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Abstract
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1 Introduction

The main purpose of the present paper is the construction of exact optimal designs for

weighted least squares estimation in the common linear and quadratic regression model with

correlated observations. Our research was motivated by an example from toxicology, where

in a factorial design, several ingredients at different doses were compared in their capacity

to inhibit bacterial growth. For each setting of the factorial design, a bacteria growth was

observed at three time points. The influence of the single ingredients on the regression curves

was measured. We assume that observations from different settings are independent, but

that observations at different time points of the same setting are correlated, with the same

covariance matrix for each setting. Therefore the covariance structure can be estimated from

the data and, if a parametric model for the bacterial growth has been fixed, each of these

curves can be fitted by weighted least squares. Note that this analysis is in accordance with

Potthoff and Roy’s (1964) generalized MANOVA (GMANOVA). The problem of experimen-

tal design now consists in the specification of the experimental conditions for the estimation

of each curve.

The problem of determining exact optimal designs has found considerable interest for models

with uncorrelated observations [see e.g. Hohmann and Jung (1975), Gaffke and Krafft (1982),

Imhof (1998, 2000), Imhof, Krafft and Schaefer (2000)]. These papers deal with D-, G-, A-

and D1-criteria for linear or quadratic regression. The determination of optimal designs for

models with a correlated error structure is substantially more difficult and for this reason

not so well developed. To the best knowledge of the authors the first paper dealing with the

optimal design problem for a linear regression model with correlated observations is the work

by Hoel (1958), who considered the weighted least squares estimate, but restricted attention

to equally spaced designs. Bickel and Herzberg (1979) and Bickel, Herzberg and Schilling

(1981) considered least squares estimation and determined asymptotic (for an increasing

sample size) optimal designs for the constant regression, the straight line through the origin,

and the estimation of the slope in the common linear regression model. Optimal designs

were also studied by Abt, Liski, Mandal and Sinha (1997, 1998) for the linear and quadratic

regression model with autocorrelated error structure, respectively. Following Hoel (1958)

these authors determined the optimal designs among all equally spaced designs. Müller and

Pazman (2003) determine an algorithm to approximate optimal designs for linear regression

with correlated errors.

There is also a vast literature on optimal designs with correlated errors when the variance-

covariance structure does not depend on the chosen design. This generally is the case for

ANOVA-models, see e.g Martin (1996), but there are also some papers dealing with regression

models, see e.g. Bischoff (1995). In the present paper we relax some of these restrictions

and consider the problem of determining exact optimal designs for regression models in the

case, where the correlation structure depends on the covariate and the number n of available

observations for the estimation of each growth curve is relatively small.

In Section 2 we introduce the model and present some preliminary notation. In Section 3 we

concentrate on the linear regression model and derive properties of exact D-optimal designs
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which simplify their numerical construction substantially. In particular we show that one

should always take an observation at the extreme points of the design space and that for

highly correlated data the exact D-optimal designs converge to an equally spaced design.

We also investigate similar problems for weighted least squares estimation of the slope in a

linear regression. In Section 4 we present several numerical results for sample sizes n = 3, 4, 5

and 6. In Section 5 several exact D-optimal designs for weighted least squares estimation in

a quadratic regression model with correlated observations are calculated.

We also investigate the efficiency of the design, which is derived under the assumption of

uncorrelated observations [see Hohmann and Jung (1975), Gaffke and Krafft (1982)] and the

equally spaced design. While the latter design is very efficient and can be recommended,

the design determined under the assumptions of uncorrelated observations yields to a sub-

stantial loss in efficiency, in particular if the correlation is small. Finally, in Section 6 some

exact optimal designs for ordinary least squares estimation are presented and compared with

the optimal designs for weighted least squares estimation. In particular, it is shown that

for highly correlated data the D-optimal designs for weighted and ordinary least squares

estimation differ substantially. On the other hand the equally spaced design is usually very

efficient for both estimation methods provided that the correlation is not too small.

2 Preliminaries

Consider the common linear regression model

Yti = β1f1(ti) + . . . + βpfp(ti) + εti , i = 1, . . . , n, (2.1)

where f1, . . . , fp (p ∈ N) are given regression functions. The independent variables ti can be

chosen by the experimenter from a compact interval, say [0, 1]. The parameters β1, . . . , βp

are unknown and have to be estimated from the data. We assume that the errors εt1 , . . . , εtn

are centered and follow a stationary autoregressive process, where the correlation between

two measurements depends on the distance in t, that is E[εt] = 0 and

σts := Cov(Yt, Ys) = Cov(εt, εs) = σ2λ|t−s|. (2.2)

Here t, s ∈ [0, 1] and λ is a known constant, such that 0 ≤ λ < 1. For the determination

of an optimal design we can assume without loss of generality that σ2 = 1. An exact

design ξ = {t1, . . . , tn} is a vector of n positions, say 0 ≤ t1 ≤ . . . ≤ tn ≤ 1 describing the

experimental conditions in the regression model (2.1). If n observations are taken according

to the design ξ, model (2.1) can be written as

Y = Xξβ + εξ,

where Y = [Yt1 , . . . , Ytn ]T denotes the vector of observations, β = (β1, . . . , βp)
T ,

Xξ =




f1(t1) . . . fp(t1)
...

...
...

f1(tn) . . . fp(tn)



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is the design matrix and the (random) vector εξ = (εt1 , . . . , εtn)T has expectation 0 and

covariance matrix

Σξ =




1 λ(t2−t1) λ(t3−t1) · · · λ(tn−t1)

λ(t2−t1) 1 λ(t3−t2) λ(tn−t2)

λ(t3−t1) λ(t3−t2) 1 · · · λ(tn−t3)

...
...

...
. . .

...

λ(tn−t1) λ(tn−t2) λ(tn−t3) . . . 1




.

In the case ti = ti+1 for some 1 ≤ i ≤ n−1, the corresponding observations have correlation 1

and taking an additional observation under the experimental condition ti+1 does not increase

the information of the experiment. For this reason we assume throughout this paper that

t1 < . . . < tn. In this case the matrix Σξ is invertible and a straightforward calculation yields

Σ−1
ξ = V T

ξ Vξ, where the matrix Vξ is defined by

Vξ =




1 0 0 · · · 0 0

− λ(t2−t1)√
1−λ2(t2−t1)

1√
1−λ2(t2−t1)

0 · · · 0 0

0 − λ(t3−t2)√
1−λ2(t3−t2)

1√
1−λ2(t3−t2)

· · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · − λ(tn−tn−1)√
1−λ2(tn−tn−1)

1√
1−λ2(tn−tn−1)




.

This is a straightforward generalization of the situation considered in ANOVA-models, see

e.g. Kunert (1985).

The weighted least squares estimate of β is given by β̂ = (XT
ξ V T

ξ VξXξ)
−1XT

ξ V T
ξ VξY with

covariance matrix

Cov(β̂) = (XT
ξ V T

ξ VξXξ)
−1.

An exact D-optimal design ξ∗ minimizes the determinant det(Cov(β̂)) with respect to the

choice of the experimental design ξ = {t1, . . . , tn}. This is equivalent to maximize det Mξ,

where the matrix Mξ is given by

Mξ = XT
ξ V T

ξ VξXξ. (2.3)

In the following sections we will concentrate on the linear (p = 2, f1(t) = 1, f2(t) = t)

and the quadratic regression model (p = 3, f1(t) = 1, f2(t) = t, f3(t) = t2). We finally

note that asymptotic optimal designs for a regression model with correlated errors have

been studied by Bickel and Herzberg (1979) and Bickel, Herzberg and Schilling (1981) for

the constant regression and the regression through the origin. These authors considered

asymptotic optimal designs for the ordinary least squares problem and a correlation structure

of the the form Cov(Yt, Ys) = γρ(t− s) + (1− γ)δts, where γ ∈ [0, 1], ρ is an appropriate

function defined on the interval [0, 1] and δ denotes Kronecker’s symbol. Note that in the
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case γ < 1 the diagonal elements in this covariance matrix are always larger than the off-

diagonal elements, such that repeated observations at the same point would give additional

information. In contrast to these authors, who studied asymptotic optimal designs for least

squares estimation, we concentrate on exact optimal designs and the more general regression

model (2.1).

3 The linear regression model

We start with the simple linear regression model

Yti = µ + βti + εti , i = 1, . . . , n, (3.1)

the quadratic model is investigated in Section 5. We first derive a more transparent represen-

tation of the determinant of the matrix Mξ defined in (2.3). For this purpose we introduce

the notation d1 = 0, di = ti − ti−1, 2 ≤ i ≤ n, a1 = 1, b1 = 0,

aj =
1√

1− λ2dj
, bj =

λdj

√
1− λ2dj

, j = 2, . . . , n,

and find that

VξXξ =




1 t1
a2 − b2 t1(a2 − b2) + d2a2

a3 − b3 t1(a3 − b3) + d2(a3 − b3) + d3a3

an − bn t1(an − bn) + (d2 + . . . + dn−1)(an − bn) + dnan




.

From the Cauchy-Binet formula [see Karlin and Studden (1966)] we obtain for the determi-

nant of the matrix (2.3)

det Mξ = det XT
ξ V T

ξ VξXξ

=
∑

1≤i<j≤n

det2

(
ai − bi t1(ai − bi) + (d1 + · · ·+ di−1)(ai − bi) + diai

aj − bj t1(aj − bj) + (d1 + · · ·+ dj−1)(aj − bj) + djaj

)

=
∑

1≤i<j≤n

det2

(
ai − bi (d1 + · · ·+ di−1)(ai − bi) + diai

aj − bj (d1 + · · ·+ dj−1)(aj − bj) + djaj

)
. (3.2)

It therefore follows that a design ξ̃ with points t̃1 = 0, t̃2 = t2− t1, ..., t̃n = tn− t1 yields the

same value in the D-criterion as the design ξ with points t1, . . . , tn, i.e. det Mξ = det Mξ̃.

Note that all points t̃i are located in the interval [0, 1], and therefore the design ξ̃ is in

fact of interest. We begin with a technical Lemma, that will be helpful for the numerical

determination of optimal designs in Section 4.
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Lemma 3.1. Let ξ̃ = {1 − tn, . . . , 1 − t1} denote the design obtained from ξ = {t1, . . . , tn}
by reflecting the points ti at t = 1/2, then det Mξ̃ = det Mξ, where the matrix Mξ is defined

in (2.3) with p = 2, f1(t) = 1 and f2(t) = t.

Proof. Note that the determinants in the representaion (3.2) can be rewritten as

det2

(
ai − bi aiti − biti−1

aj − bj ajtj − bjtj−1

)
.

Now a careful calculation of the expressions for ai, bi and di for the design ξ̃ yields the

assertion of the Lemma. 2

Proposition 3.2. Let ξ be an arbitrary design with points 0 ≤ t1 < . . . < tn ≤ 1, and define

ξ∗ as the design which advises the experimenter to take observations at the points t∗1 = 0,

t∗2 = t2 − t1 = d2, t∗3 = t3 − t1 = d2 + d3, ..., t∗n−1 = tn−1 − t1 = d2 + · · · + dn−1, and

t∗n = 1. Then the design ξ∗ performs at least as good under the D-criterion as the design ξ,

i.e. det Mξ ≤ det Mξ∗ .

Proof. We have already seen that a design ξ̃ defined in the previous paragraph yields the

same value of the D-criterion as ξ. The only difference between the designs ξ∗ and ξ̃ is that

the point t∗n ∈ [0, 1] is as large as possible and therefore ξ∗ has the largest possible value for

dn. We now show that the derivative of the function det(XT
ξ̃
V T

ξ̃
Vξ̃Xξ̃) with respect to the

variable dn is positive which proves the assertion of the proposition. For the design ξ̃, define

fi(dj) = det

(
ai − bi (d1 + · · ·+ di−1)(ai − bi) + diai

aj − bj (d1 + · · ·+ dj−1)(aj − bj) + djaj

)

for 1 ≤ i < j ≤ n. It follows from (3.2) that

det Mξ̃ =
∑

1≤i<j≤n

(fi(dj))
2

and, therefore,
∂

∂dn

det Mξ̃ =
∑

1≤i<n

2fi(dn)f ′i(dn),

where f ′i(dn) is the derivative of fi(dn) with respect to the variable dn. Consequently, it is

sufficient to show that fi(dn) > 0 and f ′i(dn) > 0 for all 1 ≤ i < n and for all 0 < dn ≤ 1.

For this purpose we note for 2 ≤ j ≤ n and dj > 0 that aj = (aj−bj)/(1− λdj). Consequently,

for 2 ≤ i < n, we can rewrite

fi(dn) = det

(
ai − bi (d1 + · · ·+ di−1 + di

1−λdi
)(ai − bi)

an − bn (d1 + · · ·+ dn−1 + dn

1−λdn )(an − bn)

)

= (ai − bi)(an − bn)[di+1 + · · ·+ dn−1 + g(dn) + `(di)],
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where the functions g and ` are defined as g(x) = x
1−λx and `(x) = x − x

1−λx , respectively.

Note that aj − bj ≥ 0 for all j, which yields

fi(dn) ≥ (ai − bi)(an − bn)[g(dn) + `(di)].

If x → 0 we have g(x) → −1/ln λ > 0, and the derivative of g equals

g′(x) =
1

(1− λx)2
(1− λx + xλx ln λ).

Let h(x) be the numerator of g′. Then h(0) = 0, while the derivative h′ fulfills

h′(x) = −λx ln(λ) + λx ln(λ) + xλx(ln λ)2 = xλx(ln λ)2 > 0,

for all x > 0. Consequently, h(x) > 0 for all x > 0 and it follows that g′(x) > 0. Therefore

we obtain

g(x) > lim
x→0

g(x) = − 1

ln λ

for all x > 0. On the other hand,

`′(x) = 1− 1

(1− λx)2
(1− λx + xλx ln λ) = − λx

(1− λx)2
(1− λx + x ln λ).

Defining q(x) = 1−λx +x ln λ, we find that its derivative equals q′(x) = −λx ln λ+ln λ < 0,

which yields q(x) < q(0) = 0, for all x > 0. Therefore it follows that `′(x) > 0, for all x > 0

and

`(x) > lim
x→0

`(x) =
1

ln λ

for all x > 0. In all, we have shown for all di ≥ 0 and for all dn > 0 that g(dn) + `(di) >

−1/ln λ + 1/ln λ = 0. This, however, implies that

fi(dn) > 0,

for all 2 ≤ i < n and all dn > 0. Now consider f ′i(dn). We obtain for 2 ≤ i < n that

f ′i(dn) = (ai − bi)(a
′
n − b′n)(di+1 + · · ·+ dn−1 + g(dn) + `(di)) + (ai − bi)(an − bn)g′(dn),

where (a′n−b′n) is the derivative of (an−bn) with respect to the variable dn. We have already

seen that ai − bi > 0, an − bn > 0, g′(dn) > 0 and that di+1 + · · ·+ dn−1 + g(dn) + `(di) > 0.

Since

an − bn =
1√

1− λ2dn
(1− λdn) =

√
1− λdn

1 + λdn
,

we obtain for the derivative a′n − b′n

a′n − b′n = − λdn ln λ

(1 + λdn)
√

1− λ2dn
> 0,
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for all dn > 0. Therefore, f ′i(dn) > 0 for all dn > 0 (i = 2, . . . , n− 1).

It remains to consider the case i = 1, where

f1(dn) = det

(
1 0

an − bn (d1 + · · ·+ dn−1 + dn

1−λdn )(an − bn)

)

= (an − bn)(d1 + · · ·+ dn−1 + g(dn)),

which is clearly positive. Similarly, the derivative

f ′1(dn) = (a′n − b′n)(d1 + · · ·+ dn−1 + g(dn)) + (an − bn)g′(dn)

is also positive. Summarizing our arguments we have shown that

∂

∂dn

det Mξ̃ =
∑

1≤i<n

2fi(dn)f ′i(dn) > 0,

for all dn > 0, which yields the assertion of the proposition. 2

Remark 3.3. If dk → 0 for some k ≥ 2, then the corresponding fi(dk) → 0 for all 1 ≤ i < k.

This underlines the fact that a second observation under the same experimental condition

does not provide any additional information in the experiment.

Remark 3.4. Note that in the case λ → 0 we obtain the linear regression model with

uncorrelated observations. In this case the corresponding information matrix Mξ∗(λ) in

(2.3) of the exact D-optimal design does not necessarily converge to the information matrix

of the D-optimal design for uncorrelated observations. For the limiting case of uncorrelated

observations it is well-known that an exact n-point D-optimal design is equal to

ξ∗lim = {0, 0, . . . , 0, 1, . . . , 1}

where k = int(n
2
) observations are taken at each boundary point of the interval [0, 1] and the

last one is taken either at the point 0 or at the point 1 [see Hohmann and Jung (1975)]. For

this design, however, we have that

det Mξ∗lim =
1

1− λ2

irrespective of the sample size n.

We now concentrate on the opposite case λ → 1 which corresponds to highly correlated

observations. The following result shows, that in this case the exact D-optimal design

converges to an equally spaced design on the interval [0, 1].

Theorem 3.5. If λ → 1, then any exact n-point D-optimal design in the linear regres-

sion model with correlation structure (2.2) converges to the equally spaced design ξn =

{0, 1
n−1

, 2
n−1

, . . . , 1}.
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Proof. Recalling the definition

ai =
1√

1− λ2(ti−ti−1)
, bi =

λti−ti−1

√
1− λ2(ti−ti−1)

,

a Taylor expansion at the point λ = 1 yields

(ai − bi)
2 =

ti − ti−1

2
(1− λ) +

ti − ti−1

4
(1− λ)2

−(ti − ti−1)((ti − ti−1)
2 − 4)

24
(1− λ)3 + o((1− λ)3),

(aiti − biti−1)
2 =

ti − ti−1

2
(1− λ)−1 +

(ti − ti−1)(2ti + 2ti−1 − 1)

4

+
ti−1 − 4t3i−1 − ti + 4t3i

24
(1− λ) +

ti−1 − 4t3i−1 − ti + 4t3i
48

(1− λ)2

+o((1−λ)2)

(ai − bi)(aiti − biti−1) =
ti − ti−1

2
+

t2i − t2i−1

4
(1− λ) +

t2i − t2i−1

8
(1− λ)2 + o((1−λ)2).

Proposition 3.2 allows to restrict attention to designs with t1 = 0 and tn = 1. For such

designs,
n∑

i=2

tki − tki−1 = 1

for every k.

From the representation Mξ = (VξXξ)
T (VξXξ) we therefore obtain det Mξ = AB−C2 where

the quantities A, B and C are calculated as follows:

A =
n∑

i=1

(ai − bi)
2 = 1 +

n∑
i=2

(ai − bi)
2

= 1 +
n∑

i=2

(ti − ti−1)
(1− λ

2
+

(1− λ)2

4
+

(1− λ)3

6

)

−
n∑

i=2

(ti − ti−1)
3 (1− λ)3

24
+ o((1−λ)3)

= 1 +
1− λ

2
+

(1− λ)2

4
+

(1− λ)3

6
−

n∑
i=2

(ti − ti−1)
3 (1− λ)3

24
+ o((1−λ)3), (3.3)

where we have used the fact that a1 − b1 = 1. By a similar calculation we obtain

B =
∑

i

(aiti − biti−1)
2 =

(1− λ)−1

2
+

1

4
+

1− λ

8
+

(1− λ)2

16
+ o((1− λ)2), (3.4)

C =
∑

i

(ai − bi)(aiti − biti−1) =
1

2
+

1− λ

4
+

(1− λ)2

8
+ o((1− λ)2), (3.5)
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respectively. Therefore the determinant of the matrix Mξ can be expanded as

det Mξ = (1− λ)−1/2 + 1/4 + (1− λ)/8 + (1− λ)2/12

−
n∑

i=2

(ti − ti−1)
3 (1− λ)2

48
+ o((1− λ)2)

and it follows that the D-optimal design converges (as λ → 1) to the design, which minimizes

the expression
n∑

i=2

(ti − ti−1)
3 =

n∑
i=2

d3
i ,

with di = ti − ti−1, as above. Since
∑n

i=2 di = 1 for the designs considered, it is obvious

that the minimum is attained if and only if all di = 1
n−1

. This completes the proof of the

Theorem. 2

Theorem 3.5 indicates that uniform designs are very efficient for highly correlated data. In

the following section we will demonstrate that even for rather small values of the parameter

λ the equally spaced design ξn = {0, 1/(n− 1), 2/(n− 1), . . . , 1} yields large D-efficiencies.

Before we present these numerical results we briefly discuss the optimal design problem for

estimating the slope in the linear regression model with correlated observations. If the main

interest of the experiment is the estimation of the slope an optimal design should maximize

D1(ξ) = (eT
2 M−1

ξ e2)
−1 =

det Mξ∑n
j=1(aj − bj)2

(3.6)

where e2 = (0, 1)T , a1 = 1, b1 = 0. Throughout this paper optimal designs maximizing the

function in (3.6) are called exact D1-optimal designs.

Theorem 3.6.

(a) Let ξ = {t1, . . . , tn} denote a design and ξ̃ = {1 − tn, . . . , 1 − t1} its reflection at the

point t = 1/2, then D1(ξ) = D1(ξ̃).

(b) If ξ = {t1, . . . , tn} is an exact D1-optimal design for the linear regression model (3.1)

with correlation structure (2.2) , then t1 = 0, tn = 1.

(c) If λ → 1 any exact n-point D1-optimal design for the linear regression model (3.1) with

correlation structure (2.2) converges to the design ξ̄ = {0, t2, t3, . . . , tn−1, 1}, where the

points t2 < . . . < tn−1 minimize the function

S1,2

6
− S1,1

8
− S2,1

18
− S1,3

18
(3.7)

with (t1 = 0, tn = 1)

Sp,q =
n∑

i=2

tpi t
p
i−1(t

q
i − tqi−1). (3.8)
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Proof. Because part (a) and (b) can be proved in a similar manner as Lemma 3.1 and

Proposition 3.2 we restrict ourselves to a proof of part (c). For this we need a more refined

expansion of det Mξ = AB − C2. More precisely we have for the expression A,B, and C in

(3.3), (3.4) and (3.5), respectively,

A = 1 + (1−λ)
2

+ (1−λ)2

4
+ (1 + S1,1)

(1−λ)3

8
+ (1 + 3S1,1)

(1−λ)4

16
+ o((1− λ)4),

B(1− λ)2 = (1−λ)
2

+ (1−λ)2

4
+ (1−λ)3

8
+ (1−λ)4

16
+

(
1
32

+ S2,1+S1,3

72

)
(1− λ)5 + o((1− λ)5) ,

C(1− λ) = (1−λ)
2

+ (1−λ)2

4
+ (1−λ)3

8
+ (3 + 2S1,2)

(1−λ)4

48
+ o((1− λ)4),

A straightforward calculation now yields

det Mξ = (1− λ)−1/2 + 1/4 + (1− λ)/8 + (1 + S1,1)(1− λ)2/16

+(1/32 + S1,1/8− S1,1/24 + (S2,1 + S1,3)/72)(1− λ)3 + o((1− λ)3).

and

{D1(ξ)}−1 =
A

det Mξ

= 2(1− λ) +

(
S1,2

6
− S1,1

8
− S2,1

18
− S1,3

18

)
(1− λ)2 + o((1− λ)2).

Therefore the exact D1-optimal design in the linear regression model with correlation struc-

ture (2.2) converges to the the designs ξ = {0, t2, t3, . . . , tn−1, 1} where the points t2, . . . , tn−1

minimize the function in (3.7). 2

4 Numerical results

In this section we present several numerical results for the exact D-optimal designs maxi-

mizing the determinant in (2.3) in the linear regression model. We will also investigate the

efficiency of the exact D-optimal design ξ∗lim for the linear regression model with uncorrelated

observations and the equally spaced design ξn considered in Theorem 3.5.

Example 4.1. The case n = 3. It follows from Proposition 3.2 that it is sufficient to

search among designs with t1 = 0, t2 = d, say, and t3 = 1. For such a design, the D-criterion

simplifies to

det(XT
ξ V T

ξ VξXξ) =
2
(
(1− (1− d)λd)(1− dλ1−d)− d(1− d)

)

(1− λ2d)(1− λ2(1−d))
= ψ(d), (4.1)

say. Therefore the exact D-optimal design can be determined maximizing the function ψ

with respect to d ∈ (0, 1). From Lemma 3.1, it is obvious that this function is symmetric

around the point d = 1/2.

We have evaluated this criterion numerically for several values of the parameter λ. It turns

out that for a broad range of the parameter λ the determinant is maximal at d = 1/2. In

other words, if the parameter λ is not too small, then the design ξ = {0, 1/2, 1} is D-optimal

11
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Figure 4.1: The function ψ defined in (4.1) in the case λ = 0.1 (left panel) and λ = 0.001

(middle panel). In the case λ = 0.1 the maximum is attained at the point d = 1/2 and the

exact D-optimal design for the linear regression model (3.1) with correlation structure (2.2)

and n = 3 observations is equally spaced at 0, 1/2 and 1. If λ = 0.0001 there are two maxima

of ψ corresponding to the two exact D-optimal designs {0, 0.2459, 1} and {0, 0.7541, 1}. The

right panel shows the second derivative of the function ψ at d = 1/2 for some small λ.

for the linear regression model (3.1). A typical example corresponding to the case λ = 0.1

is depicted in the left panel of Figure 4.1. If λ approaches 0 the situation changes and is

more complicated. For extremely small values of the parameter λ, there are usually two non

equally spaced exact D-optimal designs. In the middle part of Figure 4.1 we show the curve

corresponding to the function ψ for the case λ = 0.0001. In this case the function ψ has a

local minimum at the point d = 1/2 and there are in fact two global maxima corresponding

to two different D-optimal designs, given by {0, 0.2459, 1} and {0, 0.7541, 1}.
To continue these investigations we consider the second derivative of the function ψ at the

point d = 1/2,

ψ′′(1/2) = −4

(
λ + 1/2

√
λ (ln (λ))2 − 2

√
λ ln (λ)− 1− (−4

√
λ+λ+3)λ(ln(λ))2

(1−λ)2

)

(1− λ)2
, (4.2)

for various values of λ. This function is depicted in the right panel of Figure 4.1 and negative

whenever λ > 0.0007798 = λ∗, say. It is positive whenever λ < λ∗, which leads us to the

conjecture that the optimum design is equally spaced at the points 0, 1/2, 1 for all λ ≥ λ∗.
In the case λ < λ∗, the optimal design is not equally spaced and places the inner point nearer

to the boundary of the design space. Based on an exhaustive numerical search we confirmed

this conjecture and derived the following numerical result.

Numerical Result 4.2. For the linear regression with correlated observations an exact 3-

point D-optimal design is given by ξ3 = {0, 1/2, 1} if and only if λ ≥ λ∗ and by the design

ξ∗ = {0, d, 1} or {0, 1 − d, 1} if and only if λ < λ∗. Here d = d(λ) ∈ [0, 1/2) is the unique

solution of the equation ψ′(d) = 0, where the function ψ is defined in (4.1).

In Table 4.1 we display the non-trivial point of the exact D-optimal designs for weighted

12



least squares estimation in the linear regression model (3.1) with correlation structure (2.2)

and n = 3 observations. The table also shows the D-efficiency,

eff(ξ∗lim) =

√
det(XT

ξ∗lim
V T

ξ∗lim
Vξ∗limXξ∗lim)

√
det(XT

ξ∗V
T
ξ∗Vξ∗Xξ∗)

,

of the design ξ∗lim, which is D-optimal for uncorrelated observations, and the analogously

defined efficiency of the equally spaced design ξ3. We observe that the equally spaced design

is extremely efficient for the estimation of the parameters in the linear regression model with

correlated observations.

Table 4.1: The non-trivial point d(λ) of the exact D-optimal designs for weighted least squares

estimation in the linear regression model (3.1) with correlation structure (2.2) and n = 3

observations for various values of the parameter λ. The exact D-optimal design is given

by ξ∗ = {0, d(λ), 1}. The table also shows the D-efficiency of the design ξ∗lim = {0, 0, 1},
D-optimal for uncorrelated observations, and the efficiency of the equally spaced design ξ3 =

{0, 0.5, 1}.

λ .9 .5 .1 .01 .001 10−4 10−5 10−6 10−7 10−8 10−9 10−10

d(λ) .5 .5 .5 .5 .5 .305 .246 .211 .187 .169 .155 .143

eff(ξ3) 1.0 1.0 1.0 1.0 1.0 .995 .983 .972 .962 .954 .947 .941

eff(ξ∗lim) .999 .996 .944 .867 .831 .817 .804 .794 .786 .779 .773 .768

Example 4.3: The case n = 4, 5, 6. In the case n = 4 it follows from Theorem 4.1 that

the exact D-optimal design for the linear regression model (3.1) with correlation structure

(2.2) is of the form ξ∗ = {0, t2, t3, 1}. However, our extensive numerical study shows that

the exact 4-point D-optimal design has an even simpler form, which is given by

{0, d, 1− d, 1},

where the point d = d(λ) ∈ (0, 0.5). In the first part of Table 4.2 we present the D-

optimal designs for the linear regression model (3.1) with correlation structure (2.2) and

n = 4 observations for various values of λ. We also display the D-efficiencies of the designs

ξ∗lim = {0, 0, 1, 1} and the equally spaced design ξ4 = {0, 1/3, 2/3, 1}. It is interesting to

note that the equally spaced design is again very efficient for all values of the parameter λ.

The design ξ∗lim which is D-optimal for uncorrelated observations is very efficient for highly

correlated data and gets less efficient if λ → 0.

The situation in the cases n = 5 and n = 6 is very similar. Exact optimal designs for

n = 5 and n = 6 observations are displayed in the second and third part of Table 4.2,

respectively. Our numerical results show that for five observations the exact D-optimal

13



Table 4.2: The non-trivial support points of the exact D-optimal designs for weighted least

squares estimation in the linear regression model (3.1) with correlation structure (2.2) and

n = 4 (first row), n = 5 (second row) and n = 6 (third row) observations. The exact D-

optimal design is of the form (4.3) or (4.4) if n is even or odd, respectively. The table also

shows the D-efficiency of the design ξ∗lim, D-optimal for uncorrelated observations, and the

efficiency of the equally spaced design ξn.

n = 4

λ .9 .5 .1 .01 .001 10−4 10−5 10−6 10−7 10−8 10−9 10−10

d(λ) .332 .328 .317 .303 .281 .249 .217 .192 .174 .159 .146 .136

eff(ξ4) 1.0 1.0 1.0 .998 .993 .982 .966 .947 .930 .914 .900 .888

eff(ξ∗lim) 1.0 .996 .928 .806 .731 .689 .662 .642 .626 .614 .604 .596

n = 5

λ .9 .5 .1 .01 .001 10−4 10−5 10−6 10−7 10−8 10−9 10−10

d1(λ) .249 .243 .233 .224 .215 .204 .191 .181 .167 .153 .142 .133

d2(λ) .5 .5 .5 .5 .5 .5 .5 .424 .345 .304 .276 .255

eff(ξ5) 1.0 1.0 1.0 1.0 .996 .991 .984 .975 .962 .947 .931 .917

eff(ξ∗lim) 1.0 1.0 .922 .780 .685 .628 .594 .573 .556 .542 .530 .521

n = 6

λ .9 .5 .1 .01 .001 10−4 10−5 10−6 10−7 10−8 10−9 10−10

d1(λ) .199 .194 .184 .177 .171 .164 .156 .146 .134 .124 .115 .107

d2(λ) .399 .397 .391 .385 .380 .372 .361 .340 .311 .283 .261 .242

eff(ξ6) 1.0 1.0 1.0 .999 .997 .993 .988 .981 .970 .957 .942 .927

eff(ξ∗lim) 1.0 .995 .919 .767 .659 .591 .548 .519 .499 .483 .469 .458

design is of the form {0, d1, d2, 1 − d1, 1} (or its reflection at the point t = 1/2), where

d1 = d1(λ) ∈ (0, 0.5) and d2 = d2(λ) ∈ (0, 0.5]. Similarly, exact D-optimal designs for the

linear regression model (3.1) with correlation structure (2.2) and n = 6 observations are of

the form {0, d1, d2, 1 − d2, 1 − d1, 1}, where d1 = d1(λ) ∈ (0, 0.5) and d2 = d2(λ) ∈ (0, 0.5).

We have also performed calculations for a larger sample size but the results are not presented

here for the sake of brevity. However the structure of the exact D-optimal designs can be

described as follows: If n = 2k our numerical calculations indicate that an exact 2k-point

D-optimal design is of the form

{0, d1, . . . , dk−1, 1− dk−1, . . . , 1− d1, 1}, (4.3)

where di = di(λ) ∈ (0, 0.5) while in the case n = 2k + 1 an exact 2k + 1-point D-optimal

design is of the form

{0, d1, . . . , dk−1, dk, 1− dk−1, . . . , 1− d1, 1} (4.4)

(or its reflection at the point t = 1/2, where di = di(λ) ∈ (0, 0.5).
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Table 4.3: The non-trivial points of the exact optimal designs for weighted least squares

estimation of the slope in the linear regression model (3.1) with correlation structure (2.2)

and n = 3 (first row), n = 4 (second row), n = 5 (third row) and n = 6 (fourth row)

observations. The exact D1-optimal design is of the form (4.3) or (4.4) if n is even or

odd, respectively. The table also shows the D1-efficiency of the design ξ∗lim, D1-optimal for

uncorrelated observations, and the efficiency of the equally spaced design ξn.

n = 3

λ .9 .5 .1 .01 .001 10−4 10−5 10−6 10−7 10−8 10−9 10−10

d(λ) .146 .147 .151 .151 .145 .136 .126 .118 .110 .103 .097 .092

eff1(ξ3) 1.0 1.0 .996 .975 .947 .923 .904 .888 .876 .866 .857 .850

eff1(ξ
∗
lim) 1.0 1.0 .996 .975 .947 .923 .904 .888 .876 .866 .857 .850

n = 4

λ .9 .5 .1 .01 .001 10−4 10−5 10−6 10−7 10−8 10−9 10−10

d(λ) .180 .180 .178 .172 .163 .153 .142 .133 .124 .116 .109 .103

eff1(ξ4) 1.0 1.0 .996 .973 .935 .895 .858 .826 .799 .777 .759 .743

eff1(ξ
∗
lim) 1.0 1.0 .990 .941 .877 .823 .780 .747 .721 .700 .683 .669

n = 5

λ .9 .5 .1 .01 .001 10−4 10−5 10−6 10−7 10−8 10−9 10−10

d1(λ) .186 .186 .184 .177 .168 .158 .147 .138 .129 .121 .114 .107

d2(λ) .239 .239 .238 .235 .229 .221 .211 .200 .190 .180 .171 .163

eff1(ξ5) 1.0 1.0 .998 .986 .962 .931 .898 .866 .837 .812 .789 .769

eff1(ξ
∗
lim) 1.0 1.0 .989 .935 .863 .800 .749 .710 .679 .654 .634 .617

n = 6

λ .9 .5 .1 .01 .001 10−4 10−5 10−6 10−7 10−8 10−9 10−10

d1(λ) .112 .112 .111 .109 .106 .102 .098 .093 .089 .085 .081 .077

d2(λ) .252 .251 .250 .246 .239 .231 .221 .210 .200 .190 .181 .172

eff1(ξ6) 1.0 1.0 .999 .989 .970 .943 .913 .882 .852 .823 .798 .775

eff1(ξ
∗
lim) 1.0 1.0 .988 .928 .847 .774 .715 .669 .632 .603 .579 .559

Example 4.4: Estimation of the slope. In this example we briefly present some exact

optimal designs for weighted least squares estimation of the slope in the linear regression

model. some exact optimal designs for weighted least squares estimation of the slope in the

linear regression model. In Table 4.3 we show the exact optimal designs for sample size

n = 3, 4, 5, 6. We also present the D1-efficiency

eff1(ξ) =
D1(ξ)

D1(ξ∗1)

of the equally spaced design and the exact D1-optimal design obtained under the assumption

of uncorrelated observations. The form of the D1 optimal design is given in (4.3) and (4.4)
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corresponding to the cases of an even and odd number of observations, respectively. Note

that the optimal designs for estimating the slope are more concentrated at the boundary

of the experimental region. For example, if n = 4, λ = 0.01, the exact D-optimal design

for weighted least squares estimation is given by ξ∗ = {0, 0.303, 0.697, 1}, while the exact

D1-optimal design is {0, 0.172, 0.828, 1}. As a consequence the design ξ∗lim for the linear

regression model with uncorrelated observations (which is the same for the D- and D1-

optimality criterion) yields larger efficiencies for estimating the slope, while the equally

spaced design is less efficient for this purpose.

5 Exact optimal designs for quadratic regression

In this section we briefly discuss the problem of determining exact D-optimal designs for

weighted least squares estimation in the quadratic regression model

Yti = β1 + β2t
2
i + β3t

2
i + εti i = 1, . . . , n (5.1)

with an autoregressive error of the form (2.2). In all cases the exact optimal designs have

to be determined numerically. However, it can be shown by similar arguments as presented

in Section 3 that Proposition 3.2 also holds in the quadratic regression model. Moreover,

the symmetry property in Lemma 3.1 is also valid in the quadratic case and it is possible to

derive an analogue of Theorem 3.5 for highly correlated data.

Theorem 5.1.

(a) Let ξ− = {1 − tn, . . . , 1 − t1} denote the design obtained from ξ = {t1, . . . , tn} by

reflecting the points ti at the center t = 1/2, then det Mξ = det Mξ− , where the matrix

Mξ is defined in (2.3) with p = 3, f1(t) = 1, f2(t) = t, f3(t) = t2.

(b) An exact D-optimal design ξ∗n = {t1, . . . , tn} for weighted least squares estimation in

the quadratic regression model (5.1) with correlation structure (2.2) satisfies t1 = 0

and tn = 1.

(c) If λ → 1, then any exact n-point D-optimal design for weighted least squares estimation

in the quadratic regression model (5.1) with correlation structure (2.2) converges to the

equally spaced design ξn = {0, 1/(n− 1), 2/(n− 1), . . . , 1}.

Proof. We only prove part (c) of the Theorem. The remaining statements follow by similar

arguments as presented in Section 3. If λ → 1 the elements of the matrix

Mξ =




A C D

C B E

D E F



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Table 5.1: The non-trivial points of the exact D-optimal designs for weighted least squares

estimation in the quadratic regression model (5.1), correlation structure (2.2) and n = 4

(first row), n = 5 (second row) and n = 6 (third row) observations. The exact D-optimal

design is given by (4.3) or (4.4) if n is even or odd, respectively. The table also shows the

D-efficiency of the designs ξ∗lim = {0, 1/2, 1/2, 1} (n=4), ξ∗lim = {0, 1/2, 1/2, 1/2, 1} (n =

5), ξ∗lim = {0, 0, 1/2, 1/2, 1, 1} (n = 6), D-optimal for uncorrelated observations, and the

efficiency of the equally spaced design ξn.

n = 4

λ .9 .5 .1 .01 .001 10−4 10−5 10−6 10−7 10−8 10−9 10−10

d(λ) .333 .335 .345 .355 .362 .369 .378 .386 .394 .400 .407 .412

eff(ξ4) 1.0 1.0 1.0 .998 .995 .992 .988 .984 .981 .978 .975 .973

eff(ξ∗lim) .945 .944 .929 .892 .860 .840 .828 .820 .815 .811 .809 .807

n = 5

λ .9 .5 .1 .01 .001 10−4 10−5 10−6 10−7 10−8 10−9 10−10

d1(λ) .250 .252 .265 .273 .274 .276 .279 .286 .294 .304 .315 .325

d2(λ) .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500

eff(ξ5) 1.0 1.0 1.0 .999 .998 .998 .997 .996 .995 .993 .992 .990

eff(ξ∗lim) .928 .926 .907 .854 .803 .767 .744 .730 .722 .716 .712 .710

n = 6

λ .9 .5 .1 .01 .001 10−4 10−5 10−6 10−7 10−8 10−9 10−10

d1(λ) .200 .202 .215 .220 .214 .208 .201 .194 .182 .164 .142 .124

d2(λ) .400 .401 .407 .410 .409 .409 .408 .409 .410 .412 .415 .419

eff(ξ6) 1.0 1.0 1.0 .999 .999 .999 .999 .999 .998 .996 .992 .987

eff(ξ∗lim) .921 .919 .897 .835 .772 .724 .690 .668 .653 .642 .634 .627

satisfy

A = 1 +
(1− λ)

2
+

(1− λ)2

4
+ (1+S1,1)

(1− λ)3

8
+ (1+3S1,1)

(1− λ)4

16
+ o((1−λ)4),

B(1− λ)2 =
(1− λ)

2
+

(1− λ)2

4
+

(1− λ)3

8
+

(1− λ)4

16
+ o((1− λ)4),

C(1− λ) =
(1− λ)

2
+

(1− λ)2

4
+

(1− λ)3

8
+ (3 + 2S1,2)

(1− λ)4

48
+ o((1− λ)4),

D(1− λ) =
(1− λ)

2
+ (1− S1,1)

(1− λ)2

4
+ (1− S1,1)

(1− λ)3

8
+ o((1− λ)3),

E(1− λ)2 =
(1− λ)

2
+

(1− λ)2

4
+ (3− 2S1,2)

(1− λ)3

24
+ o((1− λ)3),

F (1− λ)2 = (1 + S1,1)
(1− λ)

2
+ (1− S1,1)

(1− λ)2

4
+ o((1− λ)2),
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where S1,1 and S1,2 are defined in (3.8). A straightforward calculation of the determinant of

the matrix Mξ now yields the expansion

det Mξ =
1

16
S1,1(1− λ)−2 + o((1− λ)−2).

and the assertion follows by the same arguments as presented in the proof of Theorem 3.5.

2

Numerical calculations show that the exact optimal designs are of the form (4.3) in the case

n = 2k and (4.4) in the case n = 2k + 1. In Table 5.1 we display the exact D-optimal

designs for weighted least squares estimation in the quadratic regression model with n = 4,

n = 5 and n = 6 correlated observations for various values of the parameter λ. In the case

n = 3 the equally spaced design ξ3 = {0, 1/2, 1} is D-optimal. We also show the D-efficiency

of the equally spaced design ξn and the efficiency of the exact D-optimal design under the

assumption of uncorrelated observations [see Gaffke and Krafft (1982)]. We observe that

the equally spaced design is extremely efficient for weighted least squares analysis in the

quadratic regression model with autoregressive errors of the form (2.2). For example, if

n = 5 observations can be taken, the D-efficiency of the design ξ5 is at least 99.0% if the

parameter λ varies in the interval [10−10, 1). It is also interesting to see that the exact D-

optimal does not change substantially with the parameter λ. For example if λ = 0.5 and

λ = 10−7 the exact optimal designs differ only by one point, which is 0.252 in the first and

0.294 in the second case, respectively.

We finally briefly compare the exact optimal designs for linear and quadratic regression. First

we note that the optimal designs for the linear regression model are usually more concentrated

at the boundary, in particular if λ is not too large. For example in the case n = 6 , λ = 0.001

the nontrivial points in the interval [0, 0.5] are .171, .380 and .214, .409 corresponding to the

linear and quadratic case. Secondly, both exact optimal designs approach the equally spaced

design if λ → 1. Therefore, it is intuitively clear that for highly correlated data the optimal

design for the quadratic model is also very efficient in the linear model and vice versa. For

example, if n = 6 and λ = 0.01 the efficiency of the D-optimal design for the quadratic

model in the linear regression is 99.7% and the efficiency of the D-optimal design for the

linear model in the quadratic regression is 99.5%.

6 Ordinary least squares estimation

In this section we briefly discuss exact D-optimal design problems for ordinary least squares

estimation in the linear and quadratic model with correlation structure (2.2). Note that the

covariance matrix of the ordinary least squares estimator is given by

M̃−1
ξ = (XT

ξ Xξ)
−1(XT

ξ (V T
ξ Vξ)

−1Xξ)(X
T
ξ Xξ)

−1 (6.1)

where the matrices Xξ and Vξ are defined in Section 2. An exact D-optimal design for

ordinary least squares estimation in a model with correlation structure (2.2) maximizes

det M̃ξ.
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Theorem 6.1. Consider the linear or quadratic regression model.

(a) Let ξ̃ = {1 − tn, . . . , 1 − t1} denote the design obtained from ξ = {t1, . . . , tn} by the

reflection at the point t = 1/2, then det M̃ξ̃ = det M̃ξ, where the matrix M̃ξ is defined

in (6.1).

(b) Any exact D-optimal ξ = {t1, . . . , tn} design for ordinary least squares estimation

maximizing det M̃ξ satisfies t1 = 0, tn = 1.

Table 6.1: The non-trivial point of the exact D-optimal designs for ordinary least squares

estimation in the linear regression model (3.1) with correlation structure (2.2) and n = 3

(first row), n = 4 (second row), n = 5 (third row) and and n = 6 (fourth row) observations.

The exact D-optimal design is given by (4.3) or (4.4) if n is even or odd, respectively.

The table also shows the D-efficiency of the exact D-optimal design ξ∗lim for uncorrelated

observations and the efficiency of the equally spaced design.

n = 3

λ .9 .5 .1 .01 .001 10−4 10−5 10−6 10−7 10−8 10−9 10−10

d(λ) .000 .000 .500 .500 .500 .308 .247 .212 .188 .170 .155 .143

eff(ξ3) .997 .994 1.0 1.0 1.0 .995 .983 .972 .962 .954 .947 .941

eff(ξ∗lim) 1.0 1.0 .950 .867 .833 .818 .805 .794 .786 .779 .773 .768

n = 4

λ .9 .5 .1 .01 .001 10−4 10−5 10−6 10−7 10−8 10−9 10−10

d(λ) .000 .000 .334 .312 .288 .253 .219 .193 .174 .159 .147 .136

eff(ξ4) .986 .977 1.0 .999 .994 .983 .967 .948 .930 .914 .900 .888

eff(ξ∗lim) 1.0 1.0 .950 .813 .734 .690 .662 .642 .627 .614 .604 .596

n = 5

λ .9 .5 .1 .01 .001 10−4 10−5 10−6 10−7 10−8 10−9 10−10

d1(λ) .000 .000 .000 .216 .216 .207 .194 .183 .167 .154 .142 .133

d2(λ) .000 .000 .500 .500 .500 .500 .500 .433 .348 .307 .278 .256

eff(ξ5) .975 .961 .978 .997 .996 .991 .985 .976 .963 .947 .932 .918

eff(ξ∗lim) 1.0 1.0 .941 .795 .690 .630 .595 .573 .556 .542 .531 .521

n = 6

λ .9 .5 .1 .01 .001 10−4 10−5 10−6 10−7 10−8 10−9 10−10

d1(λ) .000 .000 .000 .135 .164 .165 .159 .149 .137 .125 .116 .108

d2(λ) .000 .402 .339 .387 .388 .380 .368 .346 .315 .286 .263 .244

eff(ξ6) .966 .946 .951 .992 .995 .993 .989 .982 .971 .958 .943 .928

eff(ξ∗lim) 1.0 .997 .929 .788 .668 .595 .550 .521 .500 .483 .470 .459

In Table 6.1 we display the exact D−optimal designs for ordinary least squares estimation

in a linear regression model with correlation structure (2.2). The corresponding results for
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the quadratic regression model are shown in Table 6.2, where for 3 observations the equally

spaced design ξ3 = {0, 1/2, 1} is D-optimal independently of λ. In the case of a linear

regression model these designs exhibit an interesting behaviour. There exist a threshold,

say λ∗ such that the exact D-optimal design for uncorrelated observations is also D-optimal

for the correlation structure (2.2), whenever λ > λ∗. If λ < λ∗ the structure of the designs

changes and the optimal designs can be found in Table 6.1. Such a threshold does not

exist for the quadratic regression model. In both cases the equally spaced design is again

very efficient, while the loss of efficiency of the exact D-optimal design for uncorrelated

observations may be substantial if the correlation is small.

It is also of interest to compare these designs with the optimal designs for weighted least

squares analysis derived in Section 4 and 5. In the linear regression the D-optimal designs for

ordinary and weighted least squares estimation do not differ substantially if the correlation

is small. For example, if λ = 0.01, n = 5 the optimal design for weighted least squares

estimation is {0, 0.224, 0.5, 0.776, 1}, while the optimal design for ordinary least squares

estimation is {0, 0.216, 0.5, 0.784, 1}. However, if the correlation is larger, the difference is

more substantial, because the optimal design for ordinary least squares estimation advices

the experimenter to take repeated observations at the boundary of the experimental region.

In the quadratic model the situation is similar, but the differences for strongly correlated data

are smaller. For example, if n = 6, λ = 0.9 the D-optimal design for weighted least squares

estimation is {0, 0.2, 0.4, 0.6, 0.8, 1} while the D-optimal design for ordinary least squares

regression is {0, 0.290, 0.413, 0.587, 0.710, 1}. We finally note that the equally spaced design is

very efficient for ordinary least squares estimation. These observations are in accordance with

the results of Bickel, Herzberg and Schilling (1981), who argued by asymptotic arguments

that for a large sample size the equally spaced design should be nearly optimal for estimating

the slope or intercept in a linear regression with autocorrelation structure (2.2) by ordinary

least squares.
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Table 6.2: The non-trivial points of the exact D-optimal designs for ordinary least squares

estimation in the quadratic regression model (5.1) with correlation structure (2.2) and n = 4

(first row), n = 5 (second row) and n = 6 (third row) observations. The exact D-optimal

design is given by (4.3) or (4.4) if n is even or odd, respectively. The table also shows the D-

efficiency of the exact D-optimal design ξ∗lim for uncorrelated observations and the efficiency

of the equally spaced design.

n = 4

λ .9 .5 .1 .01 .001 10−4 10−5 10−6 10−7 10−8 10−9 10−10

d(λ) .352 .356 .359 .359 .363 .369 .378 .386 .393 .400 .407 .412

eff(ξ4) .999 .999 .998 .996 .994 .992 .988 .984 .981 .978 .975 .973

eff(ξ∗lim) .951 .950 .933 .894 .861 .840 .828 .820 .815 .811 .809 .807

n = 5

λ .9 .5 .1 .01 .001 10−4 10−5 10−6 10−7 10−8 10−9 10−10

d1(λ) .304 .310 .305 .288 .279 .278 .280 .286 .294 .304 .315 .325

d2(λ) .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500

eff(ξ5) .996 .995 .994 .996 .997 .997 .997 .996 .995 .993 .992 .990

eff(ξ∗lim) .944 .943 .920 .861 .805 .768 .744 .730 .722 .716 .712 .710

n = 6

λ .9 .5 .1 .01 .001 10−4 10−5 10−6 10−7 10−8 10−9 10−10

d1(λ) .290 .301 .289 .250 .228 .215 .206 .197 .186 .168 .144 .126

d2(λ) .413 .422 .425 .415 .410 .409 .408 .408 .409 .411 .415 .419

eff(ξ6) .991 .989 .990 .994 .998 .999 .999 .999 .998 .996 .993 .987

eff(ξ∗lim) .945 .945 .921 .850 .780 .727 .691 .668 .653 .643 .635 .627
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