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Abstract

In this paper a new test for the parametric form of the variance function in the common

nonparametric regression model is proposed which is applicable under very weak smoothness

assumptions. The new test is based on an empirical process formed from pseudo residuals,

for which weak convergence to a Gaussian process can be established. In the special case of

testing for homoscedasticity the limiting process is essentially a Brownian bridge, such that

critical values are easily available. The new procedure has three main advantages. First,

in contrast to many other methods proposed in the literature, it does not depend directly

on a smoothing parameter. Secondly, it can detect local alternatives converging to the null

hypothesis at a rate n−1/2. Thirdly, in contrast to most of the currently available tests, it does

not require strong smoothness assumptions regarding the regression and variance function.

We also present a simulation study and compare the tests with the procedures that are

currently available for this problem and require the same minimal assumptions.

Keywords and Phrases: Homoscedasticity, nonparametric regression, pseudo residuals, empirical

process, goodness-of-fit testing, bootstrap.
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1 Introduction

Consider the common nonparametric regression model with a fixed design

Yi,n = m(ti,n) + σ(ti,n)εi,n, i = 1, . . . , n,(1.1)

where 0 ≤ t1,n < t2,n < . . . < tn,n ≤ 1 denote the design points, m and σ2 are the regression and

variance function, respectively, and the errors ε1,1, . . . , ε1,n are independent identically distributed

with expectation E[εi,n] = 0 and variance V [εi,n] = 1. Additional information on the variance

function σ2, such as homoscedasticity or a specific parametric form of σ2 usually simplifies the

analysis of the data substantially. Moreover, statistical inference incorporating such an additional

knowledge is also more efficient. On the other hand - if the assumption on the variance function

(i.e. homoscedasticity) is not satisfied - data analysis should address for heteroscedasticity in

order to obtain reliable results [see e.g. Leedan and Meer (2000) or Sadray, Rezaee and Rezaklah

(2003)]. For these reasons many authors point out that it is important to check an assumption on

the parametric form of the variance function by means of a goodness-of-fit test [see for example

Carroll and Ruppert (1988), Cook and Weisberg (1983) among others]. Most of the available

literature for this problem concentrates on the problem of testing for homoscedasticity. Tests

based on a parametrically specified regression and variance function and the assumption of a

normal distribution for the errors have been studied by Davidan and Carroll (1987) and Carroll

and Ruppert (1988) using likelihood methods. Bickel (1978) and Carroll and Ruppert (1981)

propose a test for homoscedasticity which does not impose a normal distribution for the errors

but the regression function is still assumed to be linear, while Diblasi and Bowman (1997) consider

the nonparametric model (1.1) with a normal distributed error.

A test for homoscedasticity in a completely nonparametric regression model was first proposed

by Dette and Munk (1998). This test has the nice property that it does not depend on the

subjective choice of a smoothing parameter and requires rather weak assumptions regarding the

smoothness of the regression function. A disadvantage of the method is that it can only detect

local alternatives converging to the null hypothesis at a rate n−1/4. More recently Zhu, Fujikoshi

and Naito (2001) [see also Zhu (2005); Chapter 7], Dette (2002) and Liero (2003) suggested test

procedures, which are based on residuals from a nonparametric fit. The two last named tests can

detect local alternatives converging to the null hypothesis at a rate (n
√

h)−1/2, where h denotes a

bandwidth, while the rate for the test of Zhu et al. (2001) is n−1/2. A drawback of these methods

consists in the fact that the corresponding tests depend on the subjective choice of a smoothing

parameter, which can affect the results of the statistical analysis.

The present paper has three purposes. First, we are interested in a test which does not require

the specification of a smoothing parameter. Secondly, the new procedure should be able to detect

local alternatives converging to the null hypothesis at a rate n−1/2. Thirdly, the new test should

be applicable under minimal smoothness assumptions on the variance and regression function.

Moreover, in contrast to most papers which concentrate on tests for homoscedasticity, we are also

interested in a test for more general hypotheses for the parametric form of the variance function,
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i.e.

H0 : σ2(t) = σ2(t, θ); ∀ t ∈ [0, 1].(1.2)

Here the form of the function σ2(t, θ) ∈ Θ ⊂ R
d is known except for the d-dimensional parameter

θ = (θ1, . . . , θd)
T ∈ Θ ⊂ R

d (note that the hypothesis of homoscedasticity is obtained for d = 1

and σ2(t, θ) = θ).

In Section 2 we consider linear parametric classes for the function σ2(·, θ) and propose a stochastic

process which vanishes for all t if and only if the null hypothesis in (1.2) is satisfied. We prove weak

convergence of this process to a Gaussian process, and as a consequence Kolmogorov-Smirnov or

Crámer-von-Mises type statistics can be constructed. In the special case of testing for homoscedas-

ticity the limit distribution is particularly simple and given by a scaled Brownian bridge. The test

is able to detect Pitman alternatives converging to the null hypothesis at a rate n−1/2. Moreover,

the asymptotic theory is applicable if the regression and variance function are Lipschitz continuous

of order γ > 1/2, while the alternative procedures of Zhu et al. (2001), Zhu (2005), Dette (2002)

and Liero (2003) require Lipschitz continuity of order 1 or a two times continuously differentiable

regression function, respectively. The extension of the procedure to general nonlinear hypotheses

is briefly mentioned in Section 3. In Section 4 we present a small simulation study, compare the

new test with the currently available procedures in the literature and a data example is analyzed

in order to illustrate the application of the procedure. For the problem of testing homoscedasticity

we use the approximation by a Brownian bridge to obtain critical values, while for the general

hypothesis of a parametric form a bootstrap procedure is proposed. It is demonstrated by means

of a simulation study that in many cases the new tests based on the Cramér-von-Mises statistic

yield a substantial improvement with respect to power. The case of a random design is briefly

discussed in Section 5, where we demonstrate that the corresponding process has a different limit

behaviour than in the case of a fixed design. Finally, some of the technical arguments are deferred

to an appendix.

2 An empirical process of pseudo residuals

Consider the nonparametric regression model (1.1) where the design points ti,n are defined by

i

n + 1
=

∫ ti,n

0

f (t) dt, i = 1, . . . , n,(2.1)

[see Sacks and Ylvisaker (1970)] and f is a positive density on the interval [0, 1], which is Lipschitz

continuous of order γ > 1
2
, i.e. f ∈ Lipγ [0, 1]. Throughout this paper define mj(t) = E[εj

i,n(t)], j =

3, 4, assume that for some γ > 1
2

f, σ, m3, m4 ∈ Lipγ [0, 1](2.2)
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and that E[ε6
i,n(t)] ≤ m6 < ∞ with a constant m6, which does not depend on the variable t. For

the sake of a transparent presentation we consider at the moment linear hypotheses of the form

H0 : σ2 (t) =

d
∑

j=1

θjσ
2
j (t) , for all t ∈ [0, 1] ,(2.3)

where θ1, . . . , θd ∈ R are unknown parameters and σ2
1, . . . , σ

2
d are given linearly independent func-

tions satisfying

σ2
j ∈ Lipγ [0, 1], j = 1, . . . , d.(2.4)

The general case of testing hypotheses of the form (1.2) will be briefly discussed in Section 3. In

order to construct a test for hypothesis (2.3) we introduce the function

St =

∫ t

0

(

σ2 (x) −
d

∑

j=1

αjσ
2
j (x)

)

f (x) dx,(2.5)

where t ∈ [0, 1] and the vector α = (α1, . . . , αd)
T is defined by

α = arg min
β∈IRd

∫ 1

0

(

σ2 (x) −
d

∑

j=1

βjσ
2
j (x)

)2

f (x) dx.(2.6)

Note that the null hypothesis (2.3) is equivalent to St = 0 for all t ∈ [0, 1] , and therefore an

appropriate estimate of the process St will be the basic tool for the construction of the new test

statistic. In order to obtain such an estimate we note that it follows from standard Hilbert space

theory [see Achieser (1956)] that

α = A−1C,(2.7)

where the elements of the matrix A = (aij)1≤i,j≤d and the vector C = (c1, . . . , cd)
T are defined by

aij =

∫ 1

0

σ2
i (x) σ2

j (x) f (x) dx, 1 ≤ i, j ≤ d,

ci =

∫ 1

0

σ2 (x) σ2
i (x) f (x) dx, 1 ≤ i ≤ d.(2.8)

With the notation

B0
t =

∫ t

0

σ2 (x) f (x) dx,(2.9)

Bt =

(
∫ t

0

σ2
1 (x) f (x) dx, . . . ,

∫ t

0

σ2
d (x) f (x) dx

)T

(2.10)
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we therefore obtain St = B0
t − BT

t α = B0
t − BT

t A−1C for the process in (2.5). The quantities

in this representation are now estimated as follows. Let (d0, . . . , dr)
T denote a vector with real

components satisfying

r
∑

i=0

di = 0,

r
∑

i=0

d2
i = 1.(2.11)

Following Gasser, Sroka and Jennen-Steinmetz (1986) or Hall, Kay and Titterington (1990) we

define pseudo residuals

Rj =

r
∑

i=0

diYj−i, j = r + 1, . . . , n,(2.12)

and an estimate of (2.7) by α̂ = Â−1Ĉ, where Â = (âij)1≤i,j≤d , Ĉ = (ĉ1, . . . , ĉd)
T and the

elements in these matrices are given by

âij =
1

n

n
∑

k=1

σ2
i (tk,n) σ2

j (tk,n) , ĉi =
1

n − r

n
∑

k=r+1

R2
kσ

2
i (tk,n) .(2.13)

Finally, the quantities in (2.9) and (2.10) are estimated by

B̂0
t =

1

n − r

bntc
∑

j=r+1

R2
j , B̂i

t =
1

n

bntc
∑

j=1

σ2
i (tj,n) , i = 1, . . . , d(2.14)

(note that âij and B̂i
t are not random), and the sample version of the process St is given by

Ŝt = B̂0
t − B̂T

t Â−1Ĉ,(2.15)

where B̂t = (B̂1
t , . . . , B̂

d
t )

T . The following result provides the asymptotic properties of the process

Ŝt for an increasing sample size. The proof is complicated and therefore deferred to the Appendix.

Theorem 2.1. If the conditions (2.1), (2.2) and (2.4) are satisfied, then the process {√n(Ŝt −
St)}t∈[0,1] converges weakly in D[0, 1] to a Gaussian process with covariance kernel

k(t1, t2) = V2Σt1 ,t2V
T
2 ,(2.16)

where the matrices Σt1 ,t2 ∈ R
(d+2)×(d+2) and V2 ∈ R

2×(d+2) are defined by

Σt1,t2 =



















v11 v12 w11 · · · w1d

v21 v22 w21 · · · w2d

w11 w21 z11 · · · z1d

...
...

...
. . .

...

w1d w2d zd1 · · · zdd



















,(2.17)

V2 = (I2|U) , U = −
(

BT
t1A

−1, BT
t2A

−1
)T

,(2.18)
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respectively, the elements of the matrix in (2.17) are given by

vij =

∫ 1

0

τr(s)σ
4 (s) 1[0,ti∧tj) (s) f (s) ds, 1 ≤ i, j ≤ 2,

wij =

∫ 1

0

τr(s)σ
4 (s)σ2

j (s) 1[0,ti) (s) f (s) ds, 1 ≤ i ≤ 2, 1 ≤ j ≤ d,

zij =

∫ 1

0

τr(s)σ
4 (s)σ2

i (s) σ2
j (s) f (s) ds, 1 ≤ i, j ≤ d

with τr(s) = m4 (s) − 1 + 4δr, and the quantity δr is defined by

δr =

r
∑

m=1

(

r−m
∑

j=0

djdj+m

)2

.(2.19)

Remark 2.2. It is easy to see that the matrix Σt1,t2 in (2.17) is given by E[PP T ], where the

(d + 2)-dimensional random vector P is defined by

P =
√

τr(U)σ2(U)(I{U ≤ t1}, I{U ≤ t2}, σ2
1(U), . . . , σ2

d(U))T ,

and the random variable U has density f .

Remark 2.3. The main idea of the proof of Theorem 2.1 is to use the Lipschitz continuity

of the regression function to derive an asymptotically equivalent representation for the process

{√n(Ŝt − St)}t∈[0,1], i.e.

√
n(Ŝt − St) =

√
n
{ 1

n − r

bntc
∑

j=r+1

Zj,n − t

n − r

n
∑

j=r+1

h(tj,n)Zj,n

}

+ op(1)(2.20)

uniformly with respect to t ∈ [0, 1], where h is a deterministic function and the random variables

{Zj,n | j = 1, . . . , n; n ∈ N} form a triangular array of rowwise (r +1)-dependent centered random

variables. For the process on the right hand side of (2.20) we then prove tightness and convergence

of the finite dimensional distributions. The technical details can be found in the appendix.

Remark 2.4. As pointed out previously the null hypothesis (2.3) is equivalent to St ≡ 0 ∀ t ∈
[0, 1] and consequently rejecting (2.3) for large values of the Kolmogorov-Smirnov or Cramer-von-

Mises statistic

Kn =
√

n sup
t∈[0,1]

|Ŝt| , Cn = n

∫ 1

0

|Ŝt|2dFn(t)

yields a consistent test. Here Fn(t) = 1
n

∑n
i=1 I{ti,n ≤ t} is the empirical distribution function of

the design points. If (A (t))t∈[0,1] denotes the limiting process in Theorem 2.1 it follows from the

Continuous Mapping Theorem

Kn
D→ sup

t∈[0,1]

|A (t) | , Cn
D→

∫ 1

0

|A(t)|2dF (t).
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Remark 2.5. Define the (n − r) × d matrix

X =
(

σ2
j (ti,n)

)j=1,...,d

i=1,...,n−r
∈ R

(n−r)×d(2.21)

and a vector R = (R2
r+1, . . . , R

2
n)T of squared pseudo residuals, then it follows that the estimate

α̂ of (2.7) is essentially the least squares estimate in the linear model E[R | t] = Xα, that is

α̂ = (XT X)−1XT R + Op(
1

n
).(2.22)

Example 2.6. In general the covariance structure of the limiting process is very complicated

as indicated by the following example, which considers the situation for d = 1. In this case the

matrix A in (2.7) is given by the scalar a11 =
∫ 1

0
σ4

1(x)f(x)dx. Defining

st,1 =
Bt

a11
=

∫ t

0
σ2

1 (x) f (x) dx
∫ 1

0
σ4

1 (x) f (x) dx
,

it follows from Theorem 2.1 that the process {√n(Ŝt − St)}t∈[0,1] converges weakly to a Gaussian

process with covariance kernel

k (t1, t2) =

∫ t1∧t2

0

τr(x)σ4 (x) f (x) dx + st1,1st2,1

∫ 1

0

τr(x)σ4 (x) σ4
1 (x) f (x) dx(2.23)

−st2 ,1

∫ t1

0

τr(x)σ4 (x) σ2
1 (x) f (x) dx − st1,1

∫ t2

0

τr(x)σ4 (x) σ2
1 (x) f (x) dx.

In the case of testing homoscedasticity (i.e. σ2
1(t) = 1) we have st,1 = F (t), where F is the

distribution of the design density, and (2.23) simplifies to

k(t1, t2) =

∫ t1∧t2

0

τr(x)σ4 (x) f (x) dx + F (t1)F (t2)

∫ 1

0

τr(x)σ4 (x) f (x) dx

−F (t2)

∫ t1

0

τr(x)σ4 (x) f (x) dx − F (t1)

∫ t2

0

τr(x)σ4 (x) f (x) dx

The following corollary is now obvious.

Corollary 2.7. Assume that the hypothesis of homoscedasticity H0 : σ2(t) = θ1 has to be tested

(i.e. d = 1, σ2
1(t) = 1) and that additionally m4(t) ≡ m4 is constant. If condition (2.1) and (2.2)

are satisfied, then under the null hypothesis of homoscedasticity the process {√n(Ŝt − St)}t∈[0,1]

converges weakly on D[0, 1] to a scaled Brownian bridge in time F, where F is the distribution

function of the design density, i.e.

{√n(Ŝt − St)}t∈[0,1] ⇒
√

(m4 − 1 + 4δr)θ2
1{B ◦ F}t∈[0,1].
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3 General hypotheses and local alternatives

3.1 Nonlinear hypotheses for the variance function

In this paragraph we briefly explain how the results have to be adapted if a general nonlinear

hypothesis of the form (1.2) has to be tested. For this purpose we assume that the parameter

space Θ is compact and that the infimum

inf
θ∈Θ

∫ 1

0

{σ2(t) − σ2(t, θ)}2f(t)dt(3.1)

is attained at a unique point, say θ0 = (θ
(0)
1 , . . . , θ

(0)
d )T , in the interior of Θ. Observing the inter-

pretation of the estimate α̂ in Remark 2.4, we define

θ̂ = arg min
θ∈Θ

1

n − r

n
∑

i=r+1

(

R2
i,n − σ2(ti,n, θ)

)2

(3.2)

as the nonlinear least squares estimate. Under some regularity assumptions [see Gallant (1987),

Chapter 4, or Seber and Wild (1989), p. 572-574] the sum of squares in (3.2) can be approximated

by
1

n − r
HT (In−r − X(XTX)−1XT )H + Op

( 1

n

)

,

where In−r is the (n − r) × (n − r) identity matrix, the components of the vector

H = (Hr+1,n, . . . , Hn,n)
T are defined by

Hj,n =
(

r
∑

i=0

diσ(tj−i,n)εj−i,n

)2

− σ2(tj,n, θ0) , j = r + 1, . . . , n,

and the matrix X is given by (2.21) with σ2
j (t) = ∂

∂θj
σ2(t, θ)|θ=θ0

(j = 1, . . . , d). Similarly, the

analogue of the process in (2.15) is given by

Ŝt = B̂0
t −

1

n

bntc
∑

i=1

σ2(ti,n, θ̂)(3.3)

=
1

n − r

bntc
∑

i=r+1

{

Hi,n − ∂

∂θ
σ2(ti,n, θ) |θ=θ0

(θ̂ − θ)
}

+ op(n
−1/2).

Roughly speaking this means that the nonlinear case can be treated as the linear case, where

the variance function has to be replaced by σ2(x) − σ2(x, θ0) and the functions σ2
j are given by

∂
∂θj

σ2(x, θ) |θ=θ0
(j = 1, . . . , d). In particular, with the notation St =

∫ t

0
(σ2(x) − σ2(x, θ0))dx, we

obtain the representation

√
n(Ŝt − St) =

√
n

n − r

bntc
∑

i=r+1

{

Hi,n − E[Hi,n] −
d

∑

j=1

∂

∂θj

σ2(ti,n, θ) |θ=θ0
αj

}

+ op(1),(3.4)
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where αj = θ̂j − θ
(0)
j (j = 1, . . . , d) and the vector α = (α1, . . . , αd)

T satisfies

α = θ̂ − θ0 = (XT X)−1XT H.

From (2.21) and the condition

0 =
∂

∂θj

∫ 1

0

(σ2(x) − σ2(x, θ))2f(x)dx
∣

∣

∣

θ=θ0

= − 2

∫ 1

0

σ2
j (x)(σ2(x) − σ2(x, θ0))f(x)dx

it follows that
1

n
XT X − Â = O

(1

n

)

1

n
XT H − 1

n

(

n
∑

i=r+1

∂

∂θj

σ2(ti,n, θ) |θ=θ0
(Hi,n − E[Hi,n])

)d

j=1
= O

(1

n

)

.

Consequently the right hand side of (3.4) corresponds to the expression in (2.20) [see also the

representation (A.13) in the proof of Theorem 2.1 in the Appendix]. This means that the process

{√n(Ŝt − St)}t∈[0,1] exhibits the same asymptotic behaviour as described in Theorem 2.1 for the

linear case, where the functions σ2
j have to be replaced by

σ2
j (t) =

∂

∂θj

σ2(t, θ)
∣

∣

∣

θ=θ0

, j = 1, . . . , d.

3.2 Local alternatives

In this paragraph we briefly discuss the asymptotic behaviour of the process {√n(Ŝt − St)}t∈[0,1]

in the case of local alternatives

σ2
n(t) = σ2(t, θ0) +

1√
n

h(t)

for a fixed function h : [0, 1] → R, such that σ2
n(t) is nonnegative for all t ∈ [0, 1]. Denote

{A(t)}t∈[0,1] as the limiting process in Theorem 2.1 and define

γ = (γ1, . . . , γd)
T = arg min

β∈IRd

∫ 1

0

(

h2 (x) −
d

∑

j=1

βj
∂

∂θj

σ2(t, θ)
∣

∣

∣

θ=θ0

)2

f (x) dx,

then it follows from the arguments given in the Appendix that the process {√n(Ŝt − St)}t∈[0,1]

converges weakly to the process

{

A(t) +

∫ t

0

(

h(x) −
d

∑

j=1

γj
∂

∂θj
σ2(x, θ)

∣

∣

∣

θ=θ0

)

f (x) dx
}

t∈[0,1]
.

This means that tests based on the process {√n(Ŝt − St)}t∈[0,1] can detect local alternatives

converging to the null hypothesis at a rate n−1/2, whenever

h 6∈ span
{ ∂

∂θ
σ2(·, θ)|θ=θ0

, . . . ,
∂

∂θ
σ2(·, θ)|θ=θ0

}

.
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4 Finite sample properties and a data example

In this section we illustrate the finite sample properties of the new test by means of a simulation

study and a data example. We first investigate the performance in the problem of testing for

homoscedasticity and also compare the new procedure with alternative tests for this problem.

4.1 Testing for homoscedasticity

To our knowledge there exists only one test for the hypothesis of homoscedasticity which does

not depend on the subjective choice of a smoothing parameter and requires the same minimal

assumptions regarding the smoothness of the regression and variance functions. This test was

proposed by Dette and Munk (1998) and is based on an estimate of the L2−distance between

the variance function under the null hypothesis and alternative. Following these authors we

considered the problem of testing for homoscedasticity in the nonparametric regression model

(1.1) with regression and variance function given by

m(t) = 1 + sin(t); σ(t) = σ exp(ct),(4.1)

m(t) = 1 + t; σ(t) = σ[1 + c sin(10t)]2,(4.2)

m(t) = 1 + t; σ(t) = σ[1 + ct]2,(4.3)

where σ = 0.5, c = 0, 0.5, 1 and the case c = 0 corresponds to the null hypothesis of homoscedas-

ticity [i.e. d = 1, σ2
1(t) = θ1]. The design is uniform (i.e. f ≡ 1) and the random variables εi,n have

a standard normal distribution. All rejection probabilities were calculated with 5000 simulation

runs. As pointed out in Section 2 rejecting the null hypothesis of homoscedasticity for large values

of the statistic
∫ 1

0
Ŝ2

t dFn(t) yields a consistent test (recall that Fn denotes the empirical distrib-

ution function of the design points). It follows from Corollary 2.6 and the Continuous Mapping

Theorem that under the null hypothesis of homoscedasticity

Cn = n

∫ 1

0

Ŝ2
t dFn(t)

D−→ (m4 − 1 + 4δr)θ
2
1

∫ 1

0

B2(F (t))dF (t) = (m4 − 1 + 4δr)θ
2
1

∫ 1

0

B2(t)dt,

where B denotes a standard Brownian bridge. If wα denotes the 1−α quantile of the distribution

of the random variable
∫ 1

0
B2(t)dt and m̂4 is an estimate of the fourth moment, then the test,

which rejects the hypothesis of homoscedasticity H0 : σ2(t) = θ1 if

Cn = n

∫ 1

0

Ŝ2
t dFn(t) ≥ wα(m̂4 − 1 + 4δr)θ

2
1,(4.4)

has asymptotically level α. Note that the estimate of m4 depends on the choice of the difference

sequence d0, . . . , dr for the calculation of the pseudo residuals Ri,n. For example, if r = 1 we have

d0 = −d1 = 1/
√

2 and it is easy to see that

m̂4 =
( 1

2(n − 1)

n
∑

j=2

R4
j,n

)( 1

2(n − 1)

n
∑

j=2

R2
j,n

)−2

− 3

10



is a consistent estimate of m4. The corresponding estimates for other cases can be obtained sim-

ilarly. We first briefly investigate the impact of the choice of the order of the difference scheme

d0, . . . , dr for the calculation of the pseudo residuals. As pointed out by Dette, Munk and Wagner

(1998), the sequence (d0, . . . , dr) could be chosen such that the bias E[R2
i,n]−σ2(ti,n) is diminished

or such that the variance of the estimate 1
n−r

∑n
i=r+1 R2

i,n of the integrated variance
∫ 1

0
σ2(x)f(x)dx

is minimal. The lastnamed choice corresponds to the minimization of δr with respect to the dif-

ference sequence (d0, . . . , dr) and the optimal weights for various values of r can be found in Hall

et al. (1990). However, it turns out that the bias has a substantial impact on the approximation

of the nominal level of the new test. As a consequence optimal difference sequences as proposed

by Hall et al. (1990) cannot be recommended for our test procedure (for the sake of brevity these

results are not presented). In Table 4.1 and 4.2 we display the level and power of the new test for

the difference sequence

dj = (−1)j

(

r
j

)

(

2r
r

)1/2
, j = 0, . . . , r,(4.5)

with r = 1 and r = 2, respectively, which was recommended for a uniform design by Dette et al.

(1998) in order to reduce the bias of a nonparametric variance estimator.

n = 50 n = 100 n = 200

r = 1 c 2.5% 5% 10% 2.5% 5% 10% 2.5% 5% 10%

0 0.050 0.080 0.131 0.033 0.061 0.115 0.029 0.057 0.104

(4.1) 0.5 0.171 0.245 0.357 0.256 0.361 0.490 0.504 0.628 0.743

1 0.413 0.543 0.695 0.743 0.842 0.919 0.980 0.992 0.997

0 0.050 0.078 0.130 0.036 0.061 0.114 0.025 0.051 0.106

(4.2) 0.5 0.132 0.184 0.271 0.181 0.267 0.419 0.330 0.515 0.748

1 0.138 0.196 0.285 0.207 0.315 0.462 0.390 0.585 0.807

0 0.051 0.077 0.128 0.032 0.062 0.115 0.025 0.051 0.105

(4.3) 0.5 0.313 0.423 0.564 0.561 0.691 0.804 0.897 0.943 0.975

1 0.588 0.724 0.851 0.910 0.962 0.987 0.999 1.000 1.000

Table 4.1. Simulated rejection probabilities of the test (4.4) with a difference sequence of the form

(4.5) and r = 1. The case c = 0 corresponds to the null hypothesis of homoscedasticity.

We observe that the theoretical level is well approximated for sample sizes larger than n = 100.

If the sample size is smaller the approximation is less precise for difference sequences of order

r = 1 [see Table 4.1 with n = 50] but reasonable accurate for the case r = 2 [see Table 4.2].

On the other hand an increase of the order yields to some loss in power in the case r = 2. This

corresponds to the asymptotic theory, which indicates that a smaller value of δr yields a more

powerful procedure. In particular, for r = 1, 2 the values corresponding to the sequence (4.5) are

given by δ1 = 1/4, δ2 = 17/36, respectively. Based on an extensive study we recommend to use a
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difference sequence of order r = 1 (in order to increase the power) and to use the bootstrap (as

described in the following section) for sample sizes smaller than 50 (in order to obtain a reasonable

approximation of the nominal level.)

n = 50 n = 100 n = 200

r = 2 c 2.5% 5% 10% 2.5% 5% 10% 2.5% 5% 10%

0 0.029 0.058 0.113 0.025 0.051 0.106 0.030 0.057 0.111

(4.1) 0.5 0.133 0.219 0.336 0.199 0.297 0.433 0.406 0.523 0.653

1 0.354 0.493 0.651 0.622 0.749 0.859 0.939 0.969 0.987

0 0.027 0.058 0.110 0.024 0.053 0.101 0.024 0.050 0.099

(4.2) 0.5 0.066 0.109 0.190 0.106 0.180 0.311 0.197 0.344 0.584

1 0.067 0.109 0.200 0.113 0.195 0.327 0.255 0.413 0.673

0 0.032 0.061 0.115 0.027 0.053 0.104 0.028 0.052 0.102

(4.3) 0.5 0.242 0.365 0.531 0.457 0.595 0.726 0.795 0.880 0.937

1 0.482 0.643 0.802 0.831 0.922 0.968 0.995 0.998 1.000

Table 4.2. Simulated rejection probabilities of the test (4.4) with a difference sequence of the form

(4.5) with r = 2. The case c = 0 corresponds to the null hypothesis of homoscedasticity.

It is also of interest to compare these results with the corresponding rejection probabilities of

the test suggested by Dette and Munk (1998) which requires the same minimal assumptions as

the procedure proposed in this paper. The results in Table 4.1 are directly comparable with the

results of Table 1 in this reference. We observe that for model (4.1) and (4.3) the new test yields

substantially larger power than the test of Dette and Munk (1998). On the other hand, in model

(4.2) the procedure of Dette and Munk (1998) based on the L2-distance is substantially more

powerful for the sample sizes n = 50 and n = 100, while both tests are comparable for the sample

size n = 200 [see Table 4.1]. Recall once again that Dette and Munk’s (1998) test can detect

local alternatives converging to the null hypothesis at a rate n−1/4 while the rate for the procedure

proposed in this paper is n−1/2. The reason for the difference between the asymptotic theory and

the empirical results for small sample sizes in model (4.2) can be explained by the specific form

of the function

St =

∫ t

0

(σ2(x) − θ0)dx =

∫ t

0

σ2(x)dx − t

∫ 1

0

σ2(x)dx(4.6)

which is depicted in Figure 4.1 for the case c = 0.5 and c = 1. We observe that it is difficult to

distinguish these functions from the line S̄t ≡ 0. As a consequence the asymptotic advantages of

the new test with respect to Pitman alternatives are only visible for a large sample size as n = 200.

This effect is even more visible if the sample size is n = 400. For example if c = 0.5 the rejection

probabilities of the test of Dette and Munk (1998) are 0.810, 0.887, 0.951 while the new test yields

larger power, namely 0.898, 0.978, 0.997 at level 2.5%, 5% and 10%, respectively.
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Figure 4.1: The function St defined in (4.6) for c = 0.5 (solid line) and c = 1 (dotted line).

4.2 Testing for a parametric hypothesis

In this paragraph we consider the general hypothesis (1.2). We begin with a linear parametric

class of variance functions

H0 : σ2(t) = 1 + θt2(4.7)

(θ ∈ R). We simulated data according to the model

m(t) = 1 + t , σ2(t) = 1 + 3t2 + 2.5c sin(2πt),(4.8)

where the case c = 0 corresponds to the null hypothesis and the choices c = 0.5, 1 to two al-

ternatives. The errors are again standard normal distributed and the design is uniform. Be-

cause the limit distribution provided by Theorem 2.1 is complicated we applied a bootstrap

procedure to obtain the critical values. More precisely, we calculated nonparametric residuals

ε̂i = (Yi,n − m̂(ti,n)) /σ̂(ti,n), i = 1, . . . , n, where

m̂(t) =
∑

i

Wi(t, h)Yi, σ̂2(t) =
∑

i

Wi(t, h)(Yi − m̂(ti,n))2

and Wi(t, h) are the local linear weights [see Fan and Gijbels (1996)]. The bandwidth h in these

estimates was chosen by least squares cross validation. In a second step we defined ε∗1, . . . , ε
∗
n as a

sample of i.i.d. observations with distribution function F̂ε and generated bootstrap data according

to the model

Y ∗
i = m̂(ti,n) + σ(ti,n, θ̂)ε

∗
i ,

where σ2(·, θ̂) is the estimate of the variance function under the null hypothesis (4.7). Finally, the

corresponding Cramér-von-Mises statistic, say C∗
n, was calculated from the bootstrap data. If B

bootstrap replications have been performed and C
∗(1)
n < . . . < C

∗(B)
n denote the order statistics

of the calculated bootstrap sample, the null hypothesis (4.7) was rejected if Cn > C
∗(bB(1−α)c)
n .

B = 100 bootstrap replications were performed to calculate the rejection probabilities and 1000

simulation runs were used for each scenario. The results are depicted in the first part of Table 4.3.
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We observe a rather precise approximation of the nominal level and a reasonable power under the

alternatives.

n = 50 n = 100 n = 200

c 2.5% 5% 10% 2.5% 5% 10% 2.5% 5% 10%

0 0.023 0.060 0.102 0.023 0.057 0.116 0.023 0.051 0.114

(4.7) 0.5 0.319 0.386 0.463 0.459 0.549 0.632 0.721 0.803 0.864

1 0.659 0.718 0.774 0.888 0.922 0.948 0.988 0.993 0.997

0 0.032 0.065 0.115 0.023 0.056 0.116 0.025 0.057 0.105

(4.9) 0.5 0.191 0.281 0.357 0.268 0.362 0.445 0.426 0.546 0.640

1 0.403 0.511 0.603 0.504 0.608 0.711 0.892 0.939 0.968

Table 4.3. Simulated rejection probabilities of the bootstrap test for the one-parametric hypotheses (4.7)

and (4.9) in the regression models (4.8) and (4.10), respectively.

We will conclude this section with an investigation of a nonlinear hypothesis for the variance function,

i.e.

σ2(t, θ) = eθt(4.9)

(θ ∈ R). We simulated data according to the model

m(t) = 1 + t , σ2(t, θ) = (1 + c sin(2πt))eθt,(4.10)

where the case c = 0 corresponds to the null hypothesis and the choices c = 0.5, 1 to two alternatives.

The errors are again standard normal distributed and the design is uniform. In the second part of Table

4.3 we display the corresponding rejection probabilities of the bootstrap test based on the procedure

described in Section 3.1. We observe a precise approximation of the nominal level (similar as in the linear

case). Moreover, the alternatives are detected with reasonable power.

4.3 Data example

In this section we briefly illustrate an application of the new test in an example of econometrics. For this

purpose we reanalyze data of average weakly expenditure on food and average weakly income in Dollars

[see Griffiths, Hill and Judge (1993), p. 182]. Table 5.2 in this reference shows the data for 40 households

taken from a larger sample. Only households with at least three family members are investigated and the

statistical model is used to estimate the influence of income on food expenditure. From the scattergram

on page 183 in Griffiths, Hill and Judge (1993) it is fairly obvious that heteroscedasticity is present and

the hypothesis of homoscedasticity is clearly rejected by our test with a p-value 0.01.

Based on a visual examination of least squares residuals Griffiths, Hill and Judge (1993) proposed a

parametric model for the variance function, that is

σ2(t) = θt
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[see page 185 in this reference]. The application of our procedure for testing this hypothesis yields the

p-value 0.272, which supports the assumption made by these authors. It might be also of interest to test

further polynomial hypotheses, that is

H0 : σ2(t) = θtk(4.11)

for some fixed k ≥ 0. The p-values of our test are listed in Table 4.4 for various values of k. These results

indicate that the alternative parametrization σ2(t) = θt2 might be more appropriate, because the test

for this hypothesis yields a substantially larger p-value.

k 0.0 0.2 0.4 0.6 0.8 1 2 3 4 5

p 0.010 0.020 0.062 0.098 0.142 0.272 0.99 0.348 0.068 0.012

Table 4.4. p-values of the bootstrap test for hypotheses of the form (4.11).

5 Random design

In this section we briefly discuss the behaviour of a corresponding stochastic process in the case of a

regression model with a random design, which turns out to be different from the fixed design case. For

this purpose consider the model

Yi = m (Xi) + σ (Xi) εi, i = 1, . . . , n,(5.1)

where X1, . . . , Xn are i.i.d. with positive density f on the interval [0, 1] and the random errors ε1, . . . εn

have mean 0, variance 1 and are also i.i.d.. We denote by mj(x) = E[εj |X = x] the jth conditional

moment of the errors and assume that m6(x) is bounded by some constant, say m6. We consider the

process {Ŝt}t∈[0,1] defined in (2.15) with the following modifications. The elements of the matrix Â are

defined as in (2.13), where the fixed design points ti,n have been replaced by the random variables Xi.

Additionally, the statistics ĉi, B̂
0
t , B̂i

t have been replaced by

ĉi =
1

n − r

n
∑

j=r+1

R2
jσ

2(X(j))(5.2)

B̂0
t =

1

n − r

n
∑

j=r+1

R2
jI{X(j) ≤ t},(5.3)

B̂i
t =

1

n

n
∑

j=1

σ2
i

(

X(j)

)

I{X(j) ≤ t},(5.4)

respectively, the pseudo residuals are defined by Rj =
∑r

i=0 diYAj−i
, j = r + 1, . . . , n, X(1), . . . , X(n)

and A1, . . . , An denote the order statistic and the antiranks of X1, . . . , Xn. It is easy to see that for a

fixed design the corresponding estimates in (5.2), (5.3), (5.4) and in (2.13) and (2.14) differ only by a

term of order oP (n−1/2), and as a consequence for a fixed design the process Ŝt with the estimates ĉi, B̂0
t

and B̂i
t defined in (5.2), (5.3) and (5.4), respectively, exhibits the same asymptotic behaviour as described
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in Theorem 2.1. However, the following result shows that in the case of the random design the stochastic

process has a different asymptotic behaviour.

Theorem 5.1. Consider the nonparametric regression model (5.1) with a random design and the sto-

chastic process Ŝt defined in (2.15), where ĉi, B̂0
t and B̂i

t are defined in (5.2), (5.3) and (5.4), respectively.

If the conditions (2.1), (2.2), (2.4) and the conditions stated at the beginning of this section are satisfied,

then the process {√n(Ŝt − St)}t∈[0,1] converges weakly in D[0, 1] to a Gaussian process with covariance

kernel

k(t1, t2) = V2Σ̄t1,t2V
T
2 ,(5.5)

where the matrix V2 ∈ R
2×(d+2) is defined in (2.18), Σ̄t1,t2 = Σt1,t2 + Φt1,t2 , the matrix Σt1,t2 is given in

(2.17),

Φt1,t2 =



















v̄11 v̄12 w̄11 · · · w̄1d

v̄21 v̄22 w̄21 · · · w̄2d

w̄11 w̄21 z̄11 · · · z̄1d

...
...

...
. . .

...

w̄1d w̄1d z̄d1 · · · z̄dd.



















(5.6)

and the elements of the matrix Φt1,t2 are defined by

v̄ij =

∫ 1

0
σ4 (s) 1[0,ti∧tj) (s) f (s) ds − B0

tiB
0
tj , 1 ≤ i, j ≤ 2,(5.7)

w̄ij =

∫ 1

0
σ4 (s) σ2

j (s) 1[0,ti) (s) f (s) ds − B0
ticj , 1 ≤ i ≤ 2, 1 ≤ j ≤ d,

z̄ij =

∫ 1

0
σ4 (s) σ2

i (s)σ2
j (s) f (s) ds − cicj , 1 ≤ i, j ≤ d.

Remark 5.2. It is easy to see that the matrix Φt1,t2 in (5.6) is the covariance matrix of the (d + 2)-

dimensional random vector Q = σ2(U)(I{U ≤ t1}, I{U ≤ t2}, σ2
1(U), . . . , σ2

d(U))T ), where the random

variable U has density f . Observing the definition of the vector P in Remark 2.2 we therefore obtain

Σ̄t1,t2 = E[PP T ] + Var[Q]. Comparing Theorem 2.1 and 5.1 we observe that in the case of a random

design there appears the additional term V2Φt1,t2V
T
2 in the covariance kernel of the limiting process. A

similar phenomenon was observed by Munk (2002) in the context of testing for the parametric form of the

regression function. However, our final result shows that in the context of testing for homoscedasticity

the covariance kernel of the limiting process in the case of a random design differs only by a factor from

the kernel obtained under the fixed design assumption.

Corollary 5.3. Consider the nonparametric regression model (5.1) with a random design and the sto-

chastic process Ŝt given in (2.15), where ĉi, B̂0
t and B̂i

t are defined in (5.2), (5.3) and (5.4), respectively.

Assume that the hypothesis of homoscedasticity H0 : σ2(t) = θ1 has to be tested (i.e. d = 1, σ2
1(t) = 1)

and that additionally m4(t) ≡ m4 is constant. If the conditions (2.1), (2.2) and the conditions stated at

the beginning of this section are satisfied, then under the null hypothesis of homoscedasticity the process
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{√n(Ŝt − St)}t∈[0,1] converges weakly on D[0, 1] to a scaled Brownian bridge in time F, where F is the

distribution function of the random variables Xi, i.e.

{√n(Ŝt − St)}t∈[0,1] ⇒
√

(m4 + 4δr) θ2
1{B ◦ F}t∈[0,1].

A Appendix

Proof of Theorem 2.1. For the sake of a transparent notation we omit the index n in this section,

whenever the dependence on n will be clear from the context. In particular we write tj and εj instead of

tj,n and εj,n, respectively. We define the random variables

Lk =
r

∑

j=0

djσ(tk−j)εk−j , k = r + 1, . . . , n,(A.1)

and analogues of the estimates B̂0
t and ĉi by

B̃0
t =

1

n − r

bntc
∑

j=r+1

L2
j , c̃i =

1

n − r

n
∑

j=r+1

L2
jσ

2
i (tj) .(A.2)

With the notation C̃ = (c̃1, . . . , c̃d)
T we introduce the stochastic process

S̃t = B̃0
t − B̂T

t Â−1C̃ = Ŝt + op(n
−1/2)(A.3)

uniformly with respect to t ∈ [0, 1], where we used the Lipschitz continutity of the regression function.

Consequently, the processes An(t) = {√n(Ŝt −St)}t∈[0,1] and {Ãn(t)}t∈[0,1] = {√n(S̃t −St)}t∈[0,1] exhibit

the same asymptotic behaviour, and the assertion of Theorem 2.1 follows if a corresponding statement

for the process {Ãn(t)}t∈[0,1] can be established.

For a proof of this property we introduce a further decomposition

Ãn (t) =
√

n(S̃t − E [S̃t]) +
√

n( E [S̃t] − St) = Ān (t) + B̄n (t) ,(A.4)

where the last equality defines the processes Ān(t) and B̄n(t). A simple calculation and the Lipschitz

continuity of σ2 show B̄n(t) = o(1), uniformly with respect to t ∈ [0, 1], and therefore it is sufficient to

consider the process Ān in the following discussion. Thus the assertion of Theorem 2.1 follows from the

weak convergence

{Ān(t)}t∈[0,1] ⇒ {A(t)}t∈[0,1],(A.5)

where {A(t)}t∈[0,1] is a Gaussian process with covariance kernel defined in (2.16). For a proof of this

statement we first show convergence of the finite dimensional distributions, i.e.

(

Ān (t1) , . . . , Ān (tk)
)T D→ (A (t1) , . . . , A (tk))

T(A.6)

for any vector (t1, . . . , tk) ∈ [0, 1]k . Secondly, we prove that there exists a constant, say C, such that for

all 0 ≤ s < t ≤ 1

E
[

∣

∣Ān (t) − Ān (s)
∣

∣

4
]

≤ C (t − s)2 .(A.7)
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The assertion (A.5) then follows from Theorem 13.5 in Billingsley (1999).

For a proof of (A.6) we restrict ourselves to the case k = 2 (the general case follows exactly the same

way with an additional amount of notation) and note that the process Ān can be represented as

Ān(t) = B̄0
t − B̂tÂ

−1C̄,(A.8)

where C̄ = (c̄1, . . . , c̄d)
T ,

B̄0
t =

1

n − r

bntc
∑

j=r+1

Zj , c̄i =
1

n − r

n
∑

j=r+1

Zjσ
2
i (tj) ,(A.9)

and the random variables Zj are defined by Zj = L2
j−E[L2

j ]. From the representation
(

Ān (t1) , Ān (t2)
)T

=

V̂2Xn, with Xn =
√

n
(

B̄0
t1 , B̄

0
t2 , c̄1, . . . , c̄d

)T
, V̂2 = (I2|Û) , Û = −(B̂T

t1Â
−1, B̂T

t2Â
−1)T and V2 = V̂2 + o(1)

it follows that it is sufficient to establish the weak convergence

Xn
D→ N2+d(0,Σt1 ,t2),(A.10)

where the matrix Σt1,t2 is defined in (2.17). For a proof of this statement we first calculate the asymptotic

covariance matrix of the random vector Xn. Observing the identity

E
[

Z2
j

]

+ 2
r

∑

m=1

E [ZjZj+m] = (m4 (tj) − 1 + 4δr) σ4 (tj) + O
(

n−γ
)

(uniformly with respect to tj , j = 1, . . . , n) we obtain for i = 1, 2

nE
[

(

B̄0
ti

)2
]

= n E (
1

n − r

bntic
∑

j=r+1

Zj)
2 =

1

n − r

bntic−r
∑

j=r+1

(

E
[

Z2
j

]

+ 2
r

∑

m=1

E [ZjZj+m]
)

+ O

(

1

n

)

=

∫ ti

0
τr(x)σ4 (x) f (x) dx + O

(

n−γ
)

(uniformly with respect to ti, i = 1, . . . , n), where we have used the Lipschitz-continuity of the functions

σ2, σ2
j , f. A similar calculation yields for 1 ≤ i, ` ≤ 2; ti ≤ t`

nE
[

B̄0
tiB̄

0
t`

]

= n E
( 1

n − r

bntic
∑

j=r+1

Zj ·
1

n − r

bnt`c
∑

j=r+1

Zj

)

=
1

n − r

bntic−r
∑

j=r+1

(

E
[

Z2
j

]

+ 2
r

∑

m=1

E [ZjZj+m]
)

+ O

(

1

n

)

=

∫ ti

0
τr(x)σ4(x)f(x)dx + O(n−γ)

[recall that τr(x) = m4 (x) − 1 + 4δr ] and for 1 ≤ i ≤ 2; 1 ≤ ` ≤ d

nE
[

B̄0
ti c̄`

]

=

∫ ti

0
τr(x)σ4 (x)σ2

` (x) f (x) dx + O
(

n−γ
)

,

nE [c̄ic̄`] =

∫ 1

0
τr(x)σ4 (x) σ2

i (x)σ2
` (x) f (x) dx + O

(

n−γ
)

.
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Therefore it follows Var(Xn) = Σt1,t2 + O(n−γ), where the matrix Σt1,t2 is defined in Theorem 2.1.

For a proof of the asymptotic normality we introduce the notation c = (a1, a2, b1, . . . , bd)
T and show with

the aid of a central limit Theorem for α-mixing arrays in Liebscher (1996) that

Tn =
cT Xn

σ
=

√
n

σ

(

a1B̄
0
t1 + a2B̄

0
t2 +

d
∑

i=1

bic̄i

)

D→ N (0, 1) ,(A.11)

where σ2 = cT Σt1,t2c denotes the asymptotic variance of cT Xn. For this we assume t1 ≤ t2 and note that

the statistic Tn can be represented as Tn =
∑n

j=r+1 Cn,j, where

Cn,j =

√
n

σ (n − r)















(a1 + a2 +
∑d

i=1 biσ
2
i (tj) )Zj j ≤ bnt1c

(a2 +
∑d

i=1 biσ
2
i (tj) )Zj bnt1c < j ≤ bnt2c

∑d
i=1 biσ

2
i (tj) Zj j > bnt2c

.

Obviously, {Cn,j | j = r + 1, . . . , n;n ∈ N} is a triangular array of (r + 1)-dependent random variables

and

E
[

|Zj |3
]

≤ E
[

L6
j

]

+ 3 E
[

L4
j

]

E
[

L2
j

]

+ 4(E
[

L2
j

]

)3.(A.12)

Now a straightforward calculation gives E|Zj |3 = O(1) and E|Zj |4 = O(1) uniformly with respect to

j = r + 1, . . . , n. As a consequence we obtain E|C3
n,j | = O(n−3/2) and E|C4

n,j| = O(n−2) uniformly

with respect to j = r + 1, . . . , n. From the calculation of the covariance matrix of Xn it follows that

limn→∞ E
[

T 2
n

]

= 1, and the assumptions in the central limit theorem of Liebscher (1996) hold with q = 4

and p = 3, respectively. This theorem now yields the assertion (A.11), and as a consequence we obtain

σTn = cT Xn
D→ N

(

0, cT Σt1,t2c
)

.

By the Cramér-Wold device the weak convergence of the finite dimensional distributions and the state-

ment in (A.6) follows.

In order to prove the remaining assertion (A.7) we introduce a further decomposition

Ān (t) =
1

n − r

bntc
∑

j=r+1

Zj −
1

n − r

n
∑

j=r+1

Zj{ŝt,1σ
2
1 (tj) + . . . + ŝt,dσ

2
d (tj) }(A.13)

= Ā(1)
n (t) − Ā(2)

n (t) ,

where the last equality defines the processes Ā
(1)
n and Ā

(2)
n , ŝt,j =

∑d
k=1 b̂kjB̂

k
t , and b̂ij denotes the element

in the ith row and jth column of the inverse of the matrix Â. Obviously, the assertion (A.7) follows from

E
[

n2|Ā(i)
n (t) − Ā(i)

n (s) |4
]

≤ C (t − s)2 , i = 1, 2(A.14)

for some positive constant. For a proof of this property in the case i = 1 we use the representation

Ā
(1)
n (t) − Ā

(1)
n (s) = 1

n−r

∑bntc
j=bnsc+1 Zj and obtain by a straightforward but tedious calculation

βn = E
[

n2|Ā(1)
n (t) − Ā(1)

n (s) |4
]
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= 3
[( 1

n

bntc
∑

i=bnsc+1

E
[

Z2
i

]

)2
+

( 2

n

bntc−r
∑

i=bnsc+1

r
∑

k=1

E [ZiZi+k]
)2

+2
( 1

n

bntc
∑

i=bnsc+1

E
[

Z2
i

]

· 2

n

bntc−r
∑

i=bnsc+1

r
∑

k=1

E [ZiZi+k]
)]

+ O

(

1

n

)

= 3
{ 1

n

bntc−r
∑

i=bnsc+1

(

E
[

Z2
i

]

+ 2

r
∑

k=1

E [ZiZi+k]
)}2

+ O

(

1

n

)

= 3

(
∫ t

s
τr(x)σ4 (x) f (x) dx

)2

+ O
(

n−γ
)

uniformly with respect to s, t ∈ [0, 1]. The estimate (A.14) in the case i = 1 is now obvious from the

mean value theorem.

In order to derive a similar estimate for the process Ā
(2)
n we note that E[n2|Ā(2)

n (t) − Ã
(2)
n (s)|4] = o(1)

uniformly with respect to t ∈ [0, 1], where the process Ã
(2)
n is defined by

Ã(2)
n (t) =

1

n − r

n
∑

j=r+1

Zj{st,1σ
2
1 (tj) + . . . + st,dσ

2
d (tj) }

with st,j =
∑d

k=1 bkjB
k
t and bkj denotes the element in the kth row and jth column of the inverse of the

matrix A. Obviously, we have for some constants C1, . . . , Cd

st,j − ss,j =
d

∑

k=1

bkj

(

∫ t

s
σ2

k (x) f (x) dx
)

= (t − s)
d

∑

k=1

bkjCk,

and obtain

Ã(2)
n (t) − Ã(2)

n (s) =
1

n − r

n
∑

j=r+1

Zj

{

(t − s)

d
∑

k=1

bk1Ckσ
2
1 (tj) + . . . + (t − s)

d
∑

k=1

bkdCkσ
2
d (tj)

}

=
t − s

n − r

n
∑

j=r+1

µjZj,

where the constants µj are defined by µj =
∑d

i=1 (
∑d

k=1 bkiCk)σ
2
i (tj) . A similar calculation as used in

the proof of the tightness of the process Ā
(1)
n shows that the inequality (A.14) also holds in the case i = 2.

This establishes the remaining condition (A.7) and the proof of Theorem 2.1 is completed. 2

Proof of Theorem 5.1. For the sake of brevity we only sketch the main difference in the proof,

which emerges in the different variance of the empirical process in the case of a random design. Let c̃ i

and B̃0
t be defined as in (5.2) and (5.3), where the random variables Rj are replaced by the variables

Lj = σ(X(j))
∑r

i=0 diεAj−i
. By the Lipschitz continuity of the regression function the limiting behaviour

of the process Ŝt is not changed by this replacement. For the calculation of the asymptotic covariance

we now use the random variables B̃0
t1 and B̃0

t2 (with 0 ≤ t1 ≤ t2 ≤ 1) and the formula

Cov (B̃0
t1 , B̃

0
t2) = Cov ( E [B̃0

t1 |Fn], E [B̃0
t2 |Fn]) + E [ Cov (B̃0

t1 , B̃
0
t2 |Fn)],(A.15)
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where Fn denotes the σ−field generated by the order statistics X(1), . . . , X(n). For the conditional expec-

tation we have

E[B̃0
t |Fn] =

1

n − r

n
∑

j=r+1

σ2(X(j))I{X(j) ≤ t}E [(

r
∑

i=0

diεAj−i
)2|Fn] =

1

n

n
∑

j=1

σ2(Xj)I{Xj ≤ t} + o(1),

and an easy calculation gives for t1 ≤ t2

nCov ( E [B̃0
t1 |Fn], E [B̃0

t2 |Fn]) =

∫ t1

0
σ4 (x) f (x) dx − B0

t1B
0
t2 + o(1).(A.16)

For the second term in equation (A.15) we obtain

Cov (B̃0
t1 , B̃

0
t2 |Fn) =

1

(n − r)2

{

n
∑

j=r+1

σ4(X(j))I{X(j) ≤ t1}Var
(

(

r
∑

i=0

diεAj−i
)2|Fn

)

+2
r

∑

m=1

n−r
∑

j=r+1

σ4(X(j))I{X(j) ≤ t1}Cov
(

(
r

∑

i=0

diεAj−i
)2, (

r
∑

i=0

diεAk−i
)2|Fn

)}

+op(1).

Observing that

Var
(

(

r
∑

i=0

diεAj−i
)2|Fn

)

+ 2

r
∑

m=1

Cov
(

(

r
∑

i=0

diεAj−i
)2, (

r
∑

i=0

diεAk−i
)2|Fn

)

= m4

(

X(j)

)

− 1 + 4δr + op(1),

it follows that

nCov ((B̃0
t1 , B̃

0
t2)|Fn) =

n

(n − r)2

n
∑

j=r+1

σ4(X(j))I{X(j) ≤ t1} + op(1)

=
1

n

n
∑

j=1

σ4(Xj)(m4(Xj) − 1 + 4δr)I{Xj ≤ t1} + op(1)

and

E [Cov ((B̃0
t1 , B̃

0
t2)|Fn)] =

∫ t1

0
σ4(x)τr(x)f(x) dx + o(1).

Note that this expression is exactly the same as the asymptotic covariance calculated in the fixed design

case. From (A.16) we obtain the representation of v̄ij in (5.7), and formula (A.15) yields the representation

of the corresponding element in the matrix Σ̄t1,t2 . The other elements in the matrix Σ̄t1,t2 are calculated

exactly in the same way and the details are omitted for the sake of brevity. 2
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