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Abstract

We present a new approach to handle dependencies within the general

framework of case-control designs, illustrating our approach by a particular

application from the field of genetic epidemiology. The method is derived

for parent-offspring trios, which will later be relaxed to more general family

structures. For applications in genetic epidemiology we consider tests on

equality of allele frequencies among cases and controls utilizing well-known

risk measures to test for independence of phenotype and genotype at the

observed locus. These test statistics are derived as functions of the entries

in the associated contingency table containing the numbers of the alleles

under consideration in the case and the control group. We find the joint

asymptotic distribution of these entries, which enables us to derive critical

values for any test constructed on this basis. A simulation study reveals

the finite sample behavior of our test statistics.
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1 Introduction

The aim of this article is to give a new approach to handle data of relatives

within a case-control study. We first introduce our method for the situation of

parent-child trios with no missing observations, and show later in the discussion

how to modify the tests for more general data situations such as more complex

pedigrees and missing data. Our approach is based on commonly tests to analyze

contingency tables, namely the odds ratio, the attributable risk, and the relative

risk. We derive the asymptotic distributions of these test statistics by establishing

a general result on the asymptotic normality of the (appropriately standardized)

entries of the contingency table. To illustrate our approach we refer to a particular

application in genetic epidemiology where the null hypothesis of identical cell

probabilities for cases and controls is equivalent to the independence of a specific

genotype from the phenotype.

Most methods to detect association with disease in the literature are either pure

population based (case-control samples with unrelated individuals only) or pure

family based, where parental (founder) genotypes are used to construct tests of

association that are entirely contained within the family and thus robust to popu-

lation stratification. The TDT, for example, which was introduced by Spielman,

McGinnis & Ewens (1993), uses nontransmitted parental alleles of a case as a

control sample, analyzing the data by a McNemar statistic. Case-control stud-

ies, however, tend to have a better power than pure family based procedures;

see, e.g., McGinnis, Shifman & Darvasi (2002). Risch & Teng (1998), Teng &

Risch (1999), and Risch (2000) point out that using pedigrees including many

cases will lead to an increase in power, due to higher expected frequencies of

disease-susceptibility alleles in pedigrees with multiple cases compared to the fre-

quencies of these alleles in population based cases. Moreover, utilizing all cases

in a pedigree rather than just one per pedigree improves power by increasing the

effective sample size. Several authors have therefore derived methods to combine

the benefits of population based and family based approaches.
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Let us briefly discuss some recent contributions of this kind. Purcell, Sham &

Daly (2005) identify the ignorance of parental phenotypes as one possible source

for the lower efficiency of pure family based methods. Fitting a variance compo-

nent model for nuclear families (both parents and an arbitrary number of chil-

dren), they break phenotypic association with genotype into two components;

a within component, robust to stratification, in which association is examined

within each family, and a between component, where association is examined

across families. In their terminology, the TDT consists of a within-family com-

ponent only, whereas a case-control study with unrelated individuals is entirely a

between-family test. Risch & Teng (1998) propose a method, which is applicable

to several different designs including sibships with parents, sibships without par-

ents and unrelated controls, using DNA pooling. In Slager & Schaid (2001) the

test for trend in proportions introduced by Armitage (1955) is extended to general

family data, whereas Böhringer & Steland (2006) provide a very accurate version

of the likelihood for parent-offspring duos. Whittemore & Tu (2000) present a

class of score statistics accommodating genotypes of both unrelated individuals

and families with arbitrary structures. Epstein et al. (2005) discuss the issue of

sampling both parental and unrelated controls, modifying the approximate anal-

ysis approach of Nagelkerke et al. (2004), who had found under quite restrictive

model assumptions that analyzing data from triads and unrelated controls to-

gether yields a higher power than separate analyses. The approach of Epstein et

al. (2005) allows for more flexibility of modelling allele effects, and less restrictive

assumptions are needed, without losing power compared with Nagelkerke et al.

(2004). Browning et al. (2005) account for correlations between individuals in a

case-control design by calculating an optimal weight for each individual based on

IBD sharing probabilities as in McPeek, Wu & Ober (2004), who introduced these

optimal weights in the context of finding the best linear unbiased estimator for

allele frequencies of data where the relationships among the sampled individuals

are specified by a large, complex pedigree such as in isolated founder populations,
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which makes the use of maximum likelihood estimation impractical.

All the methods discussed above are in fact likelihood ratio tests. Since like-

lihood approaches require a full specification of the genetic model, we propose

nonparametric level α tests to test for independence of genotype and phenotype.

This article is organized as follows. Section 2 deals with a more detailed discussion

of the genetic model under consideration. The main results of our research are

then stated in Section 3, where the asymptotic distributions of the test statistics

are derived. Section 4 provides various important extensions of our method,

e.g., polygenic disorders, different inheritance models or strategies to deal with

population stratification. To assess the finite sample behavior of the tests in

terms of sample size and power, we conduct a simulation study under various

scenarios of practical interest in Section 5. The simulations analyze whether

including relatives increases statistical power, and also provide a comparison with

the TDT, which has become a kind of “benchmark” test among the family based

procedures. The simulations demonstrate on the one hand that including relatives

in the study always leads to a significant increase in power, and on the other hand

that the nonparametric tests have increased power compared to the TDT for

virtually all scenarios under consideration under the assumption of no population

stratification. The discussion in Section 6 provides a more detailed insight into the

problem of dealing with different family structures and the situation of missing

data. The proofs of our results, finally, are deferred to an appendix.

2 Genetic model and assumptions

We assume that there are two biallelic loci L1 and L2, with L1 being the candidate

locus where data are observed, whereas L2 denotes the true but unknown causal

locus. The goal of the study is to ascertain if there is significant evidence for

linkage disequilibrium between L1 and L2 by comparing the allele frequencies of

a marker allele at L1 in the case and the control group, respectively. We denote

the possible alleles at both L1 and L2 by A and Ā, where the causative allele for
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the disease at L2 will be termed A in what follows, whereas A at L1 stands for that

allele at the marker locus which is suspected to be associated with the disease.

Using the same notation for the alleles at L1 and L2 does not imply that the

alleles at the different loci would consist of the same sequence of nucleotides, but

is merely for notational convenience. For simplicity of motivation and derivation

of results, we further suppose that the underlying inheritance model is dominant,

i.e. for any individual the probability of being affected given there is at least one

allele A present at locus L2 is equal to the penetrance f with 0 < f ≤ 1, whereas

individuals without any allele A at L2 are affected with probability zero. At first

glance it seems that our assumptions concerning the number of candidate and

disease loci and the mode of inheritance imposed at this stage are quite restrictive,

but we show in Section 4 how to apply our approach to an arbitrary number of

markers and predisposing loci as well as different modes of inheritance.

We consider the following study setup. A sample of n1 affected children (cases) is

randomly collected. Similarly, a random sample of n2 unaffected children forms

the basis of the control group. Denote by n = n1+n2 the total number of children

at stage 1. There are no degrees of relationship allowed among these children to

avoid dependencies within the data at this stage of the experiment. To each child

from this basic sample we assign a random variable Ci, i = 1, . . . , n, which counts

the number of occurrences of allele A at the candidate locus L1, i.e. Ci = 2,

1 or 0, accordingly. In what follows, we will consider the case that data from

family trios, i.e. from the children and their parents are available, bringing the

total number of individuals taking part in the study to 3n. The random variables

corresponding to parental observations are defined equivalently to the offspring

data and denoted by Ai and Bi for the first and second parent of the ith trio,

respectively. From the above study setup, it follows that there are dependencies

among the data and, as a further complication, the number of parents belonging

to either group is also random.

In what follows, we suppose that the following standard assumptions on the
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various processes involved in inheritance are satisfied.

(A1) The random processes yielding the phenotype given the genotype are inde-

pendent for different individuals.

(A2) Gamete formation is independent of phenotype.

(A3) Hardy-Weinberg equilibrium holds for each locus.

(A4) Offspring data are randomly sampled from the two groups in the population,

and the children in the basic sample are unrelated.

Our interest is on testing whether there is an influence of the observed genotype

at locus L1 on the phenotype. We therefore test the null hypothesis H0 that

there is no linkage disequilibrium (LD) between the observed locus L1 and the

disease locus L2 against the alternative H1 of the existence of LD between these

two loci. Note that the LD coefficient δ describing the LD between alleles at the

two loci L1 and L2 within the population is given by δ = δAA = hAA − p1Ap2A,

where hAA denotes the haplotype frequency of alleles A, A at the loci L1 and L2,

and p1A, p2A stand for the allele frequencies of A at L1 and L2, respectively. In

terms of the LD coefficient δ, the testing problem is thus given by testing the

null hypothesis H0 : δ = 0 against H1 : δ > 0 or H1 : δ 6= 0, depending on the

experimenter’s preference for either a one- or a two-sided alternative. In order to

construct tests for these hypotheses, we reformulate the hypotheses in terms of

the allele frequencies of A at L1 in the two respective groups. Let pv denote the

frequency of A at L1 among the affected individuals in the population, and pw

the corresponding term among the unaffected individuals. Then pv and pw can

be expressed in terms of the model parameters δ, f , p1A and p2A by

pv = p1A + δ
1− p2A

p2A(2− p2A)
, pw = p1A − δ

f(1− p2A)

1− fp2A(2− p2A)
, (1)

where a derivation of formula (1) can be found in the appendix. The hypotheses

can thus be reformulated equivalently by H0 : pv = pw = p1A against H1 : pv > pw

or H1 : pv 6= pw.
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3 The test statistics and their asymptotic dis-

tributions

The null hypothesis H0 implies that the allele frequency of A at locus L1 is

the same among affected and unaffected individuals in the population. It is

therefore reasonable to consider test statistics based on differences or ratios of

estimators for the allele frequencies pv and pw to detect deviations from H0. We

choose as estimators p̂v and p̂w the empirical counterparts of pv and pw in the

two respective groups, which can be obtained from the corresponding contingency

table with entries N1, N2, N3 and N4, where N1 denotes the number of alleles

A at L1 among the affected individuals, N2 is the number of A at L1 among the

unaffected individuals, and N3, N4 are the corresponding numbers of alleles Ā

at L1. Substituting p̂v and p̂w in the formulae for the risk measures yields the

following test statistics

attributable risk Tn1 = p̂v − p̂w =
N1

N1 + N3

− N2

N2 + N4

,

odds ratio Tn2 =
p̂v(1− p̂w)

p̂w(1− p̂v)
=

N1N4

N2N3

,

relative risk Tn3 =
p̂v

p̂w

=
N1(N2 + N4)

N2(N1 + N3)
.

We are now ready to present the main result of this article, which gives the joint

asymptotic distribution of the empirical allele frequencies p̂v and p̂w under the

null hypothesis H0. Since under H0 we have Var(C1) = Var(A1) = Var(B1)

and Cov(C1, A1) = Cov(C1, B1) the results are given in terms of Var(C1) and

Cov(C1, A1) instead of these five different expressions for brevity of notations.

The proof of Theorem 1 is deferred to the appendix.

Theorem 1 Suppose the null hypothesis H0 is valid, assumptions (A1)-(A4) are

satisfied and the ratio n1/n converges to a positive constant c ∈ (0, 1) for n →∞.

Then the joint asymptotic distribution of p̂v and p̂w is given by

√
n

(
p̂v − p1A, p̂w − p1A

)T D−→ N (0, Σ), (2)
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where the entries of the covariance matrix Σ are given by

Σ1,1 =
Var(C1)

12 t1
+

c p1Cov(C1, A1)

9 t21
, Σ2,2 =

Var(C1)

12 (1− t1)
+

(1− c)(1− p2)Cov(C1, A1)

9 (1− t1)2
,

Σ1,2 = Σ2,1 =
Cov(C1, A1)(c(1− p1) + (1− c)p2)

18 t1(1− t1)

where p1 and p2 denote the probabilities that a parent is affected given the corre-

sponding child is affected or unaffected, respectively. Var(C1) = 2p1A(1 − p1A),

Cov(C1, A1) = p1A(1 − p1A), and t1 is the asymptotic expected percentage of af-

fected individuals in the study, i.e. t1 = (c + 2c p1 + 2(1− c)p2)/3.

Please note that the condition n1/n → c ∈ (0, 1) ensures that the number of

data in one of the groups is not outbalanced by the corresponding quantity in

the other group. The condition is required in this particular form due to the

asymptotic nature of the result of Theorem 1. In a real data application where

of course both n and n1 are finite, this means that the experimenter should make

sure that the ratio n1/n is not too close to either zero or one to avoid situations

where there are almost no cases or no controls in the study.

3.1 Asymptotic distributions of the test statistics

To find asymptotic critical values for the tests under consideration, we utilize the

result of Theorem 1 to derive the asymptotic distributions of the test statistics

Tn1, log(Tn2) and log(Tn3). Instead of Tn2 and Tn3, we will use the logarithms of

these test statistics in the ensuing derivations since log(Tn2) and log(Tn3) were

found to preserve the nominal significance level α more precisely in simulations

than the original versions of the tests.

Corollary 1 Under the assumptions of Theorem 1 the asymptotic distributions

of the test statistics Tn1, log(Tn2) and log(Tn3) under H0 are given by

√
n Tn1

D−→ N (0, σ2
1),

√
n log(Tn2)

D−→ N (0, σ2
2),

√
n log(Tn3)

D−→ N (0, σ2
3),
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where the asymptotic variances σ2
1, σ2

2 and σ2
3 are obtained as

σ2
1 =

Var(C1)

12 t1(1− t1)
+

Cov(C1, A1)(cp1 − (c + cp1 + (1− c)p2)t1 + t21)

9 t21(1− t1)2

=
p1A(1− p1A)

18 t21(1− t1)2

(
2cp1 + (3− c)t1 − 4t21

)
,

σ2
2 =

Var(C1)

12 t1(1− t1)p2
1A(1− p1A)2

+
Cov(C1, A1)(cp1 − (c + cp1 + (1− c)p2)t1 + t21)

9 t21(1− t1)2p2
1A(1− p1A)2

=
1

18 t21(1− t1)2p1A(1− p1A)

(
2cp1 + (3− c)t1 − 4t21

)
,

σ2
3 =

Var(C1)

12 t1(1− t1)p2
1A

+
Cov(C1, A1)(cp1 − (c + cp1 + (1− c)p2)t1 + t21)

9 t21(1− t1)2p2
1A

=
(1− p1A)

18 t21(1− t1)2p1A

(
2cp1 + (3− c)t1 − 4t21

)
The assertions of Corollary 1 follow from Theorem 1 and a straightforward ap-

plication of the ∆-method; see, e.g., Serfling (1980).

3.2 Estimation of unknown parameters

Since the asymptotic variances of the test statistics depend on the unknown

parameters p1A, p1 and p2, these parameters have to be estimated in practice.

By Slutsky’s theorem, the results given in Corollary 1 still hold if σ2
1, σ2

2 and σ2
3

are replaced by consistent estimators. Under the null hypothesis H0, the allele

frequency p1A of A at L1 in the two respective groups and the probabilities p1

and p2 of a parent being affected given the corresponding child is affected or

unaffected, respectively, can be estimated
√

n-consistently by the sample means

of the corresponding random variables.

For estimating Var(C1) and Cov(C1, A1), there are several approaches. Firstly,

one could simply replace p1A by its estimator p̂1A in the relations Var(C1) =

2p1A(1 − p1A) and Cov(C1, A1) = p1A(1 − p1A). Alternatively, one could use the

estimators v̂ for Var(C1) and ˆcov for Cov(C1, A1) given by

v̂ =
1

3n

n∑
i=1

(C2
i + A2

i + B2
i )−

1

9n(n− 1)

n∑
i=1

n∑
j 6=i

(Ci + Ai + Bi)(Cj + Aj + Bj)
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ˆcov =
1

2n

n∑
i=1

(CiAi + CiBi)−
1

9n(n− 1)

n∑
i=1

n∑
j 6=i

(Ci + Ai + Bi)(Cj + Aj + Bj).

Straightforward calculations show that these estimators are unbiased with vari-

ance converging to 0 at a rate of 1/n.

4 Extensions

We demonstrate our method for the case of a monogenic disease and a single

marker locus for the sake of clearness and brevity of this article. The proposed

tests, however, can readily be extended to genetically more complex models. If

a set of k ≥ 1 candidate loci has been chosen we can test as follows whether

a specific allele combination (genotype), say G = (g1, . . . , gk), at these k loci

contributes to the phenotype expression. We define a virtual biallelic locus L

with alleles G and Ḡ where Ḡ consists of all allele combinations specified by the

k markers except the candidate genotype G. The proposed tests can then be

applied to L where the candidate allele A from the original test is replaced by G.

Some slight changes have to be accounted for in the calculation of the variances

of the test statistics. In this way, all different allele combinations can be tested

with an appropriately corrected significance level α, which can, e.g., be found by

Bonferroni correction or more sophisticated (more powerful) techniques such as

Holm’s (1979) or Hochberg’s (1988) procedures or modifications of these. This

approach will provide us with p-values for forward and backward selection pro-

cedures with respect to single allele combinations and/or marker loci. If the k

markers are closely located on the same chromosome one could also think of con-

ducting test procedures on haplotypes since classical genetics has demonstrated

that the phenotypic effect of several mutations at different loci can sensitively de-

pend on whether the mutations occur in cis or in trans position; see, e.g., Schaid

et al. (2002). Again, we can test if a specific haplotype, say H, has an influence

on the phenotype by defining a virtual biallelic locus with alleles H and H̄ and

10



applying our method. To identify the unknown phase the method of molecular

haplotyping can be used if the DNA sequence containing the markers is not too

long; see Michalatos-Beloin et al. (1996). Otherwise haplotypes can either be

determined by pedigree analysis or haplotype frequencies can be estimated for

example by an EM-algorithm; see, e.g., Fallin et al. (2001). A more detailed

exploration of this issue will be the subject of further research.

In the situation of a highly inhomogeneous population some care is needed when

collecting the data to avoid possible biases of the tests created by population strat-

ification, which is a potential worry in case-control studies; see, e.g., Thomas &

Witte (2002). The simplest ways to cope with this situation would be to include

only individuals of homogeneous ethnic and geographic origin, or to categorize

the data into the different subpopulations, which are then analyzed separately.

In case of almost equal allele frequencies at the predisposing locus (percentages of

affected individuals in each subpopulation are about equal), it is also feasible to

“match” the controls from the basic sample to the cases such that the percentages

of different subpopulations are equal in both groups. This will then on average

also be true for the parents in the two groups, so that the percentages of differ-

ent subpopulations will be about equal among the affected and the unaffected

individuals. A different strategy to robustify the tests against stratification bias

would be to modify the test statistics by estimating pv and pw for all subpop-

ulations separately and defining p̂v, p̂w as the sums (or weighted sums) of the

respective estimates. The tests can then be carried out on these modified estima-

tors as before, taking into account the changes in the asymptotic variances. All

the methods proposed above, however, rely on knowing the strata, i.e. categoriz-

ing individuals into the wrong ethnic group will lead to biased results. Pritchard,

Stephens & Donnelly (2000) developed a Bayesian method for the estimation of

ethnic origins using genomic information from polymorphic markers that are not

linked with the candidate genes under study. The use of this method (or another

genomic adjustment approach) can be a helpful supplement to our tests. The
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issue of population stratification may, however, not be dismissed.

At first glance it seems that the genetic inheritance model plays a crucial role, and

the question arises, whether the proposed tests also work if the assumption of a

dominant mode of inheritance is violated. An inspection of the proof shows that

Theorem 1 remains valid even in this general setting. The underlying mode of

inheritance influences the asymptotic null distributions only through the values

of the parameters p1 and p2. These parameters, however, can be consistently

estimated from phenotype data, so that the tests can be applied to data from

any type of inheritance model.

5 Simulation Study

To assess the finite sample behavior of our tests, we carried out a simulation

study for various parameter settings. We were, firstly, interested in investigating

whether the inclusion of parental data yields a substantial gain in power, and,

secondly, in comparing our tests with the TDT as an already established method.

Thirdly, we examined the sensitivity of the real significance level with respect to

the dependency structure of the data. For brevity, we restricted ourselves to

simulate the test H0 : δ = 0 against the one-sided alternative H1 : δ > 0,

which corresponds to the scenario that the experimenter’s belief is in positive

LD between A at L1 and A at L2. To simulate random variables with the same

distributions as Ci, Ai and Bi, i = 1, . . . , n, four parameters have to be specified

in advance. In the study at hand we fixed the values of the two allele frequencies

p1A, p2A, the penetrance f and the LD coefficient δ. Due to the dependency of the

LD coefficient δ on the haplotype frequency and the allele frequencies, it is difficult

to compare the amount of LD between different pairs of loci using the respective

LD coefficients. We therefore use an appropriately standardized version, i.e.

Lewontin’s D
′
= |δ|/δmax where δmax is defined by min{p1A(1−p2A), (1−p1A)p2A}

if δ > 0, and δmax = min{p1Ap2A, (1 − p1A)(1 − p2A)} if δ < 0; see, e.g., Devlin

& Risch (1995). In what follows, the parameters will be given in terms of D
′
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instead of δ for comparability.

Using a nominal type I error of α = 0.05 we report the empirical rejection rate

based on 10,000 runs. Unkown parameters are estimated as explained in Subsec-

tion 3.2. We used the sample sizes n = 60, n = 100 and n = 200 for the basic

sample, respectively, and the value of n1 was chosen according to the ”expected

equal allocation rule”, i.e. the expected number of affected individuals in the en-

tire sample is equal to the expected number of unaffected individuals. For some

parameter combinations, this choice was not admissible due to the restriction

that n1 < n. In these situations, we simulated the tests for several choices of n1

with 0.75n ≤ n1 ≤ 0.95n, and found that the tests are not very sensitive with

respect to the particular choice of n1 within this range. Table 1 provides results

under H0 : D
′

= 0 to assess the accuracy of the type I error. Since in what

follows we will compare the performance of our tests with the performance of the

corresponding tests including either data from unrelated subjects only or data

from children with one parent each, we label by (∗∗) the tests including data

from both parents for each child.

Table 1 here

It can be seen that our tests preserve the α-level quite well, even for the small

sample size of n = 60. Only in the situation of a very small (< 0.05) allele

frequency p1A, the tests do not preserve the α-level when the sample size is

small. In this scenario, the test based on the attributable risk appears to be

most robust among the three tests under consideration. Our theoretical results

provide an explanation for this fact. Indeed, noting that the variances have the

form σ2
1 = p1A(1−p1A)×f(p1, p2) (attr. risk) and σ2

2 = 1/{p1A(1−p1A)}×f(p1, p2)

(odds ratio), where f(p1, p2) is a term depending on p1 and p2 only, we see that

σ2
2 is more sensitive for such p1A. Increasing the sample size, however, leads to

reliable results for all three tests.

Tables 2, 3 and 4 show the simulated powers of the tests on trios under the

alternative hypothesis H1. For comparison, we also display the corresponding
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values when only data of unrelated subjects are included in the test statistics. In

this case, the number of affected individuals n1 was chosen according to the equal

allocation rule n1 = n/2. The tests including offspring data only, thus having a

total sample size of n individuals, are not given any label. The tests labeled by

(∗) denote the tests including the data from the basic sample plus the data from

one randomly chosen parent for each child, bringing the total sample size in this

situation to 2n. For these tests, the expected equal allocation rule was used to

determine n1. In Table 2, we chose relatively small allele frequencies of A at the

two loci L1 and L2, a small amount of LD measured by D
′

= 0.2 and a high

penetrance of f = 0.6.

Table 2 here

We observe that the inclusion of parental data increases the powers of the tests

considerably. We further added the powers of the two-sided tests (H1 : δ 6= 0) to

Table 2 (scenarios: children only (no label) and both parents included (∗∗)) to

show that also in this testing problem the inclusion of parental data significantly

increases the capability to detect deviation from H0. The same holds true for

medium scale values of the allele frequencies p1A and p2A as can be seen from

Table 3.

Table 3 here

Table 4, finally, displays the values of the simulated powers when the value for

the penetrance f is chosen relatively small.

Table 4 here

To further assess the practical relevance of a newly developed method it is of great

importance to compare its performance with an already established procedure.

We chose the TDT as the competing method in this simulation study since it has

become the benchmark method for surveys on trios. Table 5 shows the simulated

powers of the TDT for the parameter combinations used above so that they can

readily be compared with the powers of the tests (with trios) proposed in this
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article given in Tables 2, 3 and 4. For convenience, the corresponding results for

the test based on the attributable risk are given again in Table 5. The number

n in this table refers to the number of trios, on which we carried out the tests.

Furthermore, we simulated a scenario where the penetrance f is small (f = 0.1)

to assess the power of our tests if the number of affected parents is likely to be

small.

Table 5 here

We observe from Table 5 that for all four scenarios our tests perform between

“slightly” better to “significantly” better than the TDT. In particular the test

based on the attributable risk has a considerably higher capability to detect

deviations from the null hypothesis H0. In the last scenario where p1A is small,

we find that the tests based on the relative risk and the odds ratio are less stable

than the test based on the attributable risk, which is again due to the form of

the asymptotic variances of these tests. In this situation, these two tests are

comparable with the TDT.

To provide an example for another mode of inheritance than the dominant, we

also simulated a recessive inheritance model, and again compared our tests with

the TDT. The results, which are very similar to those for the dominant model,

are given in Table 6.

Table 6 here

The three tests proposed in this article are asymptotically equivalent, but con-

sidering all the tables in this study, we observe that for some scenarios the test

based on the attributable risk has a higher power than the other two tests in

a finite sample. For many scenarios, however, there is virtually no difference in

performance between the three tests. This simulation study therefore indicates

that in practice one would best use the test based on the attributable risk, which

is also hinted at by further simulation results that are not presented here for

brevity.
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6 Discussion

The simulation study reveals that our tests preserve the nominal significance

level very well and are quite robust with respect to the genetic parameters. The

statistical power to detect linkage disequilibrium, i.e. to detect predisposing

genes, is substantially increased by including parental information. Moreover, a

comparative power simulation study with respect to the TDT, which has become

a benchmark procedure in practical applications, reveals a superiority of our tests

(in terms of power) for many scenarios, demonstrating the practical relevance of

our approach. These findings are in line with the theoretical results of McGinnis,

Shifman & Darvasi (2002) (for unrelated cases and controls), who found that

in general fewer case-control samples are required to achieve the same power as

the TDT, suggesting greater genotyping efficiency with the case-control design.

The TDT, however, was invented as a test robust to population stratification,

which is a potential problem in case-control studies. We have provided some

robustification strategies for our tests, which are described in Section 4, but

there is no complete solution for this problem. It therefore mainly depends on

the structure of the population, which test (our tests or the TDT) might be

more appropriate for a particular problem. The reason why our method is more

powerful than the TDT seems to be as follows. In contrast to the TDT or

other methods based on transmission of marker alleles, we use all available data,

i.e. parental phenotypes as well as all parental genotypes, whereas the TDT

discards both parental phenotypes and the genotype data of those parents that

are homozygote at the observed locus.

The results presented in Section 3 cover the important case that data from parent-

offspring trios are available. However, the methodology established in the ap-

pendix can be extended to cope with more general family data and the situation

of missing data. For example, from a practical viewpoint the generalization to

more general types of relatives as the additional inclusion of sibs’ data may be a

concern. As an example to get the ideas, we first consider the case where for each
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child from the basic sample the required phenotype and genotype data of both

parents and one sib are available. In this scenario, the number of participants

in the study is still fixed. From the proof of Theorem 1 in the appendix, we

conclude that it is sufficient to extend the random vectors Xi, i = 1, . . . , n1, and

Yj, j = 1, . . . , n2, each corresponding to a child from the two respective groups,

by three additional entries giving the phenotype and genotype status of the sib

as well as a combination of both exactly analogous to the entries corresponding

to the parents. An asymptotic result similar to Lemma 1 can then be proven im-

mediately, from which then the asymptotic null distributions of the test statistics

can be derived. Other types of relatives can be added to the study analogously,

further increasing the sample size and hence the power to detect deviations from

the null hypothesis.

Another strategy to increase power would be to sample on the one hand families

with many cases and on the other hand unrelated controls, as, under the alterna-

tive hypothesis, this will increase the allele frequency difference between the two

groups; see, e.g., Risch & Teng (1998), Teng & Risch (1999), and Risch (2000).

It is even possible to allow for missing data under a missing at random assump-

tion. The problem of missing data can be addressed adequately by introducing

a random variable indicating if a particular relative takes part in the study or

not. Again, the random vectors Xi, i = 1, . . . , n1, and Yj, j = 1, . . . , n2, are

extended by these indicators as well as combinations of the indicator variables

with random variables giving the genotype and phenotype status of the respective

relative. If the study is designed for data from related cases and unrelated con-

trols it is only necessary to modify the vectors Xi, i = 1, . . . , n1, corresponding

to affected children by the indicators. The vectors Yj, j = 1, . . . , n2, will then be

one-dimensional consisting of the offspring genotype data Ci, i = n1 + 1, . . . , n.

Note that in these scenarios the number of individuals taking part in the study is

random. We therefore have to include the entry N4 when we calculate the joint

asymptotic distribution of the entries of the contingency table since the distribu-
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tion of N4 is no longer given by the joint distribution of the other entries N1, N2

and N3.

Note that in models extended in such a way additional nuisance parameters de-

scribing the dependence structure and the missing data mechanism, respectively,

shall appear, and for a practical implementation of the tests the number of pa-

rameters to be estimated (complexity of the model), and the increase of data

have to be balanced carefully, since estimating too many parameters compared

to the increase in available data can lead to poor results. Therefore more detailed

investigations of these issues should be a subject of future research.
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Appendix: Proofs

Derivation of formula (1): Without loss of generality, we consider the ”first”

allele l1 at locus L1. Then pv = P (l1 = A | aff), and we obtain (with l2 denoting

the ”first” allele at L2 so that l1 and l2 form a haplotype, and pre standing for

the prevalence):

pv = P (l1 = A | aff, l2 = A)P (l2 = A | aff) + P (l1 = A | aff, l2 = Ā)P (l2 = Ā | aff)

=
( δ

p2A

+ p1A

)(fp2A

pre

)
+

(
p1A −

δ

1− p2A

)(
1− fp2A

pre

)
= p1A + δ

f − pre

pre(1− p2A)

This formula holds since given l2, l1 does no longer depend on the phenotype.

Analogously, pw = p1A−δ(f−pre)/{(1−pre)(1−p2A)}. With pre = fp2A(2−p2A),

we obtain (1). �

Proof of Theorem 1: The main difficulty in the proof is that N1 and N2 contain

sums with a random number of random variables Ai and Bi. However, these can

be reconstructed as sums with a deterministic number of random variables as
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follows. To each affected child, we assign a seven-dimensional random vector Xi =

(X
(1)
i , X

(2)
i , X

(3)
i , X

(4)
i , X

(5)
i , X

(6)
i , X

(7)
i )T , i = 1, . . . , n1, where X

(1)
i = Ci, X

(2)
i =

I{first parent of child i is affected}, X
(3)
i = Ai, X

(4)
i = X

(2)
i X

(3)
i , X

(5)
i = I{second

parent of child i is affected}, X
(6)
i = Bi and X

(7)
i = X

(5)
i X

(6)
i . Analogously, we

define the vectors Yj, j = 1, . . . , n2, for each child from the control group. Since

we did not allow for any degree of relationship among the children, the random

vectors Xi, i = 1, . . . , n1, as well as Yj, j = 1, . . . , n2, are iid. Lemma 1 gives the

joint asymptotic distribution of the sums of the vectors under the null hypothesis

H0. For brevity of notation, we denote the expectation of Ci, Ai and Bi by pA,

i.e. pA = 2 p1A.

Lemma 1 Let n1/n converge to some constant c ∈ (0, 1) for n →∞. Denote by

mx and my the means of X1 and Y1, respectively, and by Kx, Ky the corresponding

covariance matrices. Then

√
n

( 1

n

n1∑
i=1

Xi −
n1

n
mx,

1

n

n2∑
i=1

Yi −
n2

n
my

)T D−→ N (0, ΣK),

where the covariance matrix ΣK is a non-degenerate block matrix with blocks cKx

and (1 − c)Ky. Explicitely, we have that mx = (pA, p1, pA, p1pA, p1, pA, p1pA)T ,
my = (pA, p2, pA, p2pA, p2, pA, p2pA)T , and Kx is



Var(C1) 0 Cov(C1, A1) p1Cov(C1, A1) 0 Cov(C1, B1) p1Cov(C1, B1)

0 p1(1− p1) 0 pAp1(1− p1) p3 0 p3pA

Cov(C1, A1) 0 Var(C1) p1Var(C1) 0 0 0

p1Cov(C1, A1) pAp1(1− p1) p1Var(C1) p1pA(1 + (0.5− p1)pA) p3pA 0 p3p2
A

0 p3 0 p3pA p1(1− p1) 0 pAp1(1− p1)

Cov(C1, B1) 0 0 0 0 Var(C1) p1Var(C1)

p1Cov(C1, B1) p3pA 0 p3p2
A pAp1(1− p1) p1Var(C1) p1pA(1 + (0.5− p1)pA)



.

Ky is of the same form as Kx with p1 replaced by p2, and the parameter p3 de-

scribing the covariance structure between parental phenotypes given the offspring

is affected, replaced by a parameter, say p4, for the respective covariance given

the child is unaffected.

Proof of Lemma 1: The expectations and covariance matrices of X1 and Y1

under H0 are obtained by straightforward calculations. Note that under the
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null hypothesis the random variables X
(2)
i , X

(5)
i and Y

(2)
j , Y

(5)
j corresponding to

phenotype data are independent of the random variables X
(1)
i , X

(3)
i , X

(6)
i and

Y
(1)
j , Y

(3)
j , Y

(6)
j describing genotype features of the individuals. Asymptotic nor-

mality follows by applying the multivariate central limit theorem for iid vectors

to both sequences separately, and exploiting that the sequences Xi, i = 1, . . . , n1,

and Yj, j = 1, . . . , n2, are independent.

To prove that the covariance matrix Kx is non-degenerate we calculate its de-

terminant |Kx| = 0.5p2
1(1 − p1)

2Var(C1)
5(p2

1(1 − p1)
2 − p2

3), where we used that

Var(C1) = 2 p1A(1 − p1A) and Cov(C1, A1) = p1A(1 − p1A). Since p1A, p1 and p2

are assumed to lie in (0, 1) it remains to show that p2
3 < p2

1(1− p1)
2. Recall that

p2
1(1 − p1)

2 − p2
3 = Var(X

(2)
1 )Var(X

(5)
1 ) − [Cov(X

(2)
1 , X

(5)
1 )]2 ≥ 0 by Hölder’s in-

equality. As X
(2)
1 and X

(5)
1 are not linearly dependent (the four possible outcome

combinations for X
(2)
1 and X

(5)
1 each occur with positive probability) even the

strict inequality holds and thus the determinant of Kx is positive. Analogously,

|Ky| > 0 with p1 and p3 replaced by p2 and p4, respectively. �

Lemma 2 For limn→∞ n1/n = c ∈ (0, 1), we obtain under H0:

√
n

(N1

n
− E[N1]

n
,

N2

n
− E[N2]

n
,

N3

n
− E[N3]

n

)T D−→ N (0, ΣN),

with expectations E[N1] = (n1 + 2n1p1 + 2n2p2)pA, E[N2] = (3n − n1 − 2n1p1 −

2n2p2)pA, E[N3] = (n1 + 2n1p1 + 2n2p2)(2 − pA), and the entries ΣN,i,j, i, j =

1, 2, 3, of the covariance matrix ΣN are given by

ΣN,1,1 = Var(C1){c + 2cp1 + 2(1− c)p2}+ 4Cov(C1, A1)cp1

+2p2
A{cp1(1− p1) + (1− c)p2(1− p2) + cp3 + (1− c)p4}

ΣN,1,2 = 2Cov(C1, A1){c(1− p1) + (1− c)p2}

−2p2
A{cp1(1− p1) + (1− c)p2(1− p2) + cp3 + (1− c)p4}

ΣN,1,3 = −Var(C1){c + 2cp1 + 2(1− c)p2} − 4Cov(C1, A1)cp1

+2pA(2− pA){cp1(1− p1) + (1− c)p2(1− p2) + cp3 + (1− c)p4}

ΣN,2,2 = Var(C1){3− c− 2cp1 − 2(1− c)p2}+ 4Cov(C1, A1)(1− c)(1− p2)
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+2p2
A{cp1(1− p1) + (1− c)p2(1− p2) + cp3 + (1− c)p4}

ΣN,2,3 = −2Cov(C1, A1){c(1− p1) + (1− c)p2}

−2pA(2− pA){cp1(1− p1) + (1− c)p2(1− p2) + cp3 + (1− c)p4}

ΣN,3,3 = Var(C1){c + 2cp1 + 2(1− c)p2}+ 4Cov(C1, A1)cp1

+2(2− pA)2{cp1(1− p1) + (1− c)p2(1− p2) + cp3 + (1− c)p4}.

Proof of Lemma 2: We can express N1, N2 and N3 as functions of the sums of

the entries of the vectors Xi, i = 1, . . . , n1, Yj, j = 1, . . . , n2, i.e.

N1 =

n1∑
i=1

X
(1)
i +

n1∑
i=1

X
(4)
i +

n2∑
j=1

Y
(4)
j +

n1∑
i=1

X
(7)
i +

n2∑
j=1

Y
(7)
j

and analogously for N2 and N3. Interpreting the vector (N1, N2, N3)
T as a

(measurable and differentiable) function from IR14 to IR3, we obtain the state-

ment of Lemma 2 by applying the ∆-method and exploiting that Cov(C1, A1) =

Cov(C1, B1). �

Applying the ∆-method to the function (p̂v, p̂w)T , where p̂v = N1/(N1 + N3) and

p̂w = N2/(6n−N1 −N3) then yields (2). The formulae for Var(C1), Cov(C1, A1)

and t1 are obtained by straightforward calculations. �
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Table 1: Left columns: p1A = 0.2, p2A = 0.015, D
′
= 0, f = 0.5; Right columns:

p1A = 0.2, p2A = 0.1, D
′
= 0, f = 0.3

test n = 60 n = 100 n = 200 n = 60 n = 100 n = 200

attributable risk (∗∗) 5.59% 5.56% 5.53% 5.52% 5.18% 5.04%

log odds ratio (∗∗) 4.73% 4.74% 4.88% 5.12% 4.86% 4.78%

log relative risk (∗∗) 4.91% 5.01% 5.04% 5.13% 4.95% 4.86%
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Table 2: p1A = 0.05, p2A = 0.001, D
′
= 0.2, f = 0.6

test n = 60 n = 100 n = 200

attributable risk 58.44% 76.65% 95.95%

attributable risk (∗) 69.46% 86.61% 98.71%

attributable risk (∗∗) 80.53% 94.19% 99.79%

log odds ratio 58.68% 77.72% 95.85%

log odds ratio (∗) 69.76% 86.21% 98.65%

log odds ratio (∗∗) 76.75% 92.29% 99.73%

log relative risk 60.82% 78.11% 95.97%

log relative risk (∗) 70.70% 86.72% 98.70%

log relative risk (∗∗) 79.05% 93.38% 99.76%

two-sided tests

attributable risk 44.20% 64.58% 79.51%

attributable risk (∗∗) 71.07% 89.41% 99.52%

log odds ratio 48.82% 63.81% 85.54%

log odds ratio (∗∗) 65.95% 86.42% 99.19%

log relative risk 51.37% 66.00% 87.07%

log relative risk (∗∗) 67.53% 87.16% 99.35%
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Table 3: p1A = 0.2, p2A = 0.1, D
′
= 0.2, f = 0.5

test n = 60 n = 100 n = 200

attributable risk 30.08% 40.67% 64.36%

attributable risk (∗) 36.42% 51.80% 76.94%

attributable risk (∗∗) 46.45% 63.84% 86.52%

log odds ratio 30.30% 41.10% 63.29%

log odds ratio (∗) 36.50% 51.29% 76.47%

log odds ratio (∗∗) 42.43% 60.02% 84.51%

log relative risk 30.82% 41.41% 64.21%

log relative risk (∗) 36.99% 51.82% 76.68%

log relative risk (∗∗) 44.56% 62.33% 85.54%

Table 4: p1A = 0.4, p2A = 0.2, D
′
= 0.4, f = 0.2

test n = 60 n = 100 n = 200

attributable risk 36.51% 50.62% 75.41%

attributable risk (∗) 40.07% 57.96% 81.76%

attributable risk (∗∗) 55.72% 74.72% 94.18%

log odds ratio 35.28% 49.06% 73.88%

log odds ratio (∗) 38.90% 56.10% 80.45%

log odds ratio (∗∗) 51.05% 71.16% 93.01%

log relative risk 38.99% 49.97% 74.04%

log relative risk (∗) 40.47% 57.51% 81.54%

log relative risk (∗∗) 51.47% 71.87% 93.25%
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Table 5: Simulated power of the tests based on the risk measures compared with

the TDT

test n = 60 n = 100 n = 200

p1A = 0.05, p2A = 0.001, D
′
= 0.2, f = 0.6

attributable risk (∗∗) 80.53% 94.19% 99.79%

TDT 76.08% 92.41% 99.78%

p1A = 0.2, p2A = 0.1, D
′
= 0.2, f = 0.5

attributable risk (∗∗) 46.45% 63.84% 86.52%

TDT 31.17% 45.04% 74.75%

p1A = 0.4, p2A = 0.2, D
′
= 0.4, f = 0.2

attributable risk (∗∗) 55.72% 74.72% 94.18%

TDT 41.07% 60.62% 88.31%

p1A = 0.05, p2A = 0.1, D
′
= 0.1, f = 0.1

attributable risk (∗∗) 18.55% 22.79% 34.39%

log odds ratio (∗∗) 11.24% 16.04% 27.39%

log relative risk (∗∗) 12.22% 17.27% 28.53%

TDT 12.68% 17.69% 26.97%
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Table 6: Simulated power of the tests based on the risk measures compared with

the TDT for a recessive inheritance model and parameters p1A = 0.2, p2A = 0.2,

D
′
= 0.1, f = 0.5.

test n = 60 n = 100 n = 200

attributable risk (∗∗) 41.14% 56.67% 81.87%

log odds ratio (∗∗) 36.03% 52.53% 79.47%

log relative risk (∗∗) 36.79% 53.04% 80.05%

TDT 33.84% 50.13% 77.58%
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