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Chapter 1

Prerequisite

Quality of products in the current economy context of hard competition, is a brand image guarantor.

The inspection of the quality of products or services provided by a company is an infallible proof of

the presence of competences within the organization. Mastering the process of quality control is a

guarantee for the company competitiveness.

Many definitions have been given to quality, but no one of them is an unanimous definition. In

fact, everyone considers quality from his (her) own point of view. However, in the scope of this work,

the definition given by Montgomery (1996) is adopted:”the fitness for use”. Following this definition,

a product has a good quality if it satisfies the customer expectations. Although this definition clarifies

the quality concept, it seems to be vague for the manufacturers who want to integrate quality in their

decision making process.

The quality of a product is expressed through some quality characteristics. The customer expec-

tations concerning a measurable quality characteristic are often expressed in terms of the lower spec-

ification limit (LSL), the target value (T ) and the upper specification limit (USL). When the quality

characteristic measure falls between the specification limits then the customer expectations are ful-

filled. However, an item presenting a quality characteristic measure which is outside the specification

limits is non conform to the customer expectations, hence the customer is not satisfied. Moreover, the

customer satisfaction is maximized when the quality characteristic measure equals the target value

(T ). T is the value that the designers of the product give to the quality characteristic in the aim to

satisfy some needs of the customers. It is not possible that all the produced items have a measured
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quality characteristic which is equal to the target value (T ). Indeed, it is admitted that the variability

exists all around us, the same experiences are made in the same conditions, but, will not give necessar-

ily the same results. Since nature offers to us this variability it is called a natural variability. Starting

from this fact, it is understandable to admit that the process output presents a given variability and

it is dangerous to start the production with a process presenting a large variability. Indeed, this kind

of process gives an important proportion of non conforming products. The ”enemy” of the perfect

product is the uncontrolled variability. Manager efforts for improving the product quality should be

oriented toward understanding variability causes, evaluating the variability impacts and trying to re-

duce this variability. As long as the expected value of a given quality characteristic is most likely

to fall between the specification limits, reducing variability is equivalent to reducing the proportion

of non conforming items, hence, increasing the customer satisfaction. In order to reach these goals,

statistics becomes an important tool in quality improvement. Process Capability Indices (PCIs) are

an important tool of statistical process control. PCI general form is

PCI =
Specification limits width

Natural process variability
.

This PCI form allows to summarize the ability of a process to meet the customer requirements. Figure

1.1 is a visualization of the specification band which represents the performance standard established

by the customer and the tolerance band which represents the process performance.

The introduction of PCIs in the United States triggered off the extension of the use of PCIs. In-

deed, each company wants to be sure that the products delivered by its suppliers meet its requirements.

Hence, PCIs are considered as an important tool for the suppliers selection. Following this reasoning,

the supplier who wants to win the customer confidence should have a process presenting an acceptable

capability level.

In order to assess the process capability, the specification limits width called also specification

width and the natural variability need to be computed. For that purpose the process capability index

computation is based on some assumptions.
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Figure 1.1: Visualization of the Specification Band and the Tolerance band.

1.1 PCI Assumptions

Measuring the process ability to meet the customer expectations is very important. The customers ex-

press their expectations by providing the specification limits for the quality characteristics of interest.

The process performance is evaluated by the comparison of the process variability to the specification

limits width. This comparison could be carried out using the histogram or the control chart. Hence,

the process performance evaluation is done visually. However, managers need a value which summa-

rizes this process performance, allows to follow the performance evolution and to compare it with the

performance of other processes.

From the general form of the process capability indices it is clear that the rule of thumb for the

PCIs is that the higher the process capability index value, the more able the process to satisfy the

customer expectations. In order to compute PCIs the following assumptions are commonly admitted:

• The process is under statistical control.

• The underlying distribution is the normal distribution.

1.1.1 The Process is Under Statistical Control

Before computing the indices, data is collected by successive samples. Averages of the collected

samples are represented on the control chart. If the represented points are within the control limits,

the process is under statistical control. It should be noticed that the used sample size should be
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greater or equal 5 in order to be able to determine the control limits using the central limit theorem.

The control limits for thēx control chart are computed as follows:

UCL = ¯̄x + 3σx̄,

central line= ¯̄x,

LCL = ¯̄x− 3σx̄.

This means that the obtained data reflects a variability only due to the process and not to some external

or special causes. Under this assumption the process capability index enables a comparison between

the real process performance and the standard performance established by the customer or set by the

engineers.

1.1.2 The Underlying Distribution is the Normal Distribution

The process variability is measured by the tolerance band. It is determined through two values be-

tween which there is an important fraction of the population. The width of this interval measures

the natural variability of the process. Montgomery (1996) pointed out that if the normal distribution

assumption holds, the interval[µ ± 3σ] contains99.73% of the population, whereµ andσ are the

expected value and the standard deviation of the distribution. Moreover, such interval can be con-

structed for other distributions, Lovelace and Kotz (1998) noticed that this is the reason which makes

some authors extend this assumption to the existence of a probability distribution for the collected

data. Hence, the natural variability is obtained through the estimation of the quantilesX0.00135 and

X0.99865 of the identified probability distribution. It is important to recall that the quantile of orderα,

Xα, satisfies:Pr[X ≤ Xα] = α. However, it is commonly admitted that the underlying distribution

is the normal distribution in order to make the determination of the statistical properties of the indices

tractable.

The widely used process capability indices are:

Cp =
USL− LSL

6σ
, (1.1)

Cpk = min{USL− µ

3σ
,
µ− LSL

3σ
}, (1.2)
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Cpm =
USL− LSL

6
√

σ2 + (µ− T )2
, (1.3)

Cpmk =
min{USL− µ, µ− LSL}

3
√

σ2 + (µ− T )2
, (1.4)

where,µ andσ are the parameters of the normal distribution.

1.2 The Index Structures

Since their first appearance in industry, the structures of the process capability indices have been

revised several times. These changes aimed at taking into account the deviations from the PCI as-

sumptions. Statisticians and quality engineers tried to improve the indices performance in reflecting

the real process capability and to avoid misleading interpretations when using PCIs. The new gener-

ation of indices takes into account the particularity of some collected data, like autocorrelation and

non normality. The index structures are still one of the basic and most important problem of the PCIs

theory. This problem becomes more obvious for the multivariate case. Nevertheless, in their evolution

the PCIs are still based mainly on two approaches: The nonconformity ratio approach and the loss

function approach. In this work we focus on the deviation from the normal distribution assumption

and only the nonconformity ratio approach is considered. In order to explain the reason for this option

the nonconformity ratio approach and the loss function approach are explained and the relationship

between both approaches is presented.

1.2.1 The Nonconformity Ratio Approach

The structure of the first and the second generation of indices is the most basic and the most simple.

The classical indices belonging to these generations are the most known. However, these indices have

different interpretations.

The Potential Capability Index

The indexCp given by (1.1) is considered as the first generation of PCIs. In (1.1) the specification

width is fixed by the engineers or imposed by the customers. However, under the normality assump-

tion 6σ is used as denominator. Indeed, with such assumption, the chosen denominator represents
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99.73% of the population. Hence, if theCp index is used, reducing the process variation guarantees a

higher quality level, more capability to meet the specification limits and a higher value ofCp. But at

which value ofCp the process is considered capable?

In this way Montgomery (1996) suggests (for an existing process) 1.33 as a minimum value forCp.

This value provides satisfactory capability of the process. When the normal distribution holds it cor-

responds to0.0064% of non conforming products and to4σ level in the six sigma theory as mentioned

by Breyfogle III (1993).

In fact, care must be taken before concluding such interpretation, because, in the case ofCp index,

the association ofCp value and the nonconformity ratio is not so direct and may not reflect the actual

capability of the process even when the normal distribution holds.

Since the nonconformity ratio is the main interpretation ofCp index, it is interesting to integrate

Cp in its computation in order to find a direct link between them. Considering a quality characteristic

X, under the normality assumption the nonconformity ratio is expressed as:

P [X > USL] + P [X < LSL]

⇒ P [
X − µ

σ
>

USL− µ

σ
] + P [

X − µ

σ
<

LSL− µ

σ
]

⇒ nonconformity ratio= 1− Φ[
USL− µ

σ
] + Φ[

LSL− µ

σ
]

If µ is substituted byUSL+LSL
2

then:

nonconformity ratio= 2Φ(−3Cp).

It is important to notice that theCp index depends only onσ. If several processes having the same stan-

dard deviation but with different expected values are considered it is pointed out that these processes

have the same index value and different nonconformity ratios.

Hence, the interpretation of theCp value is reliable only for a fixed value of the location parameter

µ. In order to avoid any confusion, whenCp index is used, it is assumed thatµ is the midpoint of the

specification limits. Indeed, given the symmetry of the normal distribution, it becomes very interest-

ing to assume that the distribution mean is centered between the specification limits. In this way the

nonconformity ratio is minimized. Under such assumption the nonconformity ratio corresponding to
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theCp value is the optimal ratio that the process can reach through the adjustment of the location pa-

rameter. Hence, it is assumed thatCp measures the ”potential process capability”. This means that

Cp corresponds to the nonconformity ratio when the distribution mean is actually centered between

the specification limits.

The Actual Capability Index

It was noticed thatCp structure does not take into account the effect of the location of the distribution

on the process capability. That is the reason behind creating the second generation of indices:Cpk

andCpm.

Cpk is presented as follows :

Cpk = min(CPl, CPu),

with

CPu =
USL− µ

3σ
and CPl =

µ− LSL

3σ
.

The following identity,

min(x, y) =
1

2
(x + y)− 1

2
|x− y|

is used in order to give a more clear expression forCpk as follows:

Cpk =
USL− LSL

6σ
− |µ−M |

3σ
(1.5)

Cpk = Cp − |µ−M |
3σ

,

whereM is the midpoint of the specification limits with:M = USL+LSL
2

.

From the structure of theCpk index it is noted that the mean of the process divides the specification

width into two areas and an index is computed for each area. TheCpk value is the minimum of these

two indices. This means that the capability computation is based only on the closest side of the

distribution to the specification limits.

The problem with this structure is that it evolves a simultaneous effect of the variance and the process

mean. Indeed, several combinations of the distribution parameters give the sameCpk value. However,
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it is obvious that this value corresponds to different nonconformity ratios.

Since the nonconformity ratio is one of the most important interpretations of the process capability

indices, it is very interesting to have a link betweenCpk and the nonconformity ratio or the process

yield with process yield= 1 − nonconformity ratio. A glance at theCpk structure reveals that this

relationship is more complicated than forCp index.

Boyles (1991) gives this link in form of bounds of the process yield for each value ofCpk. These

bounds are:

100{2Φ(3Cpk)− 1} ≤ %yield≤ 100{Φ(3Cpk)}.

These bounds are obtained as follows: Since

%yield = 100[Φ(
USL− µ

σ
)− Φ(

LSL− µ

σ
)],

Cpk = min(USL−µ
3σ

, LSL−µ
3σ

) can be interpreted as follows:

Cpk ≤ USL−µ
3σ

andCpk ≤ µ−LSL
3σ

⇔ 2Φ(3Cpk)− 1 ≤ Φ[USL−µ
σ

]− Φ[LSL−µ
σ

]

The upper bound is in fact an approximation:

Cpk =
1

3
min(Φ−1[%yield + Φ(

LSL− µ

σ
)], Φ−1[%yield + Φ(

µ− USL

σ
)])

if Cpk = 1
3
min{Φ−1[%yield + Φ(LSL−µ

σ
)]} then,%yield = Φ(3Cpk)− Φ(LSL−µ

σ
).

Now if Cpk = 1
3
{Φ−1[%yield + Φ(µ−USL

σ
)]} then,%yield = Φ(3Cpk)− Φ(µ−USL

σ
).

In both cases,%yield≤ Φ(3Cpk).

From (1.5) it is noted thatCpk ≤ Cp andCpk = Cp only whenµ is centered between the specification

limits. It becomes clear that centering the process mean between the specification limits improves the

process capability and the process yield. Hence,Cpk is interpreted as the ”actual process capability”.

If Cp andCpk are used at the same time, weaknesses in their structures are covered. They give more

information about the process behavior and directions for capability improvement. The simple struc-

ture of these indices make them easy to comprehend. Thus, they are the most frequently used indices

in industry.
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For the indicesCp andCpk it is expected that their values increase when the nonconformity ratio

decreases, it is said then that the indices respect the ”higher the better” rule. However, as it is shown

in the literature mainly by Somerville and Montgomery (1996), Tang and Than (1999) and in this

work, these indices are not indicative of the process capability when the normal distribution does not

hold. Indeed, these classical indices do not respect the ”higher the better” rule when non normal

distributions are considered. Furthermore, more weaknesses of these indices were proved when the

loss function approach was incorporated in (1.3).

1.2.2 The Loss Function Approach

The loss function is considered in a point estimation context. First the UMVU estimator needs to be

defined. An UMVU estimator is an unbiased estimator which presents the minimum variance among

all other unbiased estimators for the same parameter. There are several methods which allow the

determination of the UMVU estimator.

Letx1, ..., xn be a random sample from a distribution with probability density function (p.d.f.)f(x, θ),

θ ∈ Ω. LetY = u(x1, ..., xn) be a statistic giving the point estimate ofθ, and letδ(y) be a function of

observed value ofY . δ is a decision function andδ(y) is a decision. In order to measure the goodness

of this point estimate we need to measure the difference betweenθ andδ(y) through the function

L[δ(y), θ]: L is the loss function. The expected value of the loss function is a risk:R[θ, δ].

If g(y, θ) is a p.d.f ofY we can write

R[θ, δ] = E[L[θ, δ(y)]] =

∫ +∞

−∞
L[θ, δ(y)]g(y, δ)dy.

Then, we have to use point estimate ofθ that minimizesR[θ, δ]∀θ ∈ Ω. With the restrictionE[δ(y)] =

θ and usingL[θ, δ(y)] = (θ−δ(y))2, R[θ, δ] will be in fact the variance ofδ(y). If δ(y) that minimizes

R[θ, δ] is found, we get an UMVU estimator ofθ. Hence the loss function measures the deviation of

the estimator from the parameter to be estimated.

The loss function approach was introduced in statistical process control by Hsiang and Taguchi

(1985). They proposed to substitute the varianceσ2 = E(X−µ)2 by a new approach which considers

a variation around the target valueς2 = E(X −T )2. In this way, any deviation of the measured value
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x of the quality characteristic X from the target valueT entails a monetary loss to the producer. This

monetary loss can be expressed asL(x) = k(x − T )2, wherek is a positive constant related to the

amount of the penalty supported by the company per product unity.

In (1.4) a pure monetary approach is not adopted, andk value is set to1. The expected loss is given

by: E(L(X)) = E(X − T )2 = ς2.

ς2 can also be written in the alternative form:ς2 = σ2 + (µ − T )2. This form presents a process

variability penalized by the deviation of the expected value of the process from the target value.Cpm

is defined in (1.3).

From theCpm structure it is deduced that a higher capability level is obtained through:

- The reduction of the dispersion around the mean.

- The adjustment of the mean to the target value.

This index incorporates a new component: the target value. It will be then more sensitive than other

indices to departures fromT . Hence, when the hypotheses explained in 1.1.1 and 1.1.2 hold this

index gives more information about the process. Lovelace and Kotz (1998) noticed that there exist no

reliable link betweenCpm and the nonconformity ratio. Moreover, from theCpm structure it is noticed

that the index value reaches its maximum whenµ is adjusted toT . In this case whenT is the midpoint

of the specification limits, the ”higher the better” rule is respected in the loss function approach and the

nonconformity ratio approach. However, when asymmetric specification limits are considered where

T is not at the midpoint of the specification limits, the indexCpm reaches its maximum value when

µ is adjusted toT . However,Cp andCpk reach their maximum values whenµ is adjusted atM . The

nonconformity ratio approach and the loss function approach have in this case different purposes. The

same problem arises when skewed distributions are considered with symmetric specification limits.

In order to overcome this problem, the indexCpmk defined in (1.4) was introduced by Pearn et al.

(1992) in the aim to integrate the nonconformity ratio approach and the loss function approach in one

index.

The indexCpmk enables a compromise between both approaches. However, as for any compromise

the goals of neither the nonconformity approach nor the loss function approach are reached. Table

1.1 gives the direction for quality improvement proposed by both approaches.

From Table 1.1 it is obvious that both approaches have different directions for quality improve-
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Table 1.1: Direction for quality improvement when the normal distribution holds

Nonconformity ratio approach Loss function approach

Quality improvement Adjusting the mean toM Adjusting the mean toT

directions Reduce the variability aroundµ Reduce the variability aroundµ

ment whenT 6= M . Moreover, whenT = M the approaches are different in the presence of a

non normal distribution. Indeed, in this case the quality of a product is improved when the mean is

adjusted to M following the loss function approach. For the nonconformity approach adjusting the

mean toM leads to misleading decision about the process capability. In this case the classical in-

dices reach their maximum values whenµ = M . However, the nonconformity ratio is not minimized

whenµ = M . Adopting a pure loss function approach in this case is dangerous as this approach still

has no connection with the nonconformity ratio. A pure loss function approach should be adopted

when its direction for quality improvement causes no serious degradation on the nonconformity ratio.

Furthermore, the study of the relationship between the indices provides better understanding of the

difference between both approaches even whenT = M and allows the presentation of the approaches

properties and to improve the quality of a product.

1.3 Relationships Between Indices

It is important in process capability indices theory to show relationships between the different indices.

This step gives clear ideas about the properties of the indices when they are faced to the same data,

and more information about quality improvement.

An effective tool that allows theoretical comparison between capability indices is a(µ, σ) plot for

LSL ≤ µ ≤ USL andσ > 0. This work is due to Boyles (1991) who illustrated five contours ofCp

andCpk in the(µ, σ) plan, and five contours ofCp andCpm in the(µ, σ) plan.

From these illustrations it is noted thatCp ≥ Cpk andCp ≥ Cpm. Cpk andCpm reach their maximum

whenµ is centered at the midpoint of the specification limits which is assumed to be the target value.

At their maximumCpk andCpm are equal toCp, and decrease whenµ moves away fromM in the

case of symmetric specification limits.

14



It is noted thatCpk does not take into account the distance betweenµ andT and becomes arbitrarily

large asσ approaches 0, independently of this distance.

However,Cp andCpk could be used at the same time to overcome their weaknesses. Indeed, when

there is a large difference betweenCp andCpk values, it would be better to center the process mean

at the midpoint in the aim to have a higher capability of the process. Then, for more capability im-

provement, the variability around the mean should be reduced. This step would be applied also for

Cpm only for the case whenT = M .

Moreover, whileCpk increases without bounds whenσ → 0, Cpm is bounded andCpm < USL−LSL
6|µ−T | .

Since the absolute bound from which the process is judged as capable isCpm = 1 (tolerance band=natural

variability band) it is assumed that a necessary condition for the capability is:|µ − T | < USL−LSL
6

.

This condition is used as there exist no direct connection to the nonconformity ratio. It means thatµ

would be in the middle third of the specification range.

After this demonstration of the index properties, interrelationships between different indices are es-

tablished. Some analytical relations can be shown like the one presented in the previous section:

Cpk = Cp − |µ−M |
3σ

,

or Cpk = (1− k)Cp.

Under the assumption ofT = M , the following interrelationships can be derived:

Cpk = Cp − 1

3

√
C2

p

Cpm2

− 1 (1.6)

Cpm =
Cp√

1 + 9(Cp − Cpk)2
(1.7)

Cpm =
Cp√

1 + (µ−T )2

σ2

Cpm =
Cpk

(1− |µ−M |
d

)
√

1 + (µ−T )2

σ2

Cpmk = (1− k)Cpm

Cpmk =
Cpk√

1 + (µ−T )2

σ2

.
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Parlar and Wesolowsky (1999) illustrateCpk as a function ofCp for a givenCpm using the relations

(1.6) and (1.7). They noticed thatCp = 2.8 andCpk = 1.8 give aCpm of only 0.9. For the authors, the

reason of this behavior is the fact thatCp andCpk are essentially concerned with the nonconformity

ratio rather than with adjusting the process mean on target.

From the second illustration, where they illustrateCpm values as a function ofCp for a given value of

Cpk, it is noted that for example forCpk value of0.9, Cpk < Cpm if Cp ∈ [0.9; 1.2]; and forCpk value

of 1.2, Cpk < Cpm if Cp ∈ [1.2; 1.4]. However, from the indices structures, it is seen thatCpm is built

on the fact of penalizing the process variability by the amount of the process mean deviation from

the target value. Hence, it is expected thatCpm presents a more restrictive measure of the process

capability.

As it is seen, relations between indices are not so clear, and for some values ofCp, the indexCpk

presents a more restrictive measure of the process capability thanCpm.

The fact thatCpk < Cpm, for given values ofCp, does not mean thatCpk becomes more sensitive to

the departure of the process mean from the target value as the index does not depend onT .

In order to explain this, it is noticed that from the mathematical relations,Cpm values are obtained

from the variation ofCp value and for a given value ofCpk. For a given value ofCpk, it is noted that

Cpk ≤ Cpm asCp decreases. This means that for sufficiently large process variabilityCpk ≤ Cpm.

But, to keep the given value ofCpk constant, whenσ increases, the process mean is moved away from

the upper specification limit (or lower specification limit). This is equivalent to reducing the process

mean deviation from the target value. SoCpk kept constant, butCpm increases.

AsCpk index depends only upon the half of the specification width,Cpk ≤ Cpm is obtained for enough

largeσ and small process mean deviation fromT . In fact,Cpk < Cpm when

σ2 ≥ 4(USL− µ)2(µ− T )2

(USL− LSL)2 − 4(USL− µ)2
.

Under this condition the effect of the penalty in theCpm denominator is not important any more. In

this case it is suggested to reduce the process variability since it has more important impact on the

process capability than the adjustment of the process mean on the target value.
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1.4 Summary

Under normality assumption reducing the deviation from the target (T ) and minimizing the noncon-

formity ratio are equivalent, especially whenT = M. However, when the underlying distribution is

not normal, especially when it is skewed, the presented approaches have conflicting goals. For this

reason, Pearn et al. (1992) proposed to use the indexCpmk as it provides a compromise between

the two approaches. However, as for any compromise, none of the goals would be reached, neither

the nonconformity ratio nor the deviation from the targetT is minimized. From the structure of the

indices it is deduced to start by reducing the variance and then tackling the problem of reducing the

loss aroundT .

Adopting the loss function approach in case of departure from PCI hypotheses can lead to serious

degradation in the product quality as it can increase considerably the nonconformity ratio. However,

minimizing the deviations from the targetT is still the supreme objective for any company which

wants to produce high quality products. Nevertheless, it would be a mistake to adjust the process to

the targetT without taking into account the impact of such adjustment on the nonconformity ratio. In-

deed, the loss function approach should be adopted when it has no ”significant” effect on the process

capability, this means as long as the nonconformity ratio will not be less than0.0064%. For this pur-

pose any company which wants to adopt the loss function approach should master the nonconformity

ratio first and should make sure that adjusting to the targetT does not affect the process capability.

1.5 Objective

In this work focus is on the nonconformity ratio approach as it is an important step in the quality im-

provement process. Notice that when the PCI assumptions hold, classical indicesCp andCpk respect

the ”higher the better” rule: the higher the index value, the lower the nonconformity ratio, the better

the process in meeting customers requirements. If the normality assumption does not hold this rule

is not respected. Somerville and Montgomery (1996) studied the effect of non normal distributions

on the classical capability indices and it is noticed that classical indices do not respect the ”higher

the better” rule for such distributions. Tang and Than (1999) compare seven indices and methods in
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the presence of non normal distributions. The authors notice that the classical indices are indicative

of the process capability for non normal process characteristics. Hence, increasing the PCI value can

lead to misleading quality improvement directions.

A process capability index summarizes the ability of a process to meet the customer requirements

in one value. Hence, the process capability assessment becomes easy to understand and to communi-

cate inside each organization. However, the PCI computation is the output of a long procedure during

which several resources are used. Hence, there is a strong need that the PCI computation is based on

a reliable approach.

This work aims at highlighting some of the existing PCI shortcomings through a case study. In order

to overcome these drawbacks a new capability index is proposed. Indeed, a nonconformity ratio based

desirability function is considered as a univariate capability index. The extension of the proposed in-

dex to the multivariate case is discussed and some of its advantages when compared to other classical

multivariate indices are proved. Finally, a design of experiments based approach is presented in order

to allow the capability assessment when only a small sample size could be considered. First a case

study is presented in Chapter 2. The presentation takes into account the process definition, the prod-

uct definition and some steps in the process capability assessment. In Chapter 3, the shortcomings

of the classical univariate indices are shown and a new index is proposed to overcome these short-

comings. A nonconformity ratio based desirability function is used as a univariate process capability

index. In Chapter 4 an extension of the index to the multivariate case is presented and its properties

are investigated. As the desirability function could be written as dependent on the influential factors

the implementation of a capability analysis using an experimental design is studied in Chapter 5. This

approach is justified as it allows to assess the process capability considering small sample sizes.
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Chapter 2

Case Study

The willing of each company is to acquire new markets, to attract new customers with robust argu-

ments like a compromise between the quality and the price of the product. For the product quality

improvement, each organization should attend the state of its production process considering the fact

that their resources are limited. Faced to variety and to complexity of tasks that they must carry out,

some companies give the priority to the execution of some tasks at the expense of others.

Indeed, some companies when faced to the absence of technicians mastering statistical process control

(SPC) tools, to the pressure of personnel charges, and to the requirements of a continuous investment

in the aim to follow technological transfer rhythm, will relegate SPC practices to a second order pri-

ority.

It would be interesting to highlight the existing PCI shortcomings through a case study and to

present a new index which respects the ”higher the better” rule under non normality. The case study

takes place within a tunisian company. This company was the subject of the case study in Telmoudi

and Limam (2000). In this work the same methodology is adopted. The intervention close to the

tunisian company is done following these steps:

• Select a candidate for the study.

• Define the study object.

• Get the necessary resources for the study.
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• Evaluate the measurement system.

• Prepare a control plan.

• Select a method for the study.

• Gather and analyze the data.

• Move out the assignable causes.

• Estimate process capability.

• Establish a plan for a continuous quality improvement.

This chapter involves all points except the last two points as they will be discussed in the next chapters.

2.1 Select a Candidate for the Study

Knowing the hypotheses the capability indices theory is based on, the chosen candidate should ex-

press at least a minimum level of interest to the SPC tools. Preferably, it would be familiar with the

application of the control chart for some quality characteristics.

A custom controlled company, created by a german investment and settled in Tunisia, is our case

study.

The german firm which chose to open a subsidiary in Tunisia considers the quality of its products

as a strategic choice. The german firm imposes to its tunisian subsidiary the application of some

SPC tools like the control chart and the realization of acceptable values of capability indices. In the

aim to motivate the tunisian subsidiary to go ahead in this way, the german firm supplied a computer

software (Qs-stat version 3.1). This software is able to make easier the representation of the control

charts and the computation of the process capability indices. The tunisian company has understood

its interest to consider the quality as a strategic choice, especially, that the majority of its customers

are german and they grant a great care to the seriousness of their suppliers and to the quality of the

products they receive. The tunisian company organizes many training seminars, training courses and

creates a department of quality control which has a direct link with the top management in the aim to

make the personnel more sensitive to quality and to adopt the quality as a part of the company culture.
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Of course the company does not sell its products in the local market, but the personnel is tunisian,

and it will be very interesting to note, while quantifying the process performances, how the behavior

of this organization will be in applying SPC tools.

It is noted here, that one of the reasons of the success of a capability study is the fruitful communica-

tion with the engineers and with the technicians. In fact my knowledge in mechanics is very limited,

and one of the reasons that pushes me to decide for an application within a company is the fact that

the quality characteristics to be investigated are relatively simple to understand.

2.2 The Product Definition

The MARQUART company is specialized in the production of switches. All necessary materials to

the production are supplied by a german firm and other foreign suppliers. In fact it is a question of

several assembly chains that produce several switch versions. The investigated product is a power

tool switch. This product will be exported to a german customer who will assemble it in an electrical

drill.

It is known that the customer grants a special interest to the quality of the received product. It hap-

pened that the customer sent back a product that he ordered beforehand because of a high proportion

of nonconforming products. The care accorded to the quality is then proved if it is known that among

the other subsidiary of the german firm, the tunisian subsidiary offers the most satisfactory results. In

this environment, the quality of the product becomes a key of success and the control of SPC tools

becomes compulsory.

The investigated product is one for which the company establishes a control chart. It is formed by a

superimposition of two plastic plinthes. Before closing them, on one of them, at the first part, some

electrical conductors are assembled, and at the second part are assembled two screw supports. At the

end of the assembly process the switches go through a machine which has to screw two screws, one

on each support. Screwing will be made in such a way that a space will be kept between the inferior

boundary of the screw and the inferior boundary of the screw support.

The customer will assemble this switch in an electrical drill by the penetration of two conductor ca-

bles in the cited spaces. The dimension of this space is in fact the area to be controlled. Figure 2.3

illustrates the quality characteristic to be controlled.

21



For lack of measuring this space directly when the switches are closed, it is evaluated through an

other characteristic, which is the height of the screw. Indeed, the higher the screw, the more impor-

tant the dimension of this space. Figure 2.5 shows the surrogate quality characteristic. In this case

study it is proposed that the specification limits for the surrogate quality characteristic are given by

(LSL, T, USL) = (20.15mm, 20.85mm, 21.35mm)

2.3 The Process Definition

A production process is the set of activities that transform the input into an output by bringing an

added value into it.

However, in practice the definition and the identification of the process is not an easy task. In order

to understand how the process is working, at first we have to distinguish between the elements that

belong to the process and the elements that do not bring any added value to the input. This is neither

evident nor easy.

Indeed, sometimes when we point out the existence of some problems in the final product, we have

several and different opinions about the possible origins of the problems. To convince other parts,

everyone will try to make them understand his (her) own conception of the process. The process

definition is in the heart of the problem and can lead to conflicting opinions.

The main part of the process is composed in fact of a control unit or a control machine, its task is

controlling some performances of the switches and screwing. According to the performances of every

switch unit, the control machine keeps the good items and reject the nonconforming items, however,

the heights of both screws are not controlled by this control machine. Figure 2.1 shows the different

stages of control at the control unit and the screw driver.

The screwing system is composed from a single automatic arm at the end of which exists the

screwdriver. The same screwing system is used for both screw supports. The first part of the screwing

system has the task to fix the screw on the top of the support. It is composed of a triangular piece. At

the beginning of each screwing operation, this piece goes and stands at the top of the screw support.

This piece is cut in the aim to get the screw through it. The screw is conducted to the triangular piece
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Figure 2.1: Control Unit Wide View and Zoom on the Screw Driver

by means of a plastic tube which is linked up to a tank placed at the right side of the control unit. This

tank contains the screw stock.

The task of the second part of the screwing system is the screwing operation. This part is composed

of two elements.

• A screwing releaser composed of a transmitter-receiver of a luminous ray. When an object is

placed between the transmitter and the receiver, this object will prevent the luminous ray to

reach the receiver, this will release the screwing operation.

• The screwdriver system is composed of a cylindrical box containing three elements: A metallic

stem which will be in contact with the screw and will play the role of the screwdriver. This

metallic stem is linked up to a plastic stem by a spring. This device is located underside the

screwing release system.

The screwing system is working as follows:

The switch is fixed on the top of a metallic plinth and at the underside of the screwing system. After

the fixation of a screw on the first screw support, the automatic arm at the end of which is located

the screw system goes down until the metallic stem being at the level of the screw, and will be in the

contact of the screw. After screwing, the automatic arm goes back up and slides until being just on

the top of the second screw support. The same work will be done at the second screw support.

But if the screwing process is observed with more details, what happens exactly? In the case where
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there is no fixation of the screw on the top of the screw support, it is observed that the metallic stem

goes down until reaching the level of the superior face of the switch plastic plinth without releasing

the screwing operation.

In the case where there is a fixation of the screw on the top of the support, the automatic arm will go

down the same distance as in the precedent case, but with the simple difference that the metallic stem

will not continue its running until reaching the plastic plinth because it will meet the screw before.

In this case, the metallic stem pushes the plastic stem by means of the spring. When the plastic stem

reaches the level of the luminous ray, the screwing will start. As screwing goes along, the screw

will penetrate into the support and the plastic stem will go down. When the receiver can receive the

luminous ray, screwing will stop. It should be noticed that the same screwing procedure is used for

both screw supports.

However, there are some other tasks which are achieved before screwing. It is more appropriate to

consider the different steps for better understanding the process. Indeed, the process is formed by

four stages:

• Setting stage: At each inferior plastic plinth of the switches there exist reserved places for the

screw supports. At this stage, it is a question of pushing the screw supports into the plastic

plinthes. Four machines are used at this stage.

• Assembly stage: It is a question of assembling manually some conductor pieces. 16 machines

are used at this stage. Figure 2.2 shows the switch after the assembly stage and Figure 2.3

shows the space where the costumer will penetrate two cable conductors.

• Closing stage: It is a question of superimposing two plastic plinthes, to introduce them into the

closing machine which makes a pressure on the top plinth to make it go down. When the top

plinth reaches the level of the inferior plinth, the machine closes the switch. Five machines are

used at this stage. Figure 2.4 shows the switch at the closing stage.

• Screwing stage: It is a question of introducing the switches into the control machine, then,

the machine controls some characteristics of the switches and screws. We must note that the

machine does not control the height of the screws. Figure 2.5 shows the switch at the screwing

stage.
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Figure 2.2: The Switch at the Assembly Stage

In order to get data the company does not have a specialized operator for collecting data. Here

one question arises concerning the company SPC practices.

2.4 SPC Practices

The company does not have a specialized operator for collecting data. When there is a need of estab-

lishing a control chart for example, the operator working on the control unit was charged of this task.

A look at the payment system reveals that the company fixed at each step of each assembly chain a

given number of product items that the operator has to produce each day. When an operator reaches

this product items number she can leave. The operator is not paid for the additional job of collecting

data, then she (he) will be more concerned in passing further switches through the control machine

than by wasting time in measuring the height of the screws. Moreover, in the previous capability

reports, it was noticed that small sample sizes were considered and sampling is done with a very

small frequency. The company measures a sample of five switches at the beginning of each customer
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order. Some reports demonstrate that the company takes five switches every three days or every week.

It is noticed that according to Montgomery (1996), the most frequent sampling practice is to take

a small sample but with a high frequency. The selection a sample size ofn = 5 is due to the fact that

using this sample size allows to us to detect a process mean shift on the first sample following the

shift with a probability of93%. This probability is the probability of detecting a2σ process shift.

Now, Concerning the sampling frequency we must say that when we establish anx̄ control chart, our

goal is to maximize our chance to detect a process mean shift between samples. If we select a small

sample size taken with a small frequency, it can happen that the process undergoes a process mean

shift then comes back to the initial situation. If for example we select to use one sample a day we

have great chances to not detect this shift.

In the same way, the number of samples necessary to detect a shift is measured by theARL: Average

Run Length.ARL = 1
1−β

whereβ is the probability of not detecting a shift at the following sample.

If β = 0.75 thenARL = 4, which means that we need four samples to detect a shift, if we use a

sampling frequency of one sample a day we will need four days for detecting the shift. If we adopt a

sampling frequency of a sample every 15 minutes we will detect the shift in one hour.

The ideal practice is to use a small sample size with a high frequency. The SPC practices of the

company can lead to an important degradation of the quality of its products. We can understand the

volume of this degradation if we know that the company produces a minimum of 4500 switches a day.
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Figure 2.4: A Closed Switch

The second remark that we can make is about the process capability computation. The company uses

a software to compute the indices. The same data, used in establishing the control chart, serves for

computing the indices. If we look at the computation method, it is noticed that when the data follows

a normal distribution the variance is estimated byS2 =

mP
i=1

nP
j=1

(xij−¯̄x)2

mn−1
.

The goal of the variance computation is that it gives us an idea about the variability within samples,

but the company in fact is using the following estimation of the varianceS2 wherem is the total

number of repetitions andn is the sample size.

When we use such estimator we integrate implicitly the variability between samples in the variance

computation. In this way we will overestimate the variance and then underestimate the process capa-

bility indices.

If we want to use the same data for establishing the control chart and computing the process capability

indices, Bissel (1990) uses the following estimator:σ?2 = R̄
d2

, whereRi is the range of samplei, with

Ri = xmax − xmin, R̄ =
Σm

i=1Ri

m
, andd2 is a tabulated value depending upon the selected sample size.

There is a difference between sampling for computing the process capability indices and sampling for

establishing the control chart. However, before starting collecting data the necessary resources for the

study should be checked.

27



Quality
Characteristic

Figure 2.5: The Final Product

2.5 Get the Necessary Resources for the Study

A capability study requires significant expenses concerning material loss and human resources moti-

vation. To make this study reach its goals, top management implication is required in the aim to make

the planning of the different tasks easier, and to motivate different participants to the study.

The main constraint was about the planning of the tasks. Indeed, the company produces different

versions of switches. Some versions have the same characteristics and some other have different

characteristics. The production is done by order. For example if the customer makes an order where

there are different versions of switches, the production can be made following three different cases:

• Finish the production of the first version then to start an other version production.

• Produce two different versions simultaneously.

• Start the first version production, interrupt the production and start the production of a new

version.

This should be taken into consideration, mainly when there are more than one version in the order and

these versions do not have the same characteristics. This factor can bother the sampling operation,

especially when we decide to base the study upon a unique version of switch. The other problem

which can disturb the data collection is the intervention of the technicians in order to adjust the
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control unit parameters. Hence, the data should be collected for the same switch and for the same

control unit parameters.

2.6 The Effect of the Measurement System on the Capability Study

The reliability of the obtained results of a capability study depends upon the fact that the variability

of the process is not contaminated by an additional variability due to the measurement system. The

performance of the measurement system in reflecting the process variability must be checked before

starting the study. McNeese et al.(1991) propose an approach in order to assess the effect of the

measurement system upon the capability study.

2.6.1 The McNeese et al. (1991) Approach

Considering the measurement system as a process it is interesting to analyze its capability by evaluat-

ing its accuracy and precision. The accuracy refers to the exactitude of the the measurement system,

and the precision is relative to the reproducibility of the measurements.

To isolate the variation caused by the measurement system, the same sample of sizen is measured

m times. Each timēx of the sample is computed and plotted on the control chart. In the same way,

theR chart is obtained by computing and plotting the range between consecutive results of controls

(Moving range).

The accuracy of the measurement system is determined by comparing the center line of thex̄ control

chart to the true value of the standard. In some cases where there is no standard for the measurement

system, it is assumed that the center line represents the true value of the standard.

The precision of the measurement system is also evaluated by measuring it from theR control chart.

The measurement system standard deviation is:σ̂ms = R̄
d2

, whered2 is a tabulated value. Knowing

that the procedure is based on the determination of the difference between consecutive controls, then,

σ̂ms = R̄
1.128

.

Ford Motor Company, considers that a capable measurement system means ” that the±3σ spread is

equal to or less than10% of the tolerance of the characteristic being evaluated.”

McNeese et al. (1991) consider that this condition for the measurement system capability is very
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stringent. For the same purpose they define the percent of total variance due to the measurement

system as100(σms

σt
)2. They also provide the following definition of a capable measurement system:

” A capable measurement system is a system that is in statistical control with respect to the average

and variation, where average value is equal to the true value, and that is responsible for less than10%

of the total process variance.”

In the aim to explain the effect of the cited percent of the total variance on the process capability, it is

assumed that̂σ2
t = σ̂2

process + σ̂2
ms, if a = σ̂2

ms

σ̂2
t

the total variance is expressed asσ̂2
t =

σ̂2
p

(1−a)
. To demon-

strate the effect of this percentage on the process capabilityCp is expressed as:Cp = (USL−LSL)
√

1−a
6σ̂p

.

By representingCp for variousa values McNeese et al. (1991) find that a measurement system re-

sponsible for10% of the total variance causes a5% decrease inCp. It is assumed, then, that the

measurement system in this case presents an acceptable level of variation.

2.6.2 The Measurement System Assessment

The measurement system is composed of a metallic surface on which the operator puts the switch to

be measured, and a metallic stem which slides through a graduated frame. Before starting the screw

height measurement it should be checked that when the metallic stem is in contact of the metallic

surface the graduated frame indicates zero in this initial position. It is noticed here that the quality

characteristic is the height of the screw measured from the switch base.

The adopted methodology for the measurement system evaluation is given in McNeese et al. (1991).

A sample of ten switches was considered for which the height of the screw was measured at 21 oc-

casions. At each repetition̄x and the range R between two consecutive measures of the sample are

computed. The results are presented in Table 2.1.

The control limits of the measurement system control chart are determined considering the sample

mean of each sample measure as an individual measurement:

UCL = ¯̄x + 3σx̄ = 20.8095

center line= ¯̄x = 20.8038

LCL = ¯̄x− 3σx̄ = 20.798.
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Table 2.1: Measurement System Assessment

m 1 2 3 4 5 6 7 8 9 10

x̄ 20.804 20.802 20.804 20.803 20.802 20.806 20.807 20.807 20.804 20.804

R - 0.002 0.002 0.001 0.001 0.004 0.001 0.000 0.003 0.000

11 12 13 14 15 16 17 18 19 20 21

20.803 20.805 20.802 20.805 20.804 20.805 20.804 20.799 20.805 20.804 20.801

0.001 0.002 0.003 0.003 0.001 0.001 0.001 0.005 0.006 0.001 0.003

For the range chart samples of sizen = 2 are considered. The control limits are given by:

UCL = R̄D4 = 0.0067

center line= R̄ = 0.00205

LCL = R̄−D3 = 0.

The measurement system is under statistical control and the variability due to the measurement system

is given by: ˆσms = R̄
d2

= 0.0018. In order to give a judgement about the measurement system

capability in considering the most severe rule adopted by Ford Motor Company, it is noticed that the

rangēx̄±3σx̄ of the actual measurement system represents less than1% of the tolerance range relative

to the quality characteristic being measured.

2.7 Prepare a Control Plan

The setting of a control plan is relatively simple in this case, because the quality characteristics are

already known. It is a question of measuring the height of the screws. It should be made sure during

the study that the process operates normally. This allows to determine what can the process do if

it operates the way it is designed to operates. For example the study should be implemented in an

acceptable ambient environment with the removal of all potential sources of variability like the vari-
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ability due to operators or materials.

According to the technicians, the material, especially the plastic plinthes are supplied by the same

vendor. We were interested by the plastic plinthes because a great material variability can cause a

great measurement system variability.

Concerning the operator, there is generally only one operator working on the control unit. At the other

production stages, mainly at the assembly stage there are some manual operations, but it is noticed

that the final level of the screw supports is determined at the closing stage and this level does not

depend upon the support levels before the closing stage. This fact was confirmed by all the company

technicians. Moreover a simple observation of how the process is operating can confirm this.

In order to avoid the treatment of a huge number of process streams and to limit the effect of the

intervention of several operators, only two process stages which can have a direct effect on the height

of the screw: The stage of the switch closing and the stage of screwing are considered. it is noticed

that five machines are used at the closing stage. The output of each machine will go through the

control unit. At the beginning of the study it is assumed that there are five different streams.

2.8 Select a Method for the Analysis

The adopted methodology during the study is as follows:

• Establish the control chart (thēx andS control chart) for each closing machine and for the

control unit, in the aim to verify if the process is under statistical control. If the control chart

shows that there are some assignable causes, the reasons should be checked, tracked down and

removed.

• If the hypothesis of data normality does not hold the probability distribution should be deter-

mined.

• Estimate the capability indices for each process stream and check whether the used indices

respect the ”higher the better” rule.
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First of all, it should be checked whether the data present some particularities especially the presence

of autocorrelated data through the representation of the autocorrelation function. From these rep-

resentations, it is clear that the observations of both quality characteristics do not reflect significant

autocorrelation coefficients. It is noticed that the limits in Figure 2.6 and in Figure 2.7 are the two

standard error limits.
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Figure 2.6: ACF for Screw 1

For that purpose a sample size ofn = 5 was taken with a high frequency, almost a sample every

15 minutes. In order to establish the control chart 30 samples were taken from each machine. For

estimating the process capability indices, a sample of sizen = 300 was taken from each stream.

In the aim to reduce the variability due to the material, only a single switch version was consid-

ered. Thus, sampling should be done during the production of this version and before changing the

produced version.
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Figure 2.7: ACF for Screw 2
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Chapter 3

The Univariate Process Capability Indices

All prerequisites for the indices computation were presented in the previous chapters. However, it is

unavoidable to check whether the PCI hypotheses hold. This means that a control chart should be

constructed for each stream and that the normal distribution assumption should be checked.

3.1 Control Chart

In this section the control charts for the control unit and for both screws are constructed. For each

closing machine a control chart is established for both screw heights and for the screw heights. These

control charts are in the appendix. Thex̄ control chart limits are computed as follow:

UCL = ¯̄x + 3Sx̄

c4
√

n

center line= ¯̄x

LCL = ¯̄x− 3Sx̄

c4
√

n
.

For the S control chart the limits are given by:

UCL = S̄ + 3S̄s̄

c4
√

n

center line= S̄

LCL = S̄ − 3S̄s̄

c4
√

n
,
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wherec4 is a tabulated value. For a sample sizen = 5, c4 = 0.94. ¯̄x is the sample average of the

sample means of samples taken from the same stream. In the same wayS̄ is the average of a standard

deviation of these samples.

Following Montgomery (1996) a process is out of control if one of the following cases holds:

• One point is out of the control limits.

• Two of three consecutive points outside the 2σ limits but still inside control limits.

• A run of at least eight points, where the type of run could be either a run up or down.

• Four of Five consecutive points beyond oneσ limits.

• An unusual or non random pattern in the data.

From the control charts given in Appendix A it is noticed that the process is under statistical control.

The PCIs could be computed then.

3.2 The Normal Distribution Assumption

In this section the data normality hypothesis is checked. Some graphical methods can be used. One

of these methods is the quantile-quantile plot. It is a representation of the sample quantiles against

the theoretical quantiles. If thejth ordered sample quantilex(j) is considered, the proportion at or

to the left ofx(j) is often approximated by
(j− 1

2
)

n
. The quantile-quantile plot is the representation of

the pairs(q(j), x(j)) with the same associated cumulative probability
(j− 1

2
)

n
. If the data arises from a

normal population, the pairs(q(j), x(j)) will be approximately linearly related. Figure 3.1 and Figure

3.2 show the quantile-quantile plots for the normal distribution for screw 1 and screw 2 respectively.

A glance to the plot can reveal that the normal distribution could not be rejected for both quality

characteristics.

However, in order to decide in an objective way about the acceptance of the normal distribution

hypothesis it would be better to use a goodness of fit test. In this section the normal distribution

hypothesis is checked using the Shapiro-Wilk test for normality. The test is given by
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Figure 3.1: Normal QQ Plot for Screw 1

H0:The data follows a normal distribution.

vs.

H1: The data does not follow a normal distribution.

The p-values of the test for each stream are given in Table 3.1. It is noticed from Table 3.1 that the

risk of rejectingH0 is less than the significance level of the test which is5% in this case.

It becomes obvious that the normal distribution assumption does not hold for any process stream.

That is expected as no negative values are possible. Furthermore, in section 2.7 it is noticed that

five streams are considered in the study. It is important to study the correlation between the different

streams in order to check whether it is appropriate to study each stream separately.
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Figure 3.2: Normal QQ Plot for Screw 2

3.3 Correlation Between Streams

Before starting the study it is important to check whether the streams are correlated. This path is

unavoidable in order to determine the methodology of the study. Correlations between streams could

be checked visually using the scatter plot in order to detect trends. Figure 3.3 and Figure 3.4 show the

scatter plots for screw 1 streams and screw 2 streams respectively. No linear correlations are observed

in Figure 3.3 and Figure 3.4. However, it would be better to compute the correlation coefficients and

to test whether the correlation is significant.

Knowing that the normal distribution hypothesis does not hold for all screw streams it would be bet-

ter to compute a nonparametric correlation coefficient instead of the Pearson correlation coefficient.

Indeed, it is known that in order to test the significance of the Pearson correlation coefficient the
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Table 3.1: P-values for the Shapiro-Wilk Test

Stream Screw 1 Screw 2

1 10−13 8× 10−6

2 2× 10−12 10−9

3 5× 10−14 2× 10−9

4 6× 10−14 6× 10−8

5 4× 10−13 10−10

variables must be normally distributed. The most known nonparametric methodology for measur-

ing the correlation are the contingency coefficient, the Spearman rank coefficient, the Kendall rank

correlation, the Kendall partial rank correlation and Kendall coefficient of concordance as explained

in Siegel (1956). However, because of the presence of tied observation the Kendall rank correlation

which is also known as the Kendall tau-b (τ ) is used in the study. Indeed, Siegel (1956) explains that

this coefficient could take into account the effect of a large proportion of tied observations.

Kendall rank correlation is a nonparametric measure of association based on the number of con-

cordance and discordance in paired observations. Concordance occurs when paired observations vary

together, and discordance occurs when paired observations vary differently. The formula for the

Kendall coefficient of concordance is given by:

τ =
G√

n(n−1)
2

− TX

√
n(n−1)

2
− TY

,

where,TX = 1
2

∑
ti(ti − 1), ti being the number of tied observations in the group of tiesi on aX

variable.TY = 1
2

∑
ui(ui − 1), ui being the number of tied observations in the group of tiesi on a

Y variable. G is the number of concordance minus the number of discordance.G is computed by

arranging the ranks ofX in their natural order and determiningG for the corresponding order of ranks

on variableY . For that purpose (starting from left to right) for each rank belonging toY the number

of larger ranks to its right is counted, then, subtract from this number the number of smaller ranks to

its right. The obtained value isPi. HenceG =
n∑

i=1

wheren is the sample size. Kendall and Gibbons

(1990) notice that ties inX contribute nothing toG. Table 3.2 and Table 3.3 show the correlation
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Figure 3.3: Scatter Plot for Screw 1

coefficients between streamsτij, with i = 1, . . . , 5 andj = 1, . . . , 5.

In order to test the hypothesisH0 : τij = 0, Kendall and Gibbons (1990) explains thatS follows

a normal distribution forn > 10. The standard normal test statistic forH0 : τij = 0 based onτij is

z =
3τij

√
n(n− 1)√

2(2n + 5)
.

The p-values associated with a two sided test are given in Table 3.2 and Table 3.3 for screw 1 and screw

Table 3.2:τij for Screw 1

τ12 τ13 τ14 τ15 τ23 τ24 τ25 τ34 τ35 τ45

Correlation -0.013 0.018 -0.005 -0.031 -0.021 0.054 0.068 0.003 0.010 -0.037

P-value 0.737 0.641 0.897 0.423 0.587 0.163 0.079 0.938 0.796 0.339
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Figure 3.4: Scatter Plot for Screw 2

2 respectively. The risk associated with the rejection ofH0 when it is true is larger than the allowed

risk of 5%. Hence, the null hypothesis is not rejected. The streams are considered uncorrelated for

both screws and they are studied separately.

Table 3.3:τij for Screw 2

τ12 τ13 τ14 τ15 τ23 τ24 τ25 τ34 τ35 τ45

Correlation 0.061 0.046 0.024 0.006 0.011 0.001 0.045 0.061 -0.004 -0.027

P-value 0.115 0.234 0.535 0.876 0.776 0.979 0.245 0.115 0.917 0.485
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Table 3.4:θ̂ Values for Screw 2

Stream 1 2 3 4 5

θ̂ 21.34143 21.24993 21.21 21.26072 21.19468

3.4 Distribution Parameters Estimation

It should be noticed that only the distribution parameters for the height of screw 2 are explained in

this section. The distribution parameters estimation for the height of screw 1 is given while explaining

the goodness of fit test concerning the height of screw 1. This will be done in the next section.

3.4.1 Distribution Parameters Estimation for the Height of Screw 2

From previous reports prepared by the technicians using the Qs-stat 3.1 software, it is noted that

the underlying distribution for screw 2 is most likely to be the Lognormal distribution. The consid-

ered distribution is a three parameter Lognormal distribution. The parameters areθ, ξ andσ, where

Z = log(θ − X) ∼ N(ξ, σ2). Furthermore, the estimation ofθ leads to the estimation of the other

parameters of the distribution using maximum likelihood estimation. As explained in Johnson et al.

(1994)θ is estimated using the quantile method. Following the quantile method the 100α-th lower,

50th and 100α-th upper percentiles of normal variableZ = log(θ − X) are considered. The corre-

sponding percentiles ofX arex{1} = exp(ξ−zσ)+θ, x{2} = exp(ξ)+θ, andx{3} = exp(ξ+zσ)+θ.

Henceθ is obtained through

θ =
x{1}x{3} − x2

{2}
x{1} − 2x{2} + x{3}

.

In Johnson et al. (1994) it was recommended thatz should be chosen in the range 1.5 to 2. In

this case it is considered thatz = 2. It should be noticed that the common method to estimate a

distribution parameters is the maximum likelihood estimation. However, the likelihood of a three

parameter Lognormal distribution could be maximized only through numerical methods. Moreover,

the main difficulty with this method is thatθ becomes infinitely large and can lead to unrealistic

solution. Table 3.4 gives the estimatedθ values for the different streams. All the screw 2 streams

should be fitted by Lognormal distributions such thatZ = log(θ̂ −X) follows a normal distribution.
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Table 3.5: Screw 2 Height Maximum Values

Stream 1 2 3 4 5

Maximum 21.25 21.31 21.23 21.14 21.11

Hence, it is expected that̂θ > max(x1, . . . , xn) for each stream. Table 3.5 gives the maximum values

of the samples. It is noticed that the estimated parameterθ does not represent a threshold parameter

for the stream 2 and the stream 3. One possible reason for this behavior is the existence of outliers.

3.4.2 Outliers Detection for Screw 2

An outlier is an observation which deviates so much from the other observations as to arouse suspi-

cions that it was generated by different mechanism. An inspection of a sample containing outliers

would show up such characteristics as large gaps between ”outlying” and ”inlying” observations.

More knowledge about the mechanism behind the outliers appearance is required before discarding

them from the study. The causes of outliers are mainly:

• An extreme or relatively extreme value.

• A contaminant observation from other population.

• A legitimate but unexpected data value.

• A data value that was measured or recorded incorrectly.

Some graphical tools allow the detection of outliers. The box plot is one of these tools. The box plot

is composed mainly by a box representing the interquartile (IQ) and two lines starting from the 25th

percentile and the 75th percentile to given limits. These limits help in identifying outliers. They are

computed as follows:

L1 = lower quartile− 1.5× IQ

L2 = lower quartile− 3× IQ
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U1 = lower quartile+ 1.5× IQ

U2 = lower quartile+ 3× IQ.

Observations beyondL1 andU1 could be considered as outliers. Observations beyondL2 andU2

present stronger evidence to be outliers. However, as long as the mechanism behind the appearance

of outliers is not identified the observation could not be removed. The final decision should be based

on the interpretation of the user. Figure 3.5 illustrates the screw 2 height box plots for stream 2 and

stream 3.L1 andU1 limits were used in the figures on the top.L2 andU2 limits were used in the

figures on the bottom.

Figure 3.5: Screw 2 Height Box Plots for Stream 2 and Stream 3

From Figure 3.5 it is noticed that only few observations fall beyond the limitU1 for stream 2 and

stream 3. Exactly five observations for the stream 2 and only the maximum value for stream 3. For
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stream 2 there is a gap between the maximum value and the other four observations. However, it

is noticed that for both streams there are more than ten observations which fall beyond the limitL1

and there are no gaps between the observations. This is an indication that the observations reflect the

natural variability of the process and do not belong to an other population.

When the limitsL2 andU2 are used it is noticed that only the maximum is still beyond theU2 limit

for stream 2. However, no observation is beyond theU2 limit for stream 3. In order to know if the

maximum values could be considered as outliers the Camp-Meidell theorem is used. Following the

Camp-Meidell theorem

Pr(X < µ− kσ or X > µ + kσ) ≤ 1

2.25k2
.

Hence, the probability that an observation deviates from its expected value by3σ is less than5%. In

order to implement the Camp-Meidell theorem,µ is estimated bȳx =

nP
i=1

xi

n
andσ is estimated by

S =

nP
i=1

(xi−x̄)2

n−1
. The upper limit for the Camp-Meidell theorem is given byx̄ + 3S which is equal

21.21 and 21.20 for stream 2 and stream 3 respectively. Hence, only the maximum values are over

these limits and they are considered as outliers and they are removed from the study.

3.5 Goodness of Fit Tests

The goodness of fit test is a test of hypotheses where the null hypothesis is that a given random variable

X follows a stated lawF (X). The goodness of fit techniques are based on measuring in some way the

conformity of the sample data to the hypothesized distribution, or equivalently its discrepancy from

it.

3.5.1 Goodness of Fit Test for the Height of Screw 2

It is necessary to determine a probability distribution function for each process stream. From the

history of the process concerning screw 2, it is noted that the underlying distribution is most likely

to be the Lognormal distribution. Hence it becomes possible to test the Lognormal distribution at a

significance level of1%.
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The chi squared goodness of fit test is used. In order to test the hypothesis that a random sam-

ple x1, . . . , xn has the distributionF (X), the range ofX is partitioned intoω bins, b1, . . . , bω. If

N1, . . . , Nω are the number of observations in these bins, then theNj has a binomial distribution with

parametersn andpj = Pr(xi ∈ bj), i = 1, . . . , n andj = 1, . . . , ω. The differenceNj − npj between

the observed and expected frequencies express the lack of fit of the data toF (X). This difference is

reflected in the test statistic

X2 =
ω∑

j=1

(Nj − npj)
2

npj

which has approximately theχ2
ω−1 distribution in large samples. This is in fact the Pearson Chi-

squared statistic. Following Moore (1986) the number of bins is given by2n(2/5). When the tested

distribution hasK unknown parameters Moore (1986) assumes that the correct critical points for the

test fall between those ofχ2
(ω−K−1) and those ofχ2

(ω−1). When the value of the test statistic exceeds

the critical point value the tested distribution is rejected. In this case 19 bins are used for the goodness

of fit test. It is common to use equiprobable bins in order to compute the test statistic. This means

that allpj are equal. Because of the problem of rounding arbitrarily some non equiprobable bins are

considered. Indeed, rounding can affect the goodness of fit test, for example for the stream number

four there was no observation in one of the bins although it is far from the distribution tails. This can

increase considerably the test statistic.

In order to give an argument to the number of degrees of freedom for the test it is interesting to

consider the estimation method of the Lognormal distribution parameters. In a previous section it

was noticed that the estimation ofθ leads to the estimation of the other parameters. Hence, onlyθ is

considered as an unknown parameter and the degrees of freedom of theχ2 distribution is set to 17.

Table 3.6 gives the test statistic values and the number of non equiprobable bins (# non equiprobable

bins. Table 3.7 gives the parameterθ̂, the expected valuêµ, the estimated variance of the Lognormal

distribution µ̂2, whereµ̂ is the first moment around zero andµ̂2 is the second central moment, the

third central moment̂µ3 and the probabilityP̂x that an observation is less than its expected value.

From Table 3.6 it is noticed that the Lognormal distributions are not rejected at the significance level

of 5% as the test statistic is less than the critical value 27.58 for all streams.
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Table 3.6:χ2 Goodness of Fit Test for Screw 2

Stream 1 2 3 4 5

X2 24.9 21.73 27.06 26.16 15.88

# non equiprobable bins 1 4 2 0 5

Table 3.7:θ̂, P̂x and the Estimated Moments of the Lognormal Distribution for Screw 2

Stream 1 2 3 4 5

θ̂ 21.34143 21.24754 21.17424 21.26072 21.19468

µ̂ 0.412464 0.335991 0.241492 0.352547 0.273706

µ̂2 0.066584 0.010860 0.008529 0.048190 0.029864

µ̂3 0.055406 0.000999 0.000461 0.023006 0.006619

P̂x 0.549509 0.560224 0.573277 0.545623 0.556330

3.5.2 Goodness of Fit Test for the Height of Screw 1

For the first screw, the technicians confirm that during the examination of the switches they noted that

because of the pressure of the screw driver the interior of some supports of the first screw were broken

during the screwing operation. Only the screw supports used for screw 1 are broken as they are made

from different material. Indeed they are made from an ally of copper and tin, however, the other

supports are made from only copper. Hence, the material for the screw 1 supports is less resistent to

scrape and to the screwing operation. From Figure 3.6 it is noticed that the encircled areas enclose

unusual frequencies. It is interesting to check the presence of outliers in the data because of the use of

a different screw support. These outliers are most likely to occur at the lower tail of the distribution.

Outliers Detection for Screw 1

Outliers are most likely to occur at the lower tail. Hence, the observations are removed from the upper

tail if the box plot and the Camp-Meidell theorem allows simultaneously to treat the observations

as outliers. At the lower tail the observations are removed if the box plot or the Camp-Meidell
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Figure 3.6: Histograms for Screw 1 Height Streams

theorem allow to treat them as outliers. Moreover, if an observation is identified as an outlier and

this observation belongs to a group of observations which has a gap up to the other observations

of the sample then all the group is removed. Figure 3.7-3.11 show the box plots for the different

streams. Only outliers at the lower tails are removed. Only one outlier is removed for stream 2, 3

outliers are removed for stream 1, 6 outliers for stream 3 and no outliers are detected for stream 4

even if there are some unusual frequencies which are detected in the histogram. The minimum values

are compared with the minimum values of the other streams and 4 values are considered as outliers

and removed. 2 outliers are removed for stream 5. For this stream a decision was taken in order to

consider the maximum value as an outlier as it has an important gap up to the other observations and

the Camp-Meidell theorem allows the removal of this value.
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Figure 3.7: Box Plot for the Height of Screw 1 for Stream 1
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Figure 3.8: Box Plot for the Height of Screw 1 for Stream 2

Goodness of Fit Test and Parameters Estimation

In the case of screw 1 the classical goodness of fit tests fail in confirming an appropriate distribution

for the data. However, the appropriate distribution will be checked using the tests based on regression.

These tests as explained in Stephens (1986) are based on the representation of the order statistics

x(i) on the vertical axis againstIi a suitable function ofi on the horizontal axis. IfF (V ) is the

hypothesized continuous distribution,v1, . . . , vn a random sample is considered fromF (V ) andIi

can be obtained byIi ≡ qi = E(v(i)) whereE denotes the expectation, orIi ≡ Hi = F−1{i/(n+1)}.
V could be expressed asV = (X−ξ)

γ
whereξ is the location parameter andγ is the scale parameter. If
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Figure 3.9: Box Plot for the Height of Screw 1 for Stream 3
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Figure 3.10: Box Plot for the Height of Screw 1 for Stream 4

vi were taken fromF (V ), a samplexi is constructed by

xi = ξ + γvi

If qi = E(v(i)) ⇒
E(x(i)) = ξ + γqi

and a plot ofx(i) againstqi should be approximately a straight line. This formulation could be replaced

by the model:

x(i) = ξ + γIi + εi

50



20
.4

20
.6

20
.8

21
.0

L1 and U1 Limits

20
.4

20
.6

20
.8

21
.0

L2 and U2 Limits

Figure 3.11: Box Plot for the Height of Screw 1 for Stream 5

whereεi is an error parameter which forI = q has mean zero. To be able to measure the fit the

following sums are defined:

S(I, I) =
∑

(Ii − Ī)2

S(X,X) =
∑

(X(i) − X̄)2

S(X, I) =
∑

(X(i) − X̄)(Ii − Ī)

R2 = S(X,I)2

S(X,X)S(I,I)
is computed whenI = q, R2 is an appealing statistic for measuring the fit of the

modelx(i) = ξ+γIi. For a sample whose ordered values fall exactly at their expected valuesR2(X, q)

will be equal to 1.

From the process history it is noticed that the distribution for screw 1 is most likely to be the Weibull

distribution. A random variableX has a Weibull distribution if there are values of the parameters

c > 0, α > 0, andξ0 such that

Y = (
X − ξ0

α
)c

has the standard exponential distribution with probability density function

fY (y) = e−y, for y > 0.

The probability density function of The Weibull random variableX is then

fX(x) =
c

α
(
x− ξ0

α
)c−1e−(

(x−ξ0)
α

)c

, for x > ξ0,
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wherec, α andξ0 are the shape, the scale and the location parameters respectively. The parameters for

the Weibull distribution are estimated in a way to maximize the adjustment coefficient for screw 1R2
1.

Johnson et al. (1994) explained a modified moment estimation method for estimating the parameters

of a three parameters Weibull distribution. This method is based on the following moments equations:

E[X] = X̄

Var(X) = S2

E[X
′
(1)] = X

′
(1)

for the simultaneous estimation of the parameters.X
′
(1) is the observed smallest order statistic. It is

known that

E[X] = ξ0 + αΓ(1 + (1/c))

Var(X) = α2{Γ(1 + (2/c))− Γ2(1 + (1/c))}

E[X
′
(1)] = ξ0 +

α

n1/c
Γ(1 + (1/c)),

hence, the parameters are obtained from the following equations:

S2

(X̄ −X
′
(1))

2
=

γ(1 + (2/ĉ))− γ2(1 + (1/ĉ))

{(1− n−1/ĉ)γ(1 + (1/ĉ))}2
(3.1)

ξ̂0 =
n1/ĉX

′
(1) − X̄

n1/ĉ − 1

α̂ =
n1/ĉ(X̄ −X

′
(1))

(n1/ĉ − 1)γ(1 + (1/ĉ))
.

Equation (3.1) need to be solved forĉ and subsequentlŷξ0 and α̂ can be determined. In order to

determine the underlying distributions for screw 1ĉ is incremented and the remaining parameters are

determined through the equations of the modified moment equations. The retained parameters are

the parameters which maximize the correlation coefficientR2
1. The results of the Weibull distribution

parameter estimation and the corresponding adjustment coefficients are in Table 3.8 whereR2
1 are

the adjustment coefficients between the observations of the screw 1 height and the estimated Weibull

distributions for screw 1.R2
2 are the adjustment coefficients between the observed screw 2 height

and the estimated Lognormal distributions in Table 3.7. It is noticed that although the estimated

Weibull distributions could not be confirmed by the chi squared goodness of fit test, they have higher
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Table 3.8: The Estimated Weibull Distribution Parameters

Stream ĉ ξ̂0 α̂ R2
1 R2

2

1 16.80 19.4482 1.3647 0.916 0.916

2 13.43 19.7848 1.0094 0.940 0.835

3 23.65 19.2547 1.5435 0.933 0.792

4 33.42 18.5358 2.248015 0.944 0.889

5 20.87 19.4752 1.301143 0.942 0.826

Table 3.9: The Estimated Weibull Distribution Moments andP̂x

Stream 1 2 3 4 5

µ̂ 1.322349 0.971201 1.508457 2.211126 1.267988

µ̂2 0.009405 0.007796 0.006312 0.006904 0.005686

µ̂3 2.348829 0.938267 3.460518 10.855610 2.059916

P̂x 0.445023 0.448799 0.440620 0.437433 0.442064

adjustment coefficients than the estimated Lognormal distributions. Table 3.9 gives the moments of

the Weibull distributions and̂Px. The considered random variable in Table 3.9 isX − ξ0.

3.6 The Process Capability Indices

With the parameters of the distributions already estimated it becomes possible to compute the process

capability indices. For that purpose the specification limits are given by (LSL,T ,USL)= (20.15mm,

20.85mm, 21.35mm).

3.6.1 Classical PCIs

The considered indices are the classical indices presented in the first chapterCp andCpk. The esti-

mated PCI values are in Table 3.10 and Table 3.11 for screw 1 and screw 2 respectively where the
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Table 3.10: PCI Values for Screw 1

Stream Ĉp Ĉpk Nonconformity ratio

1 2.062 1.991 14.05×10−6

2 2.265 2.242 1.175×10−6

3 2.517 2.462 2.546×10−6

4 2.407 2.394 15.58×10−6

5 2.652 2.622 1.118×10−6

Table 3.11: PCI Values for Screw 2

Stream Ĉp Ĉpk Nonconformity ratio

1 0.775 0.543 5.747×10−6

2 1.919 1.402 24.82×10−6

3 2.165 1.506 21.06×10−6

4 0.911 0.670 1.519×10−7

5 1.157 0.827 5.622×10−7

indices are estimated using the estimated distribution moments presented in previous sections.

From Table 3.10 and Table 3.11 we notice that the classical indices do not respect the higher the

better rule, when the normality assumption does not hold. It is noticed that following theĈp andĈpk

values all streams are more capable for the height of screw 1, however, following the nonconformity

ratio stream 1, 4 and 5 are more capable for the height of screw 2. It is more appropriate to use

process capability indices which are proposed in the literature in the aim to deal with non normal

distributions.
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3.6.2 PCIs for non Normal Distributions

It is well known that especiallyCp andCpk are not indicative of the process capability for non normal

process characteristics and that the ”higher the better” rule is not respected. Some methods and

indices were presented in the literature to deal with PCIs for non normal distributions. A new index

Cs proposed by Wright (1995) incorporate a skewness correction factor to the indexCpmk, Choi

and Bai (1996) proposed a weighted variance method which adjust the PCI value by considering the

deviations above and below the process mean. Tang and Than (1999) compared seven indices and

methods, including theCs index and the weighted variance index, when the underlying distribution is

non normal. The authors noticed that under the normality assumptionCp andCpk jointly determine

the proportion of nonconforming items. If the process distribution is non normal, this relation is no

longer valid. Hence, any proposed PCI for non normal data should give an objective view of the real

capability of the process in terms of the nonconformity ratio.

In what follows the process capability indices are computed using the indexCpmk introduced by Pearn

et al. (1992), the indexCs introduced by Wright (1995) and the weighted variance indicesCpw and

Cpkw introduced by Choi and Bai (1996). With

Cpmk =
d− |µ−M |

3
√

σ2 + (µ− T )2
,

whered = (USL− LSL)/2 andM = (USL + LSL)/2.

Cs =
min(USL− µ, µ− LSL)

3
√

σ2 + (µ− T )2 + |µ3/σ|
,

whereµ3 is the third central moment. The weighted variance indices are given by:

Cpw =
USL− LSL

6σWx

Cpkw = min{USL− µ

3
√

2Pxσ
,

µ− LSL

3
√

2(1− Px)σ
},

whereWx =
√

1 + |1− 2Px| andPx is the probability that the process variableX is less than or equal

to its expected valueµ. One of the most important features of the process capability indices is that

their values increase when the proportion of nonconforming items decreases. It will be interesting to

check whether the considered indices have this feature in the presence of non normal distributions. Ta-

bles (3.12)-(3.13) give the index values, the actual proportion of nonconforming items for each stream
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r and the minimum proportion of nonconforming itemsrmin for the screw 1 and 2 respectively. The

index estimates, the current nonconformity ratio estimates and the minimum of the nonconformity

ratio estimates are obtained using the estimated distribution moments presented in previous sections.

The minimum proportion of nonconforming items is obtained by shifting the location parameter be-

tween the specification limits. This is equivalent to shifting the specification limits while keeping the

same specification limits width and the same distribution parameters. Hence, ifF is the distribution

function, then the actual nonconformity artior is given byr = F (LSL) + 1− F (USL) andrmin is

expressed asrmin = F (LSL + h) + 1− F (USL + h) with h ∈ R and(−h) is the adjustment of the

location parameter which givesrmin.

Example for the determination of rmin:

rmin is determined numerically. For that purpose consider a three parameters Weibull distribution

with c = 16.8, ξ0 = 19.44 andα = 1.3. TheLSL andUSL are 20.15 and 21.35 respectively. First

the sign ofh should be determined. Two grid points are considered withh = 0.001 andh = −0.001.

The computed nonconformity ratios forh = 0.001 andh = −0.001 are noteda+ anda−. In this

exampler = 38.6× 10−6, a+ = 39.5× 10−6 anda− = 37.7× 10−6. Notice that onlya− < r, hence

h has a negative sign.rmin is determined using the following steps.

Step0: Setk = 1.

Step1: SetH = k × h.

Step2: Computeak = F (LSL + H) + 1− F (USL + H).

Step3: SetH = (k + 1)× h.

Step4: Computeak+1 = F (LSL + H) + 1− F (USL + H).

Step5: If ak+1 < ak, setk = k + 1 and go to step 1. Ifak+1 > ak, setrmin = ak, stop.

In this examplermin = 6.881× 10−10 for h = −0.344.

From Tables (3.12)-(3.13) it becomes obvious that all considered indices fail in respecting ”the higher

the better” rule when the current proportion of nonconforming items is used as a benchmark. All

indices have different behaviors and give different results for the same data. For screw 1 the failures

in respecting the ”higher the better” rule are observed in stream 2 and 4 forĈpmk, in stream 2 and 3

for Ĉs, in stream 3 and 4 for̂Cpkw andĈpw. Moreover, the most capable stream is stream 2 forĈs,

stream 3 forĈpkw, stream 5 forĈpmk andĈpw. For screw 2 the failures in respecting the ”higher the
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Table 3.12: Process Capability Indices Computation for Screw 1

Stream 1 2 3 4 5

r̂ 14.05×10−6 1.175×10−6 2.546×10−6 15.58×10−6 1.118×10−6

Ĉpmk 0.0097 0.01002 0.0098 0.01007 0.01001

Ĉs 0.0094 0.0098 0.0093 0.0087 0.0096

Ĉpkw 2.024 2.178 2.432 2.257 2.482

Ĉpw 1.957 2.157 2.380 2.269 2.510

r̂min 5.454×10−9 8.415×10−14 6.704×10−11 4.872×10−9 4.908×10−13

Table 3.13: Process Capability Indices Computation for Screw 2

Stream 1 2 3 4 5

r̂ 5.747×10−6 24.82×10−6 21.06×10−6 1.519×10−7 5.622×10−7

Ĉpmk 0.218 0.217 0.182 0.215 0.191

Ĉs 0.177 0.215 0.181 0.194 0.185

Ĉpkw 0.572 1.495 1.630 2.225 1.866

Ĉpw 0.739 1.813 2.022 0.872 1.097

r̂min 1.030×10−6 3.051×10−6 2.221×10−6 4.750×10−9 2.034×10−8

better” rule are observed in stream 1 and 2 forĈpmk, in stream 2 and 3 for̂Cs, in stream 1 forĈpkw, in

stream 2, 3 and 5 for̂Cpw. Moreover, the most capable stream is stream 1 forĈpmk, stream 2 forĈs,

stream 4 forĈpkw, stream 3 forĈpw. The indexĈs has the best behavior as it gives the same results

for screw 1 and 2. However, following this index stream 2 is more capable for the height of screw

2 when it has higher nonconformity ratio than screw 1. This behavior is also observed for the other

indices. Furthermore, the threshold for capability judgment is not clear for the considered indices.

Several authors proposed new generations of PCIs. Johnson et al. (1994) and Boyles (1994) tried

to provide indices presenting a compromise between the loss function approach and the nonconfor-

mity ratio approach. V̈annman (1997) proposed different weights to the process mean deviation from

the target value and from the midpoint of the specification limits in order to make process capabil-
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ity indices more sensitive to such deviations and to control such sensitivity using the new family of

indicesCp(u, v). However, Tang and Than (1999) noticed thatCp(1, 1) which is in fact the index

Cpmk is the most suited to evaluate process capability for non normal processes. Jessenberger (1999)

proposed to use a new generation of indices based on the desirability function. She proposed to use

the indexEDU as a metric for capability assessment which is the expected value of the Derringer

and Suich (1980) desirability function assuming normality.

None of the proposed indices succeeds to overcome the classical indices shortcomings. It will be

interesting to provide a process capability index which succeeds in ordering the stream capabilities

following the current nonconformity ratio, which take into account the minimum nonconformity ratio

and which has a clear threshold for capability judgment. In the following section a nonconformity

ratio based desirability function is used as a process capability index. This index is based on the

Derringer and Suich (1980) desirability function.

3.7 Nonconformity Ratio Based Desirability Function

The Derringer and Suich (1980) desirability function evolves transformation of each response variable

Yi into a desirability valuedi between 0 and 1. The desirability of the response increases as it becomes

closer to its target valueTi. It reaches the maximum value of 1 only if the response value is equal

to the target T. The overall desirability is then given by the desirability index which is the geometric

mean of the individual desirabilities. It is noticed that the definition of the desirability function does

not depend on any distribution assumption. In what follows the nonconformity ratio is considered as

a response variable and the property that the desirability value increases when the response becomes

closer to its target is used to make the ”higher the better” rule hold for any type of distribution and for

any type of specification limit.

The nonconformity based desirability function associated with the quality characteristicY1 is:

NCDU1 =





0 if r1 ≥ USL
′
,

USL
′−r1

USL
′−rmin

1

if rmin
1 < r1 < USL

′
,

1 if r1 ≤ rmin
1 .

(3.2)
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Here r1 is the current nonconformity ratio associated with the quality characteristicY1. If Y1 ∼
N(µ1, σ

2
1), thenr1 = Φ(LSL1−µ1

σ1
) + 1− Φ(USL1−µ1

σ1
). rmin

1 is the minimum of the nonconformity ra-

tio, it is obtained whenµ1 = USL1+LSL1

2
. USL

′
is the upper limit for the nonconformity ratio beyond

which the process is not capable. It is common to setUSL
′
= 64p.p.m as it corresponds to4σ level

in six sigma theory. Hence, when the proportion of nonconforming items is less than 64 p.p.m the

NCDU is positive and the process is considered capable, whereas if the value of the index is 0 then

the process is not capable.

It is important to note that using 0 instead ofrmin
1 can lead to misleading interpretations of the index,

especially in the case when the index is used to compare between the capability of several processes.

Indeed, assume that a comparison is carried out between the capability of two processes: process

1 and process 2. If 0 is used instead ofrmin
1 andrmin

2 the comparison will be betweenr1 andr2,

if r2 < r1 then process 2 is considered as more capable than process 1. However, includingrmin
1

andrmin
2 with rmin

1 < rmin
2 in the index computation gives the additional information that with some

process adjustments process 1 is more capable than process 2. Whenrmin
1 < rmin

2 we say that the

potential capability of process 1 is higher than the potential capability of process 2. Hence, the index

NCDU is not only used for the comparison of the actual capability, it allows also to compare the

potential capability. This is an analogy to the classical indices where the use of the indexCpk which

assesses the actual capability is associated with the use of the indexCp which assesses the potential

capability. Then, why not comparing individual nonconformity ratios and the individual minimum

of the nonconformity ratios separately? This question is equivalent to the question why are we using

capability indices. In fact the capability index is used to characterize in one value the ability of the

process to meet the customer requirements. Hence, capability indices are easy to communicate inside

each organization. The use ofNCDU avoids the use of two indices for the actual capability and for

the potential capability separately as the computation ofNCDU is based already on the comparison

between the actual capability and the potential capability. TheNCDU value gives an idea about

how far away is the present nonconformity ratio from the maximum ability of the process to meet the

customer requirements given byrmin. NCDU is also easy to interpret as it is sufficient to notice that

the index value is positive in order to judge that the process is capable.

Moreover, assume that two processes are considered. The quality of process 1 and process 2 is ex-
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pressed in terms of the quality characteristicsY1 andY2 respectively.r1 andr2 are the nonconformity

ratios associated withY1 and Y2 respectively. It is noticed that whenr1 and r2 reach simultane-

ously their minimum, the assigned desirability is 1 for both processes, although both processes do

not have the same capability. This happens because there is no comparison betweenrmin
1 andrmin

2 .

To overcome this shortcoming it is proposed to consider min(rmin
1 , rmin

2 ) in the computation of the

desirability function . Hence, ifrmin
1 < rmin

2 the nonconformity based desirability function associated

with Y2 is:

NCDU2 =





0 if r2 ≥ USL
′
,

USL
′−r2

USL′−rmin
1

if rmin
2 < r2 < USL

′
,

USL
′−rmin

2

USL′−rmin
1

if r2 ≤ rmin
2 .

(3.3)

Figure 3.12 shows the linear nonconformity based desirability functions. The solid line corresponds to

theNCDU1 and the dashed line corresponds toNCDU2. Notice that in order to allow comparability

between processes whenrmin
1 < rmin

2 only NCDU1 can reach the maximum value of 1. This is due

to the fact that the potential capability of process 1 is higher than the potential capability of process

2. However,NCDU2 value will not exceedUSL
′−rmin

2

USL
′−rmin

1

.

NCDU

min

1

'

min

2

'

rUSL

rUSL

-

-

1

0
min

1
r

min

2
r '

USL nonconformity ratio

1
NCDU

2
NCDU

Figure 3.12: One Sided Linear Nonconformity Based Desirability functions

When more than 2 quality characteristics are considered,rmin is determined for each quality char-

acteristic and the minimum among allrmin is used in the computation of eachNCDU as explained

for (3.3). In the case where several quality characteristics express the quality of a single product,

the natural extension ofNCDU is given by the desirability indexD(r1, ..., rp) = [Πp
j=1NCDUj]

1
p
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Table 3.14:N̂CDU Values for Screw 1

Stream 1 2 3 4 5

N̂CDU 0.780 0.981 0.960 0.756 0.982

Table 3.15:N̂CDU Values for Screw 2

Stream 1 2 3 4 5

N̂CDU 0.910 0.612 0.670 0.997 0.991

whereNCDUj are defined in (3.2) and (3.3) and m is the number of quality characteristics. The

geometric mean assigns an overall desirability of 0 if there exists at least one quality characteristic

for which the nonconformity ratio exceeds theUSL
′
value.NCDU allows for capability judgment,

it compares the actual capability of a process to its potential capability and it allows the comparison

between the capability of several processes for any type of distribution and any type of specification

limit. However, it will be interesting to compare the performance ofNCDU to the considered indices

in the previous section. Table 3.14 and Table 3.15 show the index values for the different streams for

screw 1 and screw 2 respectively.̂NCDU is computed using the estimated distribution parameters

presented in the previous sections. Notice that̂NCDU succeeds in respecting ”the higher the better”

rule when the current nonconformity ratio is used as a benchmark. ThêNCDU computation is not

possible without a previous comparison between the minimums of the nonconformity ratios. Further-

more,N̂CDU allows the comparison between the capability for the different quality characteristics

for each stream. However,NCDU is based on the Derringer and Suich (1980) desirability function

which is interpreted as a loss function.NCDU is a loss a function which measures how desirable is

a nonconformity ratio. Although the threshold for capability judgment is clear forNCDU , it is com-

mon in the capability theory to construct confidence intervals for the indices and to base the capability

judgment on the lower limit of the interval. In what follows a confidence interval is constructed for

NCDU .
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3.8 A Bootstrap Confidence Interval forNCDU

A confidence interval can be constructed by using bootstrapping technique. The principle of a boot-

strap method is the following: if a sample of sizen is considered with sample valuesx1, ..., xn

from this sample a random sample of sizen
′

is chosen -with replacement- and a PCI is computed

for the obtained sample, say,̂NCDU [1]. This operation is repeatedB times in the aim to have:

N̂CDU [1], . . . , N̂CDU [b], . . . , N̂CDU [B] which compose the bootstrap distribution of̂NCDU . In

this studyn = n
′
= 300 andB = 7500.

There are many approaches to construct a bootstrap confidence interval. The approach adopted in this

work is the quantile confidence interval. Efron and Tibshirani (1993) explain that a minimum value of

B = 1000 is required for an acceptable estimation of the quantiles. The bootstrap confidence interval

of intended coverage(1− (2α))% is given by

(N̂CDU lo, N̂CDUup) = (N̂CDU (α), N̂CDU (1−α)),

whereN̂CDU (α) is the quantile of orderα of the N̂CDU bootstrap distribution. In this studyα =

2.5%.

Bootstrap confidence intervals are constructed forNCDU of screw 1 and screw 2. For that pur-

pose the observations are gathered in a(300 × 10) matrix. New samples are obtained by choosing

matrix lines with replacement. Then, the parameters of the distributions corresponding to each stream

have to be estimated at each replication. In order to be able to estimate the parameters the outliers

are detected and removed. For screw 1 the Camp-Meidell theorem is applied as explained in section

3.4.2 and section 3.5.2 on the outlier values already detected in section 3.5.2. For screw 2 observa-

tions greater than̂θ are outliers and they are removed. After removing the outliers, the distribution

parameters are estimated using quantile method and maximum likelihood estimators for screw 2 as

explained in section 3.4.1 and using the maximization of the coefficient of determination for screw 1

as explained in section 3.5.2. The estimation of the distribution parameters allows the nonconformity

ratios estimation. Moreover, the location parameter which allows the minimum of the nonconformity

ratio determination is determined. A comparison between all minima of the nonconformity ratios is

carried out and the minimum among all minima is used in thêNCDU computation for each stream.

The comparison considers the minima corresponding both screws. In order to construct the bootstrap

62



Table 3.16: Bootstrap Confidence Intervals for̂NCDU Corresponding to Screw 1

Stream 1 2 3 4 5

[N̂CDU lo, N̂CDUup] [0.491, 1.000] [0.000,1.000] [0.546, 0.989] [0.779, 0.999] [0.904, 1.000]

Table 3.17: Bootstrap Confidence Intervals for̂NCDU Corresponding to Screw 2

Stream 1 2 3 4 5

[N̂CDU lo, N̂CDUup] [0.000, 0.999] [0.000,0.999] [0.000, 0.997] [0.000, 0.999] [0.000, 0.999]

confidence intervalN̂CDU is computed at each replication. In this case 7500 replications are con-

sidered. The results are given in Table 3.16 and Table 3.17 for screw 1 and screw 2 respectively. It

is interesting to use a summary statistic of thêNCDU bootstrap distribution in order to compare the

stream capabilities. Indeed, the median is a good indicator of the bootstrap distribution central ten-

dency as it has the minimum of the average of the absolute deviations among other indicators of the

distribution central tendency. The summary statistic is obtained throughMNCDU which is the me-

dian ofN̂CDU bootstrap distribution. It would be interesting to check whetherMNCDU respects

the higher the better rule.MNCDU and the median of the estimated nonconformity ratior̂ bootstrap

distributionr̂0.5 are given in Table 3.18 and Table 3.19 for screw 1 and screw 2 respectively.

It should be noticed that the capability judgment is more reliable when it is based on the lower

limit of the NCDU confidence interval. A stream is said capable if the lower limit is higher than

the threshold for capability judgment. Notice from Tables (3.16) and (3.17) that all streams are not

Table 3.18: Central Tendency of̂NCDU Bootstrap Distribution for Screw 1

Stream 1 2 3 4 5

MNCDU 0.978 0.000 0.817 0.936 0.997

r̂0.5 1.392×10−6 77.14×10−6 11.66×10−6 4.089×10−6 1.721×10−7
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Table 3.19: Central Tendency of̂NCDU Bootstrap Distribution for Screw 2

Stream 1 2 3 4 5

MNCDU 0.952 0.795 0.799 0.995 0.985

r̂0.5 3.020×10−6 13.07×10−6 12.85×10−6 2.878×10−7 9.413×10−7

capable in screwing screw 2. Concerning screw 1 all streams are capable except stream 2 for which

the lower confidence limit is 0. Figures 3.13 and 3.14 show the stream bootstrap distributions for

screw 1 and screw 2 respectively.
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Figure 3.13: Different Stream̂NCDU Bootstrap Distributions for Screw 1

Furthermore,MNCDU is given in Table 3.18 and Table 3.19 for screw 1 and screw 2 respectively.

In this case the order of the stream capabilities followingMNCDU is the same as the order given by

the nonconformity ratio. Items produced by stream 2 have the worst quality. Moreover, following the

order given byMNCDU stream 5 and stream 4 give the most satisfactory capability for screw 1 and

screw 2 respectively.

64



stream1

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

00

stream2

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
15

00

stream3

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
10

00

stream4

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
30

00
stream5

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

00
50

00

Figure 3.14: Different Stream̂NCDU Bootstrap Distributions for Screw 2

3.9 Conclusion

A linear nonconformity based desirability function is presented as a process capability index.NCDU

avoids the use of two different indices for assessing the actual capability and the potential capability.

The performance of this index is compared with the performance of other indices in the literature

using non normal distributions and asymmetric specification limits. It was demonstrated that the index

respects the ”higher the better” rule for any type of distribution and for any specification limits. The

use of this approach in the multivariate case is possible using the desirability index. The proposed

univariate index overcomes some shortcomings of the existing indices in the literature. However,

in many cases the quality of a product is given through several quality characteristics. Hence the

capability assessment is done using multivariate capability indices. It is interesting to present the

multivariate extension of the proposed index.
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Chapter 4

The Multivariate Process Capability Indices

Many approaches have been elaborated in the aim to implement multivariate capability indices. These

approaches try to solve some theoretical and practical problems like multivariate specification limits

and statistical properties of the indices. In what follows some of the existing approaches in the liter-

ature are explained before presenting a multivariate extension of the indexNCDU, introduced in the

previous chapter.

4.1 Review of the Literature

Lovelace and Kotz (1998) presented the multivariate process capability indices as a dangerous but

unavoidable area. Dangerous because many of the existing multivariate process capability indices are

in fact generalizations of the univariate classical indices. It is expected then that the proposed multi-

variate indices have the same shortcomings as the univariate indices. Wang et al. (2000) compared

different multivariate indices and noticed that a current problem in multivariate quality control, there

is no consensus about a methodology for assessing capability.

Multivariate PCIs are unavoidable especially when several quality characteristics determine the qual-

ity of a product. Several indices were proposed in the literature in order to deal with multivariate

capability. Wierda (1993) proposed an extension of the indexCpk. The approximation of the mul-

tivariate index depends on the actual process yield. Chan et al. (1991) found on the ellipsoidal
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specification limits an extension of the indexCpm. In order to make the structure of the multivariate

process capability index closer to the general structure of the process capability indices. Taam et al.

(1993) proposed a multivariate analog to the indexCpm. The proposed index is given by the ratio

of the volume of the specification region over a scaled 99.73% process region. Pearn et al.(1992)

introduced an approach based on the extension of the indexCp. This approach was studied by Chen

(1994) who proposed a multivariate index for the rectangular specification limits. Actually, the pro-

posed multivariate index is the ratio of the tolerance region to that of the region needed to achieve the

desired process yield. Wang et al. (1998) proposed to reduce the complexity of the problem when

several quality characteristics are considered. For this purpose, the process capability indices were

computed for some selected principle components.

In this work it is suggested the use of a nonconformity ratio based desirability functionNCDU as a

capability index in the univariate case. In what follows the extension ofNCDU to the multivariate

case is discussed.

4.2 The Multivariate Extension

Whenn quality characteristics are considered, theNCDU index is defined for each quality charac-

teristic as follows:

NCDUi =





0 if ri ≥ USL
′
,

USL
′−ri

USL
′−minj=1,...,n(rmin

j )
if rmin

i < ri < USL
′
,

USL
′−rmin

i

USL′−minj=1,...,n(rmin
j )

if ri ≤ rmin
i .

(4.1)

whereri is the actual nonconformity ratio for the quality characteristici. rmin
i is the minimum of

the nonconformity ratio for the quality characteristici and minj=1,...,n(rmin
j ) is the minimum among

all the minima of the nonconformity ratios. In the multivariate case the actual nonconformity ratio

for a quality characteristic is computed on the basis of the marginal probability density function.

Hence, ifX1, . . . , Xp are random variables withf(x1, . . . , xp) the joint probability density function,

LSL1, . . . , LSLp the lower specification limits andUSL1, . . . , USLp the upper specification limits

then:

ri = 1−
∫ +∞

−∞
. . .

∫ USLi

LSLi

f(x1, . . . , xp)dx1 . . . dxp
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A natural extension of theNCDUi to the multivariate case is given by the desirability index. The

desirability index is a function of the univariateNCDUi. It will be considered as a multivariate

capability index. However, several types of the desirability index were proposed in the literature. It

will be interesting to check which type is more appropriate for capability assessment.

Harrington (1965) proposed the geometric mean of the individual desirabilities as a desirability index.

It is defined as

D = [Πp
i=1di]

1
p .

In this way if one quality characteristic has a desirability equal 0 than the overall desirability would

be 0. Derringer (1994) proposed a weighted composite desirability which is given by

D = [Πp
i=1d

wi
i ]

1

Σ
p
i=1

wi ,

wherewi corresponds to the importance of the quality characteristicsi. The weights are determined

by individual or group judgement. Kim (2000) proposed the minimum of the desirability values as an

assessment for the overall desirability. It is given by

D = mini=1,...,p(di).

One of the main features of the process capability indices is that it is possible to judge whether the

process is capable or not from their values. However, this feature does not hold when the minimum

of the desirabilities is considered as a multivariate process capability index. In order to prove that the

following Lemma is formulated:

Lemma1:

If ri < USL
′ ∀i ; R < USL

′
, whereR is the joint nonconformity ratio computed using a joint

probability functionf with infinite support. Hence, univariate capability; multivariate capability.

Proof:

Suppose thatr1, . . . , rp are the nonconformity ratios corresponding to the quality characteristics

X1, . . . , Xp respectively and thatf(x1, . . . , xp) with infinite support. In the multivariate case the

process is said capable when the joint nonconformity ratioR ≤ USL
′
. The joint nonconformity ratio

is given by:

R = 1−
∫ USL1

LSL1

. . .

∫ USLp

LSLp

f(x1, . . . , xp)dx1 . . . dxp
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it is obvious that
∫ +∞

−∞
. . .

∫ USLi

LSLi

f(x1, . . . , xp)dx1 . . . dxp >

∫ USL1

LSL1

. . .

∫ USLp

LSLp

f(x1, . . . , xp)dx1 . . . dxp

this means

ri < R , ∀i.

whenri = USL
′
, ∀i. this means thatR > USL

′
. Hence, the univariate capability does not imply the

multivariate capability. ¤

When the minimum of the desirabilities is used as a multivariate process capability index, this is

equivalent to reducing the multivariate case to the univariate case. Indeed, only the minimum of the

NCDUi is considered. In this case the capability judgement rule is the same in the univariate and

in the multivariate case. Hence, it becomes not appropriate to use the minimum of theNCDUi as a

multivariate process capability index because it does not provide a reliable capability judgment rule.

The natural extension ofNCDU to the multivariate case becomes the geometric mean of the

NCDUi. The geometric mean (NCDM ) is considered as a multivariate capability index for the

correlated and the uncorrelated quality characteristics. The desirability index equals 0 when at least

one quality characteristic has a nonconformity ratio higher thanUSL
′
. Moreover, as it will be shown

in the next section the desirability index could be written as a function of the joint nonconformity ratio

for uncorrelated quality characteristics. Whenn uncorrelated quality characteristics are considered

the joint nonconformity ratio is expressed as

Rp = 1− [(1− r1)(1− r2) . . . (1− rn−1)(1− rp)]. (4.2)

Furthermore, when the geometric mean is used, it becomes possible to present a threshold for the

desirability index over which the process is considered capable.

4.3 The Capability Threshold Setting

In this section the considered desirability index is the geometric mean of the univariateNCDUi. It is

important to notice that in the univariate case whenr < USL
′
the univariateNCDU is positive. A

positive value of the capability index is sufficient in order to judge whether the process is capable or
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not. In the multivariate case when the desirability index equals 0 then the process is not capable. In

order to derive a capability threshold for the desirability index it is interesting to express the desirabil-

ity index as a function of the joint nonconformity ratio. The threshold for the capability judgment is

given in Theorem 1. However, in order to be able to prove Theorem 1, the following lemmas should

be formulated.

Lemma 2:

The general expression ofNCDM is given by

NCDMp =

p−1∑
i=1

(USL
′
)(p−i)(−1)i[

p−i+1∑
j=1

p−i+2∑
k=2

. . .
p−i+l∑
m=l

. . .
p∑

q=p−1

j<k<...<m<...<q

r
1i,[1]

j r
1i,[2]

k . . . r
1i,[l]
m . . . r

1i,[p−1]
q ]

(USL′ − C)p

+
USL

′p
+ (−1)pΠp

i=1ri

(USL′ − C)p
.

p is the number of quality characteristics,ri is the actual nonconformity ratio for the quality char-

acteristici, USL
′

is an upper limit for the actual nonconformity ratio,rmin
i is the minimum of the

nonconformity ratio for the quality characteristici andC = mini=1,...,p(r
min
i ). 1u is a [(p − 1) × 1]

vector and its elements are 0 and 1. Only the firstuth elements are 1.1u,[l] is thelth element of the

vector and

1u,[l] =





0 if l > u,

1 if l ≤ u.
(4.3)

The proof of Lemma 2 is in Appendix B.

Lemma 3:

The general expression of the joint nonconformity ratio for uncorrelated quality characteristics is

given by

Rp = −(

p−1∑
i=1

(−1)i[

p−i+1∑
j=1

p−i+2∑

k=2

. . .

p−i+l∑

m=l

. . .

p∑
q=p−1

j<k<...<m<...<q

r
1i,[1]

j r
1i,[2]

k . . . r
1i,[l]
m . . . r

1i,[p−1]
q ]+(−1)pΠp

i=1ri)

The proof of Lemma 3 is in Appendix B.
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Lemma 4:

NCDM is expressed as a function of the joint nonconformity ratio of uncorrelated quality character-

istics as follows

(USL
′ − C)pNCDMp = USL

′p
+ (−1)pΠp

i=1ri

+

p−1∑
i=1

USL
′(p−i)

(−(

p−1∑
u=1u 6=i

(−1)u[

p−u+1∑
j=1

p−u+2∑

k=2

. . .

p−u+l∑

m=l

. . .

p∑
q=p−1

j<k<...<m<...<q

r
1u,[1]

j r
1u,[2]

k . . . r
1u,[l]
m . . . r

1u,[p−1]
q ])

−(−1)pΠp
i=1ri −Rp). (4.4)

The proof of Lemma 5 is given in Appendix B.

Lemma 5:

The joint nonconformity ratio for uncorrelated quality characteristics is expressed as a function of

NCDM as follows:

Rp

p−1∑
i=1

USL
′(p−i)

= −NCDMp(USL
′ − C)p + USL

′p
+

p−1∑
i=1

USL
′(p−i)

(−(

p−1∑
u=1u6=i

(−1)u[

p−u+1∑
j=1

p−u+2∑

k=2

. . .

p−u+l∑

m=l

. . .

p∑
q=p−1

j<k<...<m<...<q

r
1u,[1]

j r
1u,[2]

k . . . r
1u,[l]
m . . . r

1u,[p−1]
q ])

−(−1)pΠp
i=1ri) + (−1)pΠp

i=1ri.

The proof of Lemma 5 is given in Appendix B.
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Theorem 1:

A process is capable if the desirability index satisfies the following condition:

(USL
′ − C)pNCDMp ≥

p−1∑
i=1

USL
′(p−i)

(−(

p−1∑
u=1u 6=i

(−1)u[

p−u+1∑
j=1

p−u+2∑

k=2

. . .

p−u+l∑

m=l

. . .

p∑
q=p−1

j<k<...<m<...<q

r
1u,[1]

j r
1u,[2]

k . . . r
1u,[l]
m . . . r

1u,[p−1]
q ])− (−1)pΠp

i=1ri − USL
′
) + USL

′p
+ (−1)pΠp

i=1ri (4.5)

wherep is the number of uncorrelated quality characteristics,ri is the actual nonconformity ratio for

the quality characteristici, USL
′

is an upper limit for the actual nonconformity ratio,rmin
i is the

minimum of the nonconformity ratio for the quality characteristici andC = mini=1,...,p(r
min
i ). 1u

is an [(p-1)x1] vector and its elements are 0 and 1. Only the firstuth elements are 1.1u,[l] is thelth

element of the vector and

1u,[l] =





0 if l > u,

1 if l ≤ u.
(4.6)

Proof of Theorem 1 is given in Appendix B.

Although the desirability index is computed for correlated and uncorrelated quality characteristics,

it is obvious from (4.4) that its use is more appropriate for uncorrelated quality characteristics. It

will be interesting to check whether the threshold given in (4.5) could concern also correlated quality

characteristics. For that purpose, it is interesting to highlight the effect of correlation on the joint

nonconformity ratio. The relationship between the correlated and the uncorrelated case is studied

assuming that the multivariate normal distribution holds.

Theorem 2:

Assume thatX1, . . . , Xp are p correlated quality characteristics with variancesσ2
1, . . . , σ

2
p respec-

tively. The considered quality characteristics follow theN(µ, Σ) whereµ is the mean vector andΣ

the covariance matrix. If|Σ| < Πp
i=1σ

2
i then correlation will make joint nonconformity ratio smaller.

Proof:

Assume thatZ ∼ N(µ, Σ) whereµ is (p× 1) vector mean andΣ is thep× p covariance matrix with

variancesσ2
i for i = 1 . . . p. ConsiderΣ

′
= diag(σ2

1 . . . σ2
p). The joint probability density function is
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given by

f(x) =
1√

(2π)p|Σ| exp(−1

2
(x− µ)

′
Σ−1(x− µ)),

it depends onx only in the quadratic form(x− µ)
′
Σ−1(x− µ) this means that

if (x− µ)
′
Σ−1(x− µ) = constant⇒ f(x) = constant.

Notice that(x−µ)
′
Σ−1(x−µ) ∼ χ2

p. Hence, the density is constant for(x−µ)
′
Σ−1(x−µ) = χ2

p,α.

This is in fact the equation of an ellipsoid. All realizations of the multivariate normal distribution on

the border of the ellipsoid have the same probability. The volume of this ellipsoid is given by

V =
π

p
2

Γ(1 + p
2
)
(χ2

p,α)
p
2 |Σ| 12 .

For fixed specification limits the smallerV , the tighter is the distribution and the smaller the joint

nonconformity ratio.

When the quality characteristics are assumed to be uncorrelated, the volume of the ellipsoid is given

by

V
′
=

π
p
2

Γ(1 + p
2
)
(χ2

p,α)
p
2 |Σ′| 12 ,

where|Σ′| = Πp
i=1σ

2
i .

Hence, if|Σ| < Πp
i=1σ

2
i thenV < V

′
. In this case the correlation will make the distribution tighter.

This means that more observations can fall between the specification limits. Hence, in this case the

correlation makes the joint nonconformity ratio smaller. ¤

This means that if (4.5) holds for a process which has correlated quality characteristics with|Σ| <

Πp
i=1σ

2
i , then the correlation will not affect the capability judgement. Indeed, consider a process

with correlated quality characteristics. The joint nonconformity ratio is computed assuming that the

quality characteristics are uncorrelated withR < USL
′
. The correlation do not affect the capability

judgment as long as|Σ| < Πp
i=1σ

2
i .

Example 1:

In the bivariate case|Σ| < |Σ′ | is equivalent to(1 − ρ2) < 1. Hence, in the bivariate case any cor-

relation coefficient value makes the joint nonconformity ratio smaller. Hence, when (4.5) holds this
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means that the process is capable independently of the correlation coefficient.

Example 2:

Forp = 3, |Σ| < |Σ′| is equivalent to0 < 1−ρ2
12−ρ2

13−ρ2
23 +2ρ12ρ13ρ23 < 1. This means that when

(4.5) holds this condition should be checked first before judging the process capability. When more

than three quality characteristics are considered a condition on the correlation coefficients should be

derived.

In the case of multivariate normality when|Σ| < |Σ′| and the desirability index has a value

which is higher than the threshold in (4.5) the process is said capable. Under these conditions the

capability threshold concerns the correlated and uncorrelated quality characteristics. However, when

the condition on the generalized variance holds and (4.5) does not hold, this does not mean that the

process is not capable. Indeed, when the desirability index is under the threshold given in (4.5) the

process capability is rejected only when the hypothesis of independence holds.

Furthermore, many multivariate indices are presented in the literature but it is still not clear whether

these indices respect ”the higher the better” rule. In what follows ”the higher the better” rule is

discussed when theNCDM is used.

4.4 ”The Higher the Better” Rule Using the Desirability Index

When the capability of several processes are compared,NCDM is written as follows:

NCDMj = [Πp
i=1NCDUij]

1
p ,

wherep is the number of the quality characteristics andNCDUij is the univariate index for the qual-

ity characteristici in the processj. The geometric mean is used as a capability index and it was

proved in Lemma 4 that in this way it is possible to write the capability index as a function of the

joint nonconformity ratio for uncorrelated quality characteristics. Hence, it becomes possible to get

a threshold for capability judgment in the multivariate case. The most important expected feature of

a multivariate capability index is that its value should increase when the joint nonconformity ratio

decreases. When such feature holds it is said that the capability index respects ”the higher the better”

rule. It will be interesting to check under which condition the desirability index respects the higher
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the better rule. Indeed, under such condition it becomes possible to compare between the capability

of different processes. This condition is given by the following Theorem.

Theorem 3:

Consider two processes, process 1 and process 2. The quality of these processes is expressed in terms

of p uncorrelated quality characteristics. These processes have the joint nonconformity ratiosR1 and

R2 respectively withR1 < R2. The ”higher the better” rule is respected if




NCDMp
1 −NCDMp

2 > A1−A2

(USL
′−C)p > 0 if A1 − A2 > 0,

NCDMp
1 −NCDMp

2 > 0 if A1 − A2 < 0,
(4.7)

where

Av =

p−1∑
i=1

USL
′(p−i)

(−(

p−1∑
u=1u6=i

(−1)u[

p−u+1∑
j=1

p−u+2∑

k=2

. . .

p−u+l∑

m=l

. . .

p∑
q=p−1

j<k<...<m<...<q

r
1u,[1]

jv r
1u,[2]

kv . . . r
1u,[l]
mv . . . r

1u,[p−1]
qv ])− (−1)pΠp

i=1ri) + (−1)pΠp
i=1ri + USL

′p

wherev = 1, 2, rkv is the actual nonconformity ratio for the quality characteristick in the

processv, USL
′

is an upper limit for the actual nonconformity ratio,rmin
k1 is the minimum of the

nonconformity ratio for the quality characteristick in the process 1,rmin
k2 is the minimum of the

nonconformity ratio for the quality characteristick in the process 2 withk = 1 . . . p and C =

min(mink=1,...,p(r
min
k1 ),mink=1,...,p(r

min
k2 )). 1u,[l] is an [(p-1)x1] vector, its elements are 0 or 1. Only

the firstuth elements are 1.1u,[l] is thelth element of the vector and

1u,[l] =





0 if l > u,

1 if l ≤ u.
(4.8)

Proof:

In Lemma 5 it is proved that the nonconformity ratio forp uncorrelated quality characteristics in a

processv is given by

Rv =
−NCDMp

v (USL
′ − C)p + Av

p−1∑
i=1

USL′(p−i)

,
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thenR1 < R2 becomes equivalent to

NCDMp
1 −NCDMp

2 >
A1 − A2

(USL′ − C)p
.

NCDM1 andNCDM2 should also respect the following condition

NCDMp
1 −NCDMp

2 > 0.

Hence, the ”the higher the better” rule is respected when




NCDMp
1 −NCDMp

2 > A1−A2

(USL
′−C)p > 0 if A1 − A2 > 0,

NCDMp
1 −NCDMp

2 > 0 if A1 − A2 < 0,
(4.9)

¤

It is noticed that the ”higher the better” rule is based on the joint nonconformity ratioR. However,

the condition under which the desirability index respects the ”higher the better” rule depends only on

nonconformity ratios computed in the univariate case for each quality characteristic. Moreover, it is

noticed that the fact thatNCDM1 > NCDM2 does not mean that process 1 is more capable than

process 2, that is true only when (4.8) holds.

4.5 Comparison of the Multivariate PCIs

It will be interesting to compare the performance of the proposed multivariate index with different in-

dices from the literature. It is interesting to check wether the considered indices succeed in respecting

the ”higher the better” rule. A simulated example is leading the comparison between the competing

indices. In what follows a comparison is carried out between the indicesMV Cp, MV Cpm proposed

by Taam et al. (1993) and the geometric mean ofNCDUi.

The indicesMV Cp andMV Cpm are defined as follows:

MV Cp =
vol(max.vol. ellipsoid in specification region)

vol(process ellipsoid)
.

The maximum volume ellipsoid embedded in the specification region is given by{x|(x−M)
′
H−1(x−

M) ≤ 1}, whereM is the vector formed by the midpoints of the specification limits,H = diag(ε2
1, . . . , ε

2
p)
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Table 4.1: Example Processes

Process A B C D

σ2
1 6 6 6 6

σ2
2 12 12 12 12

σ2
3 15 15 15 15

with εi = USLi−LSLi

2
andp the number of quality characteristics. When the multivariate normal distri-

bution holds the process region is given by the following ellipsoid{x|(x−µ)
′
Σ−1(x−µ) ≤ χ2

p,0.9973}.
WhereΣ is the covariance matrix andχ2

p,0.9973 is a quantile of the chi square distribution withp de-

grees of freedom. Then,

MV Cp = [
|H|

|Σ|(χ2
p,0.9973)

p
]
1
2

The index MVCpm is given by

MV Cpm =
vol(max.vol. ellipsoid in specification)

vol((x− T )′Σ−1
T (x− T ) ≤ χ2

p;0.9973)

whereΣT = E[(X − T )(X − T )
′
], hence,

MV Cpm = MV Cp/
√

1 + (µ− T )′Σ−1(µ− T ).

The comparison is implemented over four processes, each process has a trivariate normal distribution.

The quality characteristics are assumed to be uncorrelated for all processes. Table 4.1 gives the vari-

ancesσ2
1, σ2

2, σ2
3 for the examined processes A, B, C and D.

For all quality characteristics in processes A and B symmetric specification limits are considered.

Furthermore, The specification limits are the same for all quality characteristics in the processes A

and C they are given by (LSL, USL)= (15, 50). For process A the specification limits are given by

(LSL, T , USL)=(15, 32.5, 50) for all quality characteristics. The specification region is given by the

Cartesian product of the univariate specification limits: (15,32.5,50)*(15,32.5,50)*(15,32.5,50). No-

tice that the Process A is centered and on-target withµ = T for all quality characteristics. However,

for process C asymmetric specification limits are used, it is off-target and not centered withT = 30

andµ = 34 for all quality characteristics.

For the process B the specification region is given by the following Cartesian product:
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Table 4.2: Nonconformity Ratios and Index Values

Process R MV Cp MV Cpm NCDM Av

A 6.666 10−6 3.061 3.061 0.9642 4.268× 10−10

B 7.720 10−7 3.061 3.061 0.9959 4.966× 10−11

C 2.046 10−5 3.061 1.243 0.8832 1.277× 10−9

D 2.973 10−5 3.061 1.243 0.8320 1.885× 10−9

(15,27.5,40)*(15,32.5,50)*(15,39.5,64). Notice that the Process B is centered and on-target with

µ = T for all quality characteristics. However, for the process D asymmetric specification limits are

used, it is off-target and not centered. The specification region is given by the following Cartesian

product: (15,29,40)*(15,34,50)*(15,42,64). The mean values areµ1 = 25, µ2 = 30 andµ3 = 38 for

the quality characteristics 1, 2 and 3 respectively. Table 4.2 shows the joint nonconformity ratio and

the values of the process capability indices.

Notice that the indexMV Cp is constant for all processes and this is due to the fact that|H| and|Σ|
are the same for all processes. However, the considered processes have different nonconformity ra-

tios because they have different specification limits. The same shortcoming is observed for the index

MV Cpm as the same deviation from the target values was considered for all quality characteristics.

This comparison shows that the indexNCDM succeeds in respecting the higher the better rule when

uncorrelated quality characteristics are considered. The higher the better rule is respected indepen-

dently of the specification limits type as long as the condition in (4.8) is respected. Indeed, notice that

the order given byAv is the same order asNCDM . Hence, the second line of (4.8) is respected for

all possible comparisons in the considered example.

4.6 NCDM Implementation

In the previous chapter the capability of the streams was compared usingNCDU . The objective was

the determination of the most capable stream for each quality characteristic. However,NCDU does

not help for determining if the process is more capable in screwing screw 1 or screw 2.NCDM

appears to be more appropriate for this task. Table 4.3 shows the joint nonconformity ratioR1 for
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Table 4.3:NCDM Computation

R1 R2 NCDM1 NCDM2

34.46× 10−6 52.34× 10−6 0.887 0.819

screw 1, the joint nonconformity ratioR2 for screw 2,NCDM1 for screw 1 andNCDM2 for screw

2. As it is explained in section 3.3 the streams are uncorrelated. Hence,R1 andR2 are computed

as in equation (4.2). Table 4.3 shows thatNCDM respects ”the higher the better” rule and that the

process is more capable in screwing screw 1.

As explained in section 3.8, the capability judgment is based on the bootstrap confidence interval

for NCDM . Following the same procedure as in 3.8 the bootstrap confidence intervals are [0.000,

0.973] and [0.000, 0.978] for screw 1 and screw 2 respectively. It is concluded that the process is not

capable in screwing screw 1 and screw 2. However, it is shown in section 3.8 that stream 2 is the only

stream which is not capable for screwing screw 1 and screw 2. When discarding stream 2 from the

analysis the obtained confidence intervals are given by [0.751, 0.979] and [0.000, 0.989] for screw 1

and screw 2 respectively and the process is capable only for screwing screw 1. Hence, when stream 2

is discarded a loss function approach could be adopted for screw 1. In this case the supreme objective

which is the adjustment to the target value could be reached. More quality improvement should

be adopted for the screw 2 streams before tackling the adjustment to the target objective. For that

purpose an experimental design should be implemented in order to determine the optimal operating

conditions. When a confidence interval is constructed forNCDM under optimal operating conditions

it is definitely known whether the adoption of a loss function approach is possible. Figure 4.1 and

Figure 4.2 show the bootstrap distribution ofNCDM1 andNCDM2 when stream 2 is discarded

form the analysis.

4.7 Conclusion

It was demonstrated that the indexNCDU respects the ”higher the better” when the other indices

fail. The extension of the univariate process capability indexNCDU to the multivariate case is given

by the desirability index. It was demonstrated that the geometric mean of the desirability functions
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Figure 4.1: Histogram ofNCDM1

is suitable for process capability assessment. IndeedNCDM is written as a function of the joint

nonconformity ratio forp uncorrelated quality characteristics. A condition under whichNCDM

respects the ”higher the better” rule is derived. Moreover, it is shown that it is possible to useNCDM

for some correlated quality characteristics. Finally, a threshold for capability judgment is proposed.

Knowing that the desirability index is an important tool in the desirability optimization methodology,

the presented approach becomes promising as its application together with experimental design is

straightforward. Hence, the capability index will not be considered only as a tool for describing the

process capability but also as a tool for minimizing the proportion of nonconforming items.
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Chapter 5

Capability Assessment Under Optimal

Operating Conditions

In the previous chapter it was noticed that the considered process is not capable in screwing screw

2. It was recommended to run an experimental design in order to improve the process capability.

In what follows an algorithm is presented in order to maximizeNCDM . A simulation study is

carried out using the presented algorithm. The maximization ofNCDM means the process capability

maximization. It allows the determination of the optimal operating condition. It would be interesting

to test the process capability under this condition. The presented steps allow also to give an answer

for whether the adoption of a loss function approach for quality continuing improvement purpose is

possible for the simulated process.

5.1 The Algorithm for the Capability Assessment

As it was noticed, the desirability index is the geometric mean of the individual desirability functions

which depend on some response variables, in this case the considered response variables are the in-

dividual nonconformity ratios. When the individual nonconformity ratios are expressed as functions

of some factorsX1, ..., Xs it becomes possible to express the desirability index on the factor space.

The maximization of the desirability index on the factor space allows the determination of the optimal

factor levels. These factor levels determine in fact the most desirable combinations of the individual
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nonconformity ratios. Hence, determiningNCDM under optimal operating conditions it becomes

possible to compare different processes on the basis of the joint nonconformity ratio as long as (4.7)

is respected. The challenge is to use the same technique for describing the process capability and

determining the optimal operating conditions.

The following algorithm describes a simulation design. The objective is to estimate the factor lev-

els which minimize the joint nonconformity ratio. This is done by the simultaneous optimization of

individual nonconformity ratios. The desirability index corresponding to the optimal operating con-

ditions is then considered as a metric for capability assessment. In this chapter two variablesY1 and

Y2 are considered. It is supposed that these variables correspond to two streams of the same quality

characteristic. It is supposed that the realizations ofY1 andY2 depend on the levels of two factorsX1

andX2. It is also assumed that the variables are independent.

Step1: experimental design

An excribed central composite experimental design is considered and the variables are considered

as response variables. In the aim to be able to write the variables as functions of the factors:Yi =

fi(X1, X2) + εi whereεi, i = 1, 2, are the errors of the model,E(εi) = 0 andE(Yi) = fi(X1, X2).

The model is supposed to be quadratic and the experimental design does not evolve replications.

Step2: data generation

One observation of each variable is assigned to each run of the experimental design. For the purpose

of running a simulation, each observation could be considered as a realization of a random variable

which follows a given distribution. A different distribution is considered at each run of the experi-

mental design and for each response. In what follows non normal distributions are considered and it

is assumed that the distributions considered for each response have the same variance.

Step3: transform data

In the aim to be able to use normality for the model coefficients, it is proposed to use the Box-Cox

transformation as defined in Box and Cox (1964). The transformation is given by

y
(λi)
i =





y
λi
i −1

λi
if λi 6= 0,

log(yi) if λi = 0.
(5.1)

It is important to notice that the mean squared error MSE is used to estimateσ2. λi should be esti-

mated bŷλi which is determined numerically. It is incremented in the range -3 to 3. The likelihood is
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computed for each value of̂λi and the retained̂λi is the one that maximizes the likelihood. In order

to give an idea about the values ofλ̂i histograms are shown in section 5.2.

Step4: model the transformed data

The transformed data are supposed to follow the normal distribution. Hence, modelling the trans-

formed data allows us to estimate the parameters of the normal distributions byÊ(y
(λ̂i)
i ) and MSE.

Step5: nonconformity ratios estimation

After estimating the parameters of the normal distributions it becomes necessary to transform the

specification limitsLSLi andUSLi using the same transformation as forYi. The nonconformity

ratio estimators at each runu are given bŷriu = Φ(
LSL

(λ̂i)
i −Ê(y

(λ̂i)
iu )

σ̂i
) + 1− Φ(

USL
(λ̂i)
i −Ê(y

(λ̂i)
iu )

σ̂i
), where

u is the number of the experimental design run withu = 1, ..., n0, i = 1, 2

Step6: model the nonconformity ratios

The nonconformity ratio is a value between 0 and 1. In the next step the nonconformity ratio is min-

imized. In order to avoid negative values ofr̂min
i , log(r̂i) are modelled instead of̂ri, wherer̂i gives

the estimated nonconformity ratio forYi.

The model is supposed to be quadratic and the coefficients of the model are estimated using ordinary

least squares. The adequacy of the model is checked using the F statistic. The F statistic measures the

goodness of fit of the model with

Fi =

n0∑
u=1

( ̂log(r̂iu)− log(r̂i))
2(n− p− 1)

n0∑
u=1

(log(r̂iu)− ̂log(r̂iu))p
,

wherel̂og(r̂i) = gi(X1, X2), with the number of variablep = 2 and the number of the experimental

design runsn0 = n = 9 as there is one observation at each run. The runs are showed in Table 5.1.The

model is judged appropriate if the F statistic is 10 times greater than the F percentage point as noticed

Box and Draper (1987, p.280). In the simulation study in section 5.2 if the condition on the F statistic

is fulfilled, then step 7 is started otherwise the algorithm is restarted from step 1.

Step7: nonconformity ratios minimization

Each nonconformity ratiôri is minimized using a grid search. It is important to notice that the log

transformation avoids to have a minimum of the nonconformity ratio which is negative. Knowing

the minimum of each nonconformity ratio allows the determination of the desirability functions as
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Table 5.1: Distributions and Nonconformity Ratios forY1 andY2

Run number Distributions ofY1 Distributions ofY2 r1u r2u

1 Lognormal (1.90,0.5) Lognormal (1.92,0.45) 1.310× 10−3 7.994× 10−3

2 Lognormal (1.98,0.5) Lognormal (1.51,0.45) 2.260× 10−3 4.795× 10−4

3 Lognormal (0.90,0.5) Lognormal (1.50,0.45) 2.735× 10−7 4.265× 10−4

4 Lognormal (1.15,0.5) Lognormal (1.25,0.45) 3.255× 10−6 5.002× 10−5

5 Lognormal (1.00,0.5) Lognormal (1.12,0.45) 7.582× 10−7 1.529× 10−5

6 Lognormal (1.35,0.5) Lognormal (1.30,0.45) 1.986× 10−5 7.861× 10−5

7 Lognormal (1.50,0.5) Lognormal (1.38,0.45) 6.975× 10−5 1.581× 10−4

8 Lognormal (1.30,0.5) Lognormal (2.05,0.45) 1.282× 10−5 1.770× 10−2

9 Lognormal(1.60,0.5) Lognormal(1.50,0.45) 1.536× 10−4 4.265× 10−4

defined in (3.3).

Step8: desirability index maximization

Using the models in step 6 and the minimum in step 7 it becomes possible to express the desirability

index as a function of the factorsNCDM(X1, X2) = [Πp
i=1NCDUi(X1, X2)]

1
p . A grid search is

performed to find the optimum operating conditions which minimize the joint nonconformity ratio

and the corresponding desirability index is considered as reflecting the maximum process capability.

5.2 Simulation Study

Focus is on non normal distributions, hence, different Lognormal distributions are chosen forY1 and

Y2 for each run of the experimental design as shown in Table 5.1. It is assumed at this stage that

the parameters of the distributions are known. Furthermore the specification limits are set for each

response they are given by(LSL1, USL1) = (0.1, 30.1) and (LSL2, USL2) = (0.1, 20.1) for Y1

andY2 respectively. The parameters of the distributions are set in a way that the models forLog(ri)

have high F statistics and in this caseF1 = 1396 andF2 = 914.7. It should be noticed that as the

parameters of the distributions are known there is no need for computing the nonconformity ratio for

the transformed data. This means that the Box-Cox transformation is not used for the construction of

85



lambda1

F
re

qu
en

cy

0.0 0.5 1.0 1.5 2.0

0
10

0
20

0
30

0
40

0
50

0
60

0

Figure 5.1: Histogram of̂λ1.

what are supposed ”theoretical” models. The models are determined on the basis of the nonconfor-

mity ratios shown in Table 5.1. After the minimization ofri and the determination ofNCDUi, the

maximization of the desirability index provides the optimal factor levels and the desirability index

is considered as an indicator for the maximum process capability. In this caseNCDM = 0.888,

the optimal factor levels areX1 = −0.246 andX2 = −0.066. These settings are considered as a

theoretical optimum. The location parameters corresponding to these settings are 1.0303 and 1.1082

for Y1 andY2 respectively. In this simulation study it is assumed that the target valuesT1 = 1.0303

andT2 = 1.1082 for Y1 andY2 respectively. Indeed, with this assumption the loss function approach

and the nonconformity ratio approach have no conflicting goals.

In order to assess the validity of this approach under the mentioned conditions a confidence interval

is constructed for the desirability index. For this purpose the same distributions are considered and an

observation for each responseYi from each distribution at each runu is generated. The generated data

are transformed using the Box-Cox transformation. Figure 5.1 and Figure 5.2 show the histograms

for λ̂1 andλ̂2 for Y1 andY2 respectively.

It is noticed that large proportions ofλ̂1 andλ̂2 are equal zero and that only positive values ofλ̂1

andλ̂2 occur. The algorithm as described in the last section is repeated 1000 times. This number of

iterations allows to have an idea about the distribution of the desirability index and the construction
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Figure 5.2: Histogram of̂λ2.

of the confidence interval based on quantiles as explained in section 3.8. The histogram in Figure 5.3

gives an idea about the desirability index distribution. Moreover, at each iteration a repeat routine is

used, this routine is broken only when the condition on the F statistic given in step 6 is fulfilled.

Following this procedure the constructed confidence interval is [0.60,1.00]. Notice that when the

number of iterations is greater or equal 1000 the lower confidence limit could be approximated by the

order statisticNCDM[25]. Hence, it becomes possible to know the factor levels corresponding to the

lower confidence limit and they areX1 = −0.2828 andX2 = 1.414. Substituting the factor levels

into what was considered the ”theoretical” models, it becomes possible to compute the nonconformity

ratio for each variableY1 andY2 and to compute the joint nonconformity ratio which isR = 24.55×
10−5. Hence, the considered process in this simulation study is not capable. Neither the loss function

approach nor the nonconformity ratio approach can improve the process capability. In this case other

influential factors should be taken into account. A loss function approach could be adopted for the

process capability improvement when the process is still capable when the deviations from the target

values are minimized.

Notice that the confidence interval succeeds in capturing the theoretical optimum which is in favor of

the statistical validity of this approach. It would be interesting to check the impact of the goodness of

fit of the model on the confidence interval. For that purpose the condition presented in step 6 that the
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F statistic should be 10 times greater than the F percentage point is released. Figure 5.4 shows the new

distribution of the desirability index. The constructed confidence interval is given by [0.84, 1.00]. The

obtained confidence interval has shorter length than the one constructed previously. When releasing

the condition on the goodness of fit the confidence interval still contains the theoretical optimum and

is more accurate.

In order to know whether the condition on the F statistic has a significant effect on the desirability

index distribution the Levene’s test and the Mann Whitney test are used.

5.2.1 The Levene’s Test for Equality of Variances

The Levene’s test is used to test ifk samples have equal variances. Notice that in this study it is tested

whetherNCDM when the condition on theF statistic is used has the same variance withNCDM

when the condition on theF statistic is released. First, the Levene’s test is presented in the general

case. The Levene’s test is known to be less sensitive to normality. The Levene’s test is defined as:

H0 : σ1 = σ2 = . . . = σk

vs.
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Figure 5.4: Histogram of the Desirability Index When the Goodness of Fit Condition is Released.

H1 : σi 6= σj for at least one pair(i, j).

Given the variablesY1, . . . , Yk with sample sizesn1, . . . , nk andn =
k∑

i=1

ni, the Levene’s test

statistic is defined as

W =

(n− k)
k∑

i=1

ni(Z̄i − Z̄)2

(k − 1)
k∑

i=1

ni∑
j=1

(Zij − Z̄i)2

,

whereZij = |Yij − Ỹi| with Ỹi the median ofYi, i = 1, . . . , k. Moreover,Z̄i is the mean ofZij and

Z̄ is the overall mean of thek samples. The Levene’s test statistic follows the Fisher distribution with

k − 1 andn− k degrees of freedom. The Levene’s test statistic rejectsH0 at the significance levelα

if W > F (α, k− 1, n− k), whereF (α, k− 1, n− k) is the upper critical value of theF distribution.

In this studyW = 0.902 andF (0.95, 1, 1998) = 3.846. Hence, the goodness of fit of the model has

no significant effect on theNCDM distribution spread.

5.2.2 The Mann Whitney Test

The Mann Whitney test is a nonparametric equivalent for the t-test. The Mann Whitney is used to test

whether the considered variables have the same median. In this case the variables areNCDM when
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the condition on theF statistic is used andNCDM when the condition on theF statistic is released.

First the test is presented in the general case. If two variables are considered with sample sizesn1 and

n2 respectively. The following hypotheses are tested

H0 : Ỹ1 = Ỹ2

vs.

H1 : Ỹ1 6= Ỹ2.

The Mann WhitneyU test statistic is obtained by ranking all(n1+n2) observations in ascending order.

Then, the sums of the ranks corresponding to each variable are computed sayTa andTb. Hence, the

U statistic is given byU = min(Ua, Ub) where

Ua = n1n2 + 0.5n1(n1 + 1)− Ta,

Ub = n1n2 + 0.5n2(n2 + 1)− Tb.

For sample sizes larger than 20,U ∼ N(E(U), σ2), with E(U) = 0.5n1n2 andσ2 = [n1n2(n1+n2+1)]
12

.

H0 is rejected at the significance levelα if U−E(U)
σ

< zα
2

or U−E(U)
σ

> z1−α
2
, wherezα

2
is the quantile

of orderα
2

of the standard normal distribution. In this simulation study thez score associated with the

U statistic is -17.52. Hence, the goodness of fit of the model has no effect on the desirability index

distribution spread, but it has a significant effect on theNCDM distribution location at a significance

level of 5%. Moreover, the significant effect on the distribution location can provide an explanation

to the shorter length of the confidence interval in this case. Indeed, notice that in both confidence

intervals the upper limit is 1.00, this value could not be exceeded byNCDM . Hence, the change in

the confidence interval is observed only at the lower limit and in this case the confidence interval has

a shorter length.

5.3 Conclusion

Knowing that the desirability index can be used for optimization, then, the presented approach be-

comes promising as its use with experimental design is straightforward. Hence, the capability index

will not be considered only as a tool for describing the process capability but also as a tool for min-

imizing the proportion of nonconforming items. For this purpose an algorithm is defined which
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associates the use of the capability index with experimental design implementation. The assessment

of the approach based on the algorithm was done in the bivariate case and the statistical validity of

the approach was shown.
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Chapter 6

General Conclusion

In this work a linear nonconformity ratio based desirability function (NCDU ) is presented as a

process capability index.NCDU avoids the use of two different indices for assessing the actual

capability and the potential capability. Based on a real case study the performance of this index is

compared to other indices in the literature. It was demonstrated thatNCDU respects the ”higher

the better” rule for any type of distribution and for any specification limits. Moreover, a bootstrap

confidence interval is constructed forNCDU . The lower bootstrap confidence limit was used for

capability judgment. The presented univariate index overcomes some shortcomings of the existing in-

dices. However, in many cases the quality of a product is given through several quality characteristics.

Hence an extension to the multivariate case ofNCDU is given by the desirability index. Moreover, it

was demonstrated that the geometric mean of the univariate indices is suitable for process capability

assessment as it is proved that it could be written as a function of the joint nonconformity ratio for

uncorrelated quality characteristics. A threshold for the capability judgment for the multivariate index

(NCDM ) and a condition under which the multivariate index respects the ”higher the better” rule

were proposed. Furthermore, a condition under which the threshold for capability judgment could be

used for correlated quality characteristics is presented. The performance ofNCDM is compared to

other multivariate indices from the literature through a simulated example. The implementation of

NCDM revealed that it respects the ”higher the better rule” in the case study. Moreover, a bootstrap

confidence interval was constructed forNCDM and the lower limit was used for capability judg-

ment. The case study revealed that the capability of the streams needs improvement. A Monte Carlo
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simulation is performed in order to assess the ability of usingNCDM with experimental design. A

confidence interval is constructed for max(NCDM ) and it appears that the constructed interval suc-

ceeds in capturing the ”theoretical” max(NCDM ). Moreover, it is shown in this case that the model

adjustment has a significant effect on the max(NCDM ) distribution but not on the spread of the

distribution which provided an explanation for the width of the confidence interval in the considered

simulation.

A nonconformity ratio approach is used in order to assess a multi-stream screwing process. The

considered univariate indexNCDU reflects better the state of the process than other considered

univariate indices. Moreover, it was noticed that although the material of the screw 1 support is

less resistant to the screwing operation, the screw 1 streams present better capability than screw 2

streams. This judgment is based on the lower limit of the bootstrap confidence interval ofNCDU .

It would be interesting to check the technical possibility of using the same material for both screws.

However, many outliers are observed for screw1 and this due mainly to the fact that the interior of

some supports are broken during the screwing operation. The elimination of outliers would improve

considerably the quality of the final product. Furthermore, even for screw 1, stream 2 does not present

an acceptable capability and the closing machine 2 should be checked and its settings compared to

the other machine settings.

As the streams are not correlated, the properties ofNCDM proved in Chapter 4, make of it a suitable

index in order to assess the capability of multi-stream processes. The interest of usingNCDU and

NCDM is based on the fact that they are used for a wide range of non normal distributions and

specification limits as they do not depend directly on the distributions parameters.

An alternative to the use of the same screw support material is to run an experimental design for

screw 2 streams. In Chapter 5, the statistical validity of this approach is showed through a simulation

study. The use of the experimental design provides an answer to whether a loss function approach

could be adopted or not. However, more investigations are required in order to give such answer. The

investigations should take into account specially the case when the loss function approach and the

nonconformity ratio approach have conflicting goals. Moreover, the investigations should cover the

effect of the adjustment of the model, and transformations on final results. That is a challenging topic
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which should be associated to the adaptation ofNCDM to correlated quality characteristics.
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Proof of Lemma 2:

Notice that

NCDMp = NCDM (p−1)USL
′ − rp

USL′ − C
,

the general expression ofNCDM is proved by induction.

Forp = 2 the desirability index is given by

NCDM2 =
USL

′2
+ USL

′
(−r1 − r2) + r1r2

(USL′ − C)2

it is supposed that forp quality characteristics the desirability index is given by

NCDMp =

p−1∑
i=1

(USL
′
)(p−i)(−1)i[

p−i+1∑
j=1

p−i+2∑
k=2

. . .
p−i+l∑
m=l

. . .
p∑

q=p−1

j<k<...<m<...<q

r
1i,[1]

j r
1i,[2]

k . . . r
1i,[l]
m . . . r

1i,[p−1]
q ]

(USL′ − C)p

+
USL

′p
+ (−1)pΠp

i=1ri

(USL′ − C)p
.

In what follows it will be checked whether this expression is still true forp+1 quality characteristics.

NCDMp+1 = NCDM (p)USL
′ − rp+1

USL′ − C

(USL
′ −C)(p+1)NCDM (p+1) = (USL

′ − rp+1)[USL
′p −USL

′(p−1)

(r1 + r2 + . . . + rp) +USL
′(p−2)

(r1r2 + r1r3 + . . . + r1rp + r2r3 + . . . + r2rp + . . . + rp−1rp) + . . . + USL
′
(−1)(p−1)

(r1r2r3 . . . rp−1 + r1r2r4 . . . rp + . . . + r2r3 . . . rp) + (−1)pΠp
i=1ri]

(USL
′ − C)(p+1)NCDM (p+1) = USL

′(p+1) − rp+1USL
′p − USL

′p
(r1 + r2 + . . . + rp)

+rp+1USL
′(p−1)

(r1+r2+. . .+rp)+USL
′(p−1)

(r1r2+r1r3+. . .+r1rp+r2r3+. . .+r2rp+. . .+rp−1rp)+. . .

+(−1)rp+1USL
′
(−1)(p−1)(r1r2r3 . . . rp−1 + r1r2r4 . . . rp + . . . + r2r3 . . . rp)

+USL
′
(−1)pΠp

i=1ri + (−1)rp+1(−1)pΠp
i=1ri
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(USL
′ −C)(p+1)NCDM (p+1) = USL

′(p+1)

+ (−1)(p+1)Πp+1
i=1 ri−USL

′(p)

(r1 + r2 + . . . + rp + rp+1)

+USL
′(p−1)

(r1r2 + r1r3 + . . .+ r1rp + r1rp+1 + r2r3 + . . .+ r2rp + r2rp+1 + . . .+ rp−1rp+1 + rprp+1)

+ . . .+USL
′
(−1)p(r1r2r3 . . . rp−1rp + r1r2r3 . . . rp−1rp+1 + r1r2r4 . . . rprp+1 + . . .+ r2r3 . . . rprp+1)

(USL
′ − C)(p+1)NCDM (p+1) = USL

′p+1

+ (−1)(p+1)Π
(p+1)
i=1 ri

+

p∑
i=1

(USL
′
)(p+1−i)(−1)i[

p−i+2∑
j=1

p−i+3∑

k=2

. . .

p+1−i+l∑

m=l

. . .

p+1∑
q=p

j<k<...<m<...<q

r
1i,[1]

j r
1i,[2]

k . . . r
1i,[l]
m . . . r

1i,[p]
q ].

The expression is confirmed forp + 1 quality characteristics ¤
Proof of Lemma 3:

Notice that the joint nonconformity ratio forp uncorrelated quality characteristics is given by

Rp = 1− [(1− r1)(1− r2) . . . (1− rp−1)(1− rp)]

Rp = 1− [(1−Rp−1)(1− rp)]

The general expression of(−Rp) is obtained by induction.

p=4:

−R4 = −r1−r2−r3−r4+r1r2+r1r3+r1r4+r2r3+r2r4+r3r4−r1r2r3−r1r2r4−r2r3r4+r1r2r3r4

It is supposed that forp quality characteristics(−Rp) is written as follows

−Rp =

p−1∑
i=1

(−1)i[

p−i+1∑
j=1

p−i+2∑

k=2

. . .

p−i+l∑

m=l

. . .

p∑
q=p−1

j<k<...<m<...<q

r
1i,[1]

j r
1i,[2]

k . . . r
1i,[l]
m . . . r

1i,[p−1]
q ]+ (−1)pΠp

i=1ri

In what follows it will be checked whether this expression is still true forp+1 quality characteristics.

Rp+1 = 1− [(1−Rp)(1− rp+1)]

R(p+1) = 1− [(1− r1 − r2 − . . .− rp + r1r2 + r1r3 + . . . + r1rp + r2r3 + . . . + r2rp + . . . + rp−1rp

+ . . . + (−1)(p−1)(r1r2r3 . . . rp−1 + r1r2r4 . . . rp + . . . + r2r3 . . . rp) + (−1)pΠp
i=1ri)(1− rp+1)]
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−R(p+1) = −r1− r2− . . .− rp− rp+1 + r1r2 + r1r3 + . . .+ r1rp + r1rp+1 + r2r3 + . . .+ r2rp + r2rp+1

+ . . . + rp−1rp + rprp+1 + . . . + (−1)p(r1r2r3 . . . rp−1rp + r1r2r4 . . . rprp+1 + . . . + r2r3 . . . rprp+1)

+(−1)p+1Πp+1
i=1 ri

−R(p+1) =

p∑
i=1

(−1)i[

p−i+2∑
j=1

p−i+3∑

k=2

. . .

p+1−i+l∑

m=l

. . .

p+1∑
q=p

j<k<...<m<...<q

r
1i,[1]

j r
1i,[2]

k . . . r
1i,[l]
m . . . r

1i,[p]
q ]+

(−1)(p+1)Π
(p+1)
i=1 ri

The expression is confirmed forp + 1 quality characteristics ¤
Proof of Lemma 4:

From Lemma 2 the general expression ofNCDM is given by

NCDMp =

p−1∑
i=1

(USL
′
)(p−i)(−1)i[

p−i+1∑
j=1

p−i+2∑
k=2

. . .
p−i+l∑
m=l

. . .
p∑

q=p−1

j<k<...<m<...<q

r
1i,[1]

j r
1i,[2]

k . . . r
1i,[l]
m . . . r

1i,[p−1]
q ]

(USL′ − C)p

+
USL

′p
+ (−1)pΠp

i=1ri

(USL′ − C)p
.

This means that

(USL
′ − C)pNCDMp = USL

′p
+ (−1)pΠp

i=1ri − USL
′(p−1)

(r1 + r2 + . . . + rp−1 + rp)

+USL
′(p−2)

(r1r2 + r1r3 + . . .+ r1rp−1 + r1rp + r2r3 + . . .+ r2rp−1 + r2rp + . . .+ rp−2rp−1 + rp−1rp)

+ . . .+USL
′
(−1)p−1(r1r2r3 . . . rp−2rp−1+r1r2r3 . . . rp−2rp+r1r2r4 . . . rp−1rp+. . .+r2r3 . . . rp−1rp)

NCDM could be written as follows

(USL
′−C)pNCDMp = USL

′p
+(−1)pΠp

i=1ri+USL
′(p−1)

(−r1−r2−. . .−rp−1−rp+r1r2+r1r3+

. . . + r1rp−1 + r1rp + r2r3 + . . . + r2rp−1 + r2rp + . . . + rp−2rp−1 + rp−1rp + . . .

+(−1)p−1(r1r2r3 . . . rp−2rp−1 + r1r2r4 . . . rp−1rp + . . . + r2r3 . . . rp−1rp) + (−1)pΠp
i=1ri
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−(r1r2 + r1r3 + . . . + r1rp−1 + r1rp + r2r3 + . . . + r2rp−1 + r2rp + . . . + rp−2rp−1 + rp−1rp + . . .

+(−1)p−1(r1r2r3 . . . rp−2rp−1 + r1r2r4 . . . rp−1rp + . . . + r2r3 . . . rp−1rp) + (−1)pΠp
i=1ri))

+ . . . + USL
′
(−1)p−1(−r1 − r2 − . . .− rp−1 − rp + r1r2 + r1r3 + . . . + r1rp−1 + r1rp + r2r3 + . . .

+r2rp−1 +r2rp + . . .+rp−2rp−1 +rp−1rp + . . .+(−1)p−1(r1r2r3 . . . rp−2rp−1 +r1r2r4 . . . rp−1rp + . . .

+r2r3 . . . rp−1rp) + (−1)pΠp
i=1ri − (−r1 − r2 − . . .− rp−1 − rp + r1r2 + r1r3 + . . . + r1rp−1 + r1rp

+r2r3 + . . . + r2rp−1 + r2rp + . . . + rp−2rp−1 + rp−1rp + . . .

+(−1)p−2(r1r2r3 . . . rp−3rp−2 + r1r2r4 . . . rp−2rp−1 + . . . + r3r4 . . . rp−1rp) + (−1)pΠp
i=1ri))

Using the expression of the joint nonconformity ratio in Lemma 3, the expression ofNCDM is then

given by

(USL
′−C)pNCDMp = USL

′p
+(−1)pΠp

i=1ri+USL
′(p−1)

(−Rp−(r1r2+r1r3+ . . .+r1rp−1+r1rp

+r2r3 + . . . + r2rp−1 + r2rp + . . . + rp−2rp−1 + rp−1rp + . . . + (−1)p−1(r1r2r3 . . . rp−2rp−1

+(r1r2r4 . . . rp−1rp) + . . . + r2r3 . . . rp−1rp) + (−1)pΠp
i=1ri)

+ . . . + USL
′
(−1)p−1(−Rp− (−r1− r2− . . .− rp−1− rp + r1r2 + r1r3 + . . . + r1rp−1 + r1rp + r2r3

+ . . . + r2rp−1 + r2rp + . . . + rp−2rp−1 + rp−1rp + . . .

+(−1)p−2(r1r2r3 . . . rp−3rp−2 + r1r2r4 . . . rp−2rp−1 + . . . + r3r4 . . . rp−1rp) + (−1)pΠp
i=1ri))

(USL
′ − C)pNCDMp = USL

′p
+ (−1)pΠp

i=1ri

p−1∑
i=1

USL
′(p−i)

(−(

p−1∑
u=1u6=i

(−1)u[

p−u+1∑
j=1

p−u+2∑

k=2

. . .

p−u+l∑

m=l

. . .

p∑
q=p−1

j<k<...<m<...<q

r
1u,[1]

j r
1u,[2]

k . . . r
1u,[l]
m . . . r

1u,[p−1]
q ])

−(−1)pΠp
i=1ri −Rp).
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¤
Proof of Lemma 5

In Lemma 4 it is proved that

(USL
′ − C)pNCDMp = USL

′p
+ (−1)pΠp

i=1ri

+

p−1∑
i=1

USL
′(p−i)

(−(

p−1∑
u=1u 6=i

(−1)u[

p−u+1∑
j=1

p−u+2∑

k=2

. . .

p−u+l∑

m=l

. . .

p∑
q=p−1

j<k<...<m<...<q

r
1u,[1]

j r
1u,[2]

k . . . r
1u,[l]
m . . . r

1u,[p−1]
q ])

−(−1)pΠp
i=1ri −Rp).

This means that

(USL
′ − C)pNCDMp = USL

′p
+ (−1)pΠp

i=1ri

+

p−1∑
i=1

USL
′(p−i)

(−(

p−1∑
u=1u 6=i

(−1)u[

p−u+1∑
j=1

p−u+2∑

k=2

. . .

p−u+l∑

m=l

. . .

p∑
q=p−1

j<k<...<m<...<q

r
1u,[1]

j r
1u,[2]

k . . . r
1u,[l]
m . . . r

1u,[p−1]
q ])

−(−1)pΠp
i=1ri)−Rp

p−1∑
i=1

USL
′(p−i)

.

Hence,

Rp

p−1∑
i=1

USL
′(p−i)

= −NCDMp(USL
′ − C)p + USL

′p
+

p−1∑
i=1

USL
′(p−i)

(−(

p−1∑
u=1u6=i

(−1)u[

p−u+1∑
j=1

p−u+2∑

k=2

. . .

p−u+l∑

m=l

. . .

p∑
q=p−1

j<k<...<m<...<q

r
1u,[1]

j r
1u,[2]

k . . . r
1u,[l]
m . . . r

1u,[p−1]
q ])

−(−1)pΠp
i=1ri) + (−1)pΠp

i=1ri.

¤

Proof of Theorem 1

Theorem 1 concerns two components, the desirability index and the joint nonconformity ratio for un-

correlated quality characteristics. The general expression of both components is proved by induction

in Lemmas 2-4.

Following Lemma 5, the joint nonconformity ratio for uncorrelated quality characteristics is expressed

as follows:
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Rp

p−1∑
i=1

USL
′(p−i)

= −NCDMp(USL
′ − C)p + USL

′p
+

p−1∑
i=1

USL
′(p−i)

(−(

p−1∑
u=1u6=i

(−1)u[

p−u+1∑
j=1

p−u+2∑

k=2

. . .

p−u+l∑

m=l

. . .

p∑
q=p−1

j<k<...<m<...<q

r
1u,[1]

j r
1u,[2]

k . . . r
1u,[l]
m . . . r

1u,[p−1]
q ])

−(−1)pΠp
i=1ri) + (−1)pΠp

i=1ri.

However, the capability is confirmed only ifRp ≤ USL
′

and this means that the capability is con-

firmed if

(USL
′ − C)pNCDMp ≥

p−1∑
i=1

USL
′(p−i)

(−(

p−1∑
u=1u 6=i

(−1)u[

p−u+1∑
j=1

p−u+2∑

k=2

. . .

p−u+l∑

m=l

. . .

p∑
q=p−1

j<k<...<m<...<q

r
1u,[1]

j r
1u,[2]

k . . . r
1u,[l]
m . . . r

1u,[p−1]
q ])− (−1)pΠp

i=1ri − USL
′
) + USL

′p
+ (−1)pΠp

i=1ri.

¤

113



References

1-Bissell, A.F. (1990). ” How reliable is your capability index? ”. Applied Statistics, Vol. 39, N. 3,

pp. 331-340.

2-Box, G., Cox, D.(1964): ”An Analysis of Transformations”. Journal of the Royal Statistical Soci-

ety, Series B, pp.211-264.

3-Box, G. E. P., Draper, N. R.(1987): ”Empirical Model Building and Response Surfaces”. New

York, John Wiley and Sons.

4-Boyles, R.A. (1994). ” Process capability with asymmetric tolerances ”. Communications in Sta-

tistics, Part B: Simulation and Computation, Vol. 23, N. 3, pp. 615-643.

5-Boyles, R.A. (1991). ” The Taguchi capability index ”. Journal of Quality Technology, Vol. 23, N.

1, pp. 17-26.

6-Breyfogle III, F.W. (2003). ” Implementing Six Sigma Smarter Solutions Using Statistical Meth-

ods.” John Wiley and Sons,Inc., Hoboken, New Jersey.

7-Chan, L.K., Cheng, S.W, Spiring, F.A. (1991). ” A multivariate measure of process capability ”.

International Journal of Modeling and Simulation, Vol. 11, N. 1, pp. 1-6.

8-Chen, H. (1994).”A multivariate process capability index over a rectangular solid tolerance zone”.

Statistica Sinica, Vol. 4, pp. 749-758.

9-Choi, I.S., Bai,D.S. (1996).”Process Capability Indices for Skewed Populations.” Proc.20th Int.Conf.on

Computer and Industrial Engineering, pp. 1211-1214.

10-Derringer, G.C., (1994)”A balancing Act: Optimizing A Product’s Properties.” Quality Progress,

June 1994, pp.51-58.

11-Derringer, G.C., Suich, D. (1980). ”Simultaneous optimization of several response variables.”

Journal of Quality Technology 12 (4), pp. 214-219.

12-Efron, B., Tibshirani, R.J. (1993). ”An Introduction to the Bootstrap.” Chapman and Hall/CRC,

London.

13-Harrington, E., (1965) ”The Desirability Function” Industrial Quality Control, pp.494-498.

14-Hsiang, T.C., Taguchi, G., (1985).” A Tutorial on Quality Control and Assurance-The Taguchi

Methods.” American Association Meeting, p.188, Las Vegas, Nevada.

15-Jessenberger, J. (1999): Prozessf̈ahigkeitsindizes in der Qualitätssicherung; Libri Books on De-

114



mand.

16-Johnson,N.L., Kotz, S., and Pearn, W.L. (1994).”Flexible Process Capability Indices.” Pakistan

Journal of Statistics, 10(1)A, pp. 23-31.

17-Kendall, M., Gibbons, J.D., (1990) ”Rank Correlation Methods.” Edward Arnold, London.

18-Kim, K.J., Lin, D.K.J, (2000) ”Simultaneous optimization of mechanical properties of steel by

maximizing exponential desirability functions.” Applied Statistics, Vol.49, Part 3, pp. 311-325.

19-Kotz, S., Jonson, N.L. (1993).”Process capability indices”. Chapman and Hall, London.

20-Lovelace, C.R., Kotz, S. (1998).”Process capability indices in theory and practice”. Arnold,

London.

21-McNeese, W.H., Klein, R.A. (1991).”Measurement System, Sampling, and Process Capability.”

Quality Engineering Vol. 4, N. 1,pp. 21-39.

22-Montgomery, D.C (1996).”Introduction to Statistical process control”.

23-Moore, D.S., (1986)”Tests Of Chi-Squared Type” In ”Goodness Of Fit Techniques”, R.B., D’Agostino

and M.A., Stephens eds. New York: Marcel Dekker.

24-Parlar, M, Wesolowsky, G.O. (1999).” Specification limits, capability indices, and process cen-

tering in assembly manufacture ”. Journal of Quality Technology, Vol. 31, N. 3, pp. 317-325.

25-Pearn, W.L, Kotz, S, Johnson, N.L. (1992).” Distributional and inferential properties of process

capability indices ”. Journal of Quality Technology, Vol. 24, N. 4, pp. 216-231.

26-Siegel, S. (1956).” Non-parametric Statistics ”. McGraw-Hill Book Company, New York.

27-Somerville, S.E, Montgomery, D.C. (1996).” Process capability indices and non-normal distri-

butions ”. Quality Engineering, Vol. 9, N. 2, pp. 305-316.

28-Stephens, M.A., (1986).”Tests Based on Regression and Correlation”. In ”Goodness Of Fit

Techniques”, R.B., D’Agostino and M.A., Stephens eds. New York: Marcel Dekker.

29-Taam, W, Subbaiah, P, Liddy, J.W. (1993).” A note on multivariate capability indices ”. Journal

of Applied Statistics, Vol. 20, N. 3, pp. 339-351.

30-Tang, L.C., Than,S.E., (1999).”Computing Process Capability Indices for Non-Normal Data: A

Review and Comparative Study”. Quality and Reliability Engineering International, 15, pp. 339-353.

31-Telmoudi, R., Limam, M., (2000). ”Process Capability Indices: Theory and Practice”. Master

thesis, Institut Superieur de Gestion de Tunis, Libri Books on Demand.

115



32-Vännman, K. (1997).”A General Class of Capability Indices In the Case of Asymmetric Toler-

ances.” Commun. Statist.-Theory Meth., 26(8), pp. 2049-2072.

33-Wang, F.K, Chen, J.C. (1998).” Capability index using principal components analysis ”. Quality

Engineering, Vol. 11, N. 1, pp. 21-27.

34-Wang, F.K, Hubele, N.F, Lawrence, F.P, Miskulin, J.D, Shahriari, H. (2000).” Comparison of

three multivariate process capability indices”. Journal of Quality Technology, Vol.32, N. 3.

35-Wierda, S.J. (1993). ” A multivariate process capability index”. ASQC- Quality Congress

Transactions-Boston, pp. 342-348.

36-Wright, P.A. (1995). ”A Process Capability Index Sensitive to Skewness.” J. Statist. Comput.

Simul., 52, pp. 195-203.

116



Acknowledgement

I would like to thank Professor Dr. Claus Weihs for the corrections he made on my thesis and for his

efforts and support. I would like to thank Professor Dr. Franz Hering and Professor Dr. Mohamed

Limam for their support and supervising efforts. Finally I would like to thank the board of the graduate

school for production engineering and logistics for supporting this work.

Declaration

Hereby I declare that the available thesis represents an independent research achievement, and that I

used no different than the quoted sources and aids.

117


