + g(dn) + £(d;)) + (a5 — bi) (an — bn) g (dn),

where (a), —b!)) is the derivative of (a,, —b,) with respect to the variable d,,. We have already
seen that a; — b; > 0, a,, — b, > 0, ¢’(d,) > 0 and that d; 41 + -+ d,—1 + g(d,) + £(d;) > 0.

Since
1 /1 — \dn
—=b, = ———(1—=\") =

we obtain for the derivative a, — b/,

dn
T A In )\ o

v (1 + Adn)/T — \2dn
7




for all d,, > 0. Therefore, f/(d,) >0foralld, >0 (i=2,...,n—1).
It remains to consider the case ¢ = 1, where

1 0
d,) = det
fi(da) ¢ (an—bn (d1+"'+dn—1+1_d#)(an_bN))

- (an - bn)(dl + -+ dn—l + g(dn))7
which is clearly positive. Similarly, the derivative

fild,) = (a, = b )(d+ -+ dyr +g(dn)) + (an — bn)g'(dn)

is also positive. Summarizing our arguments we have shown that

0 /
a—dndet Mg = Z 2f;(dn) f1(d,) > 0,
1<i<n
for all d,, > 0, which yields the assertion of the proposition. O

Remark 3.3. If d;, — 0 for some k > 2, then the corresponding f;(dy) — 0 for all 1 <i < k.
This underlines the fact that a second observation under the same experimental condition
does not provide any additional information in the experiment.

Remark 3.4. Note that in the case A — 0 we obtain the linear regression model with
uncorrelated observations. In this case the corresponding information matrix Me«(\) in
(2.3) of the exact D-optimal design does not necessarily converge to the information matrix
of the D-optimal design for uncorrelated observations. For the limiting case of uncorrelated
observations it is well-known that an exact n-point D-optimal design is equal to

& =1{0,0,...,0,1,...,1}

where k = int(%) observations are taken at each boundary point of the interval [0, 1] and the
last one is taken either at the point 0 or at the point 1 [see Hohmann and Jung (1975)]. For
this design, however, we have that

det Mél*lm = —1 — >\2

irrespective of the sample size n.

We now concentrate on the opposite case A — 1 which corresponds to highly correlated
observations. The following result shows, that in this case the exact D-optimal design
converges to an equally spaced design on the interval [0, 1].

Theorem 3.5. If A — 1, then any exact n-point D-optimal design in the linear regres-
sion model with correlation structure (2.2) converges to the equally spaced design &, =

1 2
{O,m,m,...,l}.



Proof. Recalling the definition
1 )\ti_ti—l

i = A /1 _ )\Q(tiftifl)’ i = A /1 _ )\2(ti7t¢,1)’

a Taylor expansion at the point A = 1 yields

t—t; t—t;
(i =) = ===V + “(1—A)?
ti—ti)((ti —tii1)> —4
_( 1)(( 1) )(1 _ /\)3 + O((l _ )\)3)7
24
t; — ti— _ ti —t21) (26 + 28,1 — 1
(aiti — bit;1)? = 5 ~(1-N)7"+ ( 1) 4+ 1= 1)
tiog — A3 | —t; + 4t} tiog —A4t3 | —t; + 4t )
7 7 1 _ 7 7 1 _
* 24 (1=A)+ 48 (1=2)
+o((1-=X)?)
t—tiog 17—t 7 —t?
(CLi — bl)(a,tl — biti—l) = 9 ! + : 4 il (1 — )\) + ZTH(l — )\)2 + O((l—/\)2)
Proposition 3.2 allows to restrict attention to designs with ¢; = 0 and ¢, = 1. For such
designs,
th - tf—l =1
=2
for every k.

From the representation Me = (Ve X¢)” (Ve X¢) we therefore obtain det My = AB — C? where
the quantities A, B and C' are calculated as follows:

n

A= 3w =b) =143 (ai—b)

i=1

_ Hz":(ti_ti_l)(1—A+(1—A)2+(1—A)3>

2 4 6

— Z(ti —tiq)° (1 ;4” +o((1=X)%)

I—X (1-X%2 (1-=-X23 S(1—N)3

= I+ -+ —;@@-—t”) o Tol1=0%), (33)

where we have used the fact that a; — by = 1. By a similar calculation we obtain

B = (ait; — biti-1)? = % + i 1 g agc IﬁA) +o((1=X)?), (3.4)

=) (1-))?
1 T s

7

1
C = Z(CL@' —b))(ait; — bit;_1) = 5 +

i

+o((1 = \)?), (3.5)




respectively. Therefore the determinant of the matrix M, can be expanded as
det Mg = (1—=XN)"1/24+1/4+ (1= N)/8+ (1 —N)?/12

- (1= N)? 5
- ZZQ(E —ti1) —® +o((1 = \)?)

and it follows that the D-optimal design converges (as A — 1) to the design, which minimizes

the expression
n

D (ti=tia)' = dl,

i=2 i=2

with d; = ¢; — t;_1, as above. Since Y. ,d; = 1 for the designs considered, it is obvious
1

that the minimum is attained if and only if all d; = —. This completes the proof of the

Theorem. O

Theorem 3.5 indicates that uniform designs are very efficient for highly correlated data. In
the following section we will demonstrate that even for rather small values of the parameter
A the equally spaced design &, = {0,1/(n —1),2/(n —1),...,1} yields large D-efficiencies.
Before we present these numerical results we briefly discuss the optimal design problem for
estimating the slope in the linear regression model with correlated observations. If the main
interest of the experiment is the estimation of the slope an optimal design should maximize

det Mg
Z;'l:1 (a; —b;)?

where e; = (0,1)7,a; = 1,b; = 0. Throughout this paper optimal designs maximizing the
function in (3.6) are called exact D;-optimal designs.

Di(§) = (3 M lea) ™ = (3.6)

Theorem 3.6.

(a) Let € = {t1,...,t,} denote a design and € = {1 —t,,...,1 —t1} its reflection at the

point t = 1/2, then D1(§) = Dy(§).

(b) If € = {t1,....t,} is an exact Di-optimal design for the linear regression model (3.1)
with correlation structure (2.2) , then t; = 0,t, = 1.

(c) If X = 1 any exact n-point Di-optimal design for the linear regression model (3.1) with
correlation structure (2.2) converges to the design & = {0, to,t3,...,t, 1,1}, where the
points ty < ... < t,_1 minimize the function

Stz Si1 S21 Sig

6 8 18 18 (3.7)

with (t; =0, t, =1)

n

Spg = thtf—l(tg - t;‘]—l)' (3.8)

=2
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Proof. Because part (a) and (b) can be proved in a similar manner as Lemma 3.1 and
Proposition 3.2 we restrict ourselves to a proof of part (¢). For this we need a more refined
expansion of det My = AB — C*. More precisely we have for the expression A, B, and C' in
(3.3), (3.4) and (3.5), respectively,

A = 1+(1;2>‘)+#+(1+5171)(1—8)\)3 +(1+351,1)(1Ig\)4 —{—0((1—>\)4)7
Y )2 )3 EPNE Sp.14S
B(1—))? = LA 4 G248 4 G2A | (2D +(§+—“+ 1’3>(1—/\)5+0((1—/\)5),

2 4 8 16 72

C(1—A) = WA G274 G207 4 (34 95, ,) AT 1 o((1— MY,

A straightforward calculation now yields

det M = (1—=XN)7"/241/4+ (1 =N)/8+(1+S11)(1—))?/16
+(1/32 + S11/8 — S1.1/24 + (So1 + S13)/72)(1 — A)* + o((1 — \)?).

and

DOV = g =20 -0+ (52T - S - B o - ),

18 18

Therefore the exact Di-optimal design in the linear regression model with correlation struc-
ture (2.2) converges to the the designs £ = {0, to,t3,...,t,_1, 1} where the points to, ..., t, 1
minimize the function in (3.7). O

4 Numerical results

In this section we present several numerical results for the exact D-optimal designs maxi-
mizing the determinant in (2.3) in the linear regression model. We will also investigate the
efficiency of the exact D-optimal design & | for the linear regression model with uncorrelated
observations and the equally spaced design &, considered in Theorem 3.5.

Example 4.1. The case n = 3. It follows from Proposition 3.2 that it is sufficient to
search among designs with ¢t; = 0, {5 = d, say, and t3 = 1. For such a design, the D-criterion
simplifies to

2((1=(1=dA)(1—d\") —d(1—d))

det(XT VI VeXe) = (T 30— 2e0) =y(d),  (4.1)

say. Therefore the exact D-optimal design can be determined maximizing the function
with respect to d € (0,1). From Lemma 3.1, it is obvious that this function is symmetric
around the point d = 1/2.

We have evaluated this criterion numerically for several values of the parameter A. It turns
out that for a broad range of the parameter A\ the determinant is maximal at d = 1/2. In
other words, if the parameter A is not too small, then the design £ = {0,1/2,1} is D-optimal

11
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Figure 4.1: The function ¢ defined in (4.1) in the case A = 0.1 (left panel) and A = 0.001
(middle panel). In the case A = 0.1 the mazimum is attained at the point d = 1/2 and the
exact D-optimal design for the linear regression model (3.1) with correlation structure (2.2)
and n = 3 observations is equally spaced at 0, 1/2 and 1. If A = 0.0001 there are two mazxima
of ¥ corresponding to the two exact D-optimal designs {0,0.2459,1} and {0,0.7541,1}. The
right panel shows the second derivative of the function ¢ at d = 1/2 for some small \.

for the linear regression model (3.1). A typical example corresponding to the case A = 0.1
is depicted in the left panel of Figure 4.1. If A\ approaches 0 the situation changes and is
more complicated. For extremely small values of the parameter A, there are usually two non
equally spaced exact D-optimal designs. In the middle part of Figure 4.1 we show the curve
corresponding to the function ¢ for the case A = 0.0001. In this case the function ¢ has a
local minimum at the point d = 1/2 and there are in fact two global maxima corresponding
to two different D-optimal designs, given by {0,0.2459,1} and {0,0.7541, 1}.

To continue these investigations we consider the second derivative of the function 1 at the
point d = 1/2,

(A 12V () =2V () — 1 — & ﬁ+(i_+§))2x<1n<x>>2)

(1=A)? ’

¥(1/2) = —4 (4.2)
for various values of A. This function is depicted in the right panel of Figure 4.1 and negative
whenever A > 0.0007798 = \*, say. It is positive whenever A < A\*, which leads us to the
conjecture that the optimum design is equally spaced at the points 0, 1/2, 1 for all A > \*.
In the case A < A\*, the optimal design is not equally spaced and places the inner point nearer
to the boundary of the design space. Based on an exhaustive numerical search we confirmed
this conjecture and derived the following numerical result.

Numerical Result 4.2. For the linear regression with correlated observations an exact 3-
point D-optimal design is given by & = {0,1/2,1} if and only if A > \* and by the design
& ={0,d,1} or {0,1—d,1} if and only if A < X\*. Here d = d(\) € [0,1/2) is the unique
solution of the equation 1'(d) = 0, where the function v is defined in (4.1).

In Table 4.1 we display the non-trivial point of the exact D-optimal designs for weighted

12



least squares estimation in the linear regression model (3.1) with correlation structure (2.2)
and n = 3 observations. The table also shows the D-efficiency,

T T

JAUKEVI Ve Xe)

of the design ¢, which is D-optimal for uncorrelated observations, and the analogously
defined efficiency of the equally spaced design £5. We observe that the equally spaced design
is extremely efficient for the estimation of the parameters in the linear regression model with
correlated observations.

Table 4.1: The non-trivial point d(\) of the exact D-optimal designs for weighted least squares
estimation in the linear regression model (3.1) with correlation structure (2.2) and n = 3
observations for various values of the parameter A. The exact D-optimal design is given
by & = {0,d(X\),1}. The table also shows the D-efficiency of the design &, = {0,0,1},
D-optimal for uncorrelated observations, and the efficiency of the equally spaced design &3 =

{0,0.5,1}.

A 9 5 1 .01 .001 107* 10° 10°% 1077 10=® 107Y 10710
d(\) 5 5 5 5 5 .305 246 211 187 169 .155  .143
eff(é) 1.0 1.0 1.0 1.0 1.0 .995 983 .972 .962 .954 947 941
eff(§:) 999 .996 .944 867 .831 817 .804 .794 .786 .779 773  .768

Example 4.3: The case n = 4,5,6. In the case n = 4 it follows from Theorem 4.1 that
the exact D-optimal design for the linear regression model (3.1) with correlation structure
(2.2) is of the form £* = {0,t9,t3,1}. However, our extensive numerical study shows that
the exact 4-point D-optimal design has an even simpler form, which is given by

{0,d,1—d, 1},

where the point d = d(\) € (0,0.5). In the first part of Table 4.2 we present the D-
optimal designs for the linear regression model (3.1) with correlation structure (2.2) and
n = 4 observations for various values of \. We also display the D-efficiencies of the designs
& = {0,0,1,1} and the equally spaced design & = {0,1/3,2/3,1}. It is interesting to
note that the equally spaced design is again very efficient for all values of the parameter \.
The design &, which is D-optimal for uncorrelated observations is very efficient for highly
correlated data and gets less efficient if A — 0.

The situation in the cases n = 5 and n = 6 is very similar. Exact optimal designs for
n = 5 and n = 6 observations are displayed in the second and third part of Table 4.2,
respectively. Our numerical results show that for five observations the exact D-optimal
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Table 4.2: The non-trivial support points of the exact D-optimal designs for weighted least
squares estimation in the linear regression model (3.1) with correlation structure (2.2) and
n =4 (first row), n =5 (second row) and n = 6 (third row) observations. The exact D-
optimal design is of the form (4.3) or (4.4) if n is even or odd, respectively. The table also
shows the D-efficiency of the design &, D-optimal for uncorrelated observations, and the
efficiency of the equally spaced design &,.

A 9 5 1 .01 .001 107* 10° 107% 1077 10=® 107Y 10710
d(\) .332 .328 .317 .303 .281 .249 217 192 174 .159 .146 .136
eff(¢,) 1.0 1.0 1.0 .998 .993 982 .966 .947 .930 .914 .900 .888
eff(§) 1.0 .996 .928 .806 .731 .689 .662 .642 .626 .614 .604 .596

n=2=5

A 9 D 1 01 .001 107* 10™® 107% 107" 10=®% 1079 10710
di () 249 243 233 224 215 204 .191 .181 .167 .153 142 133
da(N) D D D D D D D 424 345 304 276 .255

eff(¢5) 1.0 1.0 1.0 1.0 .996 .991 .984 975 962 .947 .931 917
eff(¢f,) 1.0 1.0 .922 .780 .685 .628 .594 .573 .556 .542 530 .521

A 9 ) d 01 .001 107* 107° 107¢ 107" 10°% 107° 10710
di(A) 199 194 184 177 171 164 156 146 134 124 115  .107
da(A) 399 397 391 .385 .380 .372 .361 .340 311 .283 .261 .242
eff(§) 1.0 1.0 1.0 .999 .997 .993 .988 .981 .970 .957 .942 .927

eff(¢f,) 1.0 .995 .919 .767 .659 .591 .548 519 499 483 469 458

design is of the form {0,dy,ds, 1 — dy,1} (or its reflection at the point ¢ = 1/2), where
dy = di(\) € (0,0.5) and dy = da(N) € (0,0.5]. Similarly, exact D-optimal designs for the
linear regression model (3.1) with correlation structure (2.2) and n = 6 observations are of
the form {0,d;,ds,1 — do,1 — dy, 1}, where d; = d;(A) € (0,0.5) and dy = da(A) € (0,0.5).
We have also performed calculations for a larger sample size but the results are not presented
here for the sake of brevity. However the structure of the exact D-optimal designs can be
described as follows: If n = 2k our numerical calculations indicate that an exact 2k-point
D-optimal design is of the form

{0,dv,. .. dp1,1 —dp_y,...,1 —dy, 1}, (4.3)

where d; = d;(\) € (0,0.5) while in the case n = 2k 4+ 1 an exact 2k + 1-point D-optimal
design is of the form

(0,d1, ... dp1,dp, 1 —dy_y, ..., 1—di, 1} (4.4)

(or its reflection at the point ¢ = 1/2, where d; = d;(\) € (0,0.5).
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Table 4.3: The non-trivial points of the exact optimal designs for weighted least squares
estimation of the slope in the linear regression model (3.1) with correlation structure (2.2)
and n = 3 (first row), n = 4 (second row), n = 5 (third row) and n = 6 (fourth row)
observations. The exact Dy-optimal design is of the form (4.3) or (4.4) if n is even or
odd, respectively. The table also shows the Ds-efficiency of the design &, Di-optimal for
uncorrelated observations, and the efficiency of the equally spaced design &,.

n=23
A .9 D 1 .01 .001 107* 10=® 10°% 10" 10°® 102 1010
d(\) 146 147 151 151 145 136 .126  .118 .110 .103 .097 .092
eff1(&3) 1.0 1.0 .996 .975 .947 .923 .904 888 876 .866 .857 .850
eff;(¢;,) 1.0 1.0 .996 .975 .947 .923 .904 .888 .876 .866 .857 .850

n=4
A .9 D 1 01 .001 107* 10=® 10°% 107" 10°® 1072 1071
d(\) 80 180 178 172 163 153 142 133 124 116 .109 .103
eff1(&4) 1.0 1.0 .996 973 .935 .895 .858 826 .799 777 .759 .743
eff;(&§:,) 1.0 1.0 .990 .941 877 .823 .780 .747 .721 .700 .683 .669

A 9 5 .1 .01 .001 107* 107° 107% 107" 107® 107Y 107"
di(A) 186 .186 .184 177 .168 .158 .147 138 129 121 114 107
da(A) 239 239 238 235 .229 221 .211 200 .190 .180 .171 .163
effi(&) 1.0 1.0 998 986 .962 .931 .898 866 .837 .812 .789  .769
effy(&,) 1.0 10 989 .935 863 .800 .749 .710 .679 .654 .634 .617

A 9 5 1 01 001 107* 10 107% 10°" 10°% 107 10710

di () 1120 112 111 109 .106 102 .098 .093 .089 .085 .081 .077
da(N) 252 251 250 246 .239 231 221 .210 .200 .190 .181 .172
effi(§) 1.0 1.0 .999 .989 .970 .943 913 .882 .852 .823 .798 .775
eff;(¢;,) 1.0 1.0 .988 .928 .847 .774 715 .669 .632 .603 .579 .559

Example 4.4: Estimation of the slope. In this example we briefly present some exact
optimal designs for weighted least squares estimation of the slope in the linear regression
model. some exact optimal designs for weighted least squares estimation of the slope in the
linear regression model. In Table 4.3 we show the exact optimal designs for sample size
n =3,4,5,6. We also present the D;-efficiency

effl(f) = gllT(é))

of the equally spaced design and the exact D;-optimal design obtained under the assumption
of uncorrelated observations. The form of the D; optimal design is given in (4.3) and (4.4)
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corresponding to the cases of an even and odd number of observations, respectively. Note
that the optimal designs for estimating the slope are more concentrated at the boundary
of the experimental region. For example, if n = 4, A = 0.01, the exact D-optimal design
for weighted least squares estimation is given by £* = {0,0.303,0.697, 1}, while the exact
D;-optimal design is {0,0.172,0.828,1}. As a consequence the design & for the linear
regression model with uncorrelated observations (which is the same for the D- and D;-
optimality criterion) yields larger efficiencies for estimating the slope, while the equally
spaced design is less efficient for this purpose.

5 Exact optimal designs for quadratic regression

In this section we briefly discuss the problem of determining exact D-optimal designs for
weighted least squares estimation in the quadratic regression model

Vi, = 0o+ Bol] + Bst + &1, i=1,....n (5.1)

with an autoregressive error of the form (2.2). In all cases the exact optimal designs have
to be determined numerically. However, it can be shown by similar arguments as presented
in Section 3 that Proposition 3.2 also holds in the quadratic regression model. Moreover,
the symmetry property in Lemma 3.1 is also valid in the quadratic case and it is possible to
derive an analogue of Theorem 3.5 for highly correlated data.

Theorem 5.1.

(a) Let & = {1 —t,,...,1 — t;} denote the design obtained from & = {t1,...,t,} by
reflecting the points t; at the center t = 1/2, then det M¢ = det M-, where the matriz
Mg is defined in (2.3) with p =3, f1(t) = 1, fo(t) = t, f5(t) = t2.

(b) An exact D-optimal design £ = {t1,...,t,} for weighted least squares estimation in
the quadratic regression model (5.1) with correlation structure (2.2) satisfies t; = 0
and t, = 1.

(c) If \ — 1, then any exact n-point D-optimal design for weighted least squares estimation
in the quadratic regression model (5.1) with correlation structure (2.2) converges to the
equally spaced design &, = {0,1/(n —1),2/(n—1),...,1}.

Proof. We only prove part (c) of the Theorem. The remaining statements follow by similar
arguments as presented in Section 3. If A — 1 the elements of the matrix

A C D
Mi=|Cc B E
D E F
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Table 5.1: The non-trivial points of the exact D-optimal designs for weighted least squares
estimation in the quadratic regression model (5.1), correlation structure (2.2) and n = 4
(first row), n = 5 (second row) and n = 6 (third row) observations. The exact D-optimal
design is given by (4.83) or (4.4) if n is even or odd, respectively. The table also shows the
D-efficiency of the designs &, = {0,1/2,1/2,1} (n=4), &, = {0,1/2,1/2,1/2,1} (n =
5), &, = {0,0,1/2,1/2,1,1} (n = 6), D-optimal for uncorrelated observations, and the
efficiency of the equally spaced design &,.

A 9 ) 1 .01 .001 107* 107% 107% 1077 107® 107Y 1071
d(\) 333 335 345 355 362 369 378 386 .394 400 407 412
eff(¢,) 1.0 1.0 1.0 .998 .995 .992 988 .984 .981 .978 975 .973
eff (&) 945 .944 929 892 .860 .840 .828 .820 .815 .811 .809 .807

A 9 ) 1 01 .001 107* 107 107¢ 1077 107% 1072 10710
) 250 .252 265 .273 274 276 279 .286 .294 .304 315 .325
) .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500
eff (&5 1.0 1.0 1.0 999 998 .998 997 996 995 993 .992 .990
eff(§;,) .928 .926 .907 .854 .803 .767 .744 730 .722 .716 .712 .710

A 9 ) q 01 .001 107* 1075 107¢ 1077 107% 1072 10710
di(A) .200 .202 .215 .220 .214 .208 .201 .194 .182 .164 .142 .124
dy(N) 400 .401 .407 .410 409 .409 .408 409 410 .412 415 419
eff(§) 1.0 1.0 1.0 .999 .999 999 999 .999 .998 .996 .992 .987

eff(¢f,) 921 .919 .897 .835 .772 .724 .690 .668 .653 .642 .634 .627

satisfy
A= TN O ) T s ) T2 o),
T CE WL E VL ET CES N
C(1—A) = u 5 y  a _4)‘)2 a _SA)S +(3+ 251,2)(1 ;8)‘>4 +o((1—M)h,
pa -3 =N s ) T e ) EE A
B = N UEV g ) Eo Aoy,
ra-a =450 w0 s ) A,
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where S1; and S) 5 are defined in (3.8). A straightforward calculation of the determinant of
the matrix Mg now yields the expansion

1
det M = —=S11(1 = 1)+ o((1 = 1) 7).

and the assertion follows by the same arguments as presented in the proof of Theorem 3.5.
O

Numerical calculations show that the exact optimal designs are of the form (4.3) in the case
n = 2k and (4.4) in the case n = 2k 4+ 1. In Table 5.1 we display the exact D-optimal
designs for weighted least squares estimation in the quadratic regression model with n = 4,
n = 5 and n = 6 correlated observations for various values of the parameter \. In the case
n = 3 the equally spaced design & = {0,1/2, 1} is D-optimal. We also show the D-efficiency
of the equally spaced design &, and the efficiency of the exact D-optimal design under the
assumption of uncorrelated observations [see Gaftke and Krafft (1982)]. We observe that
the equally spaced design is extremely efficient for weighted least squares analysis in the
quadratic regression model with autoregressive errors of the form (2.2). For example, if
n = 5 observations can be taken, the D-efficiency of the design &5 is at least 99.0% if the
parameter \ varies in the interval [1071° 1). It is also interesting to see that the exact D-
optimal does not change substantially with the parameter A. For example if A = 0.5 and
A = 1077 the exact optimal designs differ only by one point, which is 0.252 in the first and
0.294 in the second case, respectively.

We finally briefly compare the exact optimal designs for linear and quadratic regression. First
we note that the optimal designs for the linear regression model are usually more concentrated
at the boundary, in particular if A is not too large. For example in the case n =6 , A = 0.001
the nontrivial points in the interval [0, 0.5] are .171,.380 and .214,.409 corresponding to the
linear and quadratic case. Secondly, both exact optimal designs approach the equally spaced
design if A — 1. Therefore, it is intuitively clear that for highly correlated data the optimal
design for the quadratic model is also very efficient in the linear model and vice versa. For
example, if n = 6 and A = 0.01 the efficiency of the D-optimal design for the quadratic
model in the linear regression is 99.7% and the efficiency of the D-optimal design for the
linear model in the quadratic regression is 99.5%.

6 Ordinary least squares estimation

In this section we briefly discuss exact D-optimal design problems for ordinary least squares
estimation in the linear and quadratic model with correlation structure (2.2). Note that the
covariance matrix of the ordinary least squares estimator is given by

Mt = (X Xe) ™ X (VT Ve) ™ Xe) (X Xe) ™! (6.1)

where the matrices X and V; are defined in Section 2. An exact D-optimal design for

ordinary least squares estimation in a model with correlation structure (2.2) maximizes
det M&.
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Theorem 6.1. Consider the linear or quadratic regression model.

(a) Let € = {1 —t,,...,1 —t;} denote the design obtained from & = {t1,...,t,} by the
reflection at the point t = 1/2, then det Mg = det M, where the matriz Mg is defined
in (6.1).

(b) Any exact D-optimal & = {t,...,t,} design for ordinary least squares estimation
mazimizing det M¢ satisfies t, = 0,t, = 1.

Table 6.1: The non-trivial point of the exact D-optimal designs for ordinary least squares
estimation in the linear regression model (3.1) with correlation structure (2.2) and n = 3
(first row), n =4 (second row), n =5 (third row) and and n =6 (fourth row) observations.
The exact D-optimal design is given by (4.3) or (4.4) if n is even or odd, respectively.
The table also shows the D-efficiency of the exact D-optimal design &, for uncorrelated
observations and the efficiency of the equally spaced design.

n=23
A .9 D 1 01 .00l 107* 10™® 107% 107" 10°® 107® 1070
d(X\) .000 .000 .500 .500 .500 .308 .247 212 .188 .170 .155 .143
eff(¢3) 997 994 1.0 1.0 1.0 .995 .983 972 .962 .954 .947 941
eff(¢f,) 1.0 1.0 .950 .867 .833 .818 .805 .794 .786 .779 773 768
n=4
A .9 D 1 01 .001 107* 10™® 107 107" 10°® 107° 10710
d()\) .000 .000 .334 .312 .288 .253 .219 .193 .174 .159 .147 .136
eff(¢4) .98 977 1.0 .999 .994 983 967 .948 .930 .914 .900 .888
eff(¢;,) 1.0 1.0 .950 .813 .734 .690 .662 .642 .627 .614 .604 .596
n=>5
A .9 ) 1 01 .001 107* 10~ 10=® 10" 10=® 1072 1071
di(A) .000 .000 .000 .216 .216 .207 .194 .183 .167 .154 .142 .133
dy(\)  .000 .000 .500 .500 .500 .500 .500 433 .348 .307 .278 .256
eff(¢5) 975 961 .978 .997 996 .991 985 976 .963 .947 932 918
eff(¢f,) 1.0 1.0 .941 .795 .690 .630 .595 .573 .556 .542 531 .521
n==~0
A .9 ) 1 01 .001 107* 10=® 107% 107" 10°® 1072 1070
di(A) .000 .000 .000 .135 .164 .165 .159 .149 137 .125 .116 .108
dy(N)  .000 .402 .339 .387 .388 .380 .368 .346 .315 .286 .263 .244
eff(§) .966 .946 .951 .992 .995 .993 989 982 .971 .958 .943 .928
eff(¢f,) 1.0 .997 .929 .788 .668 .595 .550 .521 .500 .483 470 .459

In Table 6.1 we display the exact D—optimal designs for ordinary least squares estimation
in a linear regression model with correlation structure (2.2). The corresponding results for
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the quadratic regression model are shown in Table 6.2, where for 3 observations the equally
spaced design & = {0,1/2,1} is D-optimal independently of A. In the case of a linear
regression model these designs exhibit an interesting behaviour. There exist a threshold,
say A* such that the exact D-optimal design for uncorrelated observations is also D-optimal
for the correlation structure (2.2), whenever A > \*. If A < A* the structure of the designs
changes and the optimal designs can be found in Table 6.1. Such a threshold does not
exist for the quadratic regression model. In both cases the equally spaced design is again
very efficient, while the loss of efficiency of the exact D-optimal design for uncorrelated
observations may be substantial if the correlation is small.

It is also of interest to compare these designs with the optimal designs for weighted least
squares analysis derived in Section 4 and 5. In the linear regression the D-optimal designs for
ordinary and weighted least squares estimation do not differ substantially if the correlation
is small. For example, if A = 0.01,n = 5 the optimal design for weighted least squares
estimation is {0,0.224,0.5,0.776,1}, while the optimal design for ordinary least squares
estimation is {0,0.216,0.5,0.784,1}. However, if the correlation is larger, the difference is
more substantial, because the optimal design for ordinary least squares estimation advices
the experimenter to take repeated observations at the boundary of the experimental region.
In the quadratic model the situation is similar, but the differences for strongly correlated data
are smaller. For example, if n = 6, A\ = 0.9 the D-optimal design for weighted least squares
estimation is {0,0.2,0.4,0.6,0.8,1} while the D-optimal design for ordinary least squares
regression is {0,0.290, 0.413,0.587,0.710, 1}. We finally note that the equally spaced design is
very efficient for ordinary least squares estimation. These observations are in accordance with
the results of Bickel, Herzberg and Schilling (1981), who argued by asymptotic arguments
that for a large sample size the equally spaced design should be nearly optimal for estimating
the slope or intercept in a linear regression with autocorrelation structure (2.2) by ordinary
least squares.
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Table 6.2: The non-trivial points of the exact D-optimal designs for ordinary least squares
estimation in the quadratic regression model (5.1) with correlation structure (2.2) and n = 4
(first row), n = 5 (second row) and n = 6 (third row) observations. The exact D-optimal
design is given by (4.3) or (4.4) if n is even or odd, respectively. The table also shows the D-
efficiency of the exact D-optimal design &, for uncorrelated observations and the efficiency
of the equally spaced design.

A 9 5 1 .01 .001 107* 10° 107% 1077 10=® 107Y 10710
d(\) .352 .356 .359 .359 .363 .369 .378 .386 .393 .400 .407 .412
eff(&,) 999 999 998 996 .994 992 988 984 981 978 975 .973
eff(§:.) 951 .950 .933 .894 .861 .840 .828 .820 .815 .811 .809 .807

n=2=5

A 9 D 1 01 .001 107* 10™® 107% 107" 10=®% 1079 10710
di () 304 310 305 288  .279 278 280 .286 .294 .304 315 .325
da(N) 500 500 500 500 .500 .500 .500 .500 .500 .500 .500 @ .500

eff(§5) 996 .995 .994 .996 .997 .997 997 .996 .995 .993 .992 .990
eff(¢f,) 944 .943 920 .861 .805 .768 .744 .730 .722 716 .712 .710

A 9 ) d 01 .001 107* 107° 107¢ 107" 10°% 107° 10710
di(A) 290 .301 .280 .250 .228 .215 .206 .197 .186 .168 .144 .126
do(N) 413 422 425 415 410 409 408 408 409 411 415 419
eff(§) 991 989 .990 .994 .998 .999 999 .999 .998 .996 .993 .987

eff(¢f,) 945 .945 921 .850 .780 .727 .691 .668 .653 .643 .635 .627
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