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Abstract. Despite its age, the Linear Discriminant Analysis performs well even in situations where the
underlying premises like normally distributed data with constant covariance matrices over all classes are
not met. It is, however, a global technique that does not regard the nature of an individual observation
to be classified. By weighting each training observation according to its distance to the observation of
interest, a global classifier can be transformed into an observation specific approach. So far, this has been
done for logistic discrimination. By using LDA instead, the computation of the local classifier is much
simpler. Moreover, it is ready for applications in multi-class situations.
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1 Introduction

Statistical work on classification begins with the work proposed by Fisher (1936).
For the dichotomous case, he suggests to reduce a multivariate classification prob-
lem to an univariate problem by linearly transforming the given observations into
scalar values such that the separation of the transformed class means is maximized
whilst the within class variances of the transformed observations are minimized.
Although Fishers approach is distribution-free, it does implicitly assume that the
covariance structure is the same in both classes, because a pooled estimate of
the common covariance matrix is used. The resulting classification rule can alter-
natively be derived using Bayesian argumentation although here more restrictive
assumptions are made: the data within each class are assumed to be normally
distributed with class-specific means and a common covariance structure. Both
approaches can be extended to multi-class situations and in each case, obtaining
the actual decision functions for a given data set requires the estimation of the un-
known model parameters, namely the class-specific means, the class priors, and the
covariance matrix. Since the estimation is carried out without taking into account
the nature of the problem at hand, i.e. the classification of a specific trial point,
LDA can be considered a global classifier. Hand and Vinciotti (2003) argue that an
approach like this can lead to poor results if the chosen model does not exactly re-
flect the underlying data generating process because then, a good fit in some parts
of the data space may worsen the fit in other regions. Since in classification prob-
lems, accuracy is often not equally important throughout the entire data space,



they suggest to improve the fit in regions where a good fit is crucial for obtaining
satisfactory results – even if the fit elsewhere is degraded. For the dichotomous lo-
gistic discrimination, two approaches have been proposed to accomplish this. Hand
and Vinciotti (2003) introduce a logistic regression model in which data points in
the vicinity of the ideal decision surface are weighted more heavily than those
which are far away. Another strategy is presented by Tutz and Binder (2005) who
suggest to assign locally adaptive weights to each observation of the training set.
By choosing the weights as decreasing in the (Euclidean) distance to the observa-
tion to be classified, and maximizing the corresponding weighted (log-)likelihood,
a localized version of the logistic regression model can be obtained. The classifier
is therefore adapted to the nature of each individual trial point which turns the
global technique of logistic discrimination into an observation specific approach.

In this paper, we adopt the strategy of using locally adaptive weights to the
context of LDA which comprises the advantage that localizing a classification rule
can be accomplished without numerical methods like Fisher scoring. In the follow-
ing we call this new approach LLDA (Localized Linear Discriminant Analysis). It
will be proposed in Section 2. In Section 3, the benefit of LLDA will be shown on
basis of a simulated data set containing local subclasses. The application of LLDA
to the real-life problem of business phase classification is described in Section 4. A
summary of the main results is provided in Section 5.

2 Localized Linear Discriminant Analysis

Let the training data consist of N observations (xi, yi)
′, where xi ∈ IRp is the set

of explanatory variables for the ith observation and yi ∈ {A1, . . . , AG} denotes the
corresponding class membership. The objective now is to construct a classification
rule on basis of the training sample which can then be used for predicting the
unknown class of a new observation. In LDA, the classification is based on the
posterior class probabilities of the considered trial point x. To calculate these, the
data is assumed to be normally distributed with class-specific mean vectors μg

and a common covariance matrix Σ. Let πg denote the prior probability of Ag.
Choosing the class with the highest posterior probability for a given trial point x

can then be shown to be equivalent to assigning x to the class with the largest
value of the corresponding discriminant function

hg

(
x
)

=
(
Σ−1μg

)′
x − 0.5 μ′

g Σ−1μg + ln(πg).

Since the parameters of the assumed normal distribution are usually unknown, in
practice the sample analogues of hg are used:

ĥg

(
x
)

=
(
S−1x̄g

)′
x − 0.5 x̄′

g S−1x̄g + ln(pg), (1)



where x̄g denotes the mean vector and pg denotes the proportion of the training
observations belonging to Ag. The matrix S is the pooled estimate of the covariance
matrix.

A version of (1) which is adaptive to the nature of the considered trial point
can be obtained by introducing weights wi = w

(
x,xi

)
to the sample estimates.

For the mean vector and the proportion, this can be formulated as

x̄gL
=

∑
i wixiI{xi∈Ag}∑
i wiI{xi∈Ag}

and pgL
=

wixiI{xi∈Ag}∑
i wiI{xi∈Ag}

.

To compute an analogous variant of S, first a weighted estimate of the covariance
matrix is calculated for each class:

SgL
=

1

1 −
∑

i w
2
i I{xi∈Ag}

∑
i

wi

[
(xi − x̄gL

)I{xi∈Ag}

][
(xi − x̄gL

)I{xi∈Ag}

]′
.

These matrices are then weighted with the number of training observations of the
corresponding class and aggregated to

SL =
N

N − G

∑
g

pgSgL
.

As suggested by Tutz and Binder (2005), the weights are chosen to be locally
adaptive in the sense that they depend on the Euclidean distance of the considered
trial point x and the training observations xi. This can be accomplished by using
a kernel window

wi = K
(
||x− xi||

)
.

In this context, various kernels can be used and the performance of a kernel func-
tion of course depends on the nature of the problem. In this paper, we will restrict
the consideration to the kernel we found most robust against varying data char-
acteristics:

K(z) = exp(−γ · z).

The quantity γ ∈ IR+ is the flexible parameter of the LLDA algorithm which
should be optimized before its usage.

LLDA is based on the local estimates of the model parameters described above.
Applying them in (1) yields a set of localized discriminant functions ĥgL

which can
be used to construct the classification rule

Â(γ) = arg max
g

ĥgL

(
x
)
. (2)



As in classical LDA, this approach may cause numerical problems if the considered
trial point x extremely differs from all G class-specific mean vectors since then,
the posterior probabilities for all classes are approximately equal to zero. Although
this case is very rare, we augmented (2) in order to account for it:

Â(γ) =

⎧⎨
⎩

arg max
g

ĥgL

(
x
)

, ∃ g : exp
(
−0.5(x − x̄g)

′S−1
L (x − x̄g)

)
> 10−150

pgL

,

arg min
g

||x − x̄g|| , otherwise.

If classifying x on basis of (2) is rather questionable because of its position in the
data space, the simple classification rule ’Choose the class with the closest centroit’
is applied. For programming the LLDA algorithm, we used the software package
R (R Development Core Team, 2005)1.

3 Simulation Study

In this section we use a simulated two-class discrimination problem to investigate
the performance of LLDA. In our simulation study, the two classes A1 and A2 each
consist of two subclasses, namely A11, A12, A21 and A22. For the training data set,
each class is chosen to contain 1000 two-dimensional observations which are equally
divided into the two corresponding subclasses. The data points are generated as
normally distributed with the common covariance matrix Σij = I2 ∀i, j and the
following subgroup-specific means: μ11 = (1, 0)′, μ12 = (−1, 0)′, μ21 = (1.75, 0)′

and μ22 = (−1.75, 0)′. The entire data cloud building up class A2 is then relocated
by a shift defined through the vector s = (0.1, 0.3)′ and rotated by 60◦. This results
in a data structure such as shown in Figure 1.
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Fig. 1. Simulated Data: a) class A1, b) class A2 and c) combined data set

1 On the used computer, the value 10−150 reflects the square root of the machine precision of R for
distinguishing a number from zero.



Table 1. Performances of LDA, LLDA and MDA. The error rates are averaged over 10 simulations with
the standard error for the average in parenthesis.

Technique Test Error Rate

LDA 0.4629 (0.0101)
MDA 0.2705 (0.0101)

LLDA 0.2765 (0.0089)

The test data is generated independently from the training data in exactly
the same way. It, too, consists of 1000 observations per class. Due to the local
structure of the simulated data, LDA is not likely to perform well. We therefore
chose MDA (Mixture Discriminant Analysis) as a further competitor for LLDA
since this method is particulary designed to cope with local subgroups (Hastie
and Tibshirani, 1996). To evaluate the performances of LLDA, the training data
is randomly divided into a learning set and a validation set containing 1333 and
667 observations respectively. The optimal values for the flexible parameter γ is
then obtained by minimizing the error rate on the validation data. Having done
this, the entire training data is used to create a classification rule which is then
evaluated on the test data. When using LDA, no optimal parameter values have
to be obtained. The classification rule here is learned on basis of the training set
and used for the classification of the test observations. The same is done for MDA
where the number of subclasses is set to two for both classes. Table 1 contains the
results obtained by ten simulations. As expected, all classifiers perform rather bad
due to the high degree of overlapping of the two classes. In particular, the global
LDA classifier fails to construct a good classification rule whereas MDA and LLDA
result in error rates close to the Bayes risk which for the ten simulations on average
is given by 0.2747.

4 Application to Business Phase Classification

The field of predicting economic phenomena is a diverse practical example where
the data adaptive approach of LLDA is likely to outperform the classical LDA due
to the fact that the economic situation develops over time. Assuming the same
distribution for all observations of the same class can therefore be too restrictive.
In this paper, we address the particular problem of classifying business phases.
The data set we consider consists of 13 economic variables with quarterly obser-
vations describing the German business cycle from 1955/4 to 2000/4 (Heilemann
and Muench, 1996). These variables are standardized and used to classify the busi-
ness cycle corresponding to a four-phase scheme: upswing, upper turning point,
downswing and lower turning point. For such kind of time related data, the key
interest often is to find a reliable classification rule for e.g. the next six quarters. In



order to evaluate classifiers with respect to this request, Luebke and Weihs (2005)
propose the Ex-Post-Ante error rate (EPAER).

4.1 The Ex-Post-Ante Error Rate for Time Related Data

Let the training data
{
(xt, yt)

′
}T

t=1
consist of T successive p-dimensional observa-

tions xt with a known class membership yi ∈ {A1, . . . , AG}, and let pre denote
the number of future time points for which an appropriate classification rule is
required. The EPAER at time t < T then has the form

epa(t; pre) =

∑min(t+pre,T )
i=t I{Ai �=Ât

i}

min(pre, T − t)
,

where Ai and Ât
i are the true and the estimated class for observation i respectively.

The quantity epa(t; pre) denotes the error rate of the classification rule which
is based on the first t training observations and then applied to the next pre

training observations. This approach therefore produces a time series
{
epa(t; pre)

}
t

of error rates which can then be condensed to an overall accuracy measure for the
classification of the next pre time points:

êt0,pre =

T−1∑
t=t0

w̃(t) epa(t; pre), (3)

where t0 denotes the starting point for calculating the EPAERs. A suitable weight
function for the problem at hand is

w̃(t; t0, T ) =
t∑T−1

t=t0
t
,

which gives more weight to recently calculated error rates.

4.2 Results

In order to obtain a benchmark for the performance of LLDA, we first applied the
classical LDA to the data set described above. The dashed line in Figure 2 shows
the resulting time series of EPAERs for the prediction interval length of pre = 6
quarters and the starting point t0 = 20. The plot reveals the interesting property
that historic events which had an impact on the German business cycle can be
identified by peaks of the corresponding error rates. For example the reunification
of Germany (1990) changed the business cycle so that the next few phases cannot
be predicted properly. Also the start of the oil-crisis (oil price increased after 1971)
and the second oil crisis (1979) cause problems for LDA.
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Fig. 2. Time Series of Ex-Post-Ante error rates for LDA and LLDA

Aggregating the time series of error rates corresponding to (3) leads to an
estimated overall accuracy for predicting the next six quarters of ê20,6 = 0.1527.

As described in Section 2, when using LLDA, the performance of a classification
rule is influenced by the value of γ which should therefore be optimized with respect
to the chosen accuracy measure. A possible way to accomplish this is minimizing
the function êt0,pre = êt0,pre(γ) with respect to γ. The optimum found by doing
so (setting t0 = 20 and pre = 6) yields ê20,6(γ

opt) = 0.1144. This result, however,
is clearly due to overfitting and therefore gives an overoptimistic estimate of the
accuracy. To get a more realistic impression about the benefit of optimizing γ, we
applied the stepwise procedure shown in Algorithm 1.

Algorithm 1 Obtaining the EPAERs based on stepwise optimal values of γ.
1: t = t0

2: while t < (T-1) do

3: select the first t training observations
˘
(xi, yi)

′
¯t

i=1
as learning data

4: find the corresponding optimal value for γ:

γ
opt
t = arg min

γ

w̃(t′; [ t

5
], t) ·

Pt−1

t′=[ t
5
]

Pmin{t′+pre,t}

i=t′
I
{Ai �=Ât′

i
(γ)}

min{pre,t−t′}

5: use γ
opt
t to calculate the EPAER for time point t:

epa(t; pre;γopt
t ) =

Pmin{t+pre,T}
i=t

I
{Ai �=Ât

i
(γ

opt
t )}

min{pre,T−t}

6: t ← t + 1

7: end while



Since here in each case, the value γopt

t is obtained from data points prior to t and
used for predicting the class membership of upcoming observations (which mimics
a real-life situation), the resulting time series of EPAERs {epa(t; pre, γopt

t )}t does
not suffer from overfitting. It is shown as the solid line of Figure 2. Since its shape
roughly resembles the one obtained by LDA, it, too, can be explained historically.
Corresponding to (3), an overall measure for the goodness of LLDA for predicting
the next six quarters is given by êopt

20,6 = 0.1277. Compared to the classical LDA,
the observation specific approach of LLDA utilizing an optimal value of γ therefore
leads to an improvement of 16.37% in terms of the Ex-Post-Ante-Error rate.

For completeness sake we also applied MDA to the problem at hand. Since an
optimization of the flexible MDA parameters, namely the number of local sub-
classes for each class, would be very time intensive, we assumed the number of
subclasses to be equal to a constant s for all four classes. Optimizing s with re-
spect to the EPAER resulted in sopt = 1, i.e. the classical LDA approach. The
advantage of LLDA compared to LDA is therefore not due to the existence of
local subclasses which shows that LLDA is beneficial in a diverse range of local
settings.

5 Summary

By introducing locally adaptive weights to the global LDA technique, the new
observation specific classifier LLDA has been developed. Its benefit could be eval-
uated on basis of a simulated data set containing local subclasses and in the real life
application of classifying business phases. LLDA outperforms LDA in both cases
as well as MDA in the business classification problem. In the simulation study,
it yields similar results as MDA which is noteworthy since MDA is the method
particulary developed for such data structure.
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