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Abstract

The performance of an algorithm often largely depends on some hyper

parameter which should be optimized before its usage. Since most conventional

optimization methods suffer from some drawbacks, we developed an alterna-

tive way to find the best hyper parameter values. Contrary to the well known

procedures, the new optimization algorithm is based on statistical methods

since it uses a combination of Linear Mixed Effect Models and Response Sur-

face Methodology techniques. In particular, the Method of Steepest Ascent

which is well known for the case of an Ordinary Least Squares setting and

a linear response surface has been generalized to be applicable for repeated

measurements situations and for response surfaces of order o ≤ 2.
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1 Introduction

It is a common situation that a (statistical) algorithm contains some hyper para-

meters the values of which are to be chosen by the operator before its usage. Since

the goodness of a resulting output often largely depends on this choice, finding the

optimal hyper parameter values is a ubiquitous challenge. At the moment this is

mostly tackled using methods like the Nelder Mead algorithm or a Grid Search.

These methods, however, are potentially impractical since the gradient of the objec-

tive function need not exist and evaluating a combination of hyper parameters can

be very time intensive. The task therefore is to develop an alternative way for op-

timizing the hyper parameter values which preferably uses as few trials as possible.

Problems of this kind are well known in the field of Response Surface Methodology

(RSM). Therefore – to utilize existing knowledge – we developed an optimization

algorithm which is based on RSM techniques. Since it is designed to cope with situa-

tions when the input of the algorithm of interest consists of repeated measurements

of the same object, the incorporated RSM techniques have been modified to be

compatible with the repeated measurements situation.

This paper contains a description of the newly developed optimizing algorithm. Its

actual optimization procedure is explained in Section 4. Before this is presented,

Sections 2 and 3 provide a detailed description of the incorporated statistical me-

thods. In Section 2, the statistical model used to determine an approximation of the

unknown function which characterizes the impact of the hyper parameter values on

the goodness of a corresponding output is introduced. Section 3 contains a descrip-

tion of the implemented RSM techniques which were adapted to the specific nature

of the problem at hand. In Section 5, the optimizing algorithm is applied to the

Support Vector Machine (SVM) algorithm using the Gaussian radial basis function

kernel. Here it is used to find the values for the two parameters of the algorithm,

namely the bandwidth of the kernel and the misclassification cost, which result in

the lowest misclassification rate. Section 6 contains a summary of the main results

as well as some concluding remarks.
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2 The Random Intercepts Model

As stated above, the regarded optimization method for the hyper parameters of

an algorithm is based on (say m) repeated measurements which serve as input

for the algorithm of interest. Therefore, considering one combination of the hyper

parameters results in m outputs, the goodness of which can then be assessed by

a quantitative performance criterion y. Since the properties of the outputs depend

on the hyper parameters, y as well provides information about the goodness of the

used combinations of the hyper parameters. It can therefore be used as the response

variable in the model utilized for the optimization.

2.1 The Model Equation

In order to examine the impact of the hyper parameters on the goodness of an output,

several combinations of hyper parameter values are used. Let n be the number of

the considered parameter combinations, then the resulting values of y reveal the

following structure:

y1 1 . . . y1n

...
. . .

...

ym 1 . . . ymn.

That is, the use of repeated measurements induces some kind of blocking structure

on the data. The corresponding block effect can be regarded as a known error term

and should therefore be included as an independent variable. In contrast to the

other independent variables (i.e. the values of the hyper parameters) the values of

the block effect are not selectable by the user. Thus, the block effect should be

treated as a random variable.
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To incorporate this, a Random Intercepts Model, the simplest member of the class

of Linear Mixed Effects Models (Laird & Ware, 1982), is used:

yi = Xβ + bi 1n + ei, i = 1, . . . , m, (1)

where

yi ∈ IRn×1 : performance of the outputs based on the i-th measurement,

X ∈ IRn×p : matrix of the used hyper parameter values settings,

higher-order moments and interactions,

β ∈ IRp×1 : unknown vector containing the impact of the hyper para-

meters on the goodness of the corresponding outputs,

bi ∈ IR : measurement error resulting from the i-th measurement,

ei ∈ IRn×1 : measurement specific error vector.

In order to make statistical inference on basis of (1), the following assumptions are

made:

• ei ∼
i.i.d.

N
(
0, σ2

e
In

)
, i = 1, . . . , m,

• bi ∼
i.i.d.

N
(
0, σ2

b

)
, i = 1, . . . , m,

• b1, . . . , bm, e1, . . . , em mutually independent.

The primary aim in using (1) is to be able to draw conclusions about the impact

of the hyper parameters on the goodness of an output independently from the m

repeated measurements at hand. For that purpose, the marginal distribution of y is

considered:

y ∼ N
(
Xβ ,V

)
, (2)

where V = σ2
e
In + σ2

b
1n 1′

n. The form of V points out the variance decomposition

which results from (1). The matrix σ2
e
In denotes the variance within a measurement,

and σ2
b
1n 1′

n represents the variance between the different measurements.
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2.2 Estimating the Relevant Model Parameters

Estimating the Impact of the Hyper Parameters

Let η′ =
(
β′, σe, σb

)
be the vector of all fixed model parameters and ζ ′ =

(
σe, σb

)
be

the vector of variance parameters. The likelihood function which follows from (2) is

then given by

LML

(
η
)

:= (2π)−
m n

2 |V(ζ)|−m

2 (3)

× exp
(

−1

2

m∑

i=1

(
yi − Xβ

)′
V(ζ)−1

(
yi −Xβ

))

,

where | . | denotes the determinate of a matrix. If the values of σe and σb are known,

the maximum likelihood estimator of β is obtained by maximizing LML

(
η
)

with

respect to β. The resulting estimator for the impact of the hyper parameters is then

given by

β̂(ζ
)

:=
1

m

(

X′ V−1(ζ) X
)−1

m∑

i=1

X′ V−1(ζ) yi.

This estimator is equal to the weighted-least-squares solution and can be shown to

be BLUE (Best Linear Unbiased Estimator) for β (Laird & Ware, 1982).

In practice, the vector ζ is unknown. It is commonly replaced by its MMLE

(Marginal Maximum Likelihood Estimator) or its REMLE (Restricted Maximum

Likelihood Estimator), both of which have attractive statistical properties such as

consistency, asymptotic normality and efficiency (e.g. Verbeke & Molenberghs, 2000,

p.46). Whether the MML- or REML-estimator is more appropriate depends on the

nature of the problem at hand. The gravest disadvantage of the MMLE is, that it

does not take into account the loss in degrees of freedom resulting from the estima-

tion of β. The MMLE of ζ is therefore biased downwards, and the bias grows with

the dimension of β (e.g. Fahrmeir & Tutz, 1994, p.226). In the considered applica-

tion, the primary aim is to estimate the impact of the hyper parameters. Since –
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as will be shown later – the estimates of the variance parameters are not involved

in any further calculation, this disadvantage exhibits no serious problem and there

is no objection against the use of the MML-estimation method. The MMLE of β

is obtained by replacing β in (3) by β̂(ζ). The resulting likelihood function only

depends on the unknown variance parameters:

LMML

(
ζ
)

:= (2π)−
m n

2 |V(ζ)|−m

2

× exp
(

−1

2

m∑

i=1

(
yi − Xβ̂(ζ)

)′
V(ζ)−1

(
yi − Xβ̂(ζ)

))

.

Maximizing this function leads to ζ̂ which can then be used to obtain β̂ := β̂(ζ̂).

Estimating the Random Effects

Equation (1) combined with the assumption bi ∼ N
(
0, σ2

b

)
yields an hierarchical

structure which enables the estimation of the random effects by means of Bayesian

techniques. The above distribution serves as a prior distribution π
(
bi

)
. Following

the theory on General Bayesian Linear Models (Smith, 1973), the corresponding

posterior distribution has the form

(
bi|yi

)
∼ N

(
σ2

b
1′

n V(ζ)−1
(
yi −Xβ

)
,Λi

)
,

where Λi is a positive definite matrix which is not further specified in this paper.

The mean of this posterior distribution can be used as an estimator for the random

effects:

b̂i(η) := σ2

b
1′

n V(ζ)−1
(
yi − Xβ

)
.

It can be shown that the above estimator is BLUE for bi (e.g. Harville, 1976).

Since the fixed model parameters are unknown in practice, they are commonly re-

placed by their estimates ζ̂ and β̂. The resulting estimator b̂i := b̂i(η̂) is often called

Empirical Bayes Estimator (EB-Estimator).
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2.3 Variable Selection

To avoid the problem of overfitting, a selection of the relevant independent variables

should be performed. Here, the independent variables are selected using a modifica-

tion of goodness of fit statistic R2 which is well known in the context of an Ordinary

Least Squares (OLS) setting:

R2

meta
:= 1 −

∑m

i=1

(
yi − ŷi

)′(
yi − ŷi

)

∑m

i=1

(
yi − ȳi.

)′(
yi − ȳi.

) ,

where ŷi = Xβ̂ + 1nb̂i and ȳi. = 1

n

∑n

j=1
yij. The value of R2

meta
represents the

reduction in conditional variation of y accounted for by the fitted values ŷi, over that

accounted for by fitting only the conditional means µ̂i = ȳi. (Vonesh & Chinchilli,

1997, p.423f.). Similar to the usual R2-statistics, R2
meta

increases with the dimension

of β. This can be avoided by calculating the adjusted values

R̃2

meta
:= 1 − a

(
1 − R2

meta

)
,

where a = m n
m n−p

. On basis of R̃2
meta

, two Linear Mixed Effects Models with different

numbers of independent variables can be compared appropriately. Therefore, this

quantity can be used as the criterion for a forward selection.

2.4 The Benefit of the Random Intercepts Model and Justi-

fication

If a model of order o > 1 is used, the expected value of (2) leads to a prediction

equation which can be utilized for optimizing the values of the hyper parameters.

The newly developed optimization algorithm fits a quadratic model to the given

data. Then the predicted (overall) goodness of an output for a given set of hyper

parameters x can be calculated as

φ
(
x
)

= β̂0 +

k∑

i=1

β̂i xi +

k∑

i=1

k∑

j=1

β̂ij xixj , (4)
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where k denotes the number of hyper parameters. The function φ can now be used

as an approximation of the unknown function which describes the relationship of

the hyper parameters and the goodness of an output of the algorithm of interest.

If the values of the chosen performance criterion y grow with the goodness of an

output, the maximum of φ can be regarded as the optimal parameter combination.

Otherwise, φ is to be minimized in order to find the optimal set of hyper parameter

values.

The above optimization approach needs to be justified because the response variable

y reveals some unusual properties. In particular, for a given measurement i and a

given set of hyper parameters j, the value yij is deterministic. The error term eij

can therefore be seen as a pure approximation error. Since it does not comprise a

stochastic component, the assumption ei ∼ N
(
0, σ2

e
In) is violated and the use of the

maximum likelihood theory is questionable. However, a careful examination of the

impact of this assumption on the optimization problem shows that it is maintainable

despite its known violation: the vector β̂ is obtained by maximizing the likelihood

function (3) with respect to β. This maximization is equivalent to the minimization

of

f ∗(β, σ2

e
, σ2

b
| y

)
:=

m∑

i=1

(
yi − Xβ

)′(
σ2

e
In + σ2

b
1n1

′
n

)−1(
yi −Xβ

)
(5)

for fixed values of σ2
e

and σ2
b
. The normality assumption for the term ei therefore

implies that β̂ minimizes the weighted quadratic distances of the observed to the

predicted performance values. Since this property is reasonable in all situations,

the use of the assumption ei ∼ N
(
0, σ2

e
In) can be justified. Also the choice of the

respective distribution parameters can shown to be reasonable. First, it is plausible

that a batch of approximation error terms reveals an average of zero and second, the

assumption Cov
(
ei

)
= σ2

e
In implies that the quadratic distances in (5) are weighted

equally. That means, that the fit in every subregion of the considered Region of

Interest is demanded to be equally good. Since in most applications, there is no

need to require different fits in different subregions, the homogeneity assumption for

the error term ei is preferable over a heterogeneity assumption.
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The preceding argumentation states that the violation of the assumption concerning

the ei comprises no identifiable disadvantage for the usage of (4). Butler & Louis

(1992) showed that the same is true for a violation of the assumption bi ∼ N
(
0, σ2

b

)
.

In order to get valid inferences, only the standard errors of all components of η

need to be corrected. Since the variable selection implemented in the considered

optimization algorithm is done by the descriptive criterion R̃2
meta

, no significance

tests for the components of β are involved to obtain the function approximation

(4). Therefore, the approximation goodness does not depend on the correct choice

of random effects distribution and on the whole, the form of (4) can be shown to be

very robust against most possible violations of the assumptions of model (1).

3 Response Surface Methodology for Linear Mixed

Effects Models

In order to find the best combination of the hyper parameters in as few trials as

possible, their values should be varied systematically. To accomplish that, RSM

techniques are implemented in the optimization algorithm. The starting point is a

Cartesian product
[
x1l, x1u

]
× . . .×

[
xkl, xku

]
which comprises a conjecture about the

location of the desired optimum. To cover this region, a Central Composite Design

(CCD) with an axial distance of α =
√

k is used which results in all points being

placed on a sphere with the radius
√

k, i.e. the coded values of the hyper parameters

have the property
∑k

i=1
x2

ic
= k, where xic denotes the coded value of the i-th hyper

parameter. The coding is done such that xilc = −
√

k ∀i and xiuc
=

√
k ∀i.

As described earlier, a quadratic Random Intercepts Model is used to fit the resulting

data and a prediction equation for the (overall) goodness of an output is generated.

Using the coded values of the hyper parameters, it has the form

ŷ = φ
(
xc

)
= β̂0 +

k∑

i=1

β̂i xic +

k∑

i=1

k∑

j=1

β̂ij xic xjc
. (6)
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Since such an approximation is valid only locally, the search for an optimal combina-

tion of hyper parameter values should at first be restricted to combinations within

the considered Region of Interest. That is, the function φ is to be optimized under

the spherical constraint
∑k

i=1
x2

ic
≤ k. In order to make this solvable for the algo-

rithms implemented in the prevalent software packages, we developed a method for

transforming the above problem into an unconstraint optimization problem.

3.1 Determining the Optimum within the Region of Interest

Let S be the considered spherical Region of Interest, i.e. S :=
{
xc |

∑k

i=1
x2

ic
≤ k

}
.

In order to ensure that a quadratic prediction equation of the form (6) can be

optimized without violating its local validity, the quantity

∆ :=

√
√
√
√

k∑

i=1

x2
ic
−
√

k

is defined. Its absolute value denotes the Euclidean distance of a point xc from

S. Moreover, its sign contains the additional information whether xc lies inside

(negative sign) or outside (positive sign) the sphere. On basis of ∆, the function φ is

augmented by an additive penalty term which has a negative sign in maximization

and a positive sign in minimization problems:

φmod

(
xc

)
= β̂0 +

k∑

i=1

β̂ixic +

k∑

i=1

k∑

j=1

β̂ijxicxjc
+ υ,

where

υ =

{

±
(∑k

i=1
|β̂i|∆ +

∑k

i=1

∑k

j=1
|β̂ij |

(
2
√

k∆ + ∆2
)
+∆

)
, ∆ > 0,

0 , else.

Without loss of generality, let us consider a maximization problem to illustrate the

benefit of υ: Let S̄ :=
{
xc |

√
∑k

i=1
x2

ic
=

√
k
}

denote the surface of the sphere of

interest. It can be shown that

∀ xc /∈ S ∃ x̃c ∈ S̄ : φmod

(
x̃c

)
> φmod

(
xc

)
. (7)
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For this, let xc =
(
xc1 , . . . , xck

)′
be an arbitrary but constant point outside the

sphere and let s =
(
s1, . . . , sk

)′
denote the point on the surface of S which minimizes

the Euclidean distance to xc. Moreover, let δ =
(
δ1, . . . , δk

)′
denote the straight

connection between xc and s, i.e. δ := xc − s, where |δ| has the minimal possible

value. Then

φmod

(
xc

)
= β̂0 +

k∑

i=1

β̂i xic +

k∑

i=1

k∑

j=1

β̂ij xicxjc

−
(

k∑

i=1

|β̂i|∆ +

k∑

i=1

k∑

j=1

|β̂ij| (2
√

k∆ + ∆2) + ∆
)

= β̂0 +

k∑

i=1

[
β̂i (si + δi) − |β̂i|∆

]

+

k∑

i=1

k∑

j=1

[
β̂ij (si + δi)(sj + δj) − |β̂ij | (2

√
k∆ + ∆2)

]
− ∆

= φmod

(
s
)

+

k∑

i=1

[
β̂i δi − |β̂i|∆

]

︸ ︷︷ ︸

A

+

k∑

i=1

k∑

j=1

[
β̂ij (siδj + sjδi + δiδj) − |β̂ij | (2

√
k∆ + ∆2)

]

︸ ︷︷ ︸

B

−∆

Since ∆ > 0 in the considered case, in order to prove statement (7) it still has to be

shown that A + B ≤ 0. It is easy to see that |si| ≤
√

k ∀i and |δi| ≤ ∆ ∀i, which

can be used in the following case differentiations:

A:

1. case: β̂i ≥ 0 : β̂iδi − |β̂i|∆ = β̂i(δi − ∆
︸ ︷︷ ︸

≤0

) ≤ 0 ∀i

2. case: β̂i < 0 : β̂iδi − |β̂i|∆ = β̂i(δi + ∆
︸ ︷︷ ︸

≥0

) ≤ 0 ∀i







⇒ A ≤ 0
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B:

1. case: β̂ij ≥ 0 : β̂ij(siδj + sjδi + δiδj) − |β̂ij |(2
√

k∆ + ∆2)

= β̂ij

(
(siδj + sjδi + δiδj) − (2

√
k∆ + ∆2)

︸ ︷︷ ︸

≤0

)
≤ 0 ∀i, j

2. case: β̂ij < 0 : β̂ij(siδj + sjδi + δiδj) − |β̂ij |(2
√

k∆ + ∆2)

= β̂ij

(
(siδj + sjδi + δiδj) + (2

√
k∆ + ∆2)

︸ ︷︷ ︸

≥0

)
≤ 0 ∀i, j







⇒ B ≤ 0

The above shows that the optimum of φmod lies within the considered Region of

Interest S. Since the function φ and its modified version are identical within S,

the unconstraint maximization of φmod is equivalent to maximizing the prediction

equation (6) under the spherical constraint
∑k

i=1
x2

ic
≤ k. Moreover, the penalty

term υ is chosen in a way that φmod is continuous and differentiable – in particular

at the surface S̄ of the Region of Interest. This permits the use of derivative based

optimization methods to find the optimum of φmod.

If the optimum of φmod is located at the surface of the considered Region of Interest,

it can be assumed that parameter combinations outside of S result in better out-

puts than those considered in the first optimization. The Region of Interest should

therefore be relocated within the Operability Region.

3.2 Systematical Relocation of the Region of Interest

The relocating procedure we used in the optimization algorithm is based on the

well known Method of Steepest Ascent which is designed to use as few trials as

possible to find a combination of the considered factors which results in a value of

the response which is as great as possible. If the objective is to minimize a response,

the Method of Steepest Ascent can easily be adapted to minimization problems

(Method of Steepest Descent). Due to this straight forward adaption, we reduce the

following description to the case of a maximization problem.
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The conventional Method of Steepest Ascent

In the literature (Box & Wilson, 1951), the Method of Steepest Ascent is described

for the case of a linear response surface and an Ordinary Least Squares setting.

It is usually applied when little is known about the process of interest. In such a

situation, it is likely that the initially chosen operating conditions are remote from

the optimum. Therefore, it usually suffices to fit a first-order model to the data and

equation (6) reduces to

ŷ = φ
(
xc

)
= β̂0 +

k∑

i=1

β̂i xic . (8)

Since the surface of φ describes a (hyper-)plane, the contours of (8) are represented

by a series of parallel lines such as shown in figure 1.

x1c

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

x2c x

x

x

x

xc
0=(0,0)

xc
1

xc
2

xc
3

Figure 1: Path of Steepest Ascent for a virtual first-order response surface with k = 2

factors: The movement of the operating conditions is normal to the contour planes

The Method of Steepest Ascent is a procedure for moving the operating conditions

sequentially along the direction in which ŷ increases most rapidly. It is easy to

see that this direction is normal to the contour planes. Since the Path of Steepest

Ascent is usually taken as the line through the center of the Region of Interest, the

coordinates along the path are proportional to the estimated regression coefficients in

(8). To clarify this, let
{

xs
c

}

denote the sequence of coded factor values which forms
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the Path of Steepest Ascent. The s-th member of the sequence, xs
c =

(
xs

1c
, . . . , xs

kc

)′
,

is then defined as the combination of coded factor values which maximizes (8) under

the constraint

k∑

i=1

x2

ic
= r2

s , (9)

where rs ∈ IR+ denotes the radius which defines the sphere xs
c is restricted to lie

on. The sequence of radii is chosen to satisfy 0 = r0 < r1 < r2 < r3 < . . . Using the

above definitions, the dependence the components of xs
c on the estimated coefficients

β̂i can be formulated as

xs
1c

= ρs β̂1, xs
2c

= ρs β̂2, . . . , xs
kc

= ρs β̂k, (10)

where the proportionality constant has a value1 of ρs = rs√
P

k

i=1
β̂2

i

. As a result of

this proportionality property, the determination of the Path of Steepest Ascent in

practice reduces to the choice of the values r1, r2, . . .

After calculating the Path of Steepest Ascent, experimental runs are conducted

along it, i.e. the members of
{

xs
c

}

are successively used as operating conditions. This

procedure normally results in improving values of the response, but since moving

the operating conditions along the path comprises an extrapolation of (8), at some

region along the path the improvement will decline and eventually disappear. The

best point found can then be chosen as a base for a new first-order design from

which further advantage might be possible by again calculating the Path of Steepest

Ascent.

Since the Method of Steepest Ascent only yields any benefit in regions where the

linear effects dominate the interactions and higher-order terms it is not generally ap-

plicable. By exploiting the similarity of (9) and the problem of optimizing a quadratic

prediction equation within a spherical Region of Interest (see Section 3.1) we devel-

oped a generalization of the conventional Method of Steepest Ascent which can be

applied to response surfaces of order o ≤ 2.

1If the objective is to calculate the Path of Steepest Descent, ρs = − rs√
P

k

i=1
β̂2

i

is chosen.
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The Quadratic Method of Steepest Ascent

As described in Section 3.1, when a CCD with the axial distance α =
√

k is used

to obtain a quadratic prediction equation, maximizing the function φmod enables to

find the operating condition which maximizes equation (6) within the associated

spherical Region of Interest S. If the found maximum lies at the surface of S, a

method for systematically relocating the Region of Interest which is applicable for

quadratic response surfaces would be desirable. Since in the case of a linear surface,

the constraint (9) is equivalent to the constraint
∑k

i=1
x2

ic
≤ r2

s , a modified version

of the penalty term υ can be used to tackle this problem:

Let
{
ds

}
be a sequence of successively growing positive values and let Ss denote the

sphere around the origin with the radius of (
√

k + ds), i.e. Ss :=
{
xc |

∑k

i=1
x2

ic
≤

(
√

k + ds)
2
}
. With the definition

∆s :=

√
√
√
√

k∑

i=1

x2
ic
− (

√
k + ds

︸ ︷︷ ︸

rs

),

the quantity |∆s| denotes the Euclidean distance of a point xc and Ss. Again, its

sign contains the information whether xc lies within (negativ) or outside (positiv)

Ss. Maximizing

φs

(
xc

)
= β̂0 +

k∑

i=1

β̂ixic +
k∑

i=1

k∑

j=1

β̂ijxicxjc
+ υs, (11)

where

υs =

{

−
(∑k

i=1
|β̂i|∆s +

∑k

i=1

∑k

j=1
|β̂ij |

(
2rs∆s + ∆2

s

)
+∆s

)
, ∆s > 0,

0 , else,

then enables to find the vector xs
c ∈ Ss which – according to (6) – maximizes the

predicted response. The sequence of maxima of the respective functions φs therefore

has the same interpretation as the Path of Steepest Ascent calculated in the conven-

tional way2. Since the prediction equation comprises quadratic terms, the members

2In minimization problems, the quadratic Path of Steepest Descent can be obtained by mini-

mizing φs using a positive sign of υs.
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of this sequence do not reveal the proportionality property (10). The quadratic Path

of Steepest Ascent does therefore not necessarily describe a straight line.

After obtaining the quadratic Path of Steepest Ascent, the further proceeding is

identical to that described for the linear case. The member of the path are succes-

sively used as operating conditions till no further improvement can be achieved. The

best point found is then used as a center for a new experimental design.

Application of the Method of Steepest Ascent to Linear Mixed Effects

Models

As mentioned earlier, the newly developed optimization algorithm for the hyper pa-

rameters of an algorithm is designed to cope with the situation when the input at

hand consists of m repeated measurements. In order to implement the Method of

Steepest Ascent, it therefore is necessary to generalize it for the context of Linear

Mixed Effects Models. For both the conventional and the quadratic Method of Steep-

est Ascent, this generalization is straight forward since the form of the prediction

equation (6) utilized for the optimization is identical to that of a prediction equation

in an OLS setting. Obtaining the Path of Steepest Ascent therefore does not require

any additional thinking. Also, incorporating the specific nature of the data (cf. page

3) when conducting the control experiments along the path, is rather simple. Let

ys =
(
y1s, . . . , yms

)′
denote the vector of the obtained values of the performance

criterion y when the s-th member of the Path of Steepest Ascent is used as setting

for the algorithm of interest. The average ȳs of those values can then be used as an

criterion which determines whether an additional step along the Path of Steepest

Ascent should be conducted or not. As soon as ȳs+1 < ȳs, the Path of Steepest

Ascent is truncated and the uncoded version of the hyper parameter combination

xs
c can be used as the center for a new design.
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4 The RSM Algorithm

Figure 2 shows how the methods described in Sections 2 and 3 are combined in order

to find the best combination of hyper parameter values for an algorithm of interest.

This procedure was automated using the software package R (R Development Core

Team, 2004) and will from now on be called RSM algorithm.
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execution of the CCD,

uncoded hyper parameter 


values=settings for algorithm of 

interest


optimization of the hyper parameter values on 

basis of the respective prediction equation
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conducting the  
m
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Figure 2: Flow Chart for Demonstrating the Mode of Operation of the RSM Algorithm
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The input for the optimization algorithm consists amongst others of a user’s con-

jecture about the best parameter combination for the algorithm of interest. The

optimization algorithm uses this (mostly) vague estimate together with k parameter

specific interval widths to determine the first Region of Interest. The default value of

these widths is one for each parameter but they can independently from each other

be varied by the user. Another part of the input are the m repeated measurements

which serve as input for the algorithm of interest. Moreover, the sequence of step

widths
{
ds

}
is to be specified. The default setting is ds = s ·

√
k

2
, i.e. the radius of the

sphere in which the optimization is conducted, is at each step augmented by half of

the original radius.

The first step of the optimization procedure consists of the determination of the

first CCD which is chosen to have an axial distance of α =
√

k. This results in

n = 2k+2k+1 hyper parameter combinations which are investigated in the first cycle.

Now the algorithm of interest is run m ·n times since each combination is applied to

each of the m repeated measurements. The goodness of the resulting outputs is then

assessed by the performance criterion y which is to be optimized. The m · n values

of y together with the corresponding coded values of the hyper parameters form

the data on basis of which the first Random Intercepts Model is set up. This model

is found by means of a forward selection utilizing of the goodness of fit statistic

R̃2
meta

. Since this variable selection is programmed to result in an at most quadratic

model the corresponding prediction equation reveals an order of o ≤ 2. Subsequently,

the prediction equation is modified as described in Section 3.1 to ensure that the

found optimum lies within the considered spherical Region of Interest S. The actual

optimization is accomplished by the L-BFGS-B algorithm (Byrd et al., 1995), a

quasi-Newton method which is implemented in R and uses function values and

gradients to build up a picture of the surface of the objective function. If the found

optimum lies in S\S̄ (cf. Section 3.1), the optimization procedure is completed and

the uncoded version of the optimum are returned as the best combination of hyper

parameter values for the algorithm of interest.
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If the found optimum is located at the surface of S, the quadratic Path of Steepest

Ascent (Descent) is calculated and till ȳs+1 < ȳs, at each step along the path a con-

trol experiment is conducted. The uncoded version of the s-th member of the Path

of Steepest Ascent is then used as center of a new CCD with α =
√

k. After exe-

cuting this CCD and applying the variable selection, it is rechecked if the optimum

lies within of the new Region of Interest. If so, the optimal combination of hyper

parameter values is returned. Otherwise, the procedure described above is iterated

till a Region of Interest which contains an optimum is found.

5 Optimizing the Hyper Parameters of a Nonlinear

Support Vector Machine

Examples for algorithms containing some hyper parameters which are to be op-

timized in order to gain the best performance can be found throughout statistical

literature. In particular, optimizing the involved parameters of a learning machine is

a crucial step for obtaining the minimal error. In this paper we consider the problem

of optimizing the hyper parameters of an SVM utilizing the Gaussian radial basis

function (RBF) kernel

K
(
z, z′

)
= exp

(
−γ||z− z′||2

)
, γ ≥ 0,

where γ denotes the bandwidth of the kernel. Let the training data consist of l

observations (zi, yi)
′, where zi ∈ IRd is the set of explanatory variables for the i-

th observation and yi ∈ IR denotes the corresponding class membership. In the

dichotomous case (i.e. yi ∈
{
−1, +1

}
) using a kernel-based SVM to find the optimal

border between the classes is equivalent to maximizing the function

L(α) =
∑

i

αi −
1

2

∑

i,j

αiαjyiyjK
(
zi, z

′
j

)
, (12)

where α ∈ IRd is a vector of Lagrangian multipliers which arises from the fact that

(12) is the dual formulation of a constraint optimization problem (e.g. Vapnik, 2000,
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p.133ff.). In order to get a valid result, the maximization has to be carried out under

the constraints

∑

i

αiyi = 0 and 0 ≤ αi ≤ C ∀i,

where C ≥ 0 is a parameter which assigns a cost for misclassified observations.

With the kernel of an SVM fixed, there are only a few hyper parameters that are

to be specified by the user. Since we decided to use the RBF kernel, optimizing the

hyper parameters reduces to finding the best values of the kernel bandwidth γ and

the cost parameter C. The optimal values of γ and C are data-specific. They there-

fore have to be found separately for each application which can be done by using the

RSM algorithm presented in Section 4. To demonstrate this, we applied the non-

linear SVM described above to the West German Business Cycle data (Heilemann

& Münch, 1996) which is analyzed by the project B3 of the SFB475 (Collabora-

tive Research Centre “Reduction of Complexity for Multivariate Data Structures"),

supported by the Deutsche Forschungsgemeinschaft. This data set consists of 13

economic variables with l = 157 quarterly observations from 1955/4 to 1994/4. The

German business cycle is to be classified in a four phase scheme: upswing, upper

turning point, downswing and lower turning point. The considered time period re-

veals 6 complete cycles. In order to extend the SVM method to the given four-class

situation, the four phases are split into six one-against-one test situations.

The performance of a combination of γ and C is assessed in terms of (in-)accuracy

(e.g. Hand, 1997, p.99) which is estimated by the misclassification rate. For measur-

ing this rate, B = 200 bootstrap samples were generated from the given data set.

Each bootstrap sample is used to train a classification rule f̂ b
(
x
)

which then is ap-

plied to the subset of
{
xi

}
not present in the b-th bootstrap sample (b = 1, . . . , B).

Let êb denote the proportion of the observations misclassified by f̂ b
(
x
)
, then con-

sidering n combinations of γ and C (and setting B = m) leads to a set of outputs

which reveals the structure shown in Section 2.1. The RSM algorithm can therefore

be applied directly to the problem of finding the optimal set of the involved hyper
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parameters γ and C. To prevent the relocation procedure from leaving the feasible

parameter space [0, ∞) × [0, ∞), we searched for the best combination of a ∈ IR

and b ∈ IR which were then transformed by the bijective functions γ = ea and

C = 10b. The starting point for the RSM algorithm was chosen to be (a, b) = (0, 0),

i.e. (γ, C) = (0, 0), and the default setting for the parameter specific interval widths

(each equal to one) was used. The first (uncoded) Region of Interest was there-

fore determined by the inscribed circle of the Cartesian product [al, au] × [bl, bu] =

[−0.5, 0.5]× [−0.5, 0.5]. After three relocations of the Region of Interest (the succes-

sive CCDs are displayed in Figure 3), an optimal combination of a and b was found.

It resulted in an average error rate of ê = 0.241, where ê is defined as the average

error rate of the 200 drawn bootstrap samples.
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Figure 3: Response Surface of the error rate obtained by a grid search using 625 equidis-

tantly spaced points in [−5, 5]× [−5, 5] and the CCDs successively executed by the RSM

algorithm. The optimum found by the RSM algorithm is marked by an x.

To assess the performance of the RSM algorithm, we compared the error rate result-

ing from the optimal combination of γ and C found by the RSM algorithm with the

corresponding error rates obtained by two well known optimization methods: the

Nelder-Mead algorithm (Nelder & Mead, 1965) and a grid search. For the Nelder-

Mead algorithms we used the starting point (a, b) = (0, 0) and a grid search was
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performed on a very fine grid (25 × 25 grid points) equidistantly spread over the

space [−5, 5] × [−5, 5] (cf. Figure 3). Moreover, the number parameter combina-

tions each optimization procedure tested to find an (almost) optimal combination

of the hyper parameters was compared. During the Nelder-Mead algorithm and the

grid search, testing one combination (a, b) comprises drawing 200 bootstrap sample

and constructing the respective classification rules. The same holds for the RSM

algorithm when an operating condition of a CCD is considered and when a control

experiment is conducted along the Path of Steepest Descent, but since the intern op-

timization procedures are based on a prediction equation of the form (11), parameter

combinations considered by the L-BFGS-B algorithm are much less computational

expensive and are therefore neglected in our count. The results of the comparison

are summarized in Table 1.

Table 1: Performances of the considered optimization algorithms measured with respect

to the (in-)accuracy of the resulting classification rule and to speed

ê # evaluations

RSM Algorithm 0.241 52

Nelder-Mead 0.252 63

Grid Search 0.252 625

The RSM algorithm outperformed the conventional optimization methods with re-

spect two both criteria, accuracy and computational effort.

6 Conclusion

Statistical methods have been shown to be a valuable tool for optimizing hyper

parameters. By utilizing an extension of the Method of Steepest Ascent for the case of

response surfaces of order o ≤ 2, an optimizing algorithm for the hyper parameters of

an algorithm of interest could be developed which offers a good compromise between
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accuracy and computational effort. Moreover, the use of the quadratic Method of

Steepest Ascent is not restricted to the RSM algorithm. It can be applied in every

situation the task is to efficiently relocate the considered Region of Interest in order

to find an optimal operating condition for a system.
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