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1. Introduction 

Paper and board is commonly used as a carrier of information. The information, text or 

images are printed on the paper/board surfaces using different printing techniques. The most 

commonly used printing technique is offset printing, where a fluid, oil containing ink is 

transferred from the printing press to the paper/board surface. 

Most papers/boards intended for offset printing are coated. During this process, a coating 

color, consisting of mineral pigments and binders, is applied to the paper/board surface, 

forming an absorbent porous structure on the dry finished paper.  

When printing ink is applied to the paper surface, some liquid components of the ink, mainly 

oil, is absorbed into the paper surface. The viscosity, and the tack of the ink layer remaining 

on the paper surface, will thus increase with time. 

This process is a normal part of the drying process of offset inks applied to a paper surface. 

However, if this increase in viscosity (and thereby ink-tack) is too fast, problems might occur 

in the print press as the paper surface is subjected to ever increasing forces in the printing 

nips. These forces are considered to be the cause of problems like delamination and picking 

(tear out of particles from the paper/board surface). 

A too slow drying, on the other hand, can cause “set off” problems, where ink is smeared 

from the top side to the back side of the next printed sheet. 

Few laboratory methods do exist, that are able to predict the interaction between coated 

paper surfaces and offset inks. 

The objective of this thesis was to investigate  the interaction between coated paper surfaces 

and offset inks, using a new type of dynamic ink-tack measurement equipment, the ISIT [31] 

 

 

2. Main objectives 
 

The main objectives of this work were: 

- To establish a new test method to predict the setting and the tack-force development of 

offset inks on coated paper substrates. 

- To find out weaknesses and limitations of the new instrument  

- To investigate which main ink and paper surface parameters do influence on the setting 

and ink tack development 

- To correlate the results to problems in print presses 
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3. Test methods of properties of paper/board: 
 

Paper and board is described by using a number of parameters. Some of the most important 

ones are: 

 

Gloss: The gloss of the paper/board surface is expressed in % units. The surface is 

illuminated at an angle and the reflection from the surface is recorded by a photo – electric 

cell. A surface having a measured value below 40% is regarded as matt. A medium gloss 

paper/board is in the range of  40 % to 70 %. A high gloss board has a value of  greater than 

70 %.  

 

Surface roughness: Surface roughness or smoothness is commonly measured using the 

Parker Print Surf (PPS) Roughness Tester at 980 kPa using a soft backing. Air is evacuated 

in a chamber applied to the surface. Due to the gaps in the rough surface air passes into the 

chamber. The resulting pressure difference correlates to the air amount transferred, which 

correlates to the existing surface roughness expressed in µm. Lower results indicate 

smoother surfaces.  

 

Density: The print density is measured with a densitometer. Density is the amount of light 

reflected compared to the light emitted. The colors are separately measured using filters. The 

density value rises with increasing amount of ink applied.  

 

The print density is calculated with following equation: 
 

                        (eq. 3.1) 
 

 

With  

D   The print density 

The reflection factor of an ideal white surface (calibrated within the instrument) 

Apparatus constant 

Rt  The reflection factor of the measured sample 
 

 
Table 3.1: Typically recommended target values for print densities at full scale offset printing [10] 

 

Color Density
black 1,9
cyan 1,4

magenta 1,3
yellow 1,25
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Surface strength: Plastic adhesion (surface strength) is a dimensionless property defining 

the relation between adhesive and cohesive strength in the paper/board surface. One usual 

method involves pulling off the surface of the coated paper/board by means of an adhesive 

tape and determining the degree of failure in the interlayer.  

 

Ink tack: Ink tack is defined as the resisting force against separation from a wet ink covered 

substrate. In the German DIN 16515 ink tack is determined by touching with an object or a 

finger. 
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4. The Offset printing process 

4.1 General description 
 

The most common printing process is offset printing. 

Ink is transferred from the inking system via a series of distribution rollers to the printing plate 

and finally to the substrate. The distribution rollers are of varying diameters in order to create 

sufficient shear to achieve a thin and even distribution of the ink film to the form roller in 

contact with the plate. For each successive rotation of the distribution rollers, the ink is 

compressed and decompressed. The ink viscosity is lowered by this procedure. From the 

dampening system a fountain solution is applied to the plate cylinder. Due to high speed, the 

ink rapidly emulsifies with the fountain solution on the plate cylinder, which is a low viscous 

solution of water and alcohols. The ink emulsion can contain up to 40% water. The printing 

image is usually a thin flexible metal plate which is wrapped around a cylinder known as the 

plate cylinder. The image area of this plate accepts ink and repels water. The non image 

areas attract water and repel ink. The plate is first dampened with an aqueous solution which 

keeps the non-image area free of ink. The image areas are than inked. The plate cylinder 

then transfers the inked design to a rubber covered blanket cylinder. The blanket cylinder 

transfers the design to the paper surface in the printing “nip” where pressure is maintained 

between the blanket and impression cylinders. The linear load in the nip is of the order of 

magnitude of 5-30 kN/m. Nip width ranges from approximately 5 to 20 mm, which means that 

nip pressure ranges from 0,1 to 10 MPa. The offset process is also called lithography (from 

greek lithos = stone, grafein = carve, write). In a four-color printing unit four of the below 

sketched printing systems are employed one for each color. The usual printing sequence is: 

1) black, 2) cyan 3) magenta 4) yellow 
 

 

Figure 4.1: Offset printing method 
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4.2 Most frequent used offset printing methods 
 

Sheet–fed lithographic offset: One sheet after the other is subject to the printing process. 

Over 10000 sheets per hour can be printed.  

 

Web-offset: A continuously running web with paper is printed at higher speed. Usually 

magazines, catalogues and brochures are printed in this manner.  

 

4.3 Methods to achieve drying in printing: 
 

The inks applied in the print process must be dried. The drying methods usually employed in 

the print industry are: 
 

Heat set: The substrate is dried with hot air after the printing units due to evaporation.  

 

Cold-set: This process is usually applied to newspaper and books. The ink is absorbed by 

the uncoated paper.  

 

Quickset mechanism: The quickset mechanism is the dominant drying mechanism. It is 

employed for all forms of paper and board. Quick-setting involves a physical absorption 

process followed by a longer period of time with chemical drying (oxidation and 

polymerization). 

 

The type of ink has to be adapted to the offset process. In this thesis, substrates and inks 

mainly for sheet-fed or web-fed offset and inks that use the quickset mechanism are 

focussed on.  
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5. Paper and board: 
 

Paper is made of cellulose fibers, which are produced from chipped wood. A number of 

processes and materials are used to refine the end product. In contrast to paper, paperboard 

is built up in several layers of base board and coating.  
 

5.5.1 Papermaking process 
 

Fig. 5.1: The paper machine 

 
Forming on the wire section 

A low concentration of 0,3 % cellulose fibres and 99,7 % water is supplied via the wet end of 

the paper machine. A low concentration is essential in order to obtain a uniform distribution 

of fibers in the paper. First the paper is formed on a metal wire. Water drains downwards and 

is removed upwards by suction. In the wet state, layers of fiber consolidate easily. 

 
Pressing 

When the paper reaches the press section, water content has dropped to 80-85 %.  

The press section is important for achieving a uniform fiber consolidation. Sandwiched 

between two felts, the paper web is pressed between hard rolls. The water is effectively 

removed so that moisture content in the paper at the end of the press-section, is 60 – 65 %. 

 
Drying 

In order to dry the paper web, it passes over steam–heated, polished cylinders, which 

gradually reduce moisture. A sophisticated system controlling the temperature of the 

cylinders ensures that drying takes place without sudden stresses on the web.  

 
Surface Sizing 

A starch solution is applied to both sides of the paper surface mainly to increase strength and 

stiffness. Surface sizing binds the fibers to the surface. 

 

 

wire section
pressing drying

surface 
treatment

drying

calendering

reel up
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Calendering and Burnishing 

The final gloss of the surface is achieved by calendering in a gloss calendar or brush 

polisher. In the gloss calendar the paper web passes between a heated hard steel roller and 

a soft polymerroller.  

In the brush polisher the paper is polished by a number of rotating brushes. These processes 

give a uniform smooth surface, which is essential for good printing and varnishing. 

The paper can be nipped between steel rollers (super calendering) to further increase 

surface strength and smoothness. During this process the density of the paper increases. 

 
Surface Coating 
A liquid, white, pigmented coating consisting of pigments (clay, CaCO3,   ), binders (latex, 

starch,...) and additives is applied and distributed over the surface. Application methods 

include a blade, an air knife, which is a thin ray of air, or cast coating, which is a slowly 

rotating large chrome-drum. 

1 -3 layers of coating, depending on the paper type, are applied to the surface. Each layer is 

independently dried by hot air and infra-red dryers. Coating composition and amount will 

strongly influence the ink receptivity at the surface. 

 

 

5.2 The main components of paper and board 
There are many different products of paper and board on the market, depending on the raw 

materials for fibers, composition of coatings, the kind of printing process to which the product 

is subjected and, the end use of the product.  

 

 

 

 

 

 

 
Fig. 5.2.a: Chemical pulp [7]          Fig. 5.2.b: Mechanical pulp [7] 

 

The main raw material in the paper production is wood fibers. The fibrous material of the 

wood can be separated either mechanically (i.e. mechanical pulp), or chemically (i.e. 

chemical pulp) 

 

 

100 µm 100 µm 
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5.3 The composition of paper coating: 
 

Pigments: 
The coating colors used in paper coating usually consists of 80-95 weight % of pigments like 

clay and CaCO3, 10-20 weight % binders like starch or latex and additives.  

Clay pigments consist of aluminumsilicate Al2O3(SiO2)2(H2O)2. This material is also called 

kaolin. Clay pigment particle sizes range from 0,5 µm to 10 µm with an usual particle size 

distribution of 90 % by weight below 2 µm. A small particle size distribution usually improves 

gloss as well as opacity of the coating layers. Clay particles have a flat polyeder shape. The 

shape can be characterized by the aspect ratio: 
 

 

                                 (5.1) 

Fig 5.3 Aspect ratio of a pigment particle    Fig. 5.4 Influence of orientation of pigment particles 

        on gloss 

 

The gloss of the coating layer usually improves with higher aspect ratios, but also the 

orientation of the pigments has an impact on the final gloss. Fig. 5.4 shows that tortuosity 

increases with greater orientation and higher aspect ratios. These factors should influence 

the ink drying behavior. Earlier experiments show, that coatings with pigments of higher 

aspect ratios due to delamination of clay staples contribute to a slower ink drying [31], [11]. 

CaCO3 pigments are whiter and cheaper than clay particles. Calcium carbonate pigments 

have a more irregular spherical block-like shape. In nature, CaCO3 can be found in the shape 

of chalk or marble. Aspect ratio lies between 1 and 1,5. 

 

Both particle size and orientation have an impact on the packing structure of the dried 

coating layer. The diameter of the pores in the dried coating structure will diminish with both 

smaller particle size distribution and increased particle orientation. 

Other commonly used mineral pigments in the paper coating industry are Al(OH)3, 

titaniumdioxide and talc (magnesiumsilicate). 

As a polymer pigment, polystyrene is used as an additive. 

T
Df =

T

D
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Binders: 

Binders have the function to bind the pigments both together and to the basepaper. 

Depending on the type of paper and board and the print technique, different addition levels of 

binders are used. The binder, should have the properties of being uniformly distributed and 

to form a porous structure together with the pigments, to ensure an even and good 

absorption of ink-components. For offset paper 10-20 parts binder to 100 parts pigments are 

normally used. A higher binder content usually leads to a less porous structure, which has a 

negative effect on the ink drying during printing [11]. 

There are two main groups of binders: 

- Water soluble binders (starch, CMC) 

- Polymerdispersions (latex).  

 

The water soluble binders can further be divided into: 

- Natural binders, like starch, proteins and kasein and carboxymethylcellulose (CMC) 

- Synthetic binders, like polyvinylalcohol (PVOH).  

 

 

Polymerdispersions (latices):  
Latex binders are very strong binders. Latex is a crosslinked polymer that is disperged in 

water. Latex particles are usually kationic particles surrounded by OH- - anions. Thus a 

stabile latex dispersion idepends on the pH-value. With higher pH-value the latex particles 

can agglomerate.  

The solubility of the latex polymer is known depending on the physical state of the polymer 

(linear vs. crosslinked) as well as on the chemical structure (surface energy/polarity level). 

When increasing the surface energy/polarity of the latexpolymer the difference between the 

solubility parameter of the polymer and of the ink increases. As a result the interactivity with 

the ink is less and this leads to a lower ink-tack rate build up [12].  

 

Fig. 5.5: Monomers for latex binders 

 

Usual monomers for latices are styrene, butadiene, acrylates and vinylacetate. The size of 

an individual latex particle is in the range of 0,1-0,2 µm. Latex particles are usually 

C H=C H2

Styrene

C H2=C H  C H=C H2 

butadiene

C H3-C -O-C H=C H2           

O

vinylacetate

C H2=C H-C -O-R

O

Acrylate

R = -C H3

R = -C H2-C H3

R = -C H2-C H2-C H2-C H3
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carboxyled after reacting with a vinylacid. With carboxylating the latex’s binding abilities 

and the latex dispersion’s mechanical and electrolytic stability is improved.  

An important property is the glass transition temperature Tg. This is the temperature where 

a polymer changes from a hard glass-like state to a soft rubber-like state. Earlier 

experiments show, that an increasing particle size of the latex and a decreasing 

crosslinking state leads to a faster rise of ink tack [11], [12]. There are 3 main types of 

latices: 

• styrene-butadiene:  

• acrylates 

• polyvinylacetate 
 

     Fig. 5.6: Influence of latex on coating layer properties. 
 

In the above picture it is illustrated, that latex contributes to different properties which are 

important for the printing method applied. Depending on the printing technique used, different 

properties of the dried coating layer are required. For gravure printing a compressible coating 

is suitable. Thus a latex with a low Tg, giving binding strength, is recommended. For sheet 

fed and web fed offset a strong coating is required, which is possible with a latex with higher 

Tg.  

 

Polyvinylacetate contributes to a higher porosity, while a styrene/butadiene latex contributes 

to a high surface strength. 
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Styrene-butadiene: 
 

Fig. 5.7: Change of properties of coating due to polymer amount  

 

A typical styrene butadiene latex contains 60 parts styrene and 40 parts butadiene. Due to 

it’s bulkier molecule shape the glass transition temperature of the latex is higher with 

increasing styrene content. The coating will be harder, more brittle, more glossy and more 

porous. The ability to swell is enhanced with a lower Tg. So with a higher butadiene content 

the ability to absorb oil increases due to swelling of the latex [11]. This means that not only 

the porosity of the coating layer contributes to ink setting, but also the latex itself actively 

participates in the absorption process. This can be seen from Fig. [5.7]. 

The higher the oil absorption value is, the longer it takes for the oil to be absorbed by the 

coated surface.  

 

Acrylates: 
These are compound polymers between styrene and akrylacidester. In this group of latices 

types with extremely low Tg (-15°C) can be found. Coatings with acrylates have a low 

tendency to get yellow with time.  

 

Polyvinylacetates: 
It can be seen from the Fig. 5.6 that this group of latices contributes to a weaker coating 

surface, but to a higher porosity of the coating. Often these latices are combined with other 

ones in order to increase the coating porosity. 

 
Additives: 

The function of additives can be described as: 

• coating hardener and plasticiser 

• enhancing  the brightness and whiteness 

• additives to prevent the coating colors tendency to foam and to prevent bacterial attack. 

waterretention

gloss

oil
absorption

dry surface 
strength

+ 6

+ 4

+ 2

0

- 2

- 4

- 6

waterretention 
and dry surface strength

30 40 50 60 70 80
70 60 50 40 30 20

30

25

20

15

90/100

70/80

50/60

30/40

80/90

60/70

40/50

gloss, % oil absorption, %

Styrene %

Butadiene %



  -12- 

6 Composition of inks: 

Each printing process has a demand for inks with certain specifications. In gravure and flexo 

printing, liquid inks are used. In offset and letterpress, oil based inks are used and in flexo 

printing, water based inks are used. 

A general formulation for any offset ink is as follows: 

• Pigments  

• Resin/vehicles 

• Solvent/dilutes = carrier phase 

• Additives 

 

Pigments: Pigments are insoluble fine particles that are dispersed in a continuous phase. 

This phase is called vehicle, and consists of carrier phase and binder. Pigments have the 

function to absorb light of a certain wavelength to give a desired color. Very often are 

pigments like other color materials, aromatic systems with delocalized Π−electron systems 

[14]. The color appearance is influenced by the side groups that contribute to a positive or 

negative mesomeric effect to the aromatic base molecule. The pigment content in any ink is 

in general 10-30 %. Black pigments consist of carbon black. These are very small spherical 

agglomerates of 50-1000 Å [13]. For Cyan colored phtalocyanes pigments, for magenta 

colored pigments azo pigments and salts, for yellow azo pigments are used.  

Pigments have different sizes, and the size determines the rheological properties of an ink. 

Ink is a dispersion of small solid particles (pigments) in a high viscous fluid. Pigment size 

determines the setting behavior of an ink since a formed filter cake of small pigment particles 

is not as easily penetrated by the oil phase, as a filter cake of bigger particles.  

Pigment shape is also an important property, it influences many ink effects. Flat, platy 

pigments are valuable in reducing the transmission properties of the ink film. Fibrous 

pigments tend to increase thixotropy. Sharp, needlelike pigments are valuable in 

strengthening the ink’s cohesiveness. Most colored pigments fall into the range between 0,1 

and 5 µm. The size curve of a pigment shows a normal-distribution.  

With increasing pigment volume concentration the gloss of the film decreases [15]. Small 

pigment particles increase the surface, and thus more binder matrix is needed. The size of 

pigment particles can be determined by sedimentation analysis [16].  
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Binder: The percentage of binder in an offset color lies between 10 and 30 percent. The 

binder has the function to adhere the pigment to the paper and to give gloss. The binder has 

to be compatible with the carrier phase. Solubility of the binder in the carrier phase and the 

substrate surface determines the speed of ink setting [12], [40]. The choice of binder 

influences the amount of ink tack [19]. Binders are amorphous polymeric materials, called 

resins. Phenolic resins and alkyds are often used in offset inks. For sheet fed offset inks 

drying oils are applied, and for UV inks (ultra-violet drying) acrylates are utilized.  

 

Carrier phase (solvents): The amount of carrier phase ranges from 0-70 %. The carrier 

phase has the function to provide the color with the necessary fluidity. Mineral and vegetable 

oils are used for offset printing.  

Depending on the offset printing process, solvents of different boiling range are used:  

240-260 °C for heat-set inks,  

260-290°C for slow heat-set or ultra fast quickset inks and  

280-320°C for quickset inks. 

 

Additives: A large quantity of additives are used in inks: 

Filler pigments and white mineral pigments are used to reduce the color strength of the ink 

and to give the ink a higher consistency. 

Wetting, emulsion and dispersion agents are used to wet and improve dispersability and 

stability of pigments and emulsion type binders in inks. 

Gelling agents are aluminum compounds, that are used to increase the consistency of the 

ink by forming a network after ink transfer to the paper, in order to reduce smearing and 

spreading of the ink. These agents are specially used in oil based inks. 

Waxes of polyethylenes, polytetrafluoroethylenes and paraffin are used in heat-set and sheet 

fed offset inks to reduce surface energy. Through this, the adhesion of wet ink films to other 

surfaces should be prevented and ink tack should be reduced.  

Plasticisers are esters with high molecular weights. They improve the flexibility of printed ink 

layers by having a dissolving effect on binders. These agents are used in special high quality 

inks.  

Drying agents are organic compounds, containing Co and Mn, used in offset inks, drying by 

oxidation and polymerization. They have the function to initiate and speed-up chemical 

drying by acting as a catalyst for the polymerization process.  

Drying inhibitors are reactive compounds used in order to prevent drying in the container.  
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7 Setting and drying of an offset ink: 
 

After transfer to the paper, the ink should solidify as quickly as possible. Drying of ink on the 

paper is described to take place in two more or less separated stages:  

• Setting and 

• Drying 

 

Fig. 7.1: Mechanism for ink setting and drying of an offset ink (quickset mechanism) 

 

The absorption of lighter components in the carrier phase takes place immediately after 

printing. As a consequence the viscosity rises, the concentration of binders in the ink 

increases and ink tack increases. This phase is called the setting phase.  

An ink layer is considered to be set, when it is touch-proof. This is measured by laboratory 

tests in which another unprinted surface is pressed against a printed substrate.  

The mineral oils are absorbed into the stock or evaporate into the air. Heavy oils like 

vegetable oils, penetrate into the paper very slowly. Vegetable oils dry by oxidation, which is 

sometimes assisted by the use of metallic dryers (catalysts) like cobalt or manganese [36]. 

An ink layer is considered to be dry when it can be sheared without ink debonding from the 

surface. The test is called rub-off test.  

The oxidation of vegetable oils is believed to be an auto-oxidative polymerization which 

proceeds by several stages [3]: 

 

1)  Peroxide/ hydro-peroxide formation 

2)  Decomposition to form free radicals, which initiate 

3)  Polymerization 

4)  Termination 

 

In the peroxide/hydro-peroxide formation the atmospheric oxygen attacks at activated sites 

on the fatty acid chains of the drying oil. One such site is the methylene group next to one of 
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the carbon – carbon double bonds present in all drying molecules [3]. With linseed oil as an 

example of a typical drying oil, the following reaction has been proposed [3]: 

 

 

 

 

a) Forming of a radical 

 

 

 

b) Intra-molecular rearrangement to produce the more 

stable “trans-cis” conjugated configuration 

 

 

c) Formation of an peroxide 

 

 

 

d) Forming of a hydro-peroxide, through taking a 

hydrogen from another fatty acid 

 

 

(step a). The CH2 group marked with an asterisks(*) is more reactive than the others, 

because it is adjacent to two double bonds and is therefore the major reaction site. 

When conjugated structures are present, as in tung-oil (wood oil), direct oxygen addition to 

the conjugated system is possible in order to form a 1,4 –cyclic peroxide [3]: 

 

 

 

 

 

Any further oxidation of the hydroperoxides in d) will also give a 1,4-cyclic peroxide. 

 

C *H 2 C H = C H

* =  a c tive  m e thyle ne  g ro up

C C=

C *H 2

HH

C H 3(C H 2)4

C C=

HH

(C H 2)7C O O H

- H

C C=

H

C H 3(C H 2)4 C *H

H

C C=

HH

(C H 2)7C O O H

C *

C C=

HH

(C H 2)7C O O H

H

=C

H

C H 3(C H 2)4C H

O 2

C *

C C=

HH

(C H 2)7C O O H

H

=C
H

C H 3(C H 2)4C H

O

O

C *

C C=

HH

(C H 2)7C O O H

H

=C
H

C H 3(C H 2)4C H

O

O

H

C*H2 CH CH= = CH CH

O

O

O

O=

CH

H H

O2



  -16- 

Decomposition of free radicals: 
 

Once hydroperoxides or cyclic peroxides have been formed, they can decompose into free 

radicals as follows [3]: 

 

 

 

The following reactions are then possible: 

 

 

 

The radicals formed in the last step can react with atmospheric oxygen to form peroxides and 

hydroperoxides thus propagating the chain reaction. 

 

Polymerization: 
The radicals formed in the above reaction can add on to another molecule of the drying oil, 

and these addition reactions can continue increasing the molecular weight until termination 

occurs. There is also more than one site for the growing radicals to attack and this produces 

cross linked molecules. The increasing molecular weight and the cross-linking reactions 

cause the ink vehicle to become a solid material, encapsulating the pigment [3]. The degree 

of cross-linking and the kind of polymerization depends on the kind of oil or binder used in 

the ink. 

 

Termination: 
The radicals formed in the above reactions can also react with each other leading to the 

termination reaction: 

 

Nowadays, oxidation as the sole drying mechanism, is normally encountered in inks for 

printing impervious substrates such as foils and plastics. With the introduction of techniques 

like radiation curing, the overall hardening through polymerization has become possible. 

 

When looking on the overall reaction it appears as if the addition of peroxides, the pH value, 

air humidity, temperature and the addition of catalysts influence the polymerization. It has 

been found that inks do not dry on low pH paper (lower than 5) [3], [7].  

ROOH RO + OH

 2 ROOH RO + ROO +  H2O

RHRO +

OH  R

RO+ROH

+  H2ORH+

+  R R  R - R

+  RO R  R - O - R
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8. Rheology of ink: 
 

In the following chapter, described changes in ink viscosity due to shear rates are called 

thixotropy 
 

Mechanical model for a viscoelastic-plastic body 
 

Fig. 8.1: Viscosity diagrams for a sheared ink (thixotropic) and other fluids [17], [26], [27] 
 

With  

D:  shear gradient 

τ:   shear tension 

η:  momentarily viscosity 

τ0:   flow limit 

η
∞ :  plastic viscosity 

 

From figure 8.1 it can be seen, that the viscosity of inks depends on the shear forces they 

are subjected to, as well as on the shearing history. One common behavior is the shear 

thinning behavior, where the viscosity decreases with increasing shear force. A practical 

example are paints: Paint needs to be stirred to be more fluent to be applied easily with a 

brush to the substrate, where it stays without flowing down. 

 

Fig. 8.2: Mechanical model for a visco-elastic-plastic model (Maxwell body), [17] 
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dt
d.

Gdz
du

0
τη

+τ−τ=η ∞

The rheological curve from Fig.8.1 can be also expressed by a mechanical model (see 

Fig.8.2). Following stresses are illustrated:  
 

1) The spring represents reversible elastic deformation stress 

2) The block on the ground and the damping system represent the irreversible deformation 

stress. 

The damping system describes the flow of the body. It refers to the plastic viscosity of the 

fluid.  

The block on the ground characterizes the flow limit.  

For high shear rates that appear in the printing press, the stress is predominantly an elastic 

deformation. At slow shear rates the flow deformation predominates. 

The Maxwell equation combines flow and elastic deformation: 

 

                       (8.1) 

 

where  

G        is the elastic modulus and  

 

 

     is the hypothetical flow limit 

 

The elastic properties of the ink can be supported by the fact, that ink splits in strings, that 

tear and pull back. The strings appear through cavitation [17]. As stated before inks are 

dispersions of solid particles in a high viscous fluid. Internal structures are typically a result of 

van der Waals type attractive interactions. Building of these structures is resisted by the 

viscous resistance of the carrier medium. So structures are more likely to be built up in 

liquids with low viscosity. At lower shear rates these internal structures break down. With 

higher shear rates, shear thinning takes place due to orientation of the particles and the 

molecules. The shear rate is then more and more controlled by the polymeric properties of 

the binder, like chain length and configuration. With further rising shear rates, the viscoelastic 

behavior of the binder-polymer molecules has an increasing impact on resulting stress. 

Polymers have not the time to respond by viscous flow and behave more and more like an 

elastic body. Some properties can be foreseen by thixotropic behavior:  

An easy oil separation is enhanced with lower viscous oils. Thus the risk of set off decreases 

[18]. For ink tack an interesting investigation was made: With NMR spectroscopy (nuclear 

magnetic resonance) measurements, it has been demonstrated, that a lower ability for the 

binder polymer to move increases the tack values. (NMR spectroscopy determines the 

magnetic resonance of the nuclei of molecules, through determining the resonance 

timerelaxationtheisT
G

=
η∞

0τ
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frequency of an applied high frequency magnetic field perpendicular to a static field of a few 

Tesla.) The tack did not increase with a higher pigment content that increased the viscosity. 

The authors speculate, that no shear and viscosity properties of the inks govern film splitting, 

but the ease with which polymer molecules can orientate under extensional shear [19]. This 

was confirmed in another article where the “tackiness” of an offset ink was experimentally 

determined not to be dependent on viscosity alone. Tack was determined mainly by the 

amount and structure of the binder molecule [28]. The gelling agents like the aluminum 

compounds, present in inks, do contribute to the thixotropic behavior of inks [20].  

Viscosity is highly dependent on temperature. With lower temperature a higher viscosity is 

obtained.  
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9. Interaction between solid and liquid systems: 
 

In this part some physical processes, that contribute to the phenomenon ink, tack are 

simulated. A general valid theoretical explanation for the obtained experimental tack-force 

curves is strove for.  
 

9.1 Flow profile between two separating plates: 
The following calculation deals with the force needed to separate two cylindrical plates 

connected with a Newtonian fluid. The lower plate is fixed, while the upper plate is pulled with 

a force. One assumes isothermal conditions. 
 

 

Fig. 9.1: Flow profile between two separating plates. 
 

If Newtonian fluid behavior and isothermal conditions are assumed, the flow between two 

separating plates can be calculated with the Navier-Stokes equations [22].  

 

 

 

          (9.1) 

 

 

 

          (9.2) 

 

It is assumed that vϕ  = 0 and vr and vz are functions depending on r and z only. With this 

assumption the above equations simplify to: 
 

 

                          (9.3) 

and  

                          (9.4) 
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The pressure is independent of the z-direction, so dp/dr is also independent of the z-

direction. 

The continuity equation  in cylindrical coordinates is: 
 

 

                  (9.5) 
 

With the flow speed distribution independent of ϕ , the equation of continuity simplifies to 
 

                       (9.6) 
 

 

 Integrating the equation (9.3) on the z-component leads to: 
 

                     (9.7) 

 

                     (9.8) 
 

With the boundary conditions vr (z = 0) = 0 and vr (z = h) = 0 one gets the form: 
 

                        (9.9) 
 

Integrating the equation (9.6) on the z-direction with the boundary conditions vz (z = 0) = 0 

and vz (z = h) = u (the speed of the lifted plate) and the above expression for vr one gets: 
 

 

                   (9.10) 
 

 

                   (9.11) 
 

 

With the boundary condition vz (r, z = h) = u the above equation becomes: 
 

                 (9.12) 

 

 

Integration on the r-component gives: 

                 (9.13) 

 

Further integration gives the expression: 
 

                     (9.14) 

0
r

v
z

vv
r
1

r
v

v rzr =+
∂

∂
+

ϕ∂

∂
+

∂
∂

=∇ ϕ

∼∼

( )
0

z
v

r
vr

r
1 zr =

∂
∂

+
∂

∂

21
2

r

1
r

CzCz
r
pz

2
1v

Cz
r
p

z
v

++
∂
∂

=η

+
∂
∂

=
∂
∂

η

r
p)hz(z

2
1vr ∂

∂
−

η
=

( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

η∂
∂

−=⇔

∂
∂

=− ∫

h
2
z

3
z

r
p

2
r

rr
1v

zdvr
rr

1v

23

z

r

z

0
z

r
A

2
r

h
u12

r
p

h
ur12

r
pr

r

h
6
1

r
p

2
r

rr
1u

3

3

3

+
η

=
∂
∂

η
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

⇔

⎟
⎠
⎞

⎜
⎝
⎛−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

η∂
∂

−=

BrlnA
2
r

h
u12p

2

3)r( ++
η

=



  -22- 

The pressure at r = 0 must be finite, so the constant A must be 0. The boundary condition p 

(r = R) = p0, gives the expression: 

 

                       (9.15) 

 

This gives the expression for the pressure p(r ) and dp/dr: 

 

                     (9.16) 

 

                     (9.19) 
 

Putting this result into the above equation for vz one gets: 
 

                       (9.20) 
 

 

This expression is larger than 0 for the z-component smaller than h. 

Finally the expression for vr becomes:  
 

                          (9.21) 
 

 

                     (9.22) 

 

 

 

                     (9.23) 
 

Where F(r=R) is the force needed to separate the plates. 

The first part comes from the extensional pressure p0 . The second part is the maximum 

force needed to lift the plate.  

The force is directly proportional to the viscosity. It is also proportional to u, and depends on 

R4 and 1/h3. 
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9.2 Force balance if only surface energy is apparent: 
 

The following chapter deals with the case, that two plates are separated with a non flowing 

fluid in between. The only forces that contribute to the separation force are pressure and the 

surface tension of the fluid. 

 

A change in the surface of a body can be expressed by the thermodynamic equation: 
 

                     (9.24) 
 

 

Where:  

A:   the Helmholz- energy  

S:  the entropy 

T:   the temperature 

p:   the pressure 

V:   the Volume 

γ:   the surface energy 

σa: the change of the surface area. 
 

For a spherical body with a variable surface one gets the following equilibrium of forces: 
 

                     (9.25) 

 

The surface energy is 4 π r2 γ 

pi = pressure within the body 

pa = pressure outside the body 

The change of energy is equal to the work: 
 

 

                        (9.27) 
 

By putting this expression into the force balance one gets the expression: 
 

 

                   (9.28) 

 

Where 

α:  is the contact angle between liquid and surface 

σ:  is the surface tension 
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R 1

R 2

 

 

 

 

 
Fig. 9.2: Fluid bridge between two solid bodies. 

 

The change of pressure due to pulling apart two bodies can be estimated with the Laplace 

equation as: 

 

 

                        (9.29) 

 

Where  

σ: the surface tension [N/m] 

 

For a separation of two plates with a liquid between the plates, which is not flowing, the 

problem can be expressed as followed: The only forces that contribute to the separation 

force are the surface tension and the pressure: 

Fig. 9.3: Separating plates with non flowing liquid in between  
 

With  

σ :  surface tension of the ink on the substrate 

U:  surrounding line of the surface (=2a + 2b) 

A:  area of relevant surface 
 

 

                         (9.30) 
 

By substituting the pressure difference with the  Laplace-equation one gets: 
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                      (9.31) 

 

According to the above definition the radius R1 is ∞ while R2 is finite. R2 is smallest for the 

critical breaking state this model is applied to. So the surface adhesion force is getting: 

 

                 (9.32) 

 

This would be the total separation force. 

 

 

 
 

 

 

Fig.9.4: Separation of plates with cohesive failure Fig.9.5: Separation of plates with adhesion 

failure to the substrate 
 

If the splitting occurs to a part between the substrate and the liquid, a new force component 

has to be added to equation (9.32):  
 

 

            (9.33) 
 

The total separation force would be then: 
 

Ftotal = FAdhesion to surface + Fink -surface                   (9.33.1) 
 

However the radius R2 is a rough approximation only to what happens in reality. The radius 

R2  is determined by the surface tension of the liquid and by the contact angle between the 

fluid and the above plate and the fluid and the lower substrate.  

One can draw following conclusions: 
 

The separation force increases with:  

- a greater covered area 

- an increased surface tension of the fluid 

- with a smaller radius R2 due to a smaller gap between plate and substrate or a higher 

surface tension of the substrate surface 

In the special case with adhesion failure, the separation force increases with a better 

connection between ink and surface due to better wetting. This confirms the findings of [31] 
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9.3 Absorption of solvents through capillary pressure forces: 
 

The following chapter deals with absorption, which effects the rise of ink tack.  
 

Fig. 9.6.a: Sketch of a capillary absorption of offset ink through a coated board surface  

 

The predominant absorption mechanism of fluid into a porous substrate, like a coating layer , 

is the capillary absorption. This capillary absorption is however slowed down by the 

resistance to flow generated by the deposition of ink pigments at the ink-coating layer 

interface. 

 

The amount of fluid that is passing through a thin capillary can be expressed by the Hagen-

Poisseuille-law for laminar flow [22]: 
 

 

                        (9.34) 

 

where 

dV/dt  is the volume-flow [m3/s] 

rk   is the radius of the capillary [µm] 

∆pk  pressure gradient [Pa] 

lk   length of the capillary [µm] 

η viscosity of the fluid [Pa s] 
 

When looking at the Hagen-Poisseuille-law the expression: 
 

                            (9.35) 
 

 

Is considered as the resistance connected to the flow. Further increase of the resistance due 

to increasing amount of particles that cover the pores during absorption of ink is considered 

linear with the length of the capillary. So the increasing resistance is [30]: 

 

                      (9.36) 

 

                      (9.37) 
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when putting the expression for the pressure gradient and the increasing resistance into the 

above expression one gets the equation with (9.28): 

 

 

                      (9.38) 

 

This expression shows the connection between volume flow and surface tension of a liquid. 

Assuming a cylindrical shape of the capillary one gets following absorbed volume for the 

penetration of the capillary: 
 

                         (9.39) 
 

Putting this into the above expression one gets: 

 

                  (9.40) 
 

 

                   (9.41) 
 

(since V2 = 0 is the initial condition)       (9.42) 

 

                   (9.43) 

 

                   (9.44) 

 

So the following conclusions can be drawn: 

- The absorption of fluid increases with decreasing fluid viscosity 

- The amount of absorbed fluid decreases with the reciprocal of the root of the time. So the 

absorbed amount is highest in the beginning. 

- The radius of the capillary has the highest impact on fluid absorption.  

- The surface tension is of smaller influence. With higher surface tension (lower contact 

angle) the amount of absorbed fluid increases. 

- The absorbed amount of ink linearly increases with rising number of capillaries. 

 

To compare the impact of the capillary radius, the above equation (9.43) is resolved with 

respect to the length: 
 

                          (9.45) 
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By simulating the absorption with γ = 30 m N/m, θ = 0°, η = 2000 mPa s, and a resistance-

factor of 0, 106, 108 mPas/r2 the following graphs are obtained: 

 

Fig. 9.6: Simulation of absorption with different capillary radii and different resistance factors 
 

The above curves show, that for a process with greater factors of resistance the rate of 

absorption increases with smaller pores. As to be seen, the absorption rate does not 

increase linearly. The separation of the carrier phase from a high viscous pigment dispersion, 

like offset ink, would be such a case. 
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9.4 Contact of two cylinders: 
The following chapter tries to explain what could be responsible for print problems in a real 

printing process. This chapter deals mainly with the contact area of a blanket cylinder with 

paper to be printed and the impression cylinder. The results are important for chapter 9.6. 

 

Fig. 9.7: Touching of two cylinders 
 

If two cylinders are pressed together, the contact area that they have in common forms a 

stripe with the length 2 a. The length of the cylinders is approximated to be infinite. 
 

 
Fig.9.8: Pressure distribution on a strip with the length 2 a 

 

The pressure distribution on the strip is: 
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F is the load that is acting on the cylinder in [N]. 
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Where: 

ν : are the cross contraction constants for both cylinders 

E: is the E- modulus of the cylinder material 
 

Putting D in the above equation the length of the strip becomes: 
 

21
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+π
=                            (9.50) 

 
 

If the two cylinders represent the printing cylinder and the impression cylinder of a print press 

and the substrate sticks to the inked printing cylinder due to adhesion between substrate and 

ink, one can draw following conclusions: 

 

With increasing compressibility of a substrate, the expression D increases. The thicker the 

substrate is, the greater the radius will be. Thus the length a in eq.(9.50) will rise with thicker 

and more compressible substrates. 
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9.5 Flow of a liquid film between two rotating cylinders: 
 

The flow of a liquid film between two rotating cylinders always occurs in the printing process. 

This chapter is important for the chapters 10.3.2 and 10.3.3. 

 

 

 

 

 

 

 

 
Fig. 9.9: Pressure and speed distribution of a liquid between two rotating cylinders 
 

The fluid passes through the nip undergoing first a high pressure, followed by a region of low 

pressure or tension. If the surface velocity and fluid viscosity are low enough, the cohesion of 

the fluid is big enough to withstand the tension developed, and the fluid splits smoothly along 

a single air liquid surface. At higher speeds and viscosities, the fluid cannot flow rapidly 

enough to relieve the tension formed as the cylinders separate. Cavities are formed within 

the film. The growth of these cavities leads to a film split with nearly equal quantities of fluid 

on each surface. 
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9.6 Balance of moments and forces in the printing process: 
This chapter deals with the mechanical forces occurring in a real printing process. This 

chapter should help to understand how delamination takes part. 

 

Fig. 9.10: Balance of forces and moments in the sheet fed offset process [17] 

 

Z:  bearing force of the printing cylinder 

FT:  tack-force at the end of the nip. 

FP: pressure force in the beginning of the nip 

S:  shear force in the ink film 

α1:  angle between the resulting pressure force and middle line of the cylinder 

α2:  angle between the resulting dragging force and the middle of the cylinder 

 

The sum of the forces gives: 

 

                      (9.51) 

The sum of moments gives: 

                   (9.52) 

 

Where M is the driving momentum 

From the balances it can be seen: 

With increasing pressure the shear energy and the forces Ft and Fp will rise as well. In the 

case of a compressible substrate the angles α1  and α2 will increase. Thus the resulting 

moments increase. By enhancing the driving moment in form of higher print speed, the 

reacting forces Fp and Ft will increase as well. With increasing coating weight the z-direction 

strength of a paper/board seems to decrease [41]. 

Thus the following conclusions can be drawn:  

- Ink tack increases with increasing print speed and increasing printing pressure. 
-  Thus the danger for delamination of the board increases. 
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10. Experimental: 
 

The test procedure and the function of the apparatus is described in the following chapter. 

The influence of the most important settings of the machine, the influence of inks and 

substrates are investigated 
 

10.1 Description of the apparatus: 

 
Fig. 10.1: principal function and photograph of the ink tack measuring apparatus 

 
Fig. 10.2.a: Design and photograph of an IGT ink distributor and a photograph of an IGT Ink pipette  

 

A sample is fastened with a double adhesive tape to the sample plate. 

With an IGT- ink pipette a defined amount of ink (a standard amount is 0,3 cm3) is distributed 

to the IGT-ink distributor. The ink is sheared and distributed over the entire roller surfaces 

(the standard time for this procedure is 1 minute). The IGT ink distributor consists of a 

number of rotating cylinders of varying diameters in order to create sufficient shear to 

achieve a thin and even distribution of the ink film to the detachable rubber printing disc, 

similar as the duct of cylinders in a full scale offset press. 

Then the print disc is added to the distributor. This disk is inked for an additional minute. In 

the next step the inked printing disc is placed on the ink tack tester. With a PC signal the 
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sample platen rotates and the sample is printed. The contact pressure between the sample 

plate and the inking roll can be adjusted from 0 to 600 N.  

The tack disc is pushed with an electromagnetic force into contact with the surface of the 

sample. The duration of the contact can be adjusted from 0,5 to 10 s. The tack disc surface 

consists of nitrile-rubber, which is the same material used for rubber-blankets in print 

presses. The electric signal in the solenoid breaks off, the load cell is activated and the 

spring pulls the construction back with a defined force. The pulling force between tack disc 

and inked sample is transformed into an electrical signal in the load cell. Thus the splitting 

process is registered. The actual film split is registered by a light sensor. The highest signal 

during this splitting process is plotted into the diagram. The sample plate rotates to a new 

position and the process repeats 12 times. As a result one gets a force to time curve with 13 

values that show the highest measured value. The time between the values can be changed. 

The sample is fastened as a control beside the diagram.  

 

Fig. 10.3: Example of a splitting force/time-diagram and the diagrams already exported 
 

The data of the curves are then exported on a Excel spread sheet. Each curve can be 

described by considering three segments [31]: 

1. The rise time:  This is predominantly related to the speed of absorption by the 

coating/paper surface on initial contact with the ink. Typically, the force splitting marks 

are, compared to the surrounding unsplit area, a lighter area with a very light line in the 

middle (see Fig. 10.5 for examples). The following tack marks get lighter and more 

defined marks until the maximum is reached. This time is determined by the available 

amount and diameter of the pores of the oil absorbing coating layer. 

2. The maximum separation force:  This is a combined measure of the adhesion of the 

immobilized ink layer in contact with the coating surface and the cohesion within the ink 

layer.  

SBB, ICG 260 g/m², cross direction, 3 coating layers: 

Data of average curve:
time [s] force [N] Slope [N/s] curve 1 curve 2 curve 3 average

Max.: 55.36 7.99 transf. ink [g]: 0.008 0.0073 0.008 0.0079
beginning: 4.50 0.144 transf. ink [g/m²]: 1.48 1.35 1.56 1.46
average: -0.014
end: 4.44 C.of Var.[%]:

aver. density of split film: 1.30 1.83
av. density of unspl. film: 1.78 2.20
av. coef. of var. of force values [%]: 2.351

SBB, ICG 260 g/m² cross direction:
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3. Surface tack decay:   With time the tack marks turn to darker areas with a very light line 

in the center. Finally only the light lines can be detected. These lines turn thinner and 

thinner until they finally vanish. This stage is determined by the overall available pore 

volume in the coating. The amount of interfacial bondings within the ink-film and to the 

pigmented surface increase until the film is solid. The ink film has set.  

 

According to the supplier of the equipment the same paper/ ink should be tested 3 times 

together with a control sample. For detailed comparison the inking should be confined to one 

sample. This means that after every test print, the ink distributor should be cleaned. 
 

Each pull-off mark is preceded by an area, that shows the film split of the rolling tack disc. 

The density of the area before the first tack mark is measured with an densitometer at three 

different points.  

Density can be used as a variable that, is connected with the transferred ink amount. 

 

 
 

 

 

 

 

Fig. 10.4: Photograph of a printed board surface  
 

At the unsplit area the density measurement is performed 3 times at different points. In the 

diagrams (example: see Fig. 10.3), the coefficient of variation of the force values and the 

density values are calculated:  

This is done by using the formulas: [32], [33] 

                     (10.1) 

 

 

 

                     (10.2) 

 

                     (10.3) 

 

                     (10.4) 

 

In order to mathematically describe a curve of 13 data points, the following data are recorded 
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- tack-force maximum,  

- the time until the tack-force-maximum,  

- the first measured force value,  

- the last measured force value,  

- the slope between the first and the second data point (beginning slope),  

- the slope of the second and the last data point (average slope)  

 

It has to be mentioned, that the determination of the weight of the transferred ink is not very 

exact due to evaporating of the cleaning liquid in the inner parts of the rubber inking disc. 

After every experiment all parts have to be cleaned with a mild solvent. 

 

10.2 Analysis of the tack marks: 
 

Almost always the same pattern in ink tack marks on a coated paper/board surface can be 

observed: 

 

 

 

 

 

 
 

Fig. 10.5: Photographs of ink tack mark development (from left to right) on a coated surface. 

These marks present a continuous overlapping of the processes sketched in Figs. 9.4 and 

9.5. A more detailed development of those markings can be seen when performing the test 

on a surface treated mylar film: 

 

Fig. 10.6: Photographs of ink tack mark development on a surface treated mylar film 

By determining the forces, that were measured when the tack marks on the samples 

appeared, one can draw conclusions for the different effects that contribute to ink tack.  

A single light line is seen when only the surface adhesion between ink and substrate is 

important.  

1 cm
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The lighter area around the light line is determined by flow phenomena (see third mark in Fig. 

10.5, compare with Fig. 9.5. These marks are always present, when the largest forces are 

measured.  

In the development of tack marks, the force value of the last visually detectable white line, 

and the force value of the last detectable white line with a lighter surface, that obviously 

distinguishes from the surrounding unsplit ink film, are determined. 

 

10.3 Machine parameters: 
 

The first part of the thesis deals with the investigation of the parameters that are related to 

the machine. A factor trial has been performed to rank the influencing parameters. One 

objective of the thesis is to find a reliable machine setting that gives a low standard deviation 

or a low coefficient of variance. 

For the factor design the following material was used: 

- Invercote G 260 g/m2, printed in the cross direction 

- Equinox Cyan Ink supplied by the supplier of the Ink-tack apparatus. 

 

10.3.1 Influence of the applied ink amount on the tack-force/ time-curves: 
 

Fig. 10.7: Effect of increase of ink amount on coated board 

 

When decreasing the applied amount of ink to the IGT distributor, the following results are 

obtained: 

Less ink is transferred to the sample, so the solvents can be easier absorbed. Thus the rise 

of tack is higher. The maximum force level is reached after a shorter time and the decay of 

the tack-force-curve is more pronounced. 
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Fig. 10.8: Increase of ink amount on a non-absorbent rough PET foil. 
 

The situation is similar for a non absorbent rough PET-film: 

With increasing amount of ink, the measured tack force increases, probably due to a larger 

area of the tack-roll, which is covered by ink as sketched in Fig. 10.8.1.  

Fig. 10.8.1: Increase of ink tack due to a larger covered area of the inked tack disc 

 

The force values rise with time because some solvent of the ink is evaporating and due to a 

beginning polymerization of the ink film. 

Fig. 10.9: Increase of ink amount on rough corona treated PE-foils 
 

A corona treated film shows the same development. The measured forces increases with 

higher amount of ink. The overall values are higher due to the higher surface tension. An 

explanation for this behavior can be found in the balance of forces (9.33). 

Fig. 10.10: Increase of ink amount on very glossy surface treated mylar films 
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For a very glossy mylar-film the situation is different: 

With increasing ink amount decreasing force values are measured. The reason for this is to 

be found in the surface roughness. The roughness index was 9,1 µm for PET, 7,7 µm for 

corona treated rough PE and only 0,75 µm for glossy mylar films (lower values [µm] mean 

lower roughness).  

The roughness has in the case of mylar films the greatest impact, as can be seen in (9.23), 

where film thickness has a 1/h3 – effect on the measured tack force.  

Fig. 10.11: Increase of ink amount on very absorbent uncoated baseboard. 
 

By performing the experiment on the absorbent uncoated backside of a board (Invercote G 

260 g/m2), It  can be seen that no tack-force can be measured. 0,3 N is a constant value that 

appears to suppress electronic disturbing signals from outside. The tested sample is a very 

rough substrate that had an approximate roughness value of 7 µm. It is very probable that 

the binder phase migrates together with the oils into the fibrous surface. 
 

Thus ink tack is both 

- A flow phenomenon explainable with the Navier-Stokes equation and 
- A surface tension problem phenomenon 

Both processes overlap each other. 

 

10.3.2 Increase of print speed: 

Fig. 10.12: Example curves of tack-force/time for different speeds 
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Ink originally on the printing 
roll

transferred inkimmobilized 
ink

When increasing the print speed, the transferred amount of ink slightly decreases. This is 

confirmed by comparing the color densities of the unsplit films: 

Fig.10.13: Example curves of reduced densities due to less transferred ink at higher speeds. 

 

The fact that the ink needs time to wet the surface and to flow inside the pores, before the 

film split behind the rubber roll occurs, can explain why, with higher print speeds, the 

transferred ink decreases. Usually the film split occurs half way through the nip. 

 

 

 

 

 

 

 
 

Fig. 10.14: Transferred ink from the print roll to the substrate 

A simple linear relation called the `Walker-Fetzko´ equation (1) describes the above situation: 

 

y = b + f (x - b)                                    (10.5) 

 

y:   amount of ink transferred per unit area of a print 

x:   ink film thickness originally on plate 

b:   immobilization or acceptance capacity of substrate surface for ink 

f:    constant fraction of the remaining ink transferred to the stock, usually 50 % 

 

On the other hand, a higher speed induces a higher shear to the ink film. With the sample 

disc accelerating the inked color disc, a Couette-flow (shear flow ) situation is achieved. The 

ink is sheared to a greater extent near the sample plate.  
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Fig. 10.15: Even Couette flow between two plates 

 

One roll (the sample plate) is accelerated by the motor. The inked color disc is accelerated 

and the ink between the two cylinders is sheared. The resulting flow profile should be a high 

speed region near the sample roll, that slightly decreases towards the color roll. 

 

Both processes, a Couette flow, and a time dependent wetting of the surface, contribute to a 

decreasing amount of transferred ink. With smaller amount of transferred ink, it should be 

expected, that the absorption would take part quicker and the first measured values would 

already be higher. This is not the case, as seen from the experiments. 

The fact that the first measured force value is lower, although less ink is transferred, might be 

explained by the thixotropic behavior of the ink. With higher shear rates, the viscosity of ink 

decreases due to breakdown of internal structures.  

A low viscosity of a fluid will give the measuring tack roll lower resistance to the film split. 

 

According to the article of J. H. Taylor and A. C. Zettlemoyer "Hypothesis on the mechanics 

of ink splitting during printing" [43], cavity growth and ultimate film split proceeds most rapidly 

in the direction of reduced viscosity towards the substrate.  

The above results have been confirmed with a factor trial and an additional test with the 

highest possible machine speed. 

At some pressure and speed combinations the inking roller is accelerated to the outside, so 

that the inking roll jumps over the first part of the sample strip. The diagram below shows the 

critical settings, i.e. the maximum speeds and lowest pressure forces to use: 

 

Fig. 10.16: Range of malfunction of the instrument due to jumping 
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10.3.3 Increasing the pressure force: 
 

Fig. 10.17: Example curves of reduced transferred ink due to higher pressure 

 

By increasing the pressure force between the inked disc and the sample, the ink is sheared 

more extensively. The distance between the ink roller and the sample decreases. Due to 

enhanced pressing of the ink into the pores and the “valleys” in the topography of the rough 

substrate, the contact is increased. Thus the surface is better wetted by the fluid. According 

to literature [37], a higher ink transfer to the substrate would be expected. This is not the 

case, as the curves and the measured densities of the samples show.  

Fig. 10.19: Example values of reduced density due to higher pressure 

By evaluating the factor trial it can be observed, that increasing the pressure force has a 

significant effect (above 95% probability) to a decrease in color density of the ink film. An 

explanation for this can be, that the material used (i.e. 330 µm board + adhesive tape) was 

very compressible. This would explain, why some wide macro-pores can be pressed flat. The 

amount of possibly immobilized ink decreases.  

Very often it can be read in literature [37], that due to a higher pressure the ink is already 

separated from some solvent and some fluid is pressed into the substrate. This would have 

the consequence, that pigments would accumulate at the porous surface (i.e. formation of a 

filter cake). A sketch of this possible process is to be seen below. 

 

 

 

 

 
Fig. 10.20: Supposed filtration process during printing under extensive pressure 
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Fig. 10.21: Experimental investigation if densities of split films would change due to higher pressure 
 

When looking at the density of a split film, the conclusion has to be drawn, that a filtration 

process probably does not take place.  

An experiment, in which less ink than usually was used (0,25 ml on the ink distributor), in 

order to achieve the same densities of the unsplit film printed with higher pressure, showed, 

that the split film after 8 seconds of setting does not have a lower density than the film split at 

a higher pressure. Thus at least for these experiments it can be excluded, that higher 

pressures introduce a filtration process of the ink. Fig. 10.20 therefore does not present what 

has been observed in the experiments. 

The applied pressure ranges from 0 N to 800 N. According to the supplier the spring has a 

maximum force of 600 N [36]. So it is not recommended to choose higher pressures than 

600 N. However according to the results of the factor trial a higher coefficient of variation is 

obtained with higher pressures. 

 

10.3.4 Increasing the hold time between the measuring tack-roller and 

the ink covered sample: 
 

Increasing the hold time between the ink-covered sample has a high impact on the resulting 

curve. 

Fig. 10.22: Example tack-force/time curves with increased hold time 

 

An increase in hold time has of course no influence on the transferred ink amount and on the 

density, nor on the coefficient of variance of density.  

Since the first force value is measured after the extra holding time, some part of the ink-

solvent absorption has taken place. So a later part of the actual force curve is measured. 
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Due to convenience, the same time scale for the x-axis is chosen, when exporting the files to 

Excel. This is necessary to calculate average forces and standard deviations etc.. But even if 

4 seconds are added to the time scale, higher values with higher hold times can be 

observed. This might be due to the thixotropic behavior of the ink.  

By pushing the tack-roller onto the ink film, the internal structure of the ink is destroyed, due 

to breaking the van-der-Waals bonds. When using 1 second contact time, the time available 

for these “broken structures” to build up again, is lower than when using 5 seconds contact 

time. Thus one measures higher tack-forces after longer holding times. The difference is 

more pronounced with more advanced setting times. This could result from the fact, that due 

to less viscous phase available, the tack-built-up-rate is quicker.  

The tack-roller is pushed into the inked sample with a constant pressure. With higher 

viscosity, due to longer setting times, the ink cannot flow aside sufficiently well, as in the 

case of longer holding times. Thus a greater area of the tack-roller is covered, and the force 

to separate the tack roll increases. This is supported by the fact that more obvious tack-

marks on the sample strip can be observed with longer hold times. 

 

With help of a factorial trial following results were obtained with increasing contact time: 

- The maximum force values increase significantly 

- The beginning force values increase 

- The coefficient of variance for force values decreases, which means that more reliable 

values are obtained. 

One objective of the work carried out within the frame of the thesis was to find the ideal 

setting for future measurements  

Fig. 10.23: Influence of parameters on the coefficient of variation 

 

The recommended settings of the instrument supplier have been confirmed, i.e.: 

- print speed 0,5 m/s 

- hold time 5 s 

- pressure force 500 N 
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10.3.5. Additional parameters tested: 
 

The effects of changing further parameters were tested in order to understand the physical 

processes involved with ink tack development, and to find a ranking of the influencing 

parameters. A reduced factor trial with 6 variables and 20 experiments was made. Reduced 

factor trials can be utilized, when the overlapping effects are negligible. For the evaluation a 

computer program called Modde from the University of Umea was used. In addition to the 

previously tested parameters (holding time, print speed and pressure force), the following 

parameters were tested: 

- The effect of a  new, less used, nitril rubber covered tack-roll 

- The effect of a longer application time. The application time is increased by leaving the ink 

for 20 minutes instead of 2 minutes on the ink distributor. 
 

10.3.5.1 Increasing the ink distribution time: 
The supplier of the instrument recommends not to use an ink that was too long a time on the 

ink distributor, because solvents and lighter oils may evaporate, or because an oxidation of 

some components of the ink might take place. [35, 36]. The supplier also recommends to 

shut down the ventilation device. The ink is constantly sheared and exposed to a big surface 

(1215 cm²).  

 

Fig. 10.24: Effect of longer distribution on the IGT color distributor. 
 

The results show that a longer time on the ink distributor slightly increases all measured tack-

force curves. The rise of the tack-force does not originate in a larger transferred amount of 

ink.  
 

Fig. 10.25: Densities of a 2 and 20 minutes distributed ink 
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This can be seen from the densities of the ink films (Fig. 10.25). The densities remain almost 

constant. One possible explanation is the reaction of the ink with the oxygen or evaporation. 

Sheet-fed offset inks contain both mineral and vegetable oils. Therefore an oxidation or even 

polymerization of the inks cannot be excluded. Experiments like a rolling ball on an inked 

glass surface have shown, that after 30 min changes in the tackiness/viscosity of the ink can 

be detected [37]. In addition, experiments using the cryoscopic method showed that the 

molecular weight of the ink film rose from 1735 g/mol to 1864 g/mol after half an hour of 

exposure to air [37]. 

 

10.3.5.2 Influence of a new measuring disc surface: 
The nitril rubber surface of a used disc is darker, smoother and glossier than that of a new 

disc, due to more extensive contact with ink and cleaning solvent.  

Fig 10.26: Difference between tack-force curves measured by an old and a new tack disc 
 

When using a new tack-roll, one obtains tack-force values, that are lower than those, 

measured with an older standard roll. Since the surface roughness can have an impact due 

to a higher local gap between two separating plates, the greater roughness might contribute 

to lower measured forces. 

 
Fig. 10.27: Higher local gap due to increased roughness  
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10.3.5.3 Increasing the thickness of the measured sample: 

 
The thickness of the substrate was increased by taping samples on samples using adhesive 

tape.  

Fig. 10.28: Increase of sample thickness of board samples 
 

With every additional sample the curve shifted down. With 5 samples taped over each other, 

the strip was 0,7 cm thick. This strip thickness exceeds the usual thickness of paper/board 

samples. With additional substrate thickness, the spring force needed to separate the tack-

roller disc from the inked substrate, induces a lower force to the load cell. Thus lower forces 

with thicker samples are measured. However with less spring force available for the 

separation, the speed of ink flow decreases. Thus longer times are needed to separate the 

tack disc from the surface. One can see this from formula (9.23). If one generalizes this 

state:  

Slower withdrawing of the inked film, i.e. slower print speed in real printing process 

diminishes the ink tack-force values.  

If the separation time exceeds the set time interval in the machine, the light sensor does not 

recognize a separation. Thus the force measured to the end of the interval is registered, and 

in the extreme case of 5 samples taped above each other, a constant force will be measured 

(Fig. 10.28), [35]. 

 

10. 4 Ink parameter investigation: 
 

10.4.1 Measurements with air as a fluid:  
 

By using no ink on the substrate, one has only air with a very low viscosity present.  

When testing the steel surface of the measuring sample carrier with air as the fluid, the 

results showed extreme variations ranging from 0,3 N to above 5 N.  
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Fig. 10.29: Zero measurements with air on the pure steel surface of the sample carrier as a substrate 

 

An explanation of these responses might be air which is trapped in the cavities of the rough 

steel surface and the soft nitril rubber tack disc. By pushing the tack disc to the steel surface 

air is pushed out of the cavity. The result is a lower pressure in the cavity, which causes a 

suction effect on the nitril rubber disc. This causes a higher force value when the separation 

process is started. This effect emphasizes once more the impact of the distance between the 

tack roller disc and the sample in eq.(9.23), as well as the importance of roughness. 

From these results one can conclude, that flow to a great extend contributes to the 

phenomena of “ink-tack”. 
 

10.4.2 Investigation of different commercial ink types: 
 

On an SBB board sample (IG 260 g/m2), one measured the influence of different offset inks. 

For the comparison commercial inks of the company `Hartmann Druckfarben´ were chosen. 

The colors used were [Hartmann product catalogue]: 

Hartmann Star Glanz Cyan, a high tack-ink 

Hartmann Multilith Cyan, a fast setting and low tack-ink 

Hartmann Oekolith Cyan, a mineral oil free ink 

Fig. 10.30 Comparison of commercial ink types 

The measurements confirmed the prediction of the supplier. The color Hartmann Oekolith is 

a mineral oil free color. Thus it can be assumed that vegetable oils are used as a carrier 
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phase. These vegetable oils separate more slowly from the ink due to greater molecular 

weight.  

 

10.4.3 Investigation of different inks and varnish of one commercial type: 
 

Four commercial inks of one type and one clear lacquer were measured in order to 

determine if differences in ink tack behavior prevail. The composition of these inks is 

unknown.  

However, it is usually claimed that black inks in general contain pigments (carbon pigments), 

that are smaller than the pigments used for other shades. 

 Varnish is clear lacquer, which is used to give a print job a glossy appearance. Varnish has 

also the function to protect the surface. The composition of litho-varnishes is completely 

different from usual inks. Varnishes do not contain pigments. If one assumes that the basic 

composition of the inks are equal, the different pigments should contribute to the drying 

behavior. 

Fig. 10.31 Comparison of different colors of Hartmann Multilith with varnish 
 

The black ink was the slowest drying ink. This could be due to the finer pigments that would 

cover the ink film more effectively. Thus solvents cannot be absorbed as fast as in a 

dispersion with larger pigments. To be sure, that the pigment size contributes to the drying 

behavior, one should conduct a sedimentation analysis of the pigments. 

In v e s t ig a t io n  o f  d i f fe r e n t  c o lo r s  o f  c o m m e r c ia l  
H a r tm a n n  M u lt i l i th  in k s

0

2

4

6

8

1 0

0 5 0 1 0 0 1 5 0 2 0 0

t im e  [s ]

fo
rc

e 
[N

]

C y a n
Y e llo w
M a g e n ta
B la c k
V a rn is h



  -50- 

10.4.4 Application of the instrument as an inkometer: 
 

One wants to investigate, whether ink tack development on a non absorbent mylar surface 

corresponds to the first values measured on coated board. 

Fig.10.33.1: Application of the instrument as an inkometer 

Fig. 10.33.2: Application of the instrument as a rheometer (inkometer) 

Fig. 10.34: Comparison of average force values  
 

By calculating the average values, one finds that the average force values of a non 

absorbent foils are at the same order of magnitude as the first measured force values, 

measured on coated board. The following conclusions can be drawn: 

The Ink-tack instrument can be used as a simple ink rheometer. Because ink-tack is not 

always correlated to viscosity [19, [28], the expression inco-meter or inco-scope is more 

appropriate. 
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10. 5 Investigation of different substrates on the ink-tack 
development: 
 

10. 5.1 Description of the substrates used for the investigation: 
Since ink-tack is a rather new field to be explored, little is known about the behavior of 

different substrates. Therefore a number of different substrates were tested. 
 

Code Paper/board type Surface characteristics PPS-roughness  

[µm] 

SBB, ICA 

SBB, ICCG 

SBB, ICCM 

SBB, ICG 

 

SBB, OICG 

Solid bleached board 

Solid bleached board 

Solid bleached board 

Solid bleached board 

 

Solid bleached board 

Triple coated, high gloss, high smoothness  

Double coated, high gloss, high smoothness 

Double coated, matt, medium smoothness 

Triple coated, medium gloss, medium 

smoothness 

Double coated, medium gloss, medium 

smoothness, more clay than ICG 

0,77 

0,8 

1,09 

1,1 

 

1,2 

 

FBB 1 

FBB 2 

FBB 3 

FBB 4 

Folding box board 

Folding box board 

Folding box board 

Folding box board 

Double coated 

Double coated 

Double coated 

Double coated 

1,27 

1,08 

1,45 

1,1 
FP glossy 

 

 

FP matt 

Fine paper 

 

 

Fine paper 

Double coated, glossy, contains more clay than 

FP matt, average pore radius = 0.03 µm, pore 

volume = 4.5 cm3/m2 

Double coated, matt, aver. Pore radius = 0.082 

µm, pore volume = 6.37 cm3/m2 

0,9 

 

 

3 

MWC 1 

MWC 2 

MWC 3 

MWC 4 

 

MWC 5 

 

MWC 6 

MWC 7 

Wood containing 

Wood containing 

Wood containing 

Wood containing 

 

Wood containing 

 

Wood containing 

Wood containing 

Coated 

Coated 

Coated 

Coated, average pore radius = 0,044 µm, pore 

volume = 3 cm3/m2, designed for sheet-fed 

Coated, matt, aver. pore radius = 0.065 µm, 

pore volume = 4.04 cm3/m2 

Coated 

Double coated, aver. pore radius = 0.055 µm, 

pore volume = 4.58 cm3/m2, designed for web 

fed 

1,45 

1,3 

1,24 

1,48 

 

3,12 

 

1,44 

0,94 

CC 1 Fully bleached board Cast coated, very high smoothness and gloss 0,71 

Table 10.1: Paper board substrates 
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In addition to the above mentioned substrates, also double coated model surfaces were 

evaluated, in which both the pigment type and the coat weight of the coating layers were 

altered. The composition of those model surfaces is listed in Table 10.2: 
 

Code precoating topcoating Topcoating weight PPS roughness [µm] 

E 1 

E 2 

E 3 

E 4 

E 5 

E 6 

Fine CaCO3 

Fine CaCO3 

Fine CaCO3 

Coarse CaCO3 

Coarse CaCO3 

Coarse CaCO3 

Coarse CaCO3 

Coarse CaCO3 

Coarse CaCO3 

Fine CaCO3 

Fine CaCO3 

Fine CaCO3 

Thin 

Medium 

Thick 

Thin 

Medium 

Thick 

1,9 

2,08 

2,1 

1,54 

1,58 

1,69 

Table 10.2: Model surfaces 
 

Further tests were carried out on model mylar films coated with different latex types. The 

composition of these model surfaces is listed in table 10.3. 
Code Latex type Tg [°C] Degree of carboxylation PPS roughness [µm] 

SB high T 

SB low T 

SA high T 

SB high C 

SB medium C 

SB low C 

Styrene butadiene 

Styrene butadiene 

Styrene acrylate 

Styrene butadiene 

Styrene butadiene 

Styrene butadiene 

27 

-7 

25 

9 

8 

13 

 

 

 

High 

Medium 

Low 

2,15 

1,48 

2,19 

2,02 

1,7 

2,3 

Table 10.3: Latex films 
 

Further ink-tack tests were carried out on different polymer films, which often were the 

backsides of polymer laminated board. 
 

Code PPS roughness [µm] 

PE + corona, glossy 

PE + corona, rough 

PE, rough 

PP + corona glossy 

PP, rough 

PET, rough 

PMP, rough 

3,73 

6,33 

7,8 

4,17 

7,79 

9,14 

7,44 

Table 10.4; Polymer films 
 

Code PPS roughness [µm] 

Mylar film 

Aluminum foil, glossy 

Aluminum foil, rough 

0,6 

0,5 

1,04 

Table 10.5: Other films 
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10.5.2 General influence of the type of paper and board substrate: 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10.36: General influence of the type of board and paper 

 

In the above plot the greatest differences in ink-tack development between different 

paper/boards are presented. The overall tendency is, that smooth, solid bleached, boards 

and smooth fine papers develop fastest their ink-tack maximum, less smooth folding box 

boards and solid bleached boards and fine papers set slower, while less smooth MWC 

papers set slowly. Matt fine papers, the less smooth folding box board, and matt MWC 

papers develop lower maxima ink tack forces. Compared to other samples, the cast coated 

board CC1 is an exception, because it has an extreme slow ink setting rate with quite a low 

tack force maximum, despite a very low surface roughness. The reason for this may be the 

slow absorption rate, which gives a low viscous ink film. Viscosity is a variable that goes in 

linearly into the force balance, which can be seen from formula [9.23]. The absorption rate 

depends on the amount and size of the capillaries, which can be seen from formula [9.45]. 
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SEM images from boards/papers with the most different ink tack development behavior were 

taken (see Appendix ). These were:  

- SBB ICCG 

- SBB ICG 

- CC 1 

 

Fig. 10.36.1: Tack-force development curves of samples, where SEM images were obtained 

 

Indeed the solid bleached board ICCG shows the finest surface structure. A large number of 

very small pores would be available to absorb the oils of an offset ink film. ICG shows a 

slightly rougher structure. The third, slowest setting, sample shows only a few very large 

available pores at the surface.  

Thus the resulting pore structures determine the rate of ink tack build up, as can be seen 

from formula (9.45). 

 

An attempt was made to correlate ink-tack development with measurements of the surface 

energy of the tested paper. The total energy consists of the terms acid-base energy and 

Lifshitz-van-der-Waals energy. The acid base energy can be split into acid and base energy 

terms. 

 Fig 10.37.1: Surface energy values against pure adhesion force between an ink-film and the substrate 

 

By determining the first contact angle values, obtained after 0 seconds through interpolation 

[see appendix], it can be seen, that the pure adhesion force between ink film and surface 

decreases with higher values of total surface energy, and higher values of acid-base energy 

(see fig. 10.37.1). Oil in offset inks has a low surface energy. Solubility usually increases with 
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more similar surface energies between ink-film and substrate. Thus for coated paper 

adhesion corresponds rather to the solubility properties of oils into the coating. This seems to 

be in agreement with the findings of [12]. 

 

Fig. 10.37.2: Correlation between the slope of the evaluated surface energies in the first tenth seconds 

and the absorption time 

 

The evaluated slope of the surface energies against the time curve shows a good correlation 

with the setting time of the ink (see fig. 10.37.2).  

The slope is calculated as: (first measured surface energy value – second measured surface 

energy value) divided by (first time value corresponding with the first surface energy value – 

second time value corresponding with the second surface energy value).  

With an increasing slope, the time until the maximum tack force is lengthened.  

 

 

10.5.3 Dependence of printing in machine and cross direction for ink-tack  

           development: 
 

When paper and board is produced, fibers are oriented in the machine direction. Thus the 

direction can be described with machine direction (MD) and cross direction (CD). In the 

following chapter the dependence of printing in machine and cross direction for ink-tack is 

investigated.  
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Fig. 10.38: Ink-tack development curves of folding box board samples printed in machine and cross 

direction  

 

When comparing the ink-tack development curves of FBB samples printed in the machine 

and in the cross direction, one can clearly detect, that the ink-tack development of the in-

machine-direction-printed sample always lies under the cross direction printed board. The 

cross direction printed samples curves look like curves from a board, printed with fewer ink. 

This was not the case, as densiometer values prove. When applying ink to the surface, ink 

flows into the lowered areas that lie parallel to the fiber direction of the board. Air can be 

pushed out when the ink is printed on the surface. It can be supposed that paper/board 

surface is better wetted by the ink, when printed in the machine direction. Thus the ink coats 

a larger surface and can set quicker. In cross direction printing, air can be trapped in the 

pores under the ink. This might explain the above curves (see fig. 10.38).  

 

Substrate Internal topography index MD Internal topography index CD 

FBB 1 

FBB 2 

FBB 3 

FBB 4 

20 

33 

29 

31 

31 

44 

32 

42 

Table 10.6: Structure measurement with a laser instrument, internally used by MoDo Iggesund, (the  

                    greater values correspond with greater roughness) 
 

The roughness is always greater in the cross direction than in the machine direction. This is 

proved by measurement with a structure instrument, which measures the surface topography 

with a laser beam.  

For solid bleached board, the ink-tack development does not follow the above pattern. A 

possible explanation for this is, that the baseboard has an influence on the structure of the 

coating. A solid bleached board has a more even surface, which can be covered more 
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effectively with coating. This corresponds to the findings of [43]. Thus the influence of the 

fiber direction of a bulky folding box baseboard shows more through.  

 

10.5.4 Influence of surface roughness: 
 

Roughness of coated paper/board is usually measured with a PPS roughness tester. High 

values represent a higher roughness. Due to eq.(9.23) roughness indirectly affects the film 

thickness. A rough sample achieves a channel effect, through which a fluid can be more 

easily pressed. In extreme cases air can be trapped in the valleys of the surface topography, 

and air can flow into the gap, thus lowering the measured tack-force (see also Fig. 10.28). 

Fig. 10.39: Correlation between the first measured force value of the ink tack development curve and 

the roughness 
 

From the above graph (see Fig.10.39), one can see that there is a correlation between the 

first measured value of the tack force development curve and the roughness, that is similar to 

a function 1/h3, see formula [9.23]. 

It can be stipulated that the first measured value is predominantly determined by the flow of 

the ink. 

Fig. 10.40: Correlation between the maximum force and the roughness 
 

A linear correlation exists between roughness and maximum force value. Tackmarks at the 

maximum force are usually a white strip with a lighter shade around the line. So the flow of 

ink is apparent (see also Fig. 10.5).  
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The single white line represents the adhesion failure of the ink at the surface of the substrate. 

The force value, corresponding with this tack mark is probably determined by the by the 

wetting of the ink.  

The difference in force between those two kind of tack marks is only up to 30 % of the force 

value of the one with the lighter environment. So the adhesion to the surface contributes 

predominantly to the maximum force.  

 

Fig. 10.41: Correlation between the maximum force and force measured at a single white tack mark 

 

This can be seen from the above graph, if one considers the force measured at the last 

visually detectable tack mark of a single white line as the surface adhesion force. 

The adhesion force is due to formula (9.33) determined by the contact area. So one could 

understand the linear correlation between roughness and maximum force values.  

 

A good correlation exists between the maximum force value and the beginning force value. 

Fig. 10.42: Good correlation between beginning force and maximum force. 

 

If one generalizes this correlation one can state:  

 

The greater the first measured value, the greater will the maximum force value be.  
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Fig. 10.43: Correlation between time until maximum force and maximum force value 
Usually a tack-force curve with low beginning force needs a longer time until the maximum of 

force is reached. Some correlation can be obtained as can be seen in figure 10.43. The 

correlation coefficient is not very high, so other factors should have an influence also. The 

time until the maximum is determined by the rate capillary absorption. So the pore size and 

the pore amount to the surface can be supposed to be important parameters.  

 

The last measured force of the ink force development curve does not correlate well with the 

surface roughness. This value seems to be determined by other factors. 

 

Fig. 10.44: Correlation between density of unsplit printed ink film and the roughness 

 

The figure above shows the linear relation between the surface roughness and the print 

density. It seems that with increasing roughness the ink does not cover the surface 

efficiently. The applied ink amount remained the same. 
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Fig. 10.45: Correlation between optical density of a split and an unsplit ink film 

 

This seems to be confirmed by the above graph. The optical density of the first film split, 

which takes part after about 8-9 seconds and the density of an unsplit ink film correlate well. 

A high density in the first film split should be the result of a quick absorption of the applied ink 

film. Ink absorption increases for better wetted surfaces.  

 

 

10.5.5 Influence of the porosity of coating layer: 
 

Experiments on model surfaces with different pigment sizes and different thick coating layers  

were carried out. 
 

Fig. 10.46: Tack-force development graphs on model surfaces with different pigments in different  

             coating thickness (see also table 10.2) 
 

Out of the above figure one can see, that with a fine CaCO3 in the top coating layer 

(experimental board 4,5,6) the maximum force is reached faster in comparison to a coarse 

pigment in the top coating (experimental board 1,2,3). This is assumed to be the result of 

smaller pore radii that absorb the carrier phase of an ink more efficiently. The tack force 

maximum is much higher due to more effective ink covering and wetting of the substrate 
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surface. The resulting gap should be smaller and as stated in equation (9.23) separation 

forces should rise. 

As expected the optical densities of the printed unsplit film were lower for rougher surfaces. It 

can also be seen, that rough surfaces seem to develop lower maximum forces after long 

time. This can at least be stated, when the same pigment are used.  

It is not the case, when comparing matt and glossy finepapers: 

 

Fig. 10.47: Comparison of matt and glossy commercial offsetpaper 

 

From the above graph, it can be concluded, that the time at which maximum force is reached 

is independent of the paper surface. This might be explained by the fact that glossy papers 

often contain higher amount of clay pigments and the total pore volume in the coating layer 

might be low (see table 10.1). Clay pigments cover the surface more effectively and the total 

pore volume present in the coating layer might be low (see also Fig.5.4). This is especially 

the case, when the paper is calendered. Thus a less pore volume would be available for the 

fluid to be absorbed. This results in a more retarded ink drying. This might explain why the 

time needed to reach the maximum force can be similar, though the surface roughness is 

entirely different. This in return means, that both surface roughness and absorption 

properties influence on the location in time of the point of maximum force. 

Mercury porosimetric measurements (see table 10.1) confirm that the glossy version has 

much finer pores than the matt version. The matt version develops a lower tack-force 

maximum and the declining force curve is lower than the of the glossy version. This could 

result from the larger pore volume. During testing one could detect that sometimes coating 

particles were torn out of the surface by the tacking ink (ink picking). This could result from 

the lower binder content usually applied in paper. 
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Fig. 10.48: Comparison between two products 

The influence of pigment composition in the coating layer on tack development can also be 

seen in the above figure.10.48. The product SBB OICG has a higher amount of clay 

pigments in the coating. As can be seen the time at which the maximum force is reached is 

longer for SBB OICG, despite the fact, that the surface roughness is comparable. So again, 

the time until the maximum force is controlled both by the porous structure of the coating 

layer and the roughness of the surface. 

 

Fig. 10.49: Good correlation between the ending force and the total amount of pore volume 

 

The ending force seems to correlate quite well with the total amount of pore volume (see 

table 10.1 and tack-force curves in the appendix). This seems to confirm the statements from 

the inventor of the apparatus, who claimed that the latter half of the ink force development 

curve is influenced by the total amount of pores in the substrate. However more experiments 

have to be carried out to fully confirm these findings. 
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10.5.6 The role of latex type on the tack-force development: 
 

To investigate on the influence of the latex-type in the coating, experiments were carried out 

with different types of latices, that were applied on a mylar film with a laboratory coater. 

 

Fig. 10.50: Comparison of tack development curves for latices with different degrees of carboxylation 

 

The above curves show, that the degree of carboxylation of the latices does not seem to 

influence much on the ink-tack development. It is however very interesting to notice a clear 

development of tack-forces with time. This would indicate that not only a porous substrate 

can absorb the oil phase from an applied ink, but also latices can absorb oils, probably 

through swelling.  

Fig. 10.51: Comparison of latices with different glass transition temperatures.  

 

In contrast to the degree of carboxylation, the glass transition temperature seems to have a 

much higher effect on the development of ink tack. A latex with a high glass transition 

temperature takes long time to develop tack (3 hours for a latex with a glass transition 

temperature of 27°C), while a latex with a low temperature reaches it’s tack-force maximum 

within 8 seconds. As stated earlier a latex probably absorbs the ink carrier phase by swelling. 

The swellability is determined by the configuration of the latex. Styrene butadiene latices with 

low Tg usually contain more butadiene. This might explain the above findings as butadiene, 

due to it’s less bulkier structure contributes to swellability of a latex.  
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Usually a more closed pore structure is obtained with a higher amount of latex in coating 

colors. This would lead to a lower absorption of mineral oil components of the ink. Thus ink 

setting should be delayed. In the case of the latex with a glass transition temperature of – 

7°C, the latex might itself contribute to the absorption of oils. So the oil phase in the ink film is 

being absorbed, both through capillary absorption and swelling. This would confirm the 

experiments, carried out by Triantafillopoulos et Al [11]. 

Fig. 10.51.1: Possible influence of latex amount in the coating color on the oil absorption 

 

 

10.5.7 Ink drying and setting on polymer and aluminum films: 
Experiments were made by measuring the ink-tack development of ink applied on different 

polymer laminated boards.  

Fig. 10.53: Ink setting (swelling) and drying on polymer-coated board samples 
 

One can clearly distinguish the pattern, that for rough surfaces tack force is always on a low 

level. For PE coatings a maximum is found. A corona treated surface is develops faster the 

tack maximum than a non corona treated surface. For a glossy corona treated surface a high 

tack-force maximum is obtained. With a glossy corona-treated PE surface ink and dries and 

is absorbed quicker than a glossy corona-treated PP surface. An explanation may be that PE 

is a slim molecule with small branches (H-atoms). It has a lower glass transition temperature 

than PP. The Tg of PE is - 110°C, while for PP the glass transition temperature is around –

10°C. Thus PE has a better ability to swell and to absorb mineral oils from the ink. PP has 

methyl-groups as branch-groups, which, due to their larger size results in a higher glass 
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transition temperature. Polypropylene chains can join together more effectively and thus form 

a polymer with a higher amount of crystallinity. The ability to swell is therefore very low for 

PP. It would be interesting to test the now commercially available syndiotactic version of PP, 

which has a lower Tg and probably a better swellability.  

A corona treatment usually causes the formation of unsaturated (C=C) and carbonyl (>C=O) 

groups which are considered to increase surface energy [38]. Thus the interaction between 

the mineral oils of the ink and the surface increases, leading to a better absorption of the oils. 

The roughness and the surface energy seems to be predominant parameters governing the 

tack-force development. PET, PMP and PP surfaces have lower surface energy, than corona 

treated polymer surfaces. 
 

Fig 10.54: Ink-tack development on mylar- and rough and glossy aluminum films 
 

Long time experiments have been carried out on mylar and aluminum films. None of the films 

do absorb ink components. Thus ink drying occurs only through slow evaporation of oil 

components to the surrounding air. This may be the reason for a similar tack development of 

all curves in Fig. 10.54.  

It can be assumed, that in this case ink tack rises through evaporation, oxidation and 

polymerization.  

It is interesting to see, that the tack force values of a matt aluminum foil constantly lie under 

the tack force values of a glossy aluminum film. The shape of the tack force curve remains 

the same. 

Thus it can be stated:  

For a constant oil absorption rate, the roughness has a diminishing effect on ink tack forces 

(see also Fig. 10.27 and fig 10.28). 
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10.6 A modification of the test: 
 

Fig. 10.55: Tack-forces obtained by a modification in the testing procedure. 

 

By inking the nitril covered tack measurement roller and carrying out the test on an unprinted 

test strip, one obtains conditions closer to those prevailing a real printing press (see Fig. 

9.10). The contact time between tack roller and sample is set to 0,5 s. With this procedure a 

small fresh ink film is always applied to the substrate surface and a half second later the tack 

roller separates.  

In a sheet fed offset press one prints with a speed of about 8000 sheets per hour. This would 

result in about 0,5 s contact time of a blanket printing cylinder and a substrate, which is the 

above chosen time.  

The above curves prove that even for such short contact times great differences in the tack 

force can be observed. The above tack force values correlate in the ranking well with the first 

values obtained in a regular ink tack test (see Fig. 10.36.1). Some of the problems like 

delamination and set-off can be foreseen in this experiment.  

Thus it can be stated that the initial ink tack force might correlate to capillary absorption (see 

also the SEM images in the appendix) 
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11 Outlook 
 

During testing one can observe, that the measured weight of transferred ink varies so much, 

that one can not use it as a control parameter. This variation is probably due to evaporation 

of the solvent used in the experiments. Thus more rubber printing discs would be useful in 

order to allow for a complete evaporation of the solvents.  

The instrument is not provided with a manual, which would be useful in future. 

The testing instrument has many parts that can age. The inking discs, the tack disk and the 

springs are parts that change their properties after time. Thus proper maintenance of the 

instrument would be useful. 

It would be useful to export more than one file at a time from the computer data base. A 

crank for the pressure force winding spring would be more convenient. 

It is very important to have a sufficient air evacuation device installed, since the cleaning 

solvents are harmful 16]. 

The instrument has the disadvantage that it measures a static force, i.e. a force between a 

sample and a roller, which are not rotating. In a real printing condition, also a dynamic 

component is present, i.e. the withdrawing of an inked sheet from a rotating blanket. The 

instrument does not consider the compressibility of the substrate, nor the initial ink tack. A 

device, similar to the S.D. Warren load cell, that would allow to take above effects in 

consideration is presented in the figure below.  

Fig. 11.1: Proposal for a simple ink tack measurement instrument usable on a standard tension testing  

       Machine 

 

This device could be mounted on a standard tension testing instrument like an Instron 

tension tester. 

The time of setting correlates with the binder amount in the remaining ink film. This can be 

determined with infrared spectroscopy [40]. Since the binder amount should have a main 

contribution to ink tack [19], it would be interesting to correlate some of tack development 

tests (see Fig. 10.36.1) with IR spectroscopic measurements of the binder phase in the top 

coating. 
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12 Summary: 
 

Roughness seems to be the predominant factor for tack force development. A rough surface 

is not effectively wetted, so the absorption of oils is less sufficient. Moreover  a rough surface 

causes local gaps that mechanically enable an easier film split.  

A smoother surface is better wetted. Thus ink components are better absorbed. The rate of 

oil absorption depends on the capillar absorption, probably due to solubility of the binder in 

the oil phase and the solubility of the oil phase in the coating.  

A surface with a high amount of very fine pores absorb the ink very quickly, leaving the tacky 

binder phase at the surface.  

Capillary absorption seems to determine the first initial ink tack value.  

The first measured tack value is determined by the separation force due to a flow 

phenomenon 

A high first measured tack-force value  is often followed by a high maximum tack force value 

The maximum force value is determined by the adhesion of the ink layer to the surface 

The time until the maximum force value is reached, is determined by the roughness and by 

the pigment selection. 

The last measured force value is probably determined by the total pore volume in the 

coating. 

 

The delamination problem for very smooth, finely porous, thick and compressible substrates 

can to be understood, by considering Fig. 9.10. and Fig. 10.55.  

Initial ink tack and delamination could be lowered by  

- Lower print speeds 

- Lower printing pressures 

- Lower paper/board thicknesses 

- Rougher rubber blankets 

- Rougher substrate surfaces 

- The choice of pigments (larger pigments or pigments with a higher aspect ratio that produce 

a less porous surface with greater pore radii) 

- Probably the amount and type of latex used in the coating color  

- Choice of ink (i.e. the choice of binder, oil carrier phase and pigment type, viscosity of the 

ink) 

For non porous substrate surfaces, ink tack forces rise with higher surface energies of the 

substrates. 
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Appendix: 

A.1 Investigating the spring force: 
The load cell in the apparatus measures a maximum tack-force of 10 N. This force is induced 

by the spring that can exceed to a distance of 0,7 cm. The spring constant is measured in 

order to confirm the correct measured forces. One uses the formulas: 

 

and 

 

 

Combining the formulas one receives: 

 

With  

=  g  = 9,81 m/s2 and 

x  =  0,007 m, 

m = 1,283 kg 

a spring constant of C = 1797,66 kg/s2 is recieved. 

 

The maximum possible spring force is then: 

Fmax = 10,5 N 

 

The maximum of the measurement range is 10 N. The apparatus measures correct forces. 

 

 

A.2 Evaluation of the Navier-Stokes equations for rectangular bodies: 
 

 

If the bodies are two rectangular bodies that are separated from each other, the cartesian 

form of the Navier-Stokes equations can be used: 
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Fig. Liquid between two separating plane surfaces 

For other geometries the solution is more difficult. In cartesian coordinates the Navier-

Stokes-equations are: 

 

                      (A1) 

 

                    (A2) 

 

          (A3) 

 

 

The fluid’s speed in the x and y- direction is much greater than in z – direction. 

So only those terms have to be considered. The Navier- Stokes equations simplify then to: 

 

                            (A4) 

 

                            (A5) 

 

                            (A6) 

 

The continuity equation is: 

 

With                   (A7) 

 

And 

integration the above equation on the z-component gives: 

 

                      (A8) 

The boundary conditions are: 
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Integrating the x-component of the Navier-Stokes equation on the z-component: gives: 

 

                       (A9) 

 

                      (A10) 

 

Putting in the boundary conditions one gets: 

 

                            (A11) 

 

Integrating the y-component in a similar way the following solution is obtained: 

 

                          (A12) 

 

Taking the integrated form of the continuity equation: 

 

                      (A13) 

 

And putting the last equations into the solution, the following form is obtained: 

 

 

              (A14) 

 

 

 

 

              (A15) 

 

The last differential equation is called Poisson equation. For a square area the solution is 

quite difficult. It is much easier to approximate the area by an ellipse. Moreover can the 

elliptical shape be found at the tack marks on the tested paper and board samples. 

 

 
Fig. elliptical area with the pressure p – p0  
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The equation for the ellipse is: 

 

                          (A16) 

 

                          (A17) 

The solution of the ellipse is approached with the form that has to fulfill: 

 

                              (A18) 

 

 

By differentiating this approach to the x and y coordinate, one gets  

 

                             (A19) 

 

                             (A20) 

 

Putting this into the differential equation, one gets for k: 

 

                          (A21) 

 

So the solution for the differential equation is: 

 

 

                      (A22) 

 

The maximum of the force is  

 

                            (A23) 

 

                           (A24) 

 

The force needed to separate the plates rises linear with the viscosity, cubical with a 

decreasing gap and to the forth exponent of the area that is covered. 
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A.3 Evaluation of a 23 factor design with effects: hold time, pressure force and print speed: 

Maximum force:

1 a b ab c ac bc abc
max force [N]: 7.82 7.45 8.34 8.37 7.46 7.68 8.33 8.3

effects [%]:
print speed A -0.038 SS A 0.0028 MSA 0.0028
hold time B 0.7325 SS B 1.0731 MSB 1.0731

pressure force C -0.052 SS C 0.0055 MSC 0.0055
ps + ht AB 0.0375 SS AB 0.0028 MSAB 0.0028
ps + pf AC 0.295 SS AC 0.1741 MSAC 0.1741
ht + pf BC 0.0125 SS BC 0.0003 MSBC 0.0003

ps + ht + pf ABC -0.162 SS ABC 0.0528 MSABC 0.0528

MSR 0.0575
significance: F F0.95 7.71

faktor A: 0.0489 not significant
faktor B: 18.664 significant     !!!
faktor C: 0.0959 not significant

faktor AB: 0.0489 not significant
faktor AC: 3.0271 not significant
faktor BC: 0.0054 not significant

faktor ABC: 0.9185 not significant

Max. force time:

1 a b ab c ac bc abc
max force time [s]: 82.391 51.129 86.512 102.33 66.742 66.73 70.961 70.961

effects [%]:
print speed A -3.864 SS A 29.861 MSA 29.861
hold time B 15.943 SS B 508.36 MSB 508.36

pressure force C -11.74 SS C 275.75 MSC 275.75
ps + ht AB 11.773 SS AB 277.21 MSAB 277.21
ps + pf AC 4.9158 SS AC 48.329 MSAC 48.329
ht + pf BC -11.72 SS BC 274.62 MSBC 274.62

ps + ht + pf ABC -11.77 SS ABC 276.92 MSABC 276.92

MSR 219.27
significance: F F0.95 7.71

faktor A: 0.1362 not significant
faktor B: 2.3184 not significant
faktor C: 1.2576 not significant

faktor AB: 1.2642 not significant
faktor AC: 0.2204 not significant
faktor BC: 1.2524 not significant

faktor ABC: 1.2629 not significant

Slope in the beginning:

1 a b ab c ac bc abc
slope [N/s]: 0.1039 0.1205 0.1023 0.1072 0.1094 0.1281 0.0929 0.1094

effects [%]:
print speed A 0.0142 SS A 0.0004 MSA 0.0004
hold time B -0.013 SS B 0.0003 MSB 0.0003

pressure force C 0.0015 SS C 4E-06 MSC 4E-06
ps + ht AB -0.003 SS AB 2E-05 MSAB 2E-05
ps + pf AC -0.005 SS AC 6E-05 MSAC 6E-05
ht + pf BC -0.005 SS BC 5E-05 MSBC 5E-05

ps + ht + pf ABC 0.0024 SS ABC 1E-05 MSABC 1E-05

MSR 4E-05
significance: F F0.95 7.71

faktor A: 11.075 significant     !!!
faktor B: 8.6238 significant     !!!
faktor C: 0.1165 not significant

faktor AB: 0.6611 not significant
faktor AC: 1.6077 not significant
faktor BC: 1.4189 not significant

faktor ABC: 0.3124 not significant



  -78- 

 

Coefficiant of Variation of force:

1 a b ab c ac bc abc
Coeff.of Var.of for.: 5.2 2.11 3.78 3.56 3.18 6.18 1.93 4.27

effects [%]:
print speed A 0.5075 SS A 0.5151 MSA 0.5307
hold time B -0.783 SS B 1.2246 MSB 2.9994

pressure force C 0.2275 SS C 0.1035 MSC 0.0214
ps + ht AB 0.5525 SS AB 0.6105 MSAB 0.7455
ps + pf AC 1.1 SS AC 2.42 MSAC 11.713
ht + pf BC -0.798 SS BC 1.272 MSBC 3.236

ps + ht + pf ABC -0.883 SS ABC 1.5576 MSABC 4.8523

MSR 1.465
significance: F F0.95 7.71

faktor A: 0.3622 not significant
faktor B: 2.0473 not significant
faktor C: 0.0146 not significant

faktor AB: 0.5088 not significant
faktor AC: 7.9949 significant     !!!
faktor BC: 2.2088 not significant

faktor ABC: 3.3121 not significant

Transferred ink:

1 a b ab c ac bc abc
transferred ink [g]: 0.0072 0.0059 0.0071 0.007 0.0061 0.0066 0.0065 0.006

effects [%]:
print speed A -3E-04 SS A 2E-07 MSA 2E-07
hold time B 0.0002 SS B 9E-08 MSB 9E-08

pressure force C -5E-04 SS C 6E-07 MSC 6E-07
ps + ht AB 4E-05 SS AB 3E-09 MSAB 3E-09
ps + pf AC 0.0003 SS AC 2E-07 MSAC 2E-07
ht + pf BC -3E-04 SS BC 2E-07 MSBC 2E-07

ps + ht + pf ABC -5E-04 SS ABC 6E-07 MSABC 6E-07

MSR 2E-07
significance: F F0.95 7.71

faktor A: 0.9802 not significant
faktor B: 0.364 not significant
faktor C: 2.3109 not significant

faktor AB: 0.0146 not significant
faktor AC: 0.8864 not significant
faktor BC: 0.6358 not significant

faktor ABC: 2.4631 not significant

Beginning force:

1 a b ab c ac bc abc
beginning force [N]: 3.65 3.65 4.78 4.08 4.53 3.32 5.15 5.28

effects [%]:
print speed A -0.445 SS A 0.396 MSA 0.396
hold time B 1.035 SS B 2.1425 MSB 2.1425

pressure force C 0.53 SS C 0.5618 MSC 0.5618
ps + ht AB 0.16 SS AB 0.0512 MSAB 0.0512
ps + pf AC 0.3625 SS AC 0.2628 MSAC 0.2628
ht + pf BC 0.255 SS BC 0.1301 MSBC 0.1301

ps + ht + pf ABC 0.51 SS ABC 0.5202 MSABC 0.5202

MSR 0.2411
significance: F F0.95 7.71

faktor A: 1.6429 not significant
faktor B: 8.8874 significant     !!!
faktor C: 2.3305 not significant

faktor AB: 0.2124 not significant
faktor AC: 1.0902 not significant
faktor BC: 0.5395 not significant

faktor ABC: 2.1579 not significant
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Density:

1 a b ab c ac bc abc
density: 1.94 1.81 1.93 1.93 1.69 1.85 1.85 1.76

effects [%]:
print speed A -0.015 SS A 0.0005 MSA 0.0005
hold time B 0.045 SS B 0.0041 MSB 0.0041

pressure force C -0.115 SS C 0.0264 MSC 0.0264
ps + ht AB -0.03 SS AB 0.0018 MSAB 0.0018
ps + pf AC 0.05 SS AC 0.005 MSAC 0.005
ht + pf BC -0.01 SS BC 0.0002 MSBC 0.0002

ps + ht + pf ABC -0.095 SS ABC 0.0181 MSABC 0.0181

MSR 0.0063
significance: F F0.95 7.71

faktor A: 0.0719 not significant
faktor B: 0.6467 not significant
faktor C: 4.2236 not significant

faktor AB: 0.2874 not significant
faktor AC: 0.7984 not significant
faktor BC: 0.0319 not significant

faktor ABC: 2.8822 not significant

Coefficiant of variance of density of unsplit film:

1 a b ab c ac bc abc
Co.of var.of den.: 1.39 0.3 0.31 0.15 0.23 0.25 0.07 0.63

effects [%]:
print speed A -0.168 SS A 0.0561 MSA 0.012
hold time B -0.253 SS B 0.1275 MSB 0.0001

pressure force C -0.243 SS C 0.1176 MSC 1E-05
ps + ht AB 0.3675 SS AB 0.2701 MSAB 0.03
ps + pf AC 0.4125 SS AC 0.3403 MSAC 0.0561
ht + pf BC 0.3625 SS BC 0.2628 MSBC 0.0276

ps + ht + pf ABC -0.098 SS ABC 0.019 MSABC 0.0435

MSR 0.2231
significance: F F0.95 7.71

faktor A: 0.0539 not significant
faktor B: 0.0005 not significant
faktor C: 6E-05 not significant

faktor AB: 0.1345 not significant
faktor AC: 0.2516 not significant
faktor BC: 0.1238 not significant

faktor ABC: 0.1951 not significant

Average slope

1 a b ab c ac bc abc
aver. slope 0.005 -0.006 0.0077 0.0084 -0.003 0.0003 0.0042 -0.002

effects [%]:
print speed A -0.003 SS A 2E-05 MSA 2E-05
hold time B 0.0054 SS B 6E-05 MSB 6E-05

pressure force C -0.004 SS C 3E-05 MSC 3E-05
ps + ht AB 0.0006 SS AB 8E-07 MSAB 8E-07
ps + pf AC 0.0027 SS AC 1E-05 MSAC 1E-05
ht + pf BC -0.003 SS BC 2E-05 MSBC 2E-05

ps + ht + pf ABC -0.005 SS ABC 6E-05 MSABC 6E-05

MSR 2E-05
significance: F F0.95 7.71

faktor A: 1.052 not significant
faktor B: 2.5283 not significant
faktor C: 1.3096 not significant

faktor AB: 0.0341 not significant
faktor AC: 0.6281 not significant
faktor BC: 0.8836 not significant

faktor ABC: 2.4542 not significant
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End force:

1 a b ab c ac bc abc
end force value 6.15 4.51 7.71 7.22 5.8 5.38 7.33 6.62

effects [%]:
print speed A -0.815 SS A 1.3285 MSA 1.3285
hold time B 1.76 SS B 6.1952 MSB 6.1952

pressure force C -0.115 SS C 0.0265 MSC 0.0265
ps + ht AB 0.215 SS AB 0.0925 MSAB 0.0925
ps + pf AC 0.7375 SS AC 1.0878 MSAC 1.0878
ht + pf BC -0.375 SS BC 0.2812 MSBC 0.2812

ps + ht + pf ABC -0.36 SS ABC 0.2592 MSABC 0.2592

MSR 0.4302
significance: F F0.95 7.71

faktor A: 3.0881 not significant
faktor B: 14.401 significant     !!!
faktor C: 0.0615 not significant

faktor AB: 0.2149 not significant
faktor AC: 2.5287 not significant
faktor BC: 0.6538 not significant

faktor ABC: 0.6025 not significant

Density of split film:

1 a b ab c ac bc abc
density of split film: 1.33 1.23 1.3 1.32 1.11 1.23 1.18 1.11

effects [%]:
print speed A -0.008 SS A 0.0001 MSA 0.0001
hold time B 0.0025 SS B 1E-05 MSB 1E-05

pressure force C -0.138 SS C 0.0378 MSC 0.0378
ps + ht AB -0.017 SS AB 0.0006 MSAB 0.0006
ps + pf AC 0.02 SS AC 0.0008 MSAC 0.0008
ht + pf BC -0.028 SS BC 0.0015 MSBC 0.0015

ps + ht + pf ABC -0.077 SS ABC 0.012 MSABC 0.012

MSR 0.0037
significance: F F0.95 7.71

faktor A: 0.0301 not significant
faktor B: 0.0033 not significant
faktor C: 10.126 significant     !!!

faktor AB: 0.164 not significant
faktor AC: 0.2142 not significant
faktor BC: 0.405 not significant

faktor ABC: 3.2167 not significant

Coefficiant of variance of density of split film:

1 a b ab c ac bc abc
C of Var. of spl. f. 5.12 2.68 3.89 3.87 5.46 1.46 1.47 5.44

effects [%]:
print speed A -0.622 SS A 0.775 MSA 0.775
hold time B -0.013 SS B 0.0003 MSB 0.0003

pressure force C -0.433 SS C 0.3741 MSC 0.3741
ps + ht AB 2.5975 SS AB 13.494 MSAB 13.494
ps + pf AC 0.61 SS AC 0.7442 MSAC 0.7442
ht + pf BC 0.0075 SS BC 0.0001 MSBC 0.0001

ps + ht + pf ABC 1.3875 SS ABC 3.8503 MSABC 3.8503

MSR 4.5222
significance: F F0.95 7.71

faktor A: 0.1714 not significant
faktor B: 7E-05 not significant
faktor C: 0.0827 not significant

faktor AB: 2.984 not significant
faktor AC: 0.1646 not significant
faktor BC: 2E-05 not significant

faktor ABC: 0.8514 not significant
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Evaluation of a reduced 26 factor design with effects: print speed, hold time, pressure force, 

new tack roller, additional film split and distribution time. 

 

 

 

 

 

 

 

new roll apl. time film split disabl. print speed pressure force hold time
eff. coeff. of var. force val. -2.12 1.72 -1.68 1.33 -0.34 -0.21

conf. Int. (±) 2.22 2.22 2.22 2.56 1.58 1.58

effect beginning force 0.24 0.04 -1.76 -1.10 0.25 1.22
conf. Int. (±) 0.48 0.48 0.48 0.55 0.34 0.34

significant significant significant

effect beginning slope -0.0070 0.0032 0.0350 0.0360 -0.0060 -0.0170
conf. Int. (±) 0.0170 0.0170 0.0170 0.0190 0.0120 0.0120

significant significant

effect time till max. force -5.54 10.25 36.71 2.97 -4.73 -0.38
conf. Int. (±) 19.16 19.16 19.16 22.10 13.65 13.65

significant

effect maximum force -0.34 0.17 0.274 -0.085 -0.240 0.674
conf. Int. (±) 0.27 0.27 0.268 0.309 0.191 0.191

significant significant significant significant

effect density -0.033 0.022 0.353 -0.023 -0.044 -0.016
conf. Int. (±) 0.127 0.127 0.127 0.146 0.090 0.090

effect coeff. var. density 0.877 -1.170 -2.760 1.70 1.59 0.75
conf. Int. (±) 2.68 2.680 2.660 3.08 1.91 1.90

significant

effect average slope 0.005 0.001 0.014 -0.001 -0.002 0.003
conf. Int. (±) 0.007 0.007 0.007 0.008 0.005 0.005

significant

effect ending force -0.763 0.510 1.340 -0.711 -0.194 1.460
conf. Int. (±) 0.770 0.770 0.770 0.888 0.548 0.548

significant significant

effect transferred ink -0.0014 -0.0005 -0.0003 0.0005 0.0004 0.00002
conf. Int. (±) 0.001 0.0012 0.0012 0.0013 0.0008 0.00083

significant
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A.4 Contact angle measurments courtesly used from MoDo research. 
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A.5 PPS roughness tests [µm], tack marks [N]: 

 

 

substrate PPs_roughness [µm] tackm. w. str. + lighter surr. area [N] tackm. white strip [N] difference marks [N]

SBB ICA 0.77 6.41 5.07 1.34

SBB ICCM 1.09 6.13 4.47 1.66

SBB ICCG 0.80 7.41 4.89 2.52

SBB ICG 180 1.49 6.46 5.43 1.03

SBB ICG 260 1.07 7.38 6.25 1.13

SBB ICG 260 some weeks1.07 7.38 6.25 1.13

SBB ICG 380 0.90 7.32 5.78 1.54

FP matt 100 3.02 5.4 3.76 1.64

FP glossy 100 0.89 8.03 5.71 2.32

FP glossy 130 0.93 8.11 5.14 2.97

FP matt 170 2.58 5.93 4.89 1.04

FP glossy 170 0.89 8 5.43 2.57

FP matt 200 2.06 7.41 5.94 1.47

FP glossy 240 0.82 7.19 4.95 2.24

FP matt 300 2.18 6.98 6 0.98

MWC 1 1.45 6.25

MWC 2 1.30 6.45

MWC 3 1.24 6.04

MWC 4 1.48 5.96

MWC 5 3.12 4.16

MWC 6 1.44 6.12

MWC 7 0.94 6.16

FBB 1 1.27 6.66 5.54 1.12

FBB 2 1.08 6.8 4.71 2.09

FBB 3 1.45 6.29 4.05 2.24

FBB 4 1.10 5.92 4.08 1.84

CC 1 0.71 6.12

E Baseboard 7.41

E 1 1.90 4.95 3.88 1.07

E 2 2.08 3.75 3.27 0.48

E 3 2.10 4.33 3.06 1.27

E 4 1.54 6.29 4.47 1.82

E 5 1.58 7.9 6.73 1.17

E 6 1.69 7.34 5.36 1.98

SB Tg 13°C low c 2.30

SB Tg 9°C high c 2.02

SB Tg 8°C medium c 1.70

SB Tg -7°C 1.48

SA Tg 25°C 2.19

SB Tg 27°C 2.15

PE+cor, glossy 3.73

PE+cor, rough 6.33

PE, rough 7.80

 PET, rough 9.14

PMP, rough 7.44

PP, rough 7.79

PP + cor, glossy 4.17

Mylar film 0.31

Aluminum foil glossy 1.04

Aliminum foil, matt 0.50

Base FP 7.37

Data copy 7.42

OCR basepaper 6.43
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A.6 SEM images of ICCG 
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SEM images ICG 
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SEM images CC 1 
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