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Chapter 1

Prerequisite

Quiality of products in the current economy context of hard competition, is a brand image guarantor.
The inspection of the quality of products or services provided by a company is an infallible proof of
the presence of competences within the organization. Mastering the process of quality control is &
guarantee for the company competitiveness.

Many definitions have been given to quality, but no one of them is an unanimous definition. In
fact, everyone considers quality from his (her) own point of view. However, in the scope of this work,
the definition given by Montgomery (1996) is adopted:"the fitness for use”. Following this definition,

a product has a good quality if it satisfies the customer expectations. Although this definition clarifies
the quality concept, it seems to be vague for the manufacturers who want to integrate quality in their
decision making process.

The quality of a product is expressed through some quality characteristics. The customer expec
tations concerning a measurable quality characteristic are often expressed in terms of the lower spet
ification limit (LS L), the target valuel() and the upper specification limi/(5L). When the quality
characteristic measure falls between the specification limits then the customer expectations are ful
filled. However, an item presenting a quality characteristic measure which is outside the specificatior
limits is non conform to the customer expectations, hence the customer is not satisfied. Moreover, th
customer satisfaction is maximized when the quality characteristic measure equals the target valu
(7). T is the value that the designers of the product give to the quality characteristic in the aim to

satisfy some needs of the customers. It is not possible that all the produced items have a measure



quality characteristic which is equal to the target vallig (ndeed, it is admitted that the variability
exists all around us, the same experiences are made in the same conditions, but, will not give necess:
ily the same results. Since nature offers to us this variability it is called a natural variability. Starting
from this fact, it is understandable to admit that the process output presents a given variability and
it is dangerous to start the production with a process presenting a large variability. Indeed, this kind
of process gives an important proportion of non conforming products. The "enemy” of the perfect
product is the uncontrolled variability. Manager efforts for improving the product quality should be
oriented toward understanding variability causes, evaluating the variability impacts and trying to re-
duce this variability. As long as the expected value of a given quality characteristic is most likely
to fall between the specification limits, reducing variability is equivalent to reducing the proportion
of non conforming items, hence, increasing the customer satisfaction. In order to reach these goals
statistics becomes an important tool in quality improvement. Process Capability Indices (PCIs) are

an important tool of statistical process control. PCI general form is

Specification limits width

PCI = —
Natural process variability

This PCI form allows to summarize the ability of a process to meet the customer requirements. Figure
1.1 is a visualization of the specification band which represents the performance standard establishe
by the customer and the tolerance band which represents the process performance.

The introduction of PCls in the United States triggered off the extension of the use of PCIs. In-
deed, each company wants to be sure that the products delivered by its suppliers meet its requiremen
Hence, PCls are considered as an important tool for the suppliers selection. Following this reasoning
the supplier who wants to win the customer confidence should have a process presenting an acceptalt
capability level.

In order to assess the process capability, the specification limits width called also specification
width and the natural variability need to be computed. For that purpose the process capability index

computation is based on some assumptions.



Tolerance band

LSL Specification band UsL

Figure 1.1: Visualization of the Specification Band and the Tolerance band.

1.1 PCI Assumptions

Measuring the process ability to meet the customer expectations is very important. The customers ex
press their expectations by providing the specification limits for the quality characteristics of interest.
The process performance is evaluated by the comparison of the process variability to the specificatio
limits width. This comparison could be carried out using the histogram or the control chart. Hence,
the process performance evaluation is done visually. However, managers need a value which summ:;
rizes this process performance, allows to follow the performance evolution and to compare it with the
performance of other processes.
From the general form of the process capability indices it is clear that the rule of thumb for the

PCls is that the higher the process capability index value, the more able the process to satisfy th

customer expectations. In order to compute PCls the following assumptions are commonly admitted
e The process is under statistical control.

e The underlying distribution is the normal distribution.

1.1.1 The Process is Under Statistical Control

Before computing the indices, data is collected by successive samples. Averages of the collecte
samples are represented on the control chart. If the represented points are within the control limits

the process is under statistical control. It should be noticed that the used sample size should b



greater or equal 5 in order to be able to determine the control limits using the central limit theorem.

The control limits for ther control chart are computed as follows:

central line= z,

This means that the obtained data reflects a variability only due to the process and not to some extern,
or special causes. Under this assumption the process capability index enables a comparison betwe
the real process performance and the standard performance established by the customer or set by 1

engineers.

1.1.2 The Underlying Distribution is the Normal Distribution

The process variability is measured by the tolerance band. It is determined through two values be
tween which there is an important fraction of the population. The width of this interval measures
the natural variability of the process. Montgomery (1996) pointed out that if the normal distribution
assumption holds, the interval + 30| contains99.73% of the population, wherg ando are the
expected value and the standard deviation of the distribution. Moreover, such interval can be con:
structed for other distributions, Lovelace and Kotz (1998) noticed that this is the reason which makes
some authors extend this assumption to the existence of a probability distribution for the collected
data. Hence, the natural variability is obtained through the estimation of the quaxfilgss; and
Xo.99865 Of the identified probability distribution. It is important to recall that the quantile of osider

X, satisfies:Pr[X < X,] = a. However, it is commonly admitted that the underlying distribution

is the normal distribution in order to make the determination of the statistical properties of the indices

tractable.

The widely used process capability indices are:

USL — LSL
= - 7= 1.1
 USL—p p—LSL
= 1.2
Cpk mln{ 30 ; 3 }a ( )

7



USL - LSL

Com = , 1.3

6o+ (u—T)? (13)
min{USL — p, . — LSL

Opmk = { ke }7 (14)

3vor+ (u—T)?
where,;s ando are the parameters of the normal distribution.

1.2 The Index Structures

Since their first appearance in industry, the structures of the process capability indices have bee
revised several times. These changes aimed at taking into account the deviations from the PCI a:
sumptions. Statisticians and quality engineers tried to improve the indices performance in reflecting
the real process capability and to avoid misleading interpretations when using PCIs. The new gener
ation of indices takes into account the particularity of some collected data, like autocorrelation and
non normality. The index structures are still one of the basic and most important problem of the PCls
theory. This problem becomes more obvious for the multivariate case. Nevertheless, in their evolutior
the PCls are still based mainly on two approaches: The nonconformity ratio approach and the los:
function approach. In this work we focus on the deviation from the normal distribution assumption

and only the nonconformity ratio approach is considered. In order to explain the reason for this option
the nonconformity ratio approach and the loss function approach are explained and the relationshij

between both approaches is presented.

1.2.1 The Nonconformity Ratio Approach

The structure of the first and the second generation of indices is the most basic and the most simple
The classical indices belonging to these generations are the most known. However, these indices ha

different interpretations.

The Potential Capability Index

The indexC, given by (1.1) is considered as the first generation of PCls. In (1.1) the specification
width is fixed by the engineers or imposed by the customers. However, under the normality assump

tion 60 is used as denominator. Indeed, with such assumption, the chosen denominator represen

8



99.73% of the population. Hence, if th€, index is used, reducing the process variation guarantees a
higher quality level, more capability to meet the specification limits and a higher valtig d&ut at

which value ofC), the process is considered capable?

In this way Montgomery (1996) suggests (for an existing process) 1.33 as a minimum vafug for
This value provides satisfactory capability of the process. When the normal distribution holds it cor-
responds t0.0064% of non conforming products and 4@ level in the six sigma theory as mentioned

by Breyfogle Il (1993).

In fact, care must be taken before concluding such interpretation, because, in theCaselek,
the association of’, value and the nonconformity ratio is not so direct and may not reflect the actual
capability of the process even when the normal distribution holds.

Since the nonconformity ratio is the main interpretatiorCpfindex, it is interesting to integrate
C, in its computation in order to find a direct link between them. Considering a quality characteristic

X, under the normality assumption the nonconformity ratio is expressed as:

P[X > USL] + P[X < LSL]

X — USL — X — LSL —
oo o p X o
g o o o
USL — LSL —

o o

= P|

]

= nonconformity ratio= 1 — @]

If w is substituted by SLEL5E then:

nonconformity ratio= 2¢(—3C,,).

Itis important to notice that th€, index depends only on. If several processes having the same stan-
dard deviation but with different expected values are considered it is pointed out that these processe
have the same index value and different nonconformity ratios.

Hence, the interpretation of th€, value is reliable only for a fixed value of the location parameter

w. In order to avoid any confusion, whér), index is used, it is assumed thats the midpoint of the
specification limits. Indeed, given the symmetry of the normal distribution, it becomes very interest-
ing to assume that the distribution mean is centered between the specification limits. In this way the

nonconformity ratio is minimized. Under such assumption the nonconformity ratio corresponding to

9



the C,, value is the optimal ratio that the process can reach through the adjustment of the location pa:
rameter. Hence, it is assumed tligtmeasures thegbtential process capability. This means that
C, corresponds to the nonconformity ratio when the distribution mean is actually centered between

the specification limits.

The Actual Capability Index

It was noticed tha€’, structure does not take into account the effect of the location of the distribution
on the process capability. That is the reason behind creating the second generation of @iglices:
andC,,,.
C,i, is presented as follows :

Cpr = min(C'F,, CP,),
with

:USL—,u and CPl:’u_LSL.

CP,
30 30

The following identity,

. 1 1
min(x,y) = 5(515 +y) — §|$ —

is used in order to give a more clear expressior‘igras follows:

B USL—LSL_ | — M|
N 6o 30
[ — M|

=G

where) is the midpoint of the specification limits witdy = ZSLELSL.

Co (1.5)

From the structure of th€,,;, index it is noted that the mean of the process divides the specification
width into two areas and an index is computed for each areaCThealue is the minimum of these
two indices. This means that the capability computation is based only on the closest side of the
distribution to the specification limits.
The problem with this structure is that it evolves a simultaneous effect of the variance and the proces:

mean. Indeed, several combinations of the distribution parameters give th€ sawadue. However,

10



it is obvious that this value corresponds to different nonconformity ratios.
Since the nonconformity ratio is one of the most important interpretations of the process capability
indices, it is very interesting to have a link betwe@p, and the nonconformity ratio or the process
yield with process yield= 1 — nonconformity ratio. A glance at th€,, structure reveals that this
relationship is more complicated than 05 index.
Boyles (1991) gives this link in form of bounds of the process yield for each valdg,of These
bounds are:

100{2®(3C,,) — 1} < %yield < 100{®(3Cp) }.

These bounds are obtained as follows: Since

USL—M>_(I)(LSL—,u

o o

%yield = 100[d( ),

USL—p LSL—pu

Cpr = min(===£, =2=F) can be interpreted as follows:

Cop < USL=t andCy < 5L &5 20(3C,y,) — 1 < B[USLt] — p[LSL-w]

[

The upper bound is in fact an approximation:

1 . LSL — . —USL
Cyr = =min(d~[%yield + @(M)], o~ [ryield + ‘I’(ﬂ

3 > )

if Cpp = tmin{®~![%yield + &(X5L=£)]} then, %yield = ®(3C,;,) — d(E2L=2).

Now if C, = 3{®![%yield + @(@)]} then,%yield = ®(3C,x) — @(#).

In both casesjvyield < ®(3C,;).

From (1.5) it is noted that’,, < C, andC,;, = C, only wheny is centered between the specification
limits. It becomes clear that centering the process mean between the specification limits improves th
process capability and the process yield. Henggjs interpreted as thedttual process capability.

If C;, andC,,;, are used at the same time, weaknesses in their structures are covered. They give mor
information about the process behavior and directions for capability improvement. The simple struc-
ture of these indices make them easy to comprehend. Thus, they are the most frequently used indice

in industry.
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For the indicesC), and C,;, it is expected that their values increase when the nonconformity ratio
decreases, it is said then that the indices respect the "higher the better” rule. However, as it is showi
in the literature mainly by Somerville and Montgomery (1996), Tang and Than (1999) and in this
work, these indices are not indicative of the process capability when the normal distribution does not
hold. Indeed, these classical indices do not respect the "higher the better” rule when non norma
distributions are considered. Furthermore, more weaknesses of these indices were proved when tt

loss function approach was incorporated in (1.3).

1.2.2 The Loss Function Approach

The loss function is considered in a point estimation context. First the UMVU estimator needs to be
defined. An UMVU estimator is an unbiased estimator which presents the minimum variance among
all other unbiased estimators for the same parameter. There are several methods which allow th
determination of the UMVU estimator.
Letzy, ..., z,, be arandom sample from a distribution with probability density function (p.((f) ),
0 € Q. LetY = u(xy,...,x,) be a statistic giving the point estimatetfand leté(y) be a function of
observed value of". ¢ is a decision function andly) is a decision. In order to measure the goodness
of this point estimate we need to measure the difference betteem /(y) through the function
L[6(y),0]: Lis the loss function. The expected value of the loss function is a REK:)].
If g(y,0) is a p.d.f ofY” we can write
+00

RIO.6) = ELLB. )] = [ LI0.80)lo(o-d)d
Then, we have to use point estimatédhat minimizesR[d, 6]V0 € Q. With the restrictionZ [0 (y)] =
6 and usingL[, d(y)] = (0—4d(y))?, R[#, 5] will be in fact the variance of(y). If §(y) that minimizes
R0, ] is found, we get an UMVU estimator éf Hence the loss function measures the deviation of

the estimator from the parameter to be estimated.

The loss function approach was introduced in statistical process control by Hsiang and Taguchi
(1985). They proposed to substitute the variasice- £(X — ;1) by a new approach which considers

a variation around the target valge= E(X — T)2. In this way, any deviation of the measured value

12



x of the quality characteristic X from the target vallieentails a monetary loss to the producer. This
monetary loss can be expressed4s) = k(z — T)?, wherek is a positive constant related to the
amount of the penalty supported by the company per product unity.

In (1.4) a pure monetary approach is not adopted,/avalue is set td. The expected loss is given

by: E(L(X)) = E(X —T)* =<2

2 can also be written in the alternative for? = o2 + (1 — T')%. This form presents a process
variability penalized by the deviation of the expected value of the process from the targettglue.

is defined in (1.3).

From theC,,, structure it is deduced that a higher capability level is obtained through:

- The reduction of the dispersion around the mean.

- The adjustment of the mean to the target value.

This index incorporates a new component: the target value. It will be then more sensitive than other
indices to departures from. Hence, when the hypotheses explained in 1.1.1 and 1.1.2 hold this
index gives more information about the process. Lovelace and Kotz (1998) noticed that there exist nc
reliable link betweerd,,,, and the nonconformity ratio. Moreover, from tg,, structure it is noticed

that the index value reaches its maximum whes adjusted td@". In this case whefi’ is the midpoint

of the specification limits, the "higher the better” rule is respected in the loss function approach and the
nonconformity ratio approach. However, when asymmetric specification limits are considered where
T is not at the midpoint of the specification limits, the indg&y,, reaches its maximum value when

w is adjusted td’. However,C,, andCy;, reach their maximum values whens adjusted afi/. The
nonconformity ratio approach and the loss function approach have in this case different purposes. Th
same problem arises when skewed distributions are considered with symmetric specification limits
In order to overcome this problem, the indé€¥,., defined in (1.4) was introduced by Pearn et al.
(1992) in the aim to integrate the nonconformity ratio approach and the loss function approach in one
index.

The indexC,,,, enables a compromise between both approaches. However, as for any compromise
the goals of neither the nonconformity approach nor the loss function approach are reached. Tabl
1.1 gives the direction for quality improvement proposed by both approaches.

From Table 1.1 it is obvious that both approaches have different directions for quality improve-

13



Table 1.1: Direction for quality improvement when the normal distribution holds

Nonconformity ratio approach Loss function approach

Quality improvement  Adjusting the mean ta/ Adjusting the mean t@

directions Reduce the variability around | Reduce the variability around

ment whenT' # M. Moreover, wherl' = M the approaches are different in the presence of a
non normal distribution. Indeed, in this case the quality of a product is improved when the mean is
adjusted to M following the loss function approach. For the nonconformity approach adjusting the
mean to)M leads to misleading decision about the process capability. In this case the classical in-
dices reach their maximum values wher- M. However, the nonconformity ratio is not minimized
whenp = M. Adopting a pure loss function approach in this case is dangerous as this approach still
has no connection with the nonconformity ratio. A pure loss function approach should be adopted
when its direction for quality improvement causes no serious degradation on the nonconformity ratio.
Furthermore, the study of the relationship between the indices provides better understanding of th
difference between both approaches even vihea M and allows the presentation of the approaches

properties and to improve the quality of a product.

1.3 Relationships Between Indices

Itis important in process capability indices theory to show relationships between the different indices.
This step gives clear ideas about the properties of the indices when they are faced to the same dat
and more information about quality improvement.

An effective tool that allows theoretical comparison between capability indicegisa@ plot for

LSL < p <USLando > 0. This work is due to Boyles (1991) who illustrated five contourg’pf
andC,y in the (i, o) plan, and five contours @}, andC,,, in the (¢, o) plan.

From these illustrations it is noted th@f > C,, andC, > C,,,. C,, andC,,, reach their maximum
wheny is centered at the midpoint of the specification limits which is assumed to be the target value.
At their maximumC,;, andC,,, are equal ta’},, and decrease whgnmoves away fromV/ in the

case of symmetric specification limits.

14



It is noted that”,;, does not take into account the distance betweand7" and becomes arbitrarily

large asr approaches 0, independently of this distance.

However,C,, andC,,; could be used at the same time to overcome their weaknesses. Indeed, when
there is a large difference betweélp andC,;, values, it would be better to center the process mean

at the midpoint in the aim to have a higher capability of the process. Then, for more capability im-
provement, the variability around the mean should be reduced. This step would be applied also fol
Cypm only for the case whef' = M.

Moreover, whileC,,, increases without bounds when— 0, C,,,,, is bounded and’,,,, < %

Since the absolute bound from which the process is judged as capahleis 1 (tolerance band=natural
variability band) it is assumed that a necessary condition for the capabiliy is:7'| < W

This condition is used as there exist no direct connection to the nonconformity ratio. It means that
would be in the middle third of the specification range.

After this demonstration of the index properties, interrelationships between different indices are es-

tablished. Some analytical relations can be shown like the one presented in the previous section:

1 — M|
e =Cr= g

or Cpr = (1 — k)C,.

Under the assumption @ = M, the following interrelationships can be derived:

1 | C?

Cpk:(]p—g sz_l (1.6)
pm
Cp
/TG, — C)? -7
Com = —Cp
pm 1 + (“;Z’V)Q
Com = Ok

(1 . |M—dM|) /1 + (M;Z)Q

Comie = (1= )Cym
Co

(u=T)2
0—2

Cpmk =
1+
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Parlar and Wesolowsky (1999) illustratg,, as a function of”, for a givenC,,,, using the relations
(1.6) and (1.7). They noticed th&}, = 2.8 andC,;, = 1.8 give aC,,,, of only 0.9. For the authors, the
reason of this behavior is the fact th@s andC,,;, are essentially concerned with the nonconformity
ratio rather than with adjusting the process mean on target.

From the second illustration, where they illustratg, values as a function af), for a given value of
Cyr, itis noted that for example far,,, value 0f0.9, Cy. < C,,, if C,, € [0.9;1.2]; and forC,;, value

of 1.2, Cp, < Gy, If C,, € [1.2;1.4]. However, from the indices structures, it is seen thaf is built

on the fact of penalizing the process variability by the amount of the process mean deviation from
the target value. Hence, it is expected thgf, presents a more restrictive measure of the process
capability.

As it is seen, relations between indices are not so clear, and for some valGgstbé indexC,
presents a more restrictive measure of the process capabilitythan

The fact thatC,, < C,,,, for given values of”,,, does not mean thét,, becomes more sensitive to
the departure of the process mean from the target value as the index does not depend on

In order to explain this, it is noticed that from the mathematical relatiohs, values are obtained
from the variation ofC, value and for a given value @f,;,. For a given value of’,;, it is noted that

Cpr < Gy, asC), decreases. This means that for sufficiently large process variabjity< C,,.

But, to keep the given value ¢f,;, constant, whem increases, the process mean is moved away from
the upper specification limit (or lower specification limit). This is equivalent to reducing the process
mean deviation from the target value. §g, kept constant, but’,,,, increases.

As C,;, index depends only upon the half of the specification width, < C,,, is obtained for enough

largec and small process mean deviation frdmin fact,Cy, < C,,,, when

oo AUSL—p2(p-T)
= (USL — LSL)?2 — A(USL — p)?’

g

Under this condition the effect of the penalty in tg,, denominator is not important any more. In
this case it is suggested to reduce the process variability since it has more important impact on th

process capability than the adjustment of the process mean on the target value.
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1.4 Summary

Under normality assumption reducing the deviation from the tafGeafid minimizing the noncon-
formity ratio are equivalent, especially wh&h= M. However, when the underlying distribution is

not normal, especially when it is skewed, the presented approaches have conflicting goals. For thi
reason, Pearn et al. (1992) proposed to use the indgx as it provides a compromise between

the two approaches. However, as for any compromise, none of the goals would be reached, neithe
the nonconformity ratio nor the deviation from the tar@eis minimized. From the structure of the
indices it is deduced to start by reducing the variance and then tackling the problem of reducing the
loss around’".

Adopting the loss function approach in case of departure from PCI hypotheses can lead to seriou
degradation in the product quality as it can increase considerably the nonconformity ratio. However,
minimizing the deviations from the targét is still the supreme objective for any company which
wants to produce high quality products. Nevertheless, it would be a mistake to adjust the process t
the targefl” without taking into account the impact of such adjustment on the nonconformity ratio. In-
deed, the loss function approach should be adopted when it has no "significant” effect on the proces
capability, this means as long as the nonconformity ratio will not be lessitba64%. For this pur-

pose any company which wants to adopt the loss function approach should master the nonconformit

ratio first and should make sure that adjusting to the tafg#bes not affect the process capability.

1.5 Obijective

In this work focus is on the nonconformity ratio approach as it is an important step in the quality im-

provement process. Notice that when the PCl assumptions hold, classical iagliaedC,, respect

the "higher the better” rule: the higher the index value, the lower the nonconformity ratio, the better
the process in meeting customers requirements. If the normality assumption does not hold this rule
is not respected. Somerville and Montgomery (1996) studied the effect of non normal distributions
on the classical capability indices and it is noticed that classical indices do not respect the "higher

the better” rule for such distributions. Tang and Than (1999) compare seven indices and methods i
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the presence of non normal distributions. The authors notice that the classical indices are indicative
of the process capability for non normal process characteristics. Hence, increasing the PCI value ca

lead to misleading quality improvement directions.

A process capability index summarizes the ability of a process to meet the customer requirement
in one value. Hence, the process capability assessment becomes easy to understand and to commt
cate inside each organization. However, the PCI computation is the output of a long procedure during
which several resources are used. Hence, there is a strong need that the PCI computation is based
a reliable approach.

This work aims at highlighting some of the existing PCI shortcomings through a case study. In order
to overcome these drawbacks a new capability index is proposed. Indeed, a nonconformity ratio base
desirability function is considered as a univariate capability index. The extension of the proposed in-
dex to the multivariate case is discussed and some of its advantages when compared to other classic
multivariate indices are proved. Finally, a design of experiments based approach is presented in orde
to allow the capability assessment when only a small sample size could be considered. First a cas
study is presented in Chapter 2. The presentation takes into account the process definition, the prot
uct definition and some steps in the process capability assessment. In Chapter 3, the shortcoming
of the classical univariate indices are shown and a new index is proposed to overcome these shor
comings. A nonconformity ratio based desirability function is used as a univariate process capability
index. In Chapter 4 an extension of the index to the multivariate case is presented and its propertie
are investigated. As the desirability function could be written as dependent on the influential factors
the implementation of a capability analysis using an experimental design is studied in Chapter 5. This

approach is justified as it allows to assess the process capability considering small sample sizes.
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Chapter 2

Case Study

The willing of each company is to acquire new markets, to attract new customers with robust argu-
ments like a compromise between the quality and the price of the product. For the product quality
improvement, each organization should attend the state of its production process considering the fa
that their resources are limited. Faced to variety and to complexity of tasks that they must carry out,
some companies give the priority to the execution of some tasks at the expense of others.

Indeed, some companies when faced to the absence of technicians mastering statistical process cont
(SPC) tools, to the pressure of personnel charges, and to the requirements of a continuous investme
in the aim to follow technological transfer rhythm, will relegate SPC practices to a second order pri-

ority.

It would be interesting to highlight the existing PCI shortcomings through a case study and to
present a new index which respects the "higher the better” rule under non normality. The case study
takes place within a tunisian company. This company was the subject of the case study in Telmoud
and Limam (2000). In this work the same methodology is adopted. The intervention close to the

tunisian company is done following these steps:
e Select a candidate for the study.
e Define the study object.

e Get the necessary resources for the study.
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e Evaluate the measurement system.

e Prepare a control plan.

e Select a method for the study.

e Gather and analyze the data.

e Move out the assignable causes.

e Estimate process capability.

e Establish a plan for a continuous quality improvement.

This chapter involves all points except the last two points as they will be discussed in the next chapters

2.1 Select a Candidate for the Study

Knowing the hypotheses the capability indices theory is based on, the chosen candidate should e>
press at least a minimum level of interest to the SPC tools. Preferably, it would be familiar with the
application of the control chart for some quality characteristics.

A custom controlled company, created by a german investment and settled in Tunisia, iS our cast
study.

The german firm which chose to open a subsidiary in Tunisia considers the quality of its products
as a strategic choice. The german firm imposes to its tunisian subsidiary the application of some
SPC tools like the control chart and the realization of acceptable values of capability indices. In the
aim to motivate the tunisian subsidiary to go ahead in this way, the german firm supplied a computel
software (Qs-stat version 3.1). This software is able to make easier the representation of the contrc
charts and the computation of the process capability indices. The tunisian company has understoo
its interest to consider the quality as a strategic choice, especially, that the majority of its customers
are german and they grant a great care to the seriousness of their suppliers and to the quality of tf
products they receive. The tunisian company organizes many training seminars, training courses an
creates a department of quality control which has a direct link with the top management in the aim to

make the personnel more sensitive to quality and to adopt the quality as a part of the company culture
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Of course the company does not sell its products in the local market, but the personnel is tunisian
and it will be very interesting to note, while quantifying the process performances, how the behavior
of this organization will be in applying SPC tools.

It is noted here, that one of the reasons of the success of a capability study is the fruitful communica-
tion with the engineers and with the technicians. In fact my knowledge in mechanics is very limited,

and one of the reasons that pushes me to decide for an application within a company is the fact the

the quality characteristics to be investigated are relatively simple to understand.

2.2 The Product Definition

The MARQUART company is specialized in the production of switches. All necessary materials to
the production are supplied by a german firm and other foreign suppliers. In fact it is a question of
several assembly chains that produce several switch versions. The investigated product is a powse
tool switch. This product will be exported to a german customer who will assemble it in an electrical
drill.

It is known that the customer grants a special interest to the quality of the received product. It hap-
pened that the customer sent back a product that he ordered beforehand because of a high proporti
of nonconforming products. The care accorded to the quality is then proved if it is known that among
the other subsidiary of the german firm, the tunisian subsidiary offers the most satisfactory results. Ir
this environment, the quality of the product becomes a key of success and the control of SPC tools
becomes compulsory.

The investigated product is one for which the company establishes a control chart. It is formed by a
superimposition of two plastic plinthes. Before closing them, on one of them, at the first part, some
electrical conductors are assembled, and at the second part are assembled two screw supports. At 1
end of the assembly process the switches go through a machine which has to screw two screws, or
on each support. Screwing will be made in such a way that a space will be kept between the inferiol
boundary of the screw and the inferior boundary of the screw support.

The customer will assemble this switch in an electrical drill by the penetration of two conductor ca-
bles in the cited spaces. The dimension of this space is in fact the area to be controlled. Figure 2..

illustrates the quality characteristic to be controlled.
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For lack of measuring this space directly when the switches are closed, it is evaluated through ar
other characteristic, which is the height of the screw. Indeed, the higher the screw, the more impor-
tant the dimension of this space. Figure 2.5 shows the surrogate quality characteristic. In this cas
study it is proposed that the specification limits for the surrogate quality characteristic are given by
(LSL,T,USL) = (20.15mm, 20.85mm, 21.35mm)

2.3 The Process Definition

A production process is the set of activities that transform the input into an output by bringing an
added value into it.

However, in practice the definition and the identification of the process is not an easy task. In order
to understand how the process is working, at first we have to distinguish between the elements the
belong to the process and the elements that do not bring any added value to the input. This is neithe
evident nor easy.

Indeed, sometimes when we point out the existence of some problems in the final product, we have
several and different opinions about the possible origins of the problems. To convince other parts
everyone will try to make them understand his (her) own conception of the process. The process

definition is in the heart of the problem and can lead to conflicting opinions.

The main part of the process is composed in fact of a control unit or a control machine, its task is
controlling some performances of the switches and screwing. According to the performances of every
switch unit, the control machine keeps the good items and reject the nonconforming items, however
the heights of both screws are not controlled by this control machine. Figure 2.1 shows the different

stages of control at the control unit and the screw driver.

The screwing system is composed from a single automatic arm at the end of which exists the
screwdriver. The same screwing system is used for both screw supports. The first part of the screwin
system has the task to fix the screw on the top of the support. It is composed of a triangular piece. A
the beginning of each screwing operation, this piece goes and stands at the top of the screw suppol

This piece is cut in the aim to get the screw through it. The screw is conducted to the triangular piece
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Figure 2.1: Control Unit Wide View and Zoom on the Screw Driver

by means of a plastic tube which is linked up to a tank placed at the right side of the control unit. This
tank contains the screw stock.
The task of the second part of the screwing system is the screwing operation. This part is compose

of two elements.

e A screwing releaser composed of a transmitter-receiver of a luminous ray. When an object is
placed between the transmitter and the receiver, this object will prevent the luminous ray to

reach the receiver, this will release the screwing operation.

e The screwdriver system is composed of a cylindrical box containing three elements: A metallic
stem which will be in contact with the screw and will play the role of the screwdriver. This
metallic stem is linked up to a plastic stem by a spring. This device is located underside the

screwing release system.

The screwing system is working as follows:

The switch is fixed on the top of a metallic plinth and at the underside of the screwing system. After
the fixation of a screw on the first screw support, the automatic arm at the end of which is located
the screw system goes down until the metallic stem being at the level of the screw, and will be in the
contact of the screw. After screwing, the automatic arm goes back up and slides until being just on
the top of the second screw support. The same work will be done at the second screw support.

But if the screwing process is observed with more details, what happens exactly? In the case wher
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there is no fixation of the screw on the top of the screw support, it is observed that the metallic stem
goes down until reaching the level of the superior face of the switch plastic plinth without releasing
the screwing operation.

In the case where there is a fixation of the screw on the top of the support, the automatic arm will go
down the same distance as in the precedent case, but with the simple difference that the metallic ste
will not continue its running until reaching the plastic plinth because it will meet the screw before.
In this case, the metallic stem pushes the plastic stem by means of the spring. When the plastic stel
reaches the level of the luminous ray, the screwing will start. As screwing goes along, the screw
will penetrate into the support and the plastic stem will go down. When the receiver can receive the
luminous ray, screwing will stop. It should be noticed that the same screwing procedure is used for
both screw supports.

However, there are some other tasks which are achieved before screwing. It is more appropriate t
consider the different steps for better understanding the process. Indeed, the process is formed

four stages:

e Setting stage: At each inferior plastic plinth of the switches there exist reserved places for the
screw supports. At this stage, it is a question of pushing the screw supports into the plastic

plinthes. Four machines are used at this stage.

e Assembly stage: It is a question of assembling manually some conductor pieces. 16 machine:
are used at this stage. Figure 2.2 shows the switch after the assembly stage and Figure 2.

shows the space where the costumer will penetrate two cable conductors.

e Closing stage: It is a question of superimposing two plastic plinthes, to introduce them into the
closing machine which makes a pressure on the top plinth to make it go down. When the top
plinth reaches the level of the inferior plinth, the machine closes the switch. Five machines are

used at this stage. Figure 2.4 shows the switch at the closing stage.

e Screwing stage: It is a question of introducing the switches into the control machine, then,
the machine controls some characteristics of the switches and screws. We must note that th
machine does not control the height of the screws. Figure 2.5 shows the switch at the screwing

stage.
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Figure 2.2: The Switch at the Assembly Stage

In order to get data the company does not have a specialized operator for collecting data. Here

one question arises concerning the company SPC practices.

2.4 SPC Practices

The company does not have a specialized operator for collecting data. When there is a need of esta
lishing a control chart for example, the operator working on the control unit was charged of this task.
A look at the payment system reveals that the company fixed at each step of each assembly chain
given number of product items that the operator has to produce each day. When an operator reach
this product items number she can leave. The operator is not paid for the additional job of collecting
data, then she (he) will be more concerned in passing further switches through the control machine
than by wasting time in measuring the height of the screws. Moreover, in the previous capability
reports, it was noticed that small sample sizes were considered and sampling is done with a ven

small frequency. The company measures a sample of five switches at the beginning of each custom:
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Figure 2.3: The Screw Supports

order. Some reports demonstrate that the company takes five switches every three days or every wee

It is noticed that according to Montgomery (1996), the most frequent sampling practice is to take
a small sample but with a high frequency. The selection a sample size-df is due to the fact that
using this sample size allows to us to detect a process mean shift on the first sample following the
shift with a probability 0f93%. This probability is the probability of detecting?a process shift.
Now, Concerning the sampling frequency we must say that when we establistoatrol chart, our
goal is to maximize our chance to detect a process mean shift between samples. If we select a sme
sample size taken with a small frequency, it can happen that the process undergoes a process me
shift then comes back to the initial situation. If for example we select to use one sample a day we
have great chances to not detect this shift.
In the same way, the number of samples necessary to detect a shift is measured By.the/erage
Run Length.ARL = ﬁ where/ is the probability of not detecting a shift at the following sample.
If 6 = 0.75 then ARL = 4, which means that we need four samples to detect a shift, if we use a
sampling frequency of one sample a day we will need four days for detecting the shift. If we adopt a
sampling frequency of a sample every 15 minutes we will detect the shift in one hour.
The ideal practice is to use a small sample size with a high frequency. The SPC practices of the
company can lead to an important degradation of the quality of its products. We can understand the

volume of this degradation if we know that the company produces a minimum of 4500 switches a day.
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Figure 2.4: A Closed Switch

The second remark that we can make is about the process capability computation. The company ust

a software to compute the indices. The same data, used in establishing the control chart, serves ft

computing the indices. If we look at the computationmmgthod, it is noticed that when the data follows
> X (w4—%)?

a normal distribution the variance is estimated¥ly= ——————

The goal of the variance computation is that it gives us an idea about the variability within samples,

but the company in fact is using the following estimation of the variastcevherem is the total

number of repetitions analis the sample size.

When we use such estimator we integrate implicitly the variability between samples in the variance

computation. In this way we will overestimate the variance and then underestimate the process cape

bility indices.

If we want to use the same data for establishing the control chart and computing the process capabilit

indices, Bissel (1990) uses the following estimatotf: = %, whereR; is the range of sampleg with

m .
Z7,':1RZ
m )

There is a difference between sampling for computing the process capability indices and sampling fol

Ri = Timaz — Tminy R = andd, is a tabulated value depending upon the selected sample size.

establishing the control chart. However, before starting collecting data the necessary resources for th

study should be checked.
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Figure 2.5: The Final Product

2.5 Getthe Necessary Resources for the Study

A capability study requires significant expenses concerning material loss and human resources mot
vation. To make this study reach its goals, top management implication is required in the aim to make
the planning of the different tasks easier, and to motivate different participants to the study.

The main constraint was about the planning of the tasks. Indeed, the company produces differen
versions of switches. Some versions have the same characteristics and some other have differe
characteristics. The production is done by order. For example if the customer makes an order wher

there are different versions of switches, the production can be made following three different cases:
e Finish the production of the first version then to start an other version production.
e Produce two different versions simultaneously.

e Start the first version production, interrupt the production and start the production of a new

version.

This should be taken into consideration, mainly when there are more than one version in the order an
these versions do not have the same characteristics. This factor can bother the sampling operatio
especially when we decide to base the study upon a unique version of switch. The other problen

which can disturb the data collection is the intervention of the technicians in order to adjust the
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control unit parameters. Hence, the data should be collected for the same switch and for the sam

control unit parameters.

2.6 The Effect of the Measurement System on the Capability Study

The reliability of the obtained results of a capability study depends upon the fact that the variability
of the process is not contaminated by an additional variability due to the measurement system. Tht
performance of the measurement system in reflecting the process variability must be checked befor
starting the study. McNeese et al.(1991) propose an approach in order to assess the effect of tf

measurement system upon the capability study.

2.6.1 The McNeese et al. (1991) Approach

Considering the measurement system as a process it is interesting to analyze its capability by evalua
ing its accuracy and precision. The accuracy refers to the exactitude of the the measurement syster
and the precision is relative to the reproducibility of the measurements.

To isolate the variation caused by the measurement system, the same sample:a$ sieeasured

m times. Each time of the sample is computed and plotted on the control chart. In the same way,
the R chart is obtained by computing and plotting the range between consecutive results of controls
(Moving range).

The accuracy of the measurement system is determined by comparing the center line cénitrel

chart to the true value of the standard. In some cases where there is no standard for the measureme
system, it is assumed that the center line represents the true value of the standard.

The precision of the measurement system is also evaluated by measuring it fréhcdhérol chart.

The measurement system standard deviatios,js: = %, whered, is a tabulated value. Knowing

that the procedure is based on the determination of the difference between consecutive controls, the
R

Ford Motor Company, considers that a capable measurement system means ” that gpread is
equal to or less that0% of the tolerance of the characteristic being evaluated.”

McNeese et al. (1991) consider that this condition for the measurement system capability is very
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stringent. For the same purpose they define the percent of total variance due to the measureme
system aleO("U—”;S)Q. They also provide the following definition of a capable measurement system:

” A capable measurement system is a system that is in statistical control with respect to the averag
and variation, where average value is equal to the true value, and that is responsible for [€8%than

of the total process variance.”

In the aim to explain the effect of the cited percent of the total variance on the process capability, it is

. 52 . . . 52
assumed that? = 52 +62,., if a = 2= the total variance is expressedsgs—= % To demon-
t

process

strate the effect of this percentage on the process capalijlityexpressed ag”, = % Vie

By representing’, for variousa values McNeese et al. (1991) find that a measurement system re-
sponsible forl0% of the total variance causesb& decrease irC,. It is assumed, then, that the

measurement system in this case presents an acceptable level of variation.

2.6.2 The Measurement System Assessment

The measurement system is composed of a metallic surface on which the operator puts the switch t
be measured, and a metallic stem which slides through a graduated frame. Before starting the scre
height measurement it should be checked that when the metallic stem is in contact of the metallic
surface the graduated frame indicates zero in this initial position. It is noticed here that the quality
characteristic is the height of the screw measured from the switch base.

The adopted methodology for the measurement system evaluation is given in McNeese et al. (1991
A sample of ten switches was considered for which the height of the screw was measured at 21 oc
casions. At each repetition and the range R between two consecutive measures of the sample are

computed. The results are presented in Table 2.1.

The control limits of the measurement system control chart are determined considering the sampl

mean of each sample measure as an individual measurement:

UCL =z + 303 = 20.8095
center line=Zz = 20.8038
LCL =% — 30; = 20.798.
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Table 2.1: Measurement System Assessment

m 1 2 3 4 5 6 7 8 9 10

x | 20.804| 20.802| 20.804| 20.803| 20.802| 20.806| 20.807| 20.807| 20.804| 20.804
R - 0.002 | 0.002 | 0.001 | 0.001 | 0.004 | 0.001 | 0.000 | 0.003 | 0.000

‘ 11 12 13 14 15 16 17 18 19 20 21 ‘

‘20.803 20.805| 20.802| 20.805| 20.804| 20.805| 20.804| 20.799| 20.805| 20.804 20.801‘
‘ 0.001 | 0.002 | 0.003 | 0.003 | 0.001 | 0.001 | 0.001 | 0.005 | 0.006 | 0.001 0.003‘

For the range chart samples of size- 2 are considered. The control limits are given by:

UCL = RD, = 0.0067
center line= R = 0.00205
LCL=R— D;=0.

The measurement system is under statistical control and the variability due to the measurement syste
is given by: 0,5 = d—’z = 0.0018. In order to give a judgement about the measurement system
capability in considering the most severe rule adopted by Ford Motor Company, it is noticed that the
ranger &30, of the actual measurement system represents lesg ¥hahthe tolerance range relative

to the quality characteristic being measured.

2.7 Prepare a Control Plan

The setting of a control plan is relatively simple in this case, because the quality characteristics are
already known. It is a question of measuring the height of the screws. It should be made sure during
the study that the process operates normally. This allows to determine what can the process do |
it operates the way it is designed to operates. For example the study should be implemented in a

acceptable ambient environment with the removal of all potential sources of variability like the vari-
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ability due to operators or materials.

According to the technicians, the material, especially the plastic plinthes are supplied by the same
vendor. We were interested by the plastic plinthes because a great material variability can cause
great measurement system variability.

Concerning the operator, there is generally only one operator working on the control unit. At the other
production stages, mainly at the assembly stage there are some manual operations, but it is notice
that the final level of the screw supports is determined at the closing stage and this level does no
depend upon the support levels before the closing stage. This fact was confirmed by all the compan
technicians. Moreover a simple observation of how the process is operating can confirm this.

In order to avoid the treatment of a huge number of process streams and to limit the effect of the
intervention of several operators, only two process stages which can have a direct effect on the heigt
of the screw: The stage of the switch closing and the stage of screwing are considered. it is notice
that five machines are used at the closing stage. The output of each machine will go through the

control unit. At the beginning of the study it is assumed that there are five different streams.

2.8 Select a Method for the Analysis

The adopted methodology during the study is as follows:

e Establish the control chart (the and .S control chart) for each closing machine and for the
control unit, in the aim to verify if the process is under statistical control. If the control chart
shows that there are some assignable causes, the reasons should be checked, tracked down

removed.

¢ If the hypothesis of data normality does not hold the probability distribution should be deter-

mined.

e Estimate the capability indices for each process stream and check whether the used indice

respect the "higher the better” rule.
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First of all, it should be checked whether the data present some particularities especially the presenc
of autocorrelated data through the representation of the autocorrelation function. From these rep
resentations, it is clear that the observations of both quality characteristics do not reflect significant
autocorrelation coefficients. It is noticed that the limits in Figure 2.6 and in Figure 2.7 are the two

standard error limits.
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Figure 2.6: ACF for Screw 1

For that purpose a sample sizerof= 5 was taken with a high frequency, almost a sample every
15 minutes. In order to establish the control chart 30 samples were taken from each machine. Fo
estimating the process capability indices, a sample ofrsize300 was taken from each stream.
In the aim to reduce the variability due to the material, only a single switch version was consid-
ered. Thus, sampling should be done during the production of this version and before changing the

produced version.
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Chapter 3

The Univariate Process Capability Indices

All prerequisites for the indices computation were presented in the previous chapters. However, it is
unavoidable to check whether the PCI hypotheses hold. This means that a control chart should b

constructed for each stream and that the normal distribution assumption should be checked.

3.1 Control Chart

In this section the control charts for the control unit and for both screws are constructed. For each
closing machine a control chart is established for both screw heights and for the screw heights. Thes

control charts are in the appendix. Theontrol chart limits are computed as follow:

UCL =1+ 2%

center line=Zz
__ 5 _ 35:

LCL =z R

For the S control chart the limits are given by:

_ q 35
UCL =5+ 35
center line= S

_ Q 3Ss
LOL =8 - 35
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wherec, is a tabulated value. For a sample size- 5, ¢, = 0.94. I is the sample average of the
sample means of samples taken from the same stream. In the sansesthe average of a standard
deviation of these samples.

Following Montgomery (1996) a process is out of control if one of the following cases holds:

e One point is out of the control limits.

Two of three consecutive points outside thel@nits but still inside control limits.

A run of at least eight points, where the type of run could be either a run up or down.

Four of Five consecutive points beyond anémits.

An unusual or non random pattern in the data.

From the control charts given in Appendix A it is noticed that the process is under statistical control.

The PCls could be computed then.

3.2 The Normal Distribution Assumption

In this section the data normality hypothesis is checked. Some graphical methods can be used. Or
of these methods is the quantile-quantile plot. It is a representation of the sample quantiles agains
the theoretical quantiles. If thg" ordered sample quantile;, is considered, the proportion at or
to the left of z(;) is often approximated bg(i';i. The quantile-quantile plot is the representation of
the pairs(q(;), #(;)) with the same associated cumulative probabifﬁg,@. If the data arises from a
normal population, the pairg;), z(;)) will be approximately linearly related. Figure 3.1 and Figure
3.2 show the quantile-quantile plots for the normal distribution for screw 1 and screw 2 respectively.
A glance to the plot can reveal that the normal distribution could not be rejected for both quality
characteristics.

However, in order to decide in an objective way about the acceptance of the normal distribution
hypothesis it would be better to use a goodness of fit test. In this section the normal distribution

hypothesis is checked using the Shapiro-Wilk test for normality. The test is given by
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Figure 3.1: Normal QQ Plot for Screw 1

H,y:The data follows a normal distribution.
VS.

H,: The data does not follow a normal distribution.

The p-values of the test for each stream are given in Table 3.1. It is noticed from Table 3.1 that the
risk of rejectingH, is less than the significance level of the test whichsin this case.

It becomes obvious that the normal distribution assumption does not hold for any process stream
That is expected as no negative values are possible. Furthermore, in section 2.7 it is noticed the
five streams are considered in the study. It is important to study the correlation between the differen:

streams in order to check whether it is appropriate to study each stream separately.
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Figure 3.2: Normal QQ Plot for Screw 2

3.3 Correlation Between Streams

Before starting the study it is important to check whether the streams are correlated. This path is
unavoidable in order to determine the methodology of the study. Correlations between streams coul
be checked visually using the scatter plot in order to detect trends. Figure 3.3 and Figure 3.4 show th
scatter plots for screw 1 streams and screw 2 streams respectively. No linear correlations are observe
in Figure 3.3 and Figure 3.4. However, it would be better to compute the correlation coefficients and
to test whether the correlation is significant.

Knowing that the normal distribution hypothesis does not hold for all screw streams it would be bet-
ter to compute a nonparametric correlation coefficient instead of the Pearson correlation coefficient

Indeed, it is known that in order to test the significance of the Pearson correlation coefficient the
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Table 3.1: P-values for the Shapiro-Wilk Test

Stream| Screw 1l | Screw 2

1 10713 8 x 1076
2 2 x 10712 107°
3 5x 1071 [ 2x 107
4 6x 107" | 6x 1078
5 4 x 10713 10710

variables must be normally distributed. The most known nonparametric methodology for measur-
ing the correlation are the contingency coefficient, the Spearman rank coefficient, the Kendall rank
correlation, the Kendall partial rank correlation and Kendall coefficient of concordance as explained
in Siegel (1956). However, because of the presence of tied observation the Kendall rank correlatior
which is also known as the Kendall tau-b) (s used in the study. Indeed, Siegel (1956) explains that

this coefficient could take into account the effect of a large proportion of tied observations.

Kendall rank correlation is a nonparametric measure of association based on the number of con
cordance and discordance in paired observations. Concordance occurs when paired observations ve
together, and discordance occurs when paired observations vary differently. The formula for the

Kendall coefficient of concordance is given by:

G
\/n(nQ—l) N TX\/n(nQ—l) o TY

where, Tx = 1 > t;(t; — 1), ¢; being the number of tied observations in the group of tiem a X

T =

variable. Ty = 1>~ w;(u; — 1), u; being the number of tied observations in the group of ties a

Y variable. GG is the number of concordance minus the number of discordafds.computed by
arranging the ranks of in their natural order and determiniigfor the corresponding order of ranks

on variableY. For that purpose (starting from left to right) for each rank belonging tbe number

of larger ranks to its right is counted, then, subtract from this number the number of smaller ranks to
its right. The obtained value iB;,. HenceG = Zn: wheren is the sample size. Kendall and Gibbons

=1
(1990) notice that ties itX' contribute nothing ta7. Table 3.2 and Table 3.3 show the correlation
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Figure 3.3: Scatter Plot for Screw 1

coefficients between streams, with: =1,...,5andj =1,...,5.

In order to test the hypothesig, : 7;; = 0, Kendall and Gibbons (1990) explains tttafollows

a normal distribution for, > 10. The standard normal test statistic fdg : 7,; = 0 based om;; is

. 37—1‘]’ n(n — 1)
2(2n +5)

The p-values associated with a two sided test are given in Table 3.2 and Table 3.3 for screw 1 and scre

Table 3.2:7;; for Screw 1

T12 713 T14 T15 T23 T24 T25 T34 T35 T45
Correlation| -0.013| 0.018]| -0.005| -0.031| -0.021| 0.054| 0.068| 0.003| 0.010/| -0.037
P-value 0.737 | 0.641| 0.897 | 0.423 | 0.587 | 0.163| 0.079| 0.938| 0.796| 0.339
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Figure 3.4: Scatter Plot for Screw 2

2 respectively. The risk associated with the rejectiotigiwhen it is true is larger than the allowed
risk of 5%. Hence, the null hypothesis is not rejected. The streams are considered uncorrelated fol

both screws and they are studied separately.

Table 3.3:7;; for Screw 2

T12 713 T14 T15 T23 To4 T25 T34 T35 T45
Correlation| 0.061| 0.046| 0.024| 0.006| 0.011| 0.001| 0.045| 0.061| -0.004| -0.027
P-value 0.115] 0.234| 0.535| 0.876| 0.776| 0.979| 0.245| 0.115| 0.917 | 0.485
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Table 3.4:9 Values for Screw 2

‘ Stream 1 2 3 4 5 ‘

‘ 0 21.34143| 21.24993| 21.21| 21.26072 21.19468‘

3.4 Distribution Parameters Estimation

It should be noticed that only the distribution parameters for the height of screw 2 are explained in
this section. The distribution parameters estimation for the height of screw 1 is given while explaining

the goodness of fit test concerning the height of screw 1. This will be done in the next section.

3.4.1 Distribution Parameters Estimation for the Height of Screw 2

From previous reports prepared by the technicians using the Qs-stat 3.1 software, it is noted tha
the underlying distribution for screw 2 is most likely to be the Lognormal distribution. The consid-
ered distribution is a three parameter Lognormal distribution. The parametetséaaado, where

Z = log(0 — X) ~ N(& 02). Furthermore, the estimation éfleads to the estimation of the other
parameters of the distribution using maximum likelihood estimation. As explained in Johnson et al.
(1994)0 is estimated using the quantile method. Following the quantile method the-1©wer,

50th and 10Qv-th upper percentiles of normal variabte= log(6 — X) are considered. The corre-
sponding percentiles of arex(y = exp(§{ —z20)+0, xyoy = exp(§) +0, andw sy = exp(+20)+-0.

Henced is obtained through
g TTE) T
Ty = 20} + Tz

In Johnson et al. (1994) it was recommended thahould be chosen in the range 1.5 to 2. In
this case it is considered that= 2. It should be noticed that the common method to estimate a
distribution parameters is the maximum likelihood estimation. However, the likelihood of a three
parameter Lognormal distribution could be maximized only through numerical methods. Moreover,
the main difficulty with this method is thdt becomes infinitely large and can lead to unrealistic
solution. Table 3.4 gives the estimatédalues for the different streams. All the screw 2 streams

should be fitted by Lognormal distributions such that log(é — X) follows a normal distribution.
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Table 3.5: Screw 2 Height Maximum Values

‘ Stream 1 2 3 4 5 ‘

‘Maximum 21.25| 21.31| 21.23| 21.14 21.11‘

Hence, it is expected thét> maxzy, . .., z,) for each stream. Table 3.5 gives the maximum values
of the samples. It is noticed that the estimated parandete@es not represent a threshold parameter

for the stream 2 and the stream 3. One possible reason for this behavior is the existence of outliers.

3.4.2 Outliers Detection for Screw 2

An outlier is an observation which deviates so much from the other observations as to arouse suspi
cions that it was generated by different mechanism. An inspection of a sample containing outliers
would show up such characteristics as large gaps between "outlying” and "inlying” observations.
More knowledge about the mechanism behind the outliers appearance is required before discardin

them from the study. The causes of outliers are mainly:
e An extreme or relatively extreme value.
e A contaminant observation from other population.
¢ A legitimate but unexpected data value.
e A data value that was measured or recorded incorrectly.

Some graphical tools allow the detection of outliers. The box plot is one of these tools. The box plot
is composed mainly by a box representing the interquartile (IQ) and two lines starting from the 25th
percentile and the 75th percentile to given limits. These limits help in identifying outliers. They are

computed as follows:

L, = lower quartile— 1.5 x 1Q

Ly = lower quartile— 3 x 1Q
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U, = lower quartile+ 1.5 x 1Q
U, = lower quartile+ 3 x 1Q.

Observations beyond, and U; could be considered as outliers. Observations beyiondnd U,
present stronger evidence to be outliers. However, as long as the mechanism behind the appearan
of outliers is not identified the observation could not be removed. The final decision should be basec
on the interpretation of the user. Figure 3.5 illustrates the screw 2 height box plots for stream 2 anc
stream 3.L; and U, limits were used in the figures on the top, and U, limits were used in the

figures on the bottom.

Box plot for stream 2 Box plot for stream 3
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Figure 3.5: Screw 2 Height Box Plots for Stream 2 and Stream 3

From Figure 3.5 it is noticed that only few observations fall beyond the limior stream 2 and

stream 3. Exactly five observations for the stream 2 and only the maximum value for stream 3. For
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stream 2 there is a gap between the maximum value and the other four observations. However, |
is noticed that for both streams there are more than ten observations which fall beyond thg limit
and there are no gaps between the observations. This is an indication that the observations reflect ti
natural variability of the process and do not belong to an other population.

When the limitsL, andU, are used it is noticed that only the maximum is still beyondithdimit

for stream 2. However, no observation is beyondithdimit for stream 3. In order to know if the
maximum values could be considered as outliers the Camp-Meidell theorem is used. Following the

Camp-Meidell theorem

1

Pr(X — ko or X ko) < .
r(X <pu—ko > 1+ 0)_2.25/@2

Hence, the probability that an observation deviates from its expected vakeibyess tharb%. In

order to implement the Camp-Meidell theoremis estimated byt = =— ando is estimated by

> (wi-)?
S = =———. The upper limit for the Camp-Meidell theorem is given by 35 which is equal

21.21 and 21.20 for stream 2 and stream 3 respectively. Hence, only the maximum values are ove

these limits and they are considered as outliers and they are removed from the study.

3.5 Goodness of Fit Tests

The goodness of fit test is a test of hypotheses where the null hypothesis is that a given random variabl
X follows a stated lawf'(X'). The goodness of fit techniques are based on measuring in some way the
conformity of the sample data to the hypothesized distribution, or equivalently its discrepancy from

it.

3.5.1 Goodness of Fit Test for the Height of Screw 2

It is necessary to determine a probability distribution function for each process stream. From the
history of the process concerning screw 2, it is noted that the underlying distribution is most likely
to be the Lognormal distribution. Hence it becomes possible to test the Lognormal distribution at a

significance level ot %.
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The chi squared goodness of fit test is used. In order to test the hypothesis that a random san
ple x4, ..., z, has the distribution?’(X), the range ofX is partitioned intaw bins, by, ..., b,. If

Ny, ..., N, are the number of observations in these bins, thetMhieas a binomial distribution with
parameters andp; = Pr(z; € b;),i=1,...,nandj = 1,...,w. The differenceV; — np; between

the observed and expected frequencies express the lack of fit of the d&ta jo This difference is

reflected in the test statistic

x2=%" (N — np;)”

j=1 1P
which has approximately thg? , distribution in large samples. This is in fact the Pearson Chi-
squared statistic. Following Moore (1986) the number of bins is givean%/>. When the tested
distribution hask” unknown parameters Moore (1986) assumes that the correct critical points for the
test fall between those o@‘fw_ K1) and those 05@_1)- When the value of the test statistic exceeds
the critical point value the tested distribution is rejected. In this case 19 bins are used for the goodnes
of fit test. It is common to use equiprobable bins in order to compute the test statistic. This means
that allp; are equal. Because of the problem of rounding arbitrarily some non equiprobable bins are
considered. Indeed, rounding can affect the goodness of fit test, for example for the stream numbe
four there was no observation in one of the bins although it is far from the distribution tails. This can
increase considerably the test statistic.

In order to give an argument to the number of degrees of freedom for the test it is interesting to
consider the estimation method of the Lognormal distribution parameters. In a previous section it
was noticed that the estimation ®feads to the estimation of the other parameters. Hence fasly
considered as an unknown parameter and the degrees of freedomgfdrsribution is set to 17.

Table 3.6 gives the test statistic values and the number of non equiprobablé:moa €quiprobable

bins. Table 3.7 gives the parameéelthe expected valug, the estimated variance of the Lognormal
distribution /15, where is the first moment around zero apd is the second central moment, the
third central momengi; and the probability?, that an observation is less than its expected value.
From Table 3.6 it is noticed that the Lognormal distributions are not rejected at the significance level

of 5% as the test statistic is less than the critical value 27.58 for all streams.
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Table 3.6:y? Goodness of Fit Test for Screw 2

‘ Stream 1 2 3 4 5 ‘
‘ X2 24.9| 21.73| 27.06| 26.16 15.88‘
‘#non equiprobable bins 1 4 2 0 5 ‘

Table 3.7:@, PI and the Estimated Moments of the Lognormal Distribution for Screw 2

Stream 1 2 3 4 5
6 21.34143| 21.24754| 21.17424| 21.26072| 21.19468
il 0.412464| 0.335991| 0.241492| 0.352547| 0.273706
flo 0.066584| 0.010860| 0.008529| 0.048190| 0.029864
i3 0.055406| 0.000999| 0.000461| 0.023006| 0.006619
P, 0.549509| 0.560224| 0.573277| 0.545623| 0.556330

3.5.2 Goodness of Fit Test for the Height of Screw 1

For the first screw, the technicians confirm that during the examination of the switches they noted tha
because of the pressure of the screw driver the interior of some supports of the first screw were broke
during the screwing operation. Only the screw supports used for screw 1 are broken as they are mac
from different material. Indeed they are made from an ally of copper and tin, however, the other
supports are made from only copper. Hence, the material for the screw 1 supports is less resistent
scrape and to the screwing operation. From Figure 3.6 it is noticed that the encircled areas enclos
unusual frequencies. It is interesting to check the presence of outliers in the data because of the use

a different screw support. These outliers are most likely to occur at the lower tail of the distribution.

Outliers Detection for Screw 1

Outliers are most likely to occur at the lower tail. Hence, the observations are removed from the uppel
tail if the box plot and the Camp-Meidell theorem allows simultaneously to treat the observations

as outliers. At the lower tail the observations are removed if the box plot or the Camp-Meidell
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Figure 3.6: Histograms for Screw 1 Height Streams

theorem allow to treat them as outliers. Moreover, if an observation is identified as an outlier and
this observation belongs to a group of observations which has a gap up to the other observation
of the sample then all the group is removed. Figure 3.7-3.11 show the box plots for the different
streams. Only outliers at the lower tails are removed. Only one outlier is removed for stream 2, 3
outliers are removed for stream 1, 6 outliers for stream 3 and no outliers are detected for stream -
even if there are some unusual frequencies which are detected in the histogram. The minimum value
are compared with the minimum values of the other streams and 4 values are considered as outlie
and removed. 2 outliers are removed for stream 5. For this stream a decision was taken in order t
consider the maximum value as an outlier as it has an important gap up to the other observations an

the Camp-Meidell theorem allows the removal of this value.
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Figure 3.7: Box Plot for the Height of Screw 1 for Stream 1
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Figure 3.8: Box Plot for the Height of Screw 1 for Stream 2

Goodness of Fit Test and Parameters Estimation

In the case of screw 1 the classical goodness of fit tests fail in confirming an appropriate distribution
for the data. However, the appropriate distribution will be checked using the tests based on regressior
These tests as explained in Stephens (1986) are based on the representation of the order statist
x(; on the vertical axis againgt a suitable function of on the horizontal axis. I#'(V) is the
hypothesized continuous distribution,, . . ., v, a random sample is considered fraritV’) and I;
can be obtained b¥; = ¢; = E(v(;)) whereE denotes the expectation, br= H; = F~'{i/(n+1)}.

V' could be expressed &= @ where¢ is the location parameter ands the scale parameter. If
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Figure 3.9: Box Plot for the Height of Screw 1 for Stream 3
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Figure 3.10: Box Plot for the Height of Screw 1 for Stream 4

v; were taken from¥'(V'), a samplex; is constructed by
T; =&+ Y

If ¢; = E(vy)) =

E(zg) =&+
and a plot ofr(;) againsty; should be approximately a straight line. This formulation could be replaced
by the model:

Ty =§+vi+ €
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Figure 3.11: Box Plot for the Height of Screw 1 for Stream 5

wheree; is an error parameter which fdr = ¢ has mean zero. To be able to measure the fit the

following sums are defined:

S0 = (- I
S(X, X) =) (Xp — X)°
SC1) = (X~ D)L~ 1)

R? = S(Xs(jf—)g);[) is computed wherd = ¢, R? is an appealing statistic for measuring the fit of the
modelz ;) = £+~I;. For a sample whose ordered values fall exactly at their expected Val(&sq)

will be equal to 1.

From the process history it is noticed that the distribution for screw 1 is most likely to be the Weibull
distribution. A random variabl& has a Weibull distribution if there are values of the parameters

¢ >0, a > 0, and, such that

has the standard exponential distribution with probability density function
fr(y)=e¢eY, for y>0.
The probability density function of The Weibull random varialAlas then
) = SET R o 4,
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wherec, a and§, are the shape, the scale and the location parameters respectively. The parameters fc
the Weibull distribution are estimated in a way to maximize the adjustment coefficient for sétgw 1
Johnson et al. (1994) explained a modified moment estimation method for estimating the parameter

of a three parameters Weibull distribution. This method is based on the following moments equations:

E[X]=X
Var(X) = S?
E[Xél)] = XE1)

for the simultaneous estimation of the parametésfg.) is the observed smallest order statistic. It is
known that
E[X] = &+ al(1 + (1/0))

Var(X) = o®{I'(1 + (2/c)) = T2(1 + (1/¢))}
ElX(y] = éo + —D(L+ (1/¢)),

hence, the parameters are obtained from the following equations:

82 (1 +(2/9) (1 +(1/9) (3.1)
(X =X()2 {0 —n Y1+ (1/6))
X nl/éX’l - X
o = nl/é( )_ 1
L - X

(n7e — D)y(1+ (1/8)
Equation (3.1) need to be solved forand subsequently, and & can be determined. In order to
determine the underlying distributions for screw is incremented and the remaining parameters are
determined through the equations of the modified moment equations. The retained parameters ai
the parameters which maximize the correlation coefficiéhtThe results of the Weibull distribution
parameter estimation and the corresponding adjustment coefficients are in Table 3.8laeee
the adjustment coefficients between the observations of the screw 1 height and the estimated Weibu
distributions for screw 1.R2 are the adjustment coefficients between the observed screw 2 height
and the estimated Lognormal distributions in Table 3.7. It is noticed that although the estimated

Weibull distributions could not be confirmed by the chi squared goodness of fit test, they have higher
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Table 3.8: The Estimated Weibull Distribution Parameters

Stream| ¢ & & R? | R2

1 16.80| 19.4482| 1.3647 | 0.916| 0.916
2 13.43] 19.7848| 1.0094 | 0.940| 0.835
3 23.65| 19.2547| 1.5435 | 0.933]| 0.792
4 33.42| 18.5358| 2.248015| 0.944| 0.889
5 20.87| 19.4752| 1.301143| 0.942| 0.826

Table 3.9: The Estimated Weibull Distribution Moments dnd

Stream 1 2 3 4 5

il 1.322349| 0.971201| 1.508457| 2.211126| 1.267988
flo 0.009405| 0.007796| 0.006312| 0.006904 | 0.005686
fl3 2.348829| 0.938267| 3.460518| 10.855610 2.059916
P, 0.445023| 0.448799| 0.440620| 0.437433| 0.442064

adjustment coefficients than the estimated Lognormal distributions. Table 3.9 gives the moments o

the Weibull distributions and®,. The considered random variable in Table 3.Xis- &o.

3.6 The Process Capability Indices

With the parameters of the distributions already estimated it becomes possible to compute the proce:
capability indices. For that purpose the specification limits are giver.BY.(T',USL)= (20.15mm,
20.85mm, 21.35mm).

3.6.1 Classical PCls

The considered indices are the classical indices presented in the first ahated C,;,. The esti-

mated PCI values are in Table 3.10 and Table 3.11 for screw 1 and screw 2 respectively where th
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Table 3.10: PCI Values for Screw 1

Stream| C, | C, | Nonconformity ratio
1 2.062| 1.991 14.05x107¢
2 2.265| 2.242 1.175%1076
3 2.517| 2.462 2.546x107°
4 2.407| 2.394 15.58x1076
5 2.652| 2.622 1.118x1076

Table 3.11: PCI Values for Screw 2

Stream| C, | C,. | Nonconformity ratio
1 0.775] 0.543 5.747%x1076
2 1.919| 1.402 24.82x1076
3 2.165| 1.506 21.06x1076
4 |0.911| 0.670 1.519x 1077
5 1.157| 0.827 5.622x1077

indices are estimated using the estimated distribution moments presented in previous sections.

From Table 3.10 and Table 3.11 we notice that the classical indices do not respect the higher the
better rule, when the normality assumption does not hold. It is noticed that following,taadC,,
values all streams are more capable for the height of screw 1, however, following the nonconformity
ratio stream 1, 4 and 5 are more capable for the height of screw 2. It is more appropriate to use

process capability indices which are proposed in the literature in the aim to deal with non normal

distributions.
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3.6.2 PCIs for non Normal Distributions

It is well known that especiallg’, andC),; are not indicative of the process capability for non normal
process characteristics and that the "higher the better” rule is not respected. Some methods ar
indices were presented in the literature to deal with PCls for non normal distributions. A new index
Cs proposed by Wright (1995) incorporate a skewness correction factor to the driggx Choi
and Bai (1996) proposed a weighted variance method which adjust the PCI value by considering the
deviations above and below the process mean. Tang and Than (1999) compared seven indices al
methods, including thé€’; index and the weighted variance index, when the underlying distribution is
non normal. The authors noticed that under the normality assum@fi@mdC,,;, jointly determine
the proportion of nonconforming items. If the process distribution is non normal, this relation is no
longer valid. Hence, any proposed PCI for non normal data should give an objective view of the real
capability of the process in terms of the nonconformity ratio.
In what follows the process capability indices are computed using the tiggxintroduced by Pearn
et al. (1992), the indeK’s introduced by Wright (1995) and the weighted variance ind€gsand
Cpiw Introduced by Choi and Bai (1996). With

d—|p— M|
3v/0% + (= T)*

whered = (USL — LSL)/2andM = (USL + LSL)/2.

Cpmk =

~ min(USL — p, p — LSL)
T3l (u—T)%+ |us/o|
whereys is the third central moment. The weighted variance indices are given by:

~USL-LSL
N 60W,,

USL—pu  p—LSL )
3v2P,0 ' 3,/2(1 - B0’
wherelV, = /1 + |1 — 2P,| andPF, is the probability that the process variablés less than or equal

Cpu

Cprw = Min{

to its expected valug. One of the most important features of the process capability indices is that
their values increase when the proportion of nonconforming items decreases. It will be interesting to
check whether the considered indices have this feature in the presence of non normal distributions. Te

bles (3.12)-(3.13) give the index values, the actual proportion of nonconforming items for each stream
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r and the minimum proportion of nonconforming item#&™ for the screw 1 and 2 respectively. The
index estimates, the current nonconformity ratio estimates and the minimum of the nonconformity
ratio estimates are obtained using the estimated distribution moments presented in previous section
The minimum proportion of nonconforming items is obtained by shifting the location parameter be-
tween the specification limits. This is equivalent to shifting the specification limits while keeping the
same specification limits width and the same distribution parameters. Hercés the distribution
function, then the actual nonconformity artiés given byr = F(LSL) + 1 — F(USL) andr™" is
expressed ag8"" = F'(LSL + h) + 1 — F(USL + h) with h € R and(—h) is the adjustment of the
location parameter which giveg".

Example for the determination of r™";

r™n is determined numerically. For that purpose consider a three parameters Weibull distribution
with ¢ = 16.8, {§; = 19.44 anda = 1.3. The LSL andUSL are 20.15 and 21.35 respectively. First

the sign ofh should be determined. Two grid points are considered with(0.001 andh = —0.001.

The computed nonconformity ratios for= 0.001 andh = —0.001 are notedz, anda_. In this
exampler = 38.6 x 1075, a;, = 39.5 x 107% anda_ = 37.7 x 1075, Notice that onlya_ < r, hence

h has a negative sign™" is determined using the following steps.

StepO: Setk = 1.

Stepl:SetH =k x h.

Step2: Computen, = F(LSL+ H)+1— F(USL + H).

Step3:SetH = (k+ 1) x h.

Step4: Computeny; = F(LSL+ H)+1—- F(USL + H).

Step5: If ay < ay, Setk = k + 1 and go to step 1. I > ay, setr™" = q,, stop.

In this example™" = 6.881 x 10719 for h = —0.344.

From Tables (3.12)-(3.13) it becomes obvious that all considered indices fail in respecting "the higher
the better” rule when the current proportion of nonconforming items is used as a benchmark. All
indices have different behaviors and give different results for the same data. For screw 1 the failure:
in respecting the "higher the better” rule are observed in stream 2 and@,f@r in stream 2 and 3

for C,, in stream 3 and 4 fof',.,, andC,,,. Moreover, the most capable stream is stream Zfor

stream 3 forC',,.,,, stream 5 foiC,,,,,, andC,,,. For screw 2 the failures in respecting the "higher the
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Table 3.12: Process Capability Indices Computation for Screw 1

Stream 1 2 3 4 5
7 14.05x1076 | 1.175x107% | 2.546x107°% | 15.58%x107¢ | 1.118x10°¢
Comi 0.0097 0.01002 0.0098 0.01007 0.01001
C, 0.0094 0.0098 0.0093 0.0087 0.0096
épkw 2.024 2.178 2.432 2.257 2.482
Cow 1.957 2.157 2.380 2.269 2.510
i 5.454x 1070 | 8.415x 1071 | 6.704x 10711 | 4.872x107Y | 4.908x 10713
Table 3.13: Process Capability Indices Computation for Screw 2
Stream 1 2 3 4 5
P 5.747x107% | 24.82x107° | 21.06x107% | 1.519x107" | 5.622x10~"
C’mk 0.218 0.217 0.182 0.215 0.191
C, 0.177 0.215 0.181 0.194 0.185
C*pkw 0.572 1.495 1.630 2.225 1.866
C’pw 0.739 1.813 2.022 0.872 1.097
Fin 1 1.030x 107 | 3.051x107° | 2.221x107°¢ | 4.750x107? | 2.034x10~8

better” rule are observed in stream 1 and Z(fgplk, in stream 2 and 3 faf’,, in stream 1 fonkw, in

stream 2, 3 and 5 fdﬁpw. Moreover, the most capable stream is stream ]S;g[k stream 2 foiC,,

stream 4 for(jpkw, stream 3 forépw. The indexC, has the best behavior as it gives the same results

for screw 1 and 2. However, following this index stream 2 is more capable for the height of screw

2 when it has higher nonconformity ratio than screw 1. This behavior is also observed for the other

indices. Furthermore, the threshold for capability judgment is not clear for the considered indices.
Several authors proposed new generations of PCIs. Johnson et al. (1994) and Boyles (1994) trie

to provide indices presenting a compromise between the loss function approach and the nonconfol

mity ratio approach. ¥innman (1997) proposed different weights to the process mean deviation from

the target value and from the midpoint of the specification limits in order to make process capabil-
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ity indices more sensitive to such deviations and to control such sensitivity using the new family of
indicesC,,(u,v). However, Tang and Than (1999) noticed th&(1, 1) which is in fact the index

Comi 1S the most suited to evaluate process capability for non normal processes. Jessenberger (199
proposed to use a new generation of indices based on the desirability function. She proposed to us
the indexE DU as a metric for capability assessment which is the expected value of the Derringer
and Suich (1980) desirability function assuming normality.

None of the proposed indices succeeds to overcome the classical indices shortcomings. It will be
interesting to provide a process capability index which succeeds in ordering the stream capabilitie:
following the current nonconformity ratio, which take into account the minimum nonconformity ratio
and which has a clear threshold for capability judgment. In the following section a honconformity
ratio based desirability function is used as a process capability index. This index is based on the

Derringer and Suich (1980) desirability function.

3.7 Nonconformity Ratio Based Desirability Function

The Derringer and Suich (1980) desirability function evolves transformation of each response variable
Y; into a desirability value; between 0 and 1. The desirability of the response increases as it becomes
closer to its target valug;. It reaches the maximum value of 1 only if the response value is equal
to the target T. The overall desirability is then given by the desirability index which is the geometric
mean of the individual desirabilities. It is noticed that the definition of the desirability function does
not depend on any distribution assumption. In what follows the nonconformity ratio is considered as
a response variable and the property that the desirability value increases when the response becorr
closer to its target is used to make the "higher the better” rule hold for any type of distribution and for

any type of specification limit.

The nonconformity based desirability function associated with the quality charact&fissic

0 if r>USL,
NCDU; ={ USE-rijf  gpin < py < USL, (3.2)
1 if o < i
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Here r, is the current nonconformity ratio associated with the quality charactetistidf Y; ~
N(uy,0?), thenr, = @(Lsfc—lf’“) +1-— @(mi—ll”“). r7 is the minimum of the nonconformity ra-

tio, it is obtained whem, = Y3450 75T is the upper limit for the nonconformity ratio beyond
which the process is not capable. It is common tad&61. = 64p.p.m as it corresponds tév level

in six sigma theory. Hence, when the proportion of nonconforming items is less than 64 p.p.m the
NCDU is positive and the process is considered capable, whereas if the value of the index is O ther
the process is not capable.

It is important to note that using 0 insteadi¢f™ can lead to misleading interpretations of the index,
especially in the case when the index is used to compare between the capability of several processe
Indeed, assume that a comparison is carried out between the capability of two processes: proce:
1 and process 2. If 0 is used insteadr@f™ and 5" the comparison will be between andr,,

if 7, < r; then process 2 is considered as more capable than process 1. However, incjtiting
andry*™ with 77" < r2¥" in the index computation gives the additional information that with some
process adjustments process 1 is more capable than process 2.r¥When ri*" we say that the
potential capability of process 1 is higher than the potential capability of process 2. Hence, the index
NCDU is not only used for the comparison of the actual capability, it allows also to compare the
potential capability. This is an analogy to the classical indices where the use of theipdekich
assesses the actual capability is associated with the use of theGhaexich assesses the potential
capability. Then, why not comparing individual nonconformity ratios and the individual minimum
of the nonconformity ratios separately? This question is equivalent to the question why are we using
capability indices. In fact the capability index is used to characterize in one value the ability of the
process to meet the customer requirements. Hence, capability indices are easy to communicate insi
each organization. The use dfC' DU avoids the use of two indices for the actual capability and for
the potential capability separately as the computatioN6fDU is based already on the comparison
between the actual capability and the potential capability. WideDU value gives an idea about

how far away is the present nonconformity ratio from the maximum ability of the process to meet the
customer requirements given by. NCDU is also easy to interpret as it is sufficient to notice that
the index value is positive in order to judge that the process is capable.

Moreover, assume that two processes are considered. The quality of process 1 and process 2 is €
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pressed in terms of the quality characteristicandY; respectively:r; andr, are the nonconformity
ratios associated with; andY; respectively. It is noticed that when andr, reach simultane-
ously their minimum, the assigned desirability is 1 for both processes, although both processes di
not have the same capability. This happens because there is no comparison béteel 7.

To overcome this shortcoming it is proposed to consider(riif#, r5") in the computation of the
desirability function . Hence, ifi*" < ri*" the nonconformity based desirability function associated

with Y5 is:

0 if r,>USL,

NCDU, = Ugﬁ% if it <ry <USL, (3.3)
st —rpin min
USL ey ity < B

Figure 3.12 shows the linear nonconformity based desirability functions. The solid line corresponds to
the NC DU, and the dashed line corresponds\é’ DU,. Notice that in order to allow comparability
between processes whefi < ri*" only NC' DU, can reach the maximum value of 1. This is due

to the fact that the potential capability of process 1 is higher than the potential capability of process
2. However,NC DU, value will not exceeM.

SL' —rinin
NCDU 4
—— NCDU,
------- NCDU,
1
USL' —r™"
USL' _ r]min
0 min in ' > .
r v, US[,  nonconformity ratio

Figure 3.12: One Sided Linear Nonconformity Based Desirability functions

When more than 2 quality characteristics are considet&d,is determined for each quality char-
acteristic and the minimum among aft” is used in the computation of eadhC' DU as explained
for (3.3). In the case where several quality characteristics express the quality of a single product

the natural extension aVC' DU is given by the desirability indeX(r4, ...,7,) = [HleN(JDUj]%
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Table 3.14:NCDU Values for Screw 1
Stream 1 2 3 4 5

NCDU | 0.780| 0.981| 0.960| 0.756| 0.982

Table 3.15:@U Values for Screw 2
‘ Stream 1 2 3 4 5 ‘

NCDU | 0.910| 0.612| 0.670| 0.997 0.991‘

where NCDU; are defined in (3.2) and (3.3) and m is the number of quality characteristics. The
geometric mean assigns an overall desirability of O if there exists at least one quality characteristic
for which the nonconformity ratio exceeds theS L' value. NC' DU allows for capability judgment,

it compares the actual capability of a process to its potential capability and it allows the comparison
between the capability of several processes for any type of distribution and any type of specification
limit. However, it will be interesting to compare the performancé/af DU to the considered indices

in the previous section. Table 3.14 and Table 3.15 show the index values for the different streams fo

screw 1 and screw 2 respectivell)). C' DU is computed using the estimated distribution parameters
presented in the previous sections. Notice thatDU succeeds in respecting "the higher the better”
rule when the current nonconformity ratio is used as a benchmark NTHBU computation is not
possible without a previous comparison between the minimums of the nonconformity ratios. Further-
more,N/CFU allows the comparison between the capability for the different quality characteristics
for each stream. HowevelNC' DU is based on the Derringer and Suich (1980) desirability function
which is interpreted as a loss functioN.C'DU is a loss a function which measures how desirable is

a nonconformity ratio. Although the threshold for capability judgment is cleaMGDU,, it is com-

mon in the capability theory to construct confidence intervals for the indices and to base the capability
judgment on the lower limit of the interval. In what follows a confidence interval is constructed for

NCDU.
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3.8 A Bootstrap Confidence Interval for NC' DU

A confidence interval can be constructed by using bootstrapping technique. The principle of a boot-
strap method is the following: if a sample of sizeis considered with sample values, ..., z,,

from this sample a random sample of sizeis chosen -with replacement- and a PCI is computed
for the obtained sample, saW/CFUm. This operation is repeateft times in the aim to have:
@UM, ce @UM, ce @U[B] which compose the bootstrap distribution 8T DU. In

this studyn = n’ = 300 and B = 7500.

There are many approaches to construct a bootstrap confidence interval. The approach adopted in tf
work is the quantile confidence interval. Efron and Tibshirani (1993) explain that a minimum value of
B = 1000 is required for an acceptable estimation of the quantiles. The bootstrap confidence interval

of intended coveragel — (2a))% is given by
(NCDU,,, NCDU,,) = (NCDU (), NCDU 1),

where@U(a) is the quantile of ordes of the NCDU bootstrap distribution. In this study =
2.5%.

Bootstrap confidence intervals are constructedN6r DU of screw 1 and screw 2. For that pur-
pose the observations are gathered (3@ x 10) matrix. New samples are obtained by choosing
matrix lines with replacement. Then, the parameters of the distributions corresponding to each strear
have to be estimated at each replication. In order to be able to estimate the parameters the outliel
are detected and removed. For screw 1 the Camp-Meidell theorem is applied as explained in sectio
3.4.2 and section 3.5.2 on the outlier values already detected in section 3.5.2. For screw 2 observe
tions greater thad are outliers and they are removed. After removing the outliers, the distribution
parameters are estimated using quantile method and maximum likelihood estimators for screw 2 a
explained in section 3.4.1 and using the maximization of the coefficient of determination for screw 1
as explained in section 3.5.2. The estimation of the distribution parameters allows the nonconformity
ratios estimation. Moreover, the location parameter which allows the minimum of the nonconformity
ratio determination is determined. A comparison between all minima of the nonconformity ratios is
carried out and the minimum among all minima is used inX@DU computation for each stream.

The comparison considers the minima corresponding both screws. In order to construct the bootstra
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Table 3.16: Bootstrap Confidence Intervals f6€ DU Corresponding to Screw 1

‘ Stream 1 2 3 4 5 ‘

\ [INCDU,,, NCDU,,] | [0.491, 1.000] [0.000,1.000]| [0.546, 0.989]| [0.779, 0.999] [0.904, 1.000]\

Table 3.17: Bootstrap Confidence Intervals }6€ DU Corresponding to Screw 2

‘ Stream 1 2 3 4 5 ‘

\ INCDU,,, NCDU,,] | [0.000, 0.999]| [0.000,0.999] [0.000, 0.997]| [0.000, 0.999] [0.000, 0.999]\

confidence intervaNC DU is computed at each replication. In this case 7500 replications are con-
sidered. The results are given in Table 3.16 and Table 3.17 for screw 1 and screw 2 respectively. |
IS interesting to use a summary statistic of e DU bootstrap distribution in order to compare the
stream capabilities. Indeed, the median is a good indicator of the bootstrap distribution central ten-
dency as it has the minimum of the average of the absolute deviations among other indicators of the
distribution central tendency. The summary statistic is obtained thréagt’ DU which is the me-
dian of NCDU bootstrap distribution. It would be interesting to check whetheWC DU respects
the higher the better rulé/ NC DU and the median of the estimated nonconformity ratomotstrap
distributionr 5 are given in Table 3.18 and Table 3.19 for screw 1 and screw 2 respectively.

It should be noticed that the capability judgment is more reliable when it is based on the lower
limit of the NC DU confidence interval. A stream is said capable if the lower limit is higher than

the threshold for capability judgment. Notice from Tables (3.16) and (3.17) that all streams are not

Table 3.18: Central Tendency ;FCDU Bootstrap Distribution for Screw 1
Stream 1 2 3 4 5

MNCDU 0.978 0.000 0.817 0.936 0.997
T0.5 1.392x107% | 77.14x107% | 11.66x107° | 4.089x107¢ | 1.721x10~7
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Table 3.19: Central Tendency ;FCDU Bootstrap Distribution for Screw 2
Stream 1 2 3 4 5

MNCDU 0.952 0.795 0.799 0.995 0.985
o5 3.020x107% | 13.07x107% | 12.85x1076 | 2.878x 1077 | 9.413x10~ 7

capable in screwing screw 2. Concerning screw 1 all streams are capable except stream 2 for whic
the lower confidence limit is 0. Figures 3.13 and 3.14 show the stream bootstrap distributions for

screw 1 and screw 2 respectively.
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Figure 3.13: Different StreaivC DU Bootstrap Distributions for Screw 1

FurthermoreM NC DU is given in Table 3.18 and Table 3.19 for screw 1 and screw 2 respectively.
In this case the order of the stream capabilities followiigy C DU is the same as the order given by
the nonconformity ratio. Items produced by stream 2 have the worst quality. Moreover, following the
order given byM NC DU stream 5 and stream 4 give the most satisfactory capability for screw 1 and

screw 2 respectively.
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Figure 3.14: Different StrearivC DU Bootstrap Distributions for Screw 2

3.9 Conclusion

A linear nonconformity based desirability function is presented as a process capability Mdéx./

avoids the use of two different indices for assessing the actual capability and the potential capability.
The performance of this index is compared with the performance of other indices in the literature
using non normal distributions and asymmetric specification limits. It was demonstrated that the index
respects the "higher the better” rule for any type of distribution and for any specification limits. The
use of this approach in the multivariate case is possible using the desirability index. The proposec
univariate index overcomes some shortcomings of the existing indices in the literature. However,
in many cases the quality of a product is given through several quality characteristics. Hence the
capability assessment is done using multivariate capability indices. It is interesting to present the

multivariate extension of the proposed index.
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Chapter 4

The Multivariate Process Capability Indices

Many approaches have been elaborated in the aim to implement multivariate capability indices. Thes
approaches try to solve some theoretical and practical problems like multivariate specification limits
and statistical properties of the indices. In what follows some of the existing approaches in the liter-
ature are explained before presenting a multivariate extension of the M@éXU, introduced in the

previous chapter.

4.1 Review of the Literature

Lovelace and Kotz (1998) presented the multivariate process capability indices as a dangerous bt
unavoidable area. Dangerous because many of the existing multivariate process capability indices al
in fact generalizations of the univariate classical indices. It is expected then that the proposed multi-
variate indices have the same shortcomings as the univariate indices. Wang et al. (2000) compare
different multivariate indices and noticed that a current problem in multivariate quality control, there
IS no consensus about a methodology for assessing capability.

Multivariate PCls are unavoidable especially when several quality characteristics determine the qual
ity of a product. Several indices were proposed in the literature in order to deal with multivariate
capability. Wierda (1993) proposed an extension of the indgx The approximation of the mul-

tivariate index depends on the actual process yield. Chan et al. (1991) found on the ellipsoidal
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specification limits an extension of the ind€,,. In order to make the structure of the multivariate
process capability index closer to the general structure of the process capability indices. Taam et a
(1993) proposed a multivariate analog to the indgy,. The proposed index is given by the ratio

of the volume of the specification region over a scaled 99.73% process region. Pearn et al.(1992
introduced an approach based on the extension of the ifigleXhis approach was studied by Chen
(1994) who proposed a multivariate index for the rectangular specification limits. Actually, the pro-
posed multivariate index is the ratio of the tolerance region to that of the region needed to achieve the
desired process yield. Wang et al. (1998) proposed to reduce the complexity of the problem wher
several quality characteristics are considered. For this purpose, the process capability indices wer
computed for some selected principle components.

In this work it is suggested the use of a nonconformity ratio based desirability fungtiohU as a
capability index in the univariate case. In what follows the extensioN©fDU to the multivariate

case is discussed.

4.2 The Multivariate Extension

Whenn quality characteristics are considered, €' DU index is defined for each quality charac-

teristic as follows:

0 if r,>USL,
USL,fn' H min ) !
NCDU; = { Gsrmin_, e if < <USL, (4.1)
USL —r" if r; S T;nm

USL'—=MIN;=y o (r7im)
wherer; is the actual nonconformity ratio for the quality characterigtic” is the minimum of
all the minima of the nonconformity ratios. In the multivariate case the actual nonconformity ratio
for a quality characteristic is computed on the basis of the marginal probability density function.
Hence, ifX;, ..., X, are random variables witfi(z1, .. ., z,) the joint probability density function,

LSL,,...,LSL, the lower specification limits antl SL,,...,USL, the upper specification limits

+oo USL;
rizl—/ / f(z1, ..., 2p)dxy .. . dx,
—00 L

SL;
6

then:
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A natural extension of th&/C' DU, to the multivariate case is given by the desirability index. The
desirability index is a function of the univariaté C' DU;. It will be considered as a multivariate
capability index. However, several types of the desirability index were proposed in the literature. It
will be interesting to check which type is more appropriate for capability assessment.

Harrington (1965) proposed the geometric mean of the individual desirabilities as a desirability index.

It is defined as

hSAl

D = [Hledi] .

In this way if one quality characteristic has a desirability equal 0 than the overall desirability would

be 0. Derringer (1994) proposed a weighted composite desirability which is given by

1

D = [, a5,

wherew; corresponds to the importance of the quality characteristi¢bie weights are determined
by individual or group judgement. Kim (2000) proposed the minimum of the desirability values as an

assessment for the overall desirability. It is given by

-----

One of the main features of the process capability indices is that it is possible to judge whether the
process is capable or not from their values. However, this feature does not hold when the minimun
of the desirabilities is considered as a multivariate process capability index. In order to prove that the

following Lemma is formulated:

Lemmal:
If r, < USL Vi # R < USL', whereR is the joint nonconformity ratio computed using a joint

probability functionf with infinite support. Hence, univariate capability multivariate capability.

Proof:
Suppose thaty,...,r, are the nonconformity ratios corresponding to the quality characteristics
Xi,..., X, respectively and thaf(z, ..., z,) with infinite support. In the multivariate case the

process is said capable when the joint nonconformity ftio U SL'. The joint nonconformity ratio

USLy USL,
Rzl—/ / f(x1, ..., 2p)dey ... dx,
L L

SLy SL,

is given by:
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it is obvious that

+oo USL; USL, USL,
/ / f(xl,...,a:p)dxl...dxp>/ / flz1, ..., xp)dey .. . dx,
—o0 LSL; LSLy LSL,

this means

r; < R ,Vi.

whenr; = USL',Vi. this means thaR > USL'. Hence, the univariate capability does not imply the

multivariate capability. O

When the minimum of the desirabilities is used as a multivariate process capability index, this is
equivalent to reducing the multivariate case to the univariate case. Indeed, only the minimum of the
NCDU, is considered. In this case the capability judgement rule is the same in the univariate and
in the multivariate case. Hence, it becomes not appropriate to use the minimum/othé/; as a
multivariate process capability index because it does not provide a reliable capability judgment rule.
The natural extension aVC DU to the multivariate case becomes the geometric mean of the
NCDU;. The geometric meanNC'DM) is considered as a multivariate capability index for the
correlated and the uncorrelated quality characteristics. The desirability index equals 0 when at leas
one quality characteristic has a nonconformity ratio higher & . Moreover, as it will be shown
in the next section the desirability index could be written as a function of the joint nonconformity ratio
for uncorrelated quality characteristics. Whemncorrelated quality characteristics are considered

the joint nonconformity ratio is expressed as
R,=1—[1—r)(1—=re)...(1 = rp_q)(1 —1,). (4.2)

Furthermore, when the geometric mean is used, it becomes possible to present a threshold for tr

desirability index over which the process is considered capable.

4.3 The Capability Threshold Setting

In this section the considered desirability index is the geometric mean of the univsiiatd;. It is
important to notice that in the univariate case when USL’ the univariateNC DU is positive. A

positive value of the capability index is sufficient in order to judge whether the process is capable or
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not. In the multivariate case when the desirability index equals 0 then the process is not capable. Ir
order to derive a capability threshold for the desirability index it is interesting to express the desirabil-
ity index as a function of the joint nonconformity ratio. The threshold for the capability judgment is

given in Theorem 1. However, in order to be able to prove Theorem 1, the following lemmas should

be formulated.

Lemma 2:
The general expression &fC'D M is given by

p—1 p—i+1p—i+2 p—i+l p

N(p—i i 1, 1 1; 1 p
2(USL)(” )(—1)7] Zl kZQ Zl > e et gt
1= J= = m= . g=p—1

NCDM?P — j<k<..<m<...<q

(USL — O
USL” + (=1)PIT_r;
(USL — O

p is the number of quality characteristies,is the actual nonconformity ratio for the quality char-
acteristici, USL' is an upper limit for the actual nonconformity ratig}”” is the minimum of the
nonconformity ratio for the quality characteristiendC' = min;—;__,(r"). 1,isaf(p — 1) x 1]

vector and its elements are 0 and 1. Only the fif$telements are 11, is the!"" element of the

vector and

0 if 1> u,
Lum = . (4.3)
1 if <.

The proof of Lemma 2 is in Appendix B.

Lemma 3:

The general expression of the joint nonconformity ratio for uncorrelated quality characteristics is

given by
p—1 p—i+1p—i+2 p—i+l p 1 1 1 1

Ry==0 (1> > ) > B (1P )
i=1 j=1 k=2 m=l g=p—1

j<k<..<m<...<q

The proof of Lemma 3 is in Appendix B.
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Lemma 4:
NCDM is expressed as a function of the joint nonconformity ratio of uncorrelated quality character-

istics as follows

(USL' — CYYNCDMP = USL" + (—1)PII’_,r;

p—1 p— p—u+1p—u+2 p—u+l

1
—l—ZUSL/(p_i)(—( Z (—1)¥] Z Z Z i r;l“’“]r,]i“’m ...rﬂ{"[”,,,r;l“’“"ﬂ])
= i m=l

=1 (7 1u;£7, ]:1 k=2 g=p—1
j<k<..<m<..<q

—(=1)PIIE_,r; — Ry). (4.4)

The proof of Lemma 5 is given in Appendix B.

Lemma 5:
The joint nonconformity ratio for uncorrelated quality characteristics is expressed as a function of

NCDM as follows:

p—1 p—1
R,y USL"" = -NCDMP(USL — Cy +USL" +>_ USL""
i=1 i=1
p—1 p—u+1p—u+2 p—u+l p 1 1 1 1
CSOICEDY D Y B )
u=1ly2; j=1 k=2 m=l

) q=p—1
j<k<..<m<..<q

“(“1)p11€:173) +—(——1)pII£:1r¢

The proof of Lemma 5 is given in Appendix B.
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Theorem 1:

A process is capable if the desirability index satisfies the following condition:

p—1 . p—1 p u+1 p—u+2 p—u+l p
(USL' — CyNCDM? > Y USL" ™ (—( DY Z Z >
i=1 u:lu# j=1 k=2 a=p—1

j<k<..<m<..<q
r]-l“’[”r,]i“’m el .'r]ql“’[p_”}) — (= 1)PIE_ 7y — USL )+ USL” + (—=1)PIT_, 7y (4.5)

wherep is the number of uncorrelated quality characteristicss the actual nonconformity ratio for
the quality characteristi¢, USL’ is an upper limit for the actual nonconformity rat'rt;?i” is the
is an [(p-1)x1] vector and its elements are 0 and 1. Only thesfifselements are ﬂu,m is the("

element of the vector and

0 if 1> u,
Loy = (4.6)

1 if <.
Proof of Theorem 1 is given in Appendix B.
Although the desirability index is computed for correlated and uncorrelated quality characteristics,
it is obvious from (4.4) that its use is more appropriate for uncorrelated quality characteristics. It
will be interesting to check whether the threshold given in (4.5) could concern also correlated quality
characteristics. For that purpose, it is interesting to highlight the effect of correlation on the joint
nonconformity ratio. The relationship between the correlated and the uncorrelated case is studie

assuming that the multivariate normal distribution holds.

Theorem 2:
Assume thatXy, ..., X, arep correlated quality characteristics with varianegs. . . ,aﬁ respec-
tively. The considered quality characteristics follow tN¢u, ) wherey is the mean vector and

the covariance matrix. I&2] < IT?_, o2 then correlation will make joint nonconformity ratio smaller.

Proof:
Assume thatZ ~ N (u,>) wherep is (p x 1) vector mean andl is thep x p covariance matrix with

variancesr? fori = 1...p. Considers’ = diag(o? ... o7). The joint probability density function is
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given by
f(#) = e eap(— L (x — @) =N — p)),

Vv (2m)P[E] 2

it depends om: only in the quadratic fornz — ;) ' (z — 1) this means that

’

if (x—u) S (2 — ) = constant= f(z) = constant

Notice that(z—p) S~ (z—pu) ~ x2. Hence, the density is constant far— ) S~ (z—p) = 2.
This is in fact the equation of an ellipsoid. All realizations of the multivariate normal distribution on

the border of the ellipsoid have the same probability. The volume of this ellipsoid is given by

[NIiS]

T p 1
V=——(x2.)?|Z]2.
I(1+ %)(Xp’“)2| *

For fixed specification limits the smalléf, the tighter is the distribution and the smaller the joint
nonconformity ratio.
When the quality characteristics are assumed to be uncorrelated, the volume of the ellipsoid is giver

by

SIS

’ ™ D 7,1
V= —— (2222
o+ g e B

2

where|Y'| = II”_ o2,
Hence, if|2| < II7_,02 thenV < V. In this case the correlation will make the distribution tighter.
This means that more observations can fall between the specification limits. Hence, in this case th

correlation makes the joint nonconformity ratio smaller. O

This means that if (4.5) holds for a process which has correlated quality characteristi¢X with
I1Y_, 02, then the correlation will not affect the capability judgement. Indeed, consider a process
with correlated quality characteristics. The joint nonconformity ratio is computed assuming that the
quality characteristics are uncorrelated with< USL'. The correlation do not affect the capability
judgment as long a&| < TT%_, o2

Example 1:

In the bivariate casgs| < |¥'| is equivalent to'1 — p?) < 1. Hence, in the bivariate case any cor-

relation coefficient value makes the joint nonconformity ratio smaller. Hence, when (4.5) holds this
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means that the process is capable independently of the correlation coefficient.

Example 2:

Forp = 3, |2| < |¥| is equivalent td) < 1 — p?, — p3s — p2s +2p12p13p23 < 1. This means that when

(4.5) holds this condition should be checked first before judging the process capability. When more
than three quality characteristics are considered a condition on the correlation coefficients should b

derived.

In the case of multivariate normality whek| < |X'| and the desirability index has a value
which is higher than the threshold in (4.5) the process is said capable. Under these conditions th
capability threshold concerns the correlated and uncorrelated quality characteristics. However, whe
the condition on the generalized variance holds and (4.5) does not hold, this does not mean that th
process is not capable. Indeed, when the desirability index is under the threshold given in (4.5) the
process capability is rejected only when the hypothesis of independence holds.

Furthermore, many multivariate indices are presented in the literature but it is still not clear whether
these indices respect "the higher the better” rule. In what follows "the higher the better” rule is
discussed when th¥ C' D M is used.

4.4 "The Higher the Better” Rule Using the Desirability Index
When the capability of several processes are compa’étd) M is written as follows:
NCDM; = [IT"_, NCDUy,]?,

wherep is the number of the quality characteristics aid'DU,; is the univariate index for the qual-

ity characteristici in the procesg. The geometric mean is used as a capability index and it was
proved in Lemma 4 that in this way it is possible to write the capability index as a function of the
joint nonconformity ratio for uncorrelated quality characteristics. Hence, it becomes possible to get
a threshold for capability judgment in the multivariate case. The most important expected feature of
a multivariate capability index is that its value should increase when the joint nonconformity ratio
decreases. When such feature holds it is said that the capability index respects "the higher the bette

rule. It will be interesting to check under which condition the desirability index respects the higher
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the better rule. Indeed, under such condition it becomes possible to compare between the capabilit

of different processes. This condition is given by the following Theorem.

Theorem 3:
Consider two processes, process 1 and process 2. The quality of these processes is expressed in te
of p uncorrelated quality characteristics. These processes have the joint nonconformityryatios

R, respectively withR; < R,. The "higher the better” rule is respected if

NCDM? — NCDMY > A2~ jf A — Ay, >0,

(USL'—C)p (47)
NCDMY — NCDMY >0 if A — Ay, <0,
where
p—1 I p—1 p—u+1p—u+2 p—u-+l P
Ay = USL" " (=( ) (-1)"] N
i=1 u=1,2; j=1 k=2 m=l q=p—1

j<k<..<m<..<q

P B g ) — (1P )+ (—1)PIE_ 7, + USL”

wherev = 1,2, r, is the actual nonconformity ratio for the quality characterigtiin the
processy, USL' is an upper limit for the actual nonconformity ratig?™ is the minimum of the
nonconformity ratio for the quality characteristicin the process 1374 is the minimum of the
nonconformity ratio for the quality characteristicin the process 2 wittk = 1...p andC =

EEREE) at S

the firstu'" elements are 11, ;) is thel"" element of the vector and

0 if > u,
Lo = _ (4.8)
1 if [ <u.

Proof:
In Lemma 5 it is proved that the nonconformity ratio founcorrelated quality characteristics in a
process is given by

R ~NCDMP(USL — O) + A,

?

p—1 ]
S UsL'e
=1
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thenR; < R, becomes equivalent to

A — Ay

NCDM? — NCDMP > —L =42
1 2~ USL — O

NCDM, and NC D M, should also respect the following condition
NCDMP? — NCDM? > 0.

Hence, the "the higher the better” rule is respected when

D P A1—A i
NCDM{y — NCDMj > wsr &y > 0 if A — Ay >0, (4.9)

NCDM?P — NCDM? > 0 if A — A, <0,

It is noticed that the "higher the better” rule is based on the joint nonconformity fatisowever,

the condition under which the desirability index respects the "higher the better” rule depends only on
nonconformity ratios computed in the univariate case for each quality characteristic. Moreover, it is
noticed that the fact thaVvC DM, > NC DM, does not mean that process 1 is more capable than

process 2, that is true only when (4.8) holds.

4.5 Comparison of the Multivariate PCls

It will be interesting to compare the performance of the proposed multivariate index with different in-
dices from the literature. It is interesting to check wether the considered indices succeed in respectin
the "higher the better” rule. A simulated example is leading the comparison between the competing
indices. In what follows a comparison is carried out between the indi€€s’'p, MV Cpm proposed

by Taam et al. (1993) and the geometric meaNa6f DU;.

The indicesM VCp and MV C'pm are defined as follows:

vol(max.vol. ellipsoid in specification region)

MVCp = vol(process ellipsoid)

The maximum volume ellipsoid embedded in the specification region is givéa|ty— M) H ' (z—

M) < 1}, whereM is the vector formed by the midpoints of the specification linfits= diag(e?, . . . ,512))
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Table 4.1: Example Processes
Process A B C D

o2 6 6 6 6
o2 12 12 12 12
o2 15 15 15 15

Wlth Ei — USLi;LSL

+ andp the number of quality characteristics. When the multivariate normal distri-
bution holds the process region is given by the following ellipgaildz — 1) S~ (2 — 1) < X2 0.9973}-
WhereX is the covariance matrix ang 4475 IS @ quantile of the chi square distribution wjitde-

grees of freedom. Then,
|H|

12| (X;Qo,o.9973)p

N

MVCp = |
The index MVCpm is given by

vol(max.vol. ellipsoid in specification)
MVCpm = re— 5
vol((x —T) Xr (z—-T)< Xp;0.9973)

whereX; = E[(X — T)(X —T)'], hence,

MVCpm = MVCp/\/1+ (u—T)S " —T).

The comparison is implemented over four processes, each process has a trivariate normal distributiol
The quality characteristics are assumed to be uncorrelated for all processes. Table 4.1 gives the vai
ancesr?, o3, o2 for the examined processes A, B, C and D.

For all quality characteristics in processes A and B symmetric specification limits are considered.
Furthermore, The specification limits are the same for all quality characteristics in the processes A
and C they are given by({SL, USL)= (15, 50). For process A the specification limits are given by
(LSL,T,USL)=(15, 32.5, 50) for all quality characteristics. The specification region is given by the
Cartesian product of the univariate specification limits: (15,32.5,50)*(15,32.5,50)*(15,32.5,50). No-
tice that the Process A is centered and on-target with T" for all quality characteristics. However,
for process C asymmetric specification limits are used, it is off-target and not centeredl witbD
andy = 34 for all quality characteristics.

For the process B the specification region is given by the following Cartesian product:
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Table 4.2: Nonconformity Ratios and Index Values
Process R MVCp MVCpm NCDM A,

6.666 10°% 3.061 3.061 0.9642 4.268 x 1010

B 7.720 1077  3.061 3.061 0.9959 4.966 x 10~
C 2.046 107 3.061 1.243 0.8832 1.277 x 107°
D 2.973 1075 3.061 1.243 0.8320 1.885 x 107*

(15,27.5,40)*(15,32.5,50)*(15,39.5,64). Notice that the Process B is centered and on-target with
= T for all quality characteristics. However, for the process D asymmetric specification limits are
used, it is off-target and not centered. The specification region is given by the following Cartesian
product: (15,29,40)*(15,34,50)*(15,42,64). The mean valuegiare 25, u, = 30 andus = 38 for
the quality characteristics 1, 2 and 3 respectively. Table 4.2 shows the joint nonconformity ratio and
the values of the process capability indices.

Notice that the indeX/V Cp is constant for all processes and this is due to the fac{ Hipand|X|
are the same for all processes. However, the considered processes have different nonconformity r
tios because they have different specification limits. The same shortcoming is observed for the inde;
MV Cpm as the same deviation from the target values was considered for all quality characteristics.
This comparison shows that the ind®C' D M succeeds in respecting the higher the better rule when
uncorrelated quality characteristics are considered. The higher the better rule is respected indepel
dently of the specification limits type as long as the condition in (4.8) is respected. Indeed, notice that
the order given by, is the same order aS§C' DM . Hence, the second line of (4.8) is respected for

all possible comparisons in the considered example.

4.6 NCDM Implementation

In the previous chapter the capability of the streams was comparedMisiigf/. The objective was
the determination of the most capable stream for each quality characteristic. HoWévBI/ does
not help for determining if the process is more capable in screwing screw 1 or scréw.'22 M

appears to be more appropriate for this task. Table 4.3 shows the joint nonconformitRrdtio
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Table 4.3:NC DM Computation
‘ Ry R, NCDM, | NCDMs, ‘

‘ 34.46 x 1079 | 52.34 x 107° 0.887 0.819 ‘

screw 1, the joint nonconformity rati; for screw 2,NC D M, for screw 1 andVC D M, for screw

2. As it is explained in section 3.3 the streams are uncorrelated. H&namd R, are computed

as in equation (4.2). Table 4.3 shows th&at’ D M respects "the higher the better” rule and that the
process is more capable in screwing screw 1.

As explained in section 3.8, the capability judgment is based on the bootstrap confidence interva
for NCDM. Following the same procedure as in 3.8 the bootstrap confidence intervals are [0.000,
0.973] and [0.000, 0.978] for screw 1 and screw 2 respectively. It is concluded that the process is no
capable in screwing screw 1 and screw 2. However, it is shown in section 3.8 that stream 2 is the only
stream which is not capable for screwing screw 1 and screw 2. When discarding stream 2 from the
analysis the obtained confidence intervals are given by [0.751, 0.979] and [0.000, 0.989] for screw 1
and screw 2 respectively and the process is capable only for screwing screw 1. Hence, when stream
is discarded a loss function approach could be adopted for screw 1. In this case the supreme objecti
which is the adjustment to the target value could be reached. More quality improvement should
be adopted for the screw 2 streams before tackling the adjustment to the target objective. For the
purpose an experimental design should be implemented in order to determine the optimal operatin
conditions. When a confidence interval is constructedforD M under optimal operating conditions

it is definitely known whether the adoption of a loss function approach is possible. Figure 4.1 and
Figure 4.2 show the bootstrap distribution 8’ DM; and NC DM, when stream 2 is discarded

form the analysis.

4.7 Conclusion

It was demonstrated that the indé%C' DU respects the "higher the better” when the other indices
fail. The extension of the univariate process capability intdi&xDU to the multivariate case is given

by the desirability index. It was demonstrated that the geometric mean of the desirability functions
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is suitable for process capability assessment. IndéétD M is written as a function of the joint
nonconformity ratio forp uncorrelated quality characteristics. A condition under whiét' DM
respects the "higher the better” rule is derived. Moreover, it is shown that it is possible AdUB&/ [

for some correlated quality characteristics. Finally, a threshold for capability judgment is proposed.
Knowing that the desirability index is an important tool in the desirability optimization methodology,
the presented approach becomes promising as its application together with experimental design i
straightforward. Hence, the capability index will not be considered only as a tool for describing the

process capability but also as a tool for minimizing the proportion of nonconforming items.
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Chapter 5

Capability Assessment Under Optimal
Operating Conditions

In the previous chapter it was noticed that the considered process is not capable in screwing scre
2. It was recommended to run an experimental design in order to improve the process capability
In what follows an algorithm is presented in order to maximi¢€' DM. A simulation study is
carried out using the presented algorithm. The maximization@f) M/ means the process capability
maximization. It allows the determination of the optimal operating condition. It would be interesting
to test the process capability under this condition. The presented steps allow also to give an answe
for whether the adoption of a loss function approach for quality continuing improvement purpose is

possible for the simulated process.

5.1 The Algorithm for the Capability Assessment

As it was noticed, the desirability index is the geometric mean of the individual desirability functions
which depend on some response variables, in this case the considered response variables are the
dividual nonconformity ratios. When the individual nonconformity ratios are expressed as functions
of some factorsXy, ..., X, it becomes possible to express the desirability index on the factor space.
The maximization of the desirability index on the factor space allows the determination of the optimal

factor levels. These factor levels determine in fact the most desirable combinations of the individual

82



nonconformity ratios. Hence, determinidgC' DM under optimal operating conditions it becomes
possible to compare different processes on the basis of the joint nonconformity ratio as long as (4.7
is respected. The challenge is to use the same technique for describing the process capability ar
determining the optimal operating conditions.
The following algorithm describes a simulation design. The objective is to estimate the factor lev-
els which minimize the joint nonconformity ratio. This is done by the simultaneous optimization of
individual nonconformity ratios. The desirability index corresponding to the optimal operating con-
ditions is then considered as a metric for capability assessment. In this chapter two vafjadoies
Y; are considered. It is supposed that these variables correspond to two streams of the same quali
characteristic. It is supposed that the realizationg,dndY> depend on the levels of two factaks
and X,. Itis also assumed that the variables are independent.
Stepl: experimental design
An excribed central composite experimental design is considered and the variables are considere
as response variables. In the aim to be able to write the variables as functions of the fecters:
fi(X1, Xs) + ¢; wheree;, i = 1,2, are the errors of the modeki(¢;) = 0 andE(Y;) = fi(X1, Xa).
The model is supposed to be quadratic and the experimental design does not evolve replications.
Step2: data generation
One observation of each variable is assigned to each run of the experimental design. For the purpos
of running a simulation, each observation could be considered as a realization of a random variable
which follows a given distribution. A different distribution is considered at each run of the experi-
mental design and for each response. In what follows non normal distributions are considered and i
is assumed that the distributions considered for each response have the same variance.
Step3: transform data
In the aim to be able to use normality for the model coefficients, it is proposed to use the Box-Cox
transformation as defined in Box and Cox (1964). The transformation is given by

N = W)

=g N (5.1)
log(y;) if X\ =0.

It is important to notice that the mean squared error MSE is used to estirhate should be esti-

mated by\; which is determined numerically. It is incremented in the range -3 to 3. The likelihood is
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computed for each value of and the retained; is the one that maximizes the likelihood. In order

to give an idea about the valuesXxfhistograms are shown in section 5.2.

Step4: model the transformed data

The transformed data are supposed to follow the normal distribution. Hence, modelling the trans-
formed data allows us to estimate the parameters of the normal distributidﬁ@ﬁ?’) and MSE.

Step5: nonconformity ratios estimation

After estimating the parameters of the normal distributions it becomes necessary to transform the
specification limitsL.SL; andUSL; using the same ;ransfqrmation as fior The nonconformity

ratio estimators at each runare given byr;, = ®(M) +1-— @(M) where

u is the number of the experimental design run wita 1,...,ng,7=1,2

Step6: model the nonconformity ratios

The nonconformity ratio is a value between 0 and 1. In the next step the nonconformity ratio is min-
imized. In order to avoid negative valuesif™, log(7;) are modelled instead @f, wherer; gives

the estimated nonconformity ratio f&f.

The model is supposed to be quadratic and the coefficients of the model are estimated using ordinar
least squares. The adequacy of the model is checked using the F statistic. The F statistic measures t

goodness of fit of the model with

no — -

> (log(Fiu) — log(7:))*(n — p — 1)

0 — I

> (log(Piu) — log(Fiu))p

u=1

L —

wherelog(7;) = ¢;(X1, X32), with the number of variablg = 2 and the number of the experimental
design runs, = n = 9 as there is one observation at each run. The runs are showed in Table 5.1.The
model is judged appropriate if the F statistic is 10 times greater than the F percentage point as notice
Box and Draper (1987, p.280). In the simulation study in section 5.2 if the condition on the F statistic
is fulfilled, then step 7 is started otherwise the algorithm is restarted from step 1.

Step7: nonconformity ratios minimization

Each nonconformity rati@; is minimized using a grid search. It is important to notice that the log
transformation avoids to have a minimum of the nonconformity ratio which is negative. Knowing

the minimum of each nonconformity ratio allows the determination of the desirability functions as
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Table 5.1: Distributions and Nonconformity Ratios igrandY;

Run number

Distributions ofY;

Distributions ofY5

T1u

Tou

=

© 00 N o o B~ wWw DN

Lognormal (1.90,0.5
Lognormal (1.98,0.5
Lognormal (0.90,0.5
Lognormal (1.15,0.5
Lognormal (1.00,0.5
Lognormal (1.35,0.5
Lognormal (1.50,0.5
Lognormal (1.30,0.5
Lognormal(1.60,0.5)

Lognormal (1.92,0.45
Lognormal (1.51,0.45
Lognormal (1.50,0.45
Lognormal (1.25,0.45
Lognormal (1.12,0.45
Lognormal (1.30,0.45
Lognormal (1.38,0.45
Lognormal (2.05,0.45
Lognormal(1.50,0.45

1.310 x 1073
2.260 x 1072
2.735 x 1077
3.255 x 1076
7.582 x 1077
1.986 x 10>
6.975 x 107°
1.282 x 1077
1.536 x 10~*

7.994 x 1073
4.795 x 10~*
4.265 x 1074
5.002 x 10~°
1.529 x 107
7.861 x 107°
1.581 x 1074
1.770 x 1072
4.265 x 10~

defined in (3.3).

Step8: desirability index maximization

Using the models in step 6 and the minimum in step 7 it becomes possible to express the desirabilit
index as a function of the factolS§C DM (X, X5) = [HleNCDUi(Xl,Xg)]%. A grid search is
performed to find the optimum operating conditions which minimize the joint nonconformity ratio

and the corresponding desirability index is considered as reflecting the maximum process capability.

5.2 Simulation Study

Focus is on non normal distributions, hence, different Lognormal distributions are chosgrafaal

Y; for each run of the experimental design as shown in Table 5.1. It is assumed at this stage tha
the parameters of the distributions are known. Furthermore the specification limits are set for eack
response they are given By.SL,,USL;) = (0.1,30.1) and (LSLs,USL,) = (0.1,20.1) for Y}

andY; respectively. The parameters of the distributions are set in a way that the modéts;for)

have high F statistics and in this caBe = 1396 and F;, = 914.7. It should be noticed that as the
parameters of the distributions are known there is no need for computing the nonconformity ratio for

the transformed data. This means that the Box-Cox transformation is not used for the construction o
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Figure 5.1: Histogram of; .

what are supposed "theoretical” models. The models are determined on the basis of the nonconfor
mity ratios shown in Table 5.1. After the minimization gfand the determination oV C' DU, the
maximization of the desirability index provides the optimal factor levels and the desirability index
is considered as an indicator for the maximum process capability. In thisNé&9e)M = 0.888,
the optimal factor levels ar&; = —0.246 and X, = —0.066. These settings are considered as a
theoretical optimum. The location parameters corresponding to these settings are 1.0303 and 1.10¢
for Y1 andY; respectively. In this simulation study it is assumed that the target vdlues1.0303
and7; = 1.1082 for Y; andY; respectively. Indeed, with this assumption the loss function approach
and the nonconformity ratio approach have no conflicting goals.
In order to assess the validity of this approach under the mentioned conditions a confidence interva
is constructed for the desirability index. For this purpose the same distributions are considered and a
observation for each responsgfrom each distribution at each rurns generated. The generated data
are transformed using the Box-Cox transformation. Figure 5.1 and Figure 5.2 show the histograms
for \; and\, for Y; andY; respectively.

It is noticed that large proportions &f and)\, are equal zero and that only positive values\pf
and )\, occur. The algorithm as described in the last section is repeated 1000 times. This number o

iterations allows to have an idea about the distribution of the desirability index and the construction
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of the confidence interval based on quantiles as explained in section 3.8. The histogram in Figure 5.
gives an idea about the desirability index distribution. Moreover, at each iteration a repeat routine is
used, this routine is broken only when the condition on the F statistic given in step 6 is fulfilled.
Following this procedure the constructed confidence interval is [0.60,1.00]. Notice that when the
number of iterations is greater or equal 1000 the lower confidence limit could be approximated by the
order statistidVC D Mj,5. Hence, it becomes possible to know the factor levels corresponding to the
lower confidence limit and they at¥;, = —0.2828 and X, = 1.414. Substituting the factor levels
into what was considered the "theoretical” models, it becomes possible to compute the nonconformity
ratio for each variablé; andY; and to compute the joint nonconformity ratio whichis= 24.55 x
10~°. Hence, the considered process in this simulation study is not capable. Neither the loss functior
approach nor the nonconformity ratio approach can improve the process capability. In this case othe
influential factors should be taken into account. A loss function approach could be adopted for the
process capability improvement when the process is still capable when the deviations from the targe
values are minimized.
Notice that the confidence interval succeeds in capturing the theoretical optimum which is in favor of
the statistical validity of this approach. It would be interesting to check the impact of the goodness of

fit of the model on the confidence interval. For that purpose the condition presented in step 6 that the
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Figure 5.3: Histogram of the Desirability Index.

F statistic should be 10 times greater than the F percentage point is released. Figure 5.4 shows the ne
distribution of the desirability index. The constructed confidence interval is given by [0.84, 1.00]. The

obtained confidence interval has shorter length than the one constructed previously. When releasin
the condition on the goodness of fit the confidence interval still contains the theoretical optimum and
is more accurate.

In order to know whether the condition on the F statistic has a significant effect on the desirability

index distribution the Levene’s test and the Mann Whitney test are used.

5.2.1 The Levene’s Test for Equality of Variances

The Levene’s test is used to teskifamples have equal variances. Notice that in this study it is tested
whetherNC DM when the condition on thé’ statistic is used has the same variance Wi D M
when the condition on thé’ statistic is released. First, the Levene’s test is presented in the general

case. The Levene’s test is known to be less sensitive to normality. The Levene’s test is defined as:

Hy:o01=09=...=0y

VS.
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Figure 5.4: Histogram of the Desirability Index When the Goodness of Fit Condition is Released.

H, : 0; # o; for at least one pai, 7).

k
Given the variabled’, ..., Y, with sample sizes,,...,n; andn = > n,;, the Levene’s test
i=1
statistic is defined as .
(n k) yom(Zi = 27
W= k  n; )
(k—=1) 3" > (Zij — Z)?
i=1j=1
whereZ;; = |Y;; — \?i| with Y, the median of;, i = 1,...,k. Moreover,Z; is the mean o;; and

Z is the overall mean of thie samples. The Levene’s test statistic follows the Fisher distribution with
k — 1 andn — k degrees of freedom. The Levene’s test statistic rejHgtat the significance level

if W > F(a,k—1,n—k), whereF(a, k — 1,n — k) is the upper critical value of the distribution.

In this studylV = 0.902 and £'(0.95, 1,1998) = 3.846. Hence, the goodness of fit of the model has
no significant effect on th&/C'D M distribution spread.

5.2.2 The Mann Whitney Test

The Mann Whitney test is a nonparametric equivalent for the t-test. The Mann Whitney is used to test

whether the considered variables have the same median. In this case the variabl€dare when
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the condition on the" statistic is used and/C' D M when the condition on thé' statistic is released.
First the test is presented in the general case. If two variables are considered with sampleasizes

no respectively. The following hypotheses are tested

Hg . Y1 = YQ
VS.
H1 . ?1 7£ ?2.

The Mann Whitney/ test statistic is obtained by ranking &tl, +n,) observations in ascending order.
Then, the sums of the ranks corresponding to each variable are computédaay7,. Hence, the

U statistic is given byJ = min(U,, U,) where
U, =ning + 0.5n1(ny + 1) = T,

Ub = NNy + O.5n2(n2 -+ ].) - Tb-

For sample sizes larger than 20,~ N(E(U), 0%), with E(U) = 0.5n,n5 andg? = rz(tnatl,

EU)

U—E(U) U—
—Y < Z% or >

H, is rejected at the significance levelf > z1-2, wherezq is the quantile

of orders of the standard normal distribution. In this simulation study:tiseore associated with the

U statistic is -17.52. Hence, the goodness of fit of the model has no effect on the desirability index
distribution spread, but it has a significant effect onAh@D M distribution location at a significance

level of 5%. Moreover, the significant effect on the distribution location can provide an explanation
to the shorter length of the confidence interval in this case. Indeed, notice that in both confidence
intervals the upper limit is 1.00, this value could not be exceeded ©y> M. Hence, the change in

the confidence interval is observed only at the lower limit and in this case the confidence interval has

a shorter length.

5.3 Conclusion

Knowing that the desirability index can be used for optimization, then, the presented approach be-
comes promising as its use with experimental design is straightforward. Hence, the capability index
will not be considered only as a tool for describing the process capability but also as a tool for min-

imizing the proportion of nonconforming items. For this purpose an algorithm is defined which
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associates the use of the capability index with experimental design implementation. The assessmel
of the approach based on the algorithm was done in the bivariate case and the statistical validity o

the approach was shown.
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Chapter 6

General Conclusion

In this work a linear nonconformity ratio based desirability function({DU) is presented as a
process capability indexNC' DU avoids the use of two different indices for assessing the actual
capability and the potential capability. Based on a real case study the performance of this index is
compared to other indices in the literature. It was demonstratedMi&DU respects the "higher

the better” rule for any type of distribution and for any specification limits. Moreover, a bootstrap
confidence interval is constructed fofC DU. The lower bootstrap confidence limit was used for
capability judgment. The presented univariate index overcomes some shortcomings of the existing in
dices. However, in many cases the quality of a product is given through several quality characteristics
Hence an extension to the multivariate cas&/éf DU is given by the desirability index. Moreover, it

was demonstrated that the geometric mean of the univariate indices is suitable for process capabilit
assessment as it is proved that it could be written as a function of the joint nonconformity ratio for
uncorrelated quality characteristics. A threshold for the capability judgment for the multivariate index
(NCDM) and a condition under which the multivariate index respects the "higher the better” rule
were proposed. Furthermore, a condition under which the threshold for capability judgment could be
used for correlated quality characteristics is presented. The performand@ bf\/ is compared to

other multivariate indices from the literature through a simulated example. The implementation of
NC DM revealed that it respects the "higher the better rule” in the case study. Moreover, a bootstrap
confidence interval was constructed f§IC' DM and the lower limit was used for capability judg-

ment. The case study revealed that the capability of the streams needs improvement. A Monte Carl
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simulation is performed in order to assess the ability of usiitgD M with experimental design. A
confidence interval is constructed for max(¢' D M) and it appears that the constructed interval suc-
ceeds in capturing the "theoretical” max(' D M). Moreover, it is shown in this case that the model
adjustment has a significant effect on the mé&(D M) distribution but not on the spread of the
distribution which provided an explanation for the width of the confidence interval in the considered

simulation.

A nonconformity ratio approach is used in order to assess a multi-stream screwing process. The
considered univariate indeX C DU reflects better the state of the process than other considered
univariate indices. Moreover, it was noticed that although the material of the screw 1 support is
less resistant to the screwing operation, the screw 1 streams present better capability than screw
streams. This judgment is based on the lower limit of the bootstrap confidence intefVal Bl .

It would be interesting to check the technical possibility of using the same material for both screws.
However, many outliers are observed for screwl and this due mainly to the fact that the interior of
some supports are broken during the screwing operation. The elimination of outliers would improve
considerably the quality of the final product. Furthermore, even for screw 1, stream 2 does not presen
an acceptable capability and the closing machine 2 should be checked and its settings compared
the other machine settings.

As the streams are not correlated, the properties@f) M proved in Chapter 4, make of it a suitable
index in order to assess the capability of multi-stream processes. The interest oMdsingy and
NCDM is based on the fact that they are used for a wide range of non normal distributions and
specification limits as they do not depend directly on the distributions parameters.

An alternative to the use of the same screw support material is to run an experimental design fol
screw 2 streams. In Chapter 5, the statistical validity of this approach is showed through a simulatior
study. The use of the experimental design provides an answer to whether a loss function approac
could be adopted or not. However, more investigations are required in order to give such answer. Thi
investigations should take into account specially the case when the loss function approach and th
nonconformity ratio approach have conflicting goals. Moreover, the investigations should cover the

effect of the adjustment of the model, and transformations on final results. That is a challenging topic
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which should be associated to the adaptatio’vafD M to correlated quality characteristics.
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Q Capabilité Procédé Page 1 /1

Q-0 A S
Usine Dept./Achat./Prod. < ,Nom NN Date  28/10/00
Pigce N° Descr. Piéce I PtCtrl. n
Descr.Mach. Descr. Caragtrvipl Val. Nom0.85 035 ITS 2120
Mach.No. Carc. N° 2500 Unité T 035 "f‘TT”z"ofsb ____
Type Carac. variable Classe de Caracsignificatif Taille d'écharf. IRésoI.ution 2

Descr. Type Prod.
Type de production

Grp. d'Instruments

Instrument N°

Descrip. Instrument

Résol. Instrurfent

Evaluation de 01/01/70 /00:00:00 a 28/10/00 /10:27:07
Rem.
- X-99.73%[n=5; [l; 61T
—ILCS
20.859
20.804
20.754—
20.704
20.65
5 : \ , . , , — — == LC!
5 10 15 20 25 30
. 0.183 LCS
0.163
0.143
0.123
0.103
0.085— M
0.063
0.04
0.02. LCI
040 ST 99.73%( 15, 51 ]
-3s +3s -3s +§ s
{ ] )
30T X TS 45 Tl LS TS 0001
[ ! ! 99.991_1 [ 1
2] 1 : | £40 99.91 | = 0.1
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X
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gis] | ‘ ‘252 = ol ‘ 0 &
8159 Foo S| Pl 9
5 | i 205 Do 201 | T 1 80 -
107 | ' i F153 st % t 95 4
kol 3%
i | r F10= 14 < ! | 99
51, | s 014 w : 99.9
99.99
e = T T o 0 0.001-L . L 1
20.5 20.6 20.7 20.8 209 21.0 211 21.2 205 206 207 208 209 210 211 212
carvip! DN — carvipl DN—>
Valeurs Pigce : 17; Données caractéristiques : 1725007 1; Page 171
Valeurs dessinées Valeurs saisies Statistiques
Moyenne tolérancé  20.85 X 20.7559
I 20.50 Xmin 20.55 X -3s 20.4790
S 27.20 X max 21.09 X +3s 27.0328
Tolérance 0.70 0.54 6-s 0.5538
s 150 nos 99.72158 %
n>1s 0 Psrs 0.00007 %
n.y 0 P<1i 0.27834 %
" Niot ~_ 150 Negt 150
Modéle de distribution DN Distr. Norm.
Transformation ga(x)
Méthode de calcul Percentile (0.135%-%-99.865%) (1)
Indice de capabilité Py 1.26
Indice de capabilité Pok 0.92
Capabilité Process non confirmée |
T "Q-DAST T
28/10/00 qs-STAT V3.1 pc_01_n Marquardt GmbH ANCARVIPLDFQ
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Résol. Instrurfent

wgsyg # ’ ,
Q Capabilité Procédé  [Page 11
0-D A S°

Usine Dept./Achat./Prod. < l Nom NN Date 28/10/00
Pigce N° Descr. Piece | Pt Cl. n
Descr.Mach. Descr. Caragfrv1p2v Val. Nomi0.85 035 TS 21.20
Mach.No. Carc. N° 2500 Unité B s T T S
Type Carac. variable Classe de Caracsignificatif Taille d'écharit. I Résolution 2
Descr. Type Prod. Grp. d'Instruments Descrip. Instrument

Type de production Instrument N°
Evaluation de 01/01/70 /00:00:00 a 28/10/00 /10:31:48
Rem.
X - SHCa4d 99.73%[ n=5; [11; 011
20.90. LCS
20.853
20.80
20.75
20.70
20.65
20.604
& 20.55 Lel
=% T T e T v e —
S 5 10 15 20 25 30
S 0.18 = - : = ' —Lcs
0.163
0.143
0.124
0.10
0.083— M
0.063
0.043
0.024 Lal
00 s - 99.73%[ n=5; 81 ]
I U I U
p3 p3 3 p3
30— — 1! X TS 45 Ll X TS .001
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51, | e 0190 » | 99.9
. 99.99
ot Lol L L 0 0.0014-4 ! RS W I
20.4 20.5 20.6 20.7 20.8 20.9 21.0 211 21.2 20.4 205 206 207 208 209 210 211 212
carvip2v DM —» carvip2v DM -
aleurs Piece : 1/; Données caractéristiques : 1725007 1, Page 171
Valeurs dessinées Valeurs stiques
Moyenne tolérance  20.85 X 20.7203
i 20.50 Xenin 20.45 Ioa 20.4247
S 21.20 Xmax 21.08 Ups 21.0843
olérance 0.70 0.63 Upa-Toa 0.6556
Nt 149 Ner> 9912561 %
N>1s [4) P>Ts "0.00000 %
T nn 1 bn 0.87439%
I ot 150 e 150
B ‘Modéle de distribution DM o Distr. Mixe
Transformation g(x)
Méthode de calcul Percentile (0.135%-X-99.865%) (1)
Indice de capabilité T 1.06
Indice de capabilité Tok 0.75
Capabilité Process non confirmée !
T Q-DAS 1
28/10/00 gs-STAT V3.1pc_01_n Marquardt GmbH A\CARV1P2.DFQ
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Capabilité Procéde Page 1/1
Q-p A S°
Usine Dept./Achat./Prod. < I Nom NN Date 28/10/00
Piece N° Descr. Piece I Pt.Ctl. n
Descr.Mach. Descr. Carastrv1p2v Val. NomR0.85 035 (TS 21.20
,,,,,,,,,, L,
Mach.No. Carc. N° 2500 Unité 2035 Tt 2050
Type Carac. variable Classe de Caracsignificatif Taille d'écharf. l Résolution 2
Descr. Type Prod. Grp. d'Instruments Descrip. Instrument
Type de production Instrument N° Résol. Instrunfent
Evaluation de 01/01/70 /00:00:00 a 28/10/00 /10:31:48
Rem.
2090 X - SHCaqa 99.73%[ n=5; [I1; 611
.90+ LCS
20.853
20.80
20.759
20709
20.65
N 20'60T
20.55] Lcl
1= 3 . —— — T . ; —
- : C E 2l z E
S 0.184 LCS
0.16
0.143
0.123
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0.063
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0.023
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s - 99.73%[ n=5; 81 ]
[ U [ y)
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204 20.5 20.6 20.7 20.8 209 21.0 21.1 21.2 204 205 206 207 208 209 210 211 212
carvip2v DM — carvip2v DM =
Valeurs — Pidce : 17; Donnéés caractéristiques : 1725007 1; Page 171
aleurs dessinées Valeurs saisies tafistiques
Moyenne tolérance  20.85 X 20.7203
i 2050 o 2045 I 204747
s 3120 - 27.08 Una 310843
[Tolérance 0.70 063 Ups - Toa 0.6596
—_ > 749 hers 9912561 % ]
L N>1s 0 P>Ts 0.00000 %
L non 1 P<ni 0.87439 %
— . Niot 150 Negr 150
Modéle de distribution DM " Distr. Mixe
Transformation a(x)
Méthode de calcul Percentile (0.135%-X-99.865%) (1)
Indice de capabilité To 1.06
| Indice de capabilité Tox 0.75
Capabilité Process non confirmée !
""" T Q-DAS 1 7
28/10/00 qs-STAT V3.1 pc_01_n Marquardt GmbH ANCARVIP2.DFQ
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Type Carac. variable

I Résolution 2

s r J 4 r
Capabilité Procédé Page 1 /1
a-n A s’
Usine Dept./Achat./Prod. < | Nom NN Date 28/10/00
Pigce N° Descr. Pigce } PLCtl. n
Descr.Mach. Descr. Caragirv1p3 Val. Nomi20.85 035 1TS  21.20
,,,,,,,,,,,, [ e
Mach.No. Carc. N° 2500 Unité -035 | TI 2050
Classe de Caracsignificatif Taille d'écharf.

Descr. Type Prod.
Type de production

Grp. d'Instruments

Instrument N°

Descrip. Instrument

Résol. instrurfent

Evaluation de

01/01/70 /00:00:00 a

28/10/00 /10:35:21

Rem.

X - 99.73%[ n=5; [I1; 611

LCS

LCI

LCs

M
0.00 LCI
. s - 99.73%[ n=5; 1 ]
-3s +3s 3s +3s
\ 1 g i
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El ! f F 99.994 ! ]
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Q | ' | ‘35g : I iE; 1
5204 [ | £30% 9 Il WE P 5
S 2|1 ao]— i 20 =
e 1 ™ | 258 ks , : =
151 g/ 50 50 =
c 1 | | £202 | ; ;
@ 20 o 80
3 1 =1 : . kR
104 | | L1155 I3 Pzl f a5
i P © e Y
= 1 | | F10= Pl 1 99
5 . | s RN B ; 99.9
A 99.99
0L " | 1L - 0 0.0014- —— |
20.4 20.5 20.6 20.7 20.8 20.9 21.0 21.1 21.2 204 205 20.6 207 208 209 21.0 211 212
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Valeurs dessinées Valeurs saisies Statistiques
Moyenne tolérance 20.85 X 20.7023
| 20.50 Xenin 20.48 X-3s 20.3686
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‘olérance 0.70 0.61 6-s 0.6673
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Modéle de distribution DN Distr. Norm.
Transformation a(x)
Méthode de calcul Percentile (0.135%-X-99.865%) (1)
Indice de capabilité T 1.05
Indice de capabilité Tok 0.61
Capabilité Process non confirmée !
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Capabilité Procéde Page 1/1
a-p A& S°
Usine Dept./Achat./Prod. < | Nom NN Date 28/10/00
Pigce N° Descr. Pigce l Pt.Ctrl. n
Descr.Mach. Descr. Carashrv1pd Val. Nom®20.85 035 TS 2120
Mach.No. Carc. N° 2500 Unité TTT 035 M 2050 0
Taille d'écharit.

Type Carac. variable

Classe de Caracsignificatif

| Résolution 2

Descr. Type Prod.
Type de production

Grp. d'Instruments

Instrument N°

Descrip. Instrument

Résol. Instrunfent

Evaluation de

Rem.

01/01/70 /00:00:00 a

28/10/00 /10:42:06

X 99.73%[ n=5; {i1; 811

LCl

LCS

capvipd
o

LCI
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0.0 s - 99.73%[ n=5; G1 ]
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S o . Xmax 2113 X +3s 21.0478
[Tolérance 0.70 R 0.59 6-s 0.6423
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Indice de capabilité Py 1.09
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Capabilité Process non confirmée |
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a-D A S°
Usine Dept./Achat./Prod. < l Nom NN Date 28/10/00
Piece N° Descr. Piéce f Pt.Ctl.
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Grp. d'Instruments

Instrument N°

Descrip. Instrument

Résol. Instrurfient

Evaluation de 01/01/70 /00:00:00 a 28/10/00 /10:44:32
Rem.
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Tolérance 0.70 0.55 6-s 0.4964
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[Meot 150 Nest 150
| Modéle de distribution DN Distr. Norm.
Transformation gix)
Méthode de calcul Percentile (0.135%-X-99.865%) (1)
Indice de capabilité Py 1.41
Indice de capabilité Ppk 0.92
Capabilité Process non confirmée |
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Q Capabilité Procédé
Y dpabpiiite rroceade Page 1/1
Q-0 A 5°
Usine Dept./Achat./Prod. < j Nom NN Date  28/10/00
Piece N° Descr. Pigce | PLCtl. n
Descr.Mach. Descr. Caragtrv2pl Val. Nom20.85 035 (TS 2120
_________ |7v,7‘.._____--
Mach.No. Carc. N° 2500 Unité -035 T 20.50
Type Carac. variable Classe de Caracsignificatif Taille d'écharg. | Résolution 2
Descr. Type Prod. Grp. d'Instruments Descrip. Instrument
Type de production Instrument N° Résol. Instrurent
Evaluation de 01/01/70 /00:00:00 a 28/10/00 /12:04:00
Rem
X - Pearson 99.73%[ n=5; [I1; 311
LCS
M
LCl
LCS
M
o 00- LCl
: s - 99.73%[ n=5; 84 ]
U [ U,
P2 & p3 (2
30— X ‘ars 45 - X 001
i 99'00
25] | -+ | 40 ’ 99.9 : | —=f0.1
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] E o oofes
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5 @ 20 — 80 v
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old =i L > 0 0.0014——1 : ! NEE Ry
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carv2pi Log. DN —» carv2pl Log. DN f(x) =-14.2522+x >
Vafeurs Piéce : 17, Données caractéristiques : 1/ 2500/ 1; Page 1/1
Valeurs dessinées Valeurs saisies tatistiques
Moyenne folérance  20.85 [nf] X 20.8572 [nf]
T 20.50 [nt X 20.59 [t [ 20.5597 |
S 2120 [ o PRR I U 211677
olérance 0.70 [nt R 0.57 [nf] Ups - Tpa 0.6074 [ri]
Neys> 150 Ners 99.93857 %
N>Ts 0 P>Ts 0.04673 %
N < 0 P <mt 0.01470 %
Mot 150 Nt 150
Modéle de distribution Log. DN Distr. Log-Norm.
Transformation a(x) f(x) = In(a+x)
Méthode de calcul Percentile (0.135%-X-99.865%) (1)
Indice de capabilité Py 115
Indice de capabilité Ppk 1.11
Capabilité Process non confirmée !
R Q-DAS 1
28/10/00 gs-STAT V3.1 pe 01 n Marquardt GmbH ANCARV2P1.DFQ
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) Capabilité Procédé Page 1/1
Q-0 A §°
Usine Dept./Achat./Prod. < I Nom NN Date 28/10/00
Piece N° Descr. Pigce | Pt.Ctrl. n
Descr.Mach. Descr. Caraetrv2p2 Val. Nom{0.85 035 (TS 21.20
,,,,,,,,, [,7_7_A7,,_.._
Mach.No. Carc. N° 2500 Unité -0.35 T 20.50
Type Carac. variable Classe de Caracsignificatif Taille d'écharft. l Résolution 2
Descr: Type Prod. Grp. d'Instruments Descrip. Instrument
Type de production Instrument N° Résol. Instrunfent
Evaluation de 01/01/70 /00:00:00 a 28/10/00 /12:06:41
Rem.
X - Pearson 99.73%[ n=5; [I1; 311
20.904
20.859
20.804—
| 20753
20.70
2‘20.65
2z 0
§0.20]
0.15
0.10
0.05]
0.00 s - 99.73%[ n=5; 1]
"U'ps T -3s +3s
' P " W
s T X TS 4 TS, ‘ X ™ 6,001
I ! | 0 09.99 ] I
11 [ﬁ { E 99.9 . | Lot
o X
EZOA | N ! 302 + %53 i } ,,w"/ =
2 .
Sl | ' | F25% | o5 :g \ i 53 i
8154 31 «
§ | | | -205 o 20 1 s t 80 -
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5l ' i 5 0.1 < . I Teo0
99.99
olgmird 1 b . 0 0.001L-L~ - — |
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carv2p2 Log. DN —» carv2p2 Log. DN f(x) = In(21.7199-x)
Valeurs Piéce : 17; Données caractéristiques : 1725007 1; Page 171
Valeurs dessinées Valeurs Statistiques
Moyenne tolérance 20.85 [nt X 20.8007 [nf]
1T 20.50 [A] e 20.51 [t s 20,5228 [t —
TS 21.20 [nt] Xmax 21.06 [nt Upa 21.01887rt
Tolérance 0.70 [nf 0.55 [nt Ups-Tos 0.4959 [rt
ners 150 [ 99.93471 %
No1s 0 poTs 0.00000 %_
N <1} 0 - P <Ti 0.06589 %
Mot 150 Mo 150
Modéle de distribution Log. DN Distr. Log-Norm.
Transformation a(x) J(x) = Infa-x)
Méthode de calcul Percentile (0.135%-X-99.865%) (1)
Indice de capabilité P, 1.41
Indice de capabilité Ppx - 1.08
Capabilité Process non confirmée |
T ~_ Q-DAST T
28/10/00 qs-STAT V3.1 pc_01_n Marquardt GmbH A:NCARV2P2.DFQ
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Capabilité Procédé Page 1/1
S
a-b A S°
Usine Dept./Achat./Prod. X ] Nom NN Date  28/10/00
Piece N° Descr. Piéce Pt. Ctrl. n
Descr.Mach. Descr. Caraatrv2p3 Val. Nomi20.85 035 ITS 2120
,,,,,,,, LI —_————— -
Mach.No. Carc. N° 2500 Unité -0.35 | TI 2050
Type Carac. variable Classe de Caracsignificatif Taille d'écharft. | Résofution 2
Descr. Type Prod. Grp. d'Instruments Descrip. Instrument
Type de production Instrument N° Résol. Instrunfent
Evaluation de 01/01/70 /00:00:00 a 28/10/00 /12:19:09
Rem.
: : X~ 89.73%  n=5; 13 871 -
20.95
20.904
20.851
20.804
20.759
2 20.70.
o : - , . " .
z 0 5 10 15 20 25 30
8 0.204 - - ‘ = : —iLc
0.15
0.10] _Iu
0.05
LCl
0.00 s - 99.73%[ n=5; 81 ]
-3s +3s -3’ s +3s
o5 TI % T8, n_ LS 1 TS 0.001
I . £35 99.99
| | | s 99.9. | | —H 0.1
t20] | ~N— | ~301 99 ' | 1
o Z %
=] { | | F255 4 95 7 I ] ; 5
3 151 | 211 &0 20
o V] q
s | | F20 P B2 50 j } . ! 50
§10] | ! | ‘ Hsg | 20f | J 50
& | ! I F 5] t 3 ’ f 95
= ! s 102 o ] | %
| 1 | FS 0.1 / : y 99.9
| 1 ‘ i 99.99
0 (- L ; 0 0.001 i B
205 206 20.7 208 209 21.0 211 212 205 206 207 208 209 210 214 212
carv2p3 DN - carv2p3 DN —»
aleurs Piéce : 17; Donné éristiques 1725007 1; Page 1/1
Valéurs d & Valeurs saisies Statistiques
Moyenne tolérance  20.85 ] X 20.8158
Ul 20.50 Xemin 2055 T R-3s 20.5411
5 2120 Xmax 2112 X +3s 21.0905
Tolérance 070 0.57 s 0.5494
[olerance ners 150 ners 99.97049%
__'——-——-—‘—: >TS P>1s 0.00136 %
. <Ti 0 T e 0.02815%
— e 150 et 150
T Modéle de distribution L T — — Distr. Norm.
Transformation i g(x)
Méthode de calcul b Percentile (0.135%-%-99.865%) (1)
Indice de capabilité p? 1.27
Indicedecapabilité¢ . - Fek 1.15
T Capabilité Process non confirmée |
— " ___QDAST B -
28/10/00 gs-STAT V3.1 pc_01.n Marquardt GmbH A:\CARV2P3.DFQ
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Q Capabilité Procédé Page 1 /1
a-0 A s°
Usine Dept./Achat./Prod. < l Nom NN Date  28/10/00
Piéce N° Descr. Piece l Pt.Ctrl. n
Descr.Mach. Descr. Caragrv2p4 Val. Nomp9.85 035 TS 2120
Mach.Na. Carc. N° 2500 Unité 035 ‘,‘J_ﬁ C 2050
Type Carac. variable Classe de Caracsignificatif Taille d'écharft. | Résolution 2
Descr. Type Prod. Grp. d'Instruments Descrip. Instrument
Type de production Instrument N° Résol. Instrurfent
Evaluation de 01/01/70 /00:00:00 a 28/10/00 /12:21:51
Rem.
[ X - SHCaqq 99.73%[ 0=5; I3 81 ] -

s - 99.73%[ n=5; 51 1

l U [ U
T x s © n_® x 15 °
35 i T 0.001
T T [ =00] 99.99 I i f ! 1] F
] | ]
Lo N TP 4] ees ——— 0.1
225 ! I 40 oy ] ' 1
2“7 | | '8' 1 95“"‘[% I —5
3 20 308l 801 Nl ! 20 .
g g | I Py § 50- i #"é |‘ t 50 E
£ 15] I I cin 01— f — + :
z | | %% 2{_% - | - gg N
] 3 S A R | —
[ 10 ! I E . 1:::%&—*—1— g9
59 | ! . & B [es.0
T 177 I [e]e}
0 S ‘ SR Lto 0.001 [ “1 ] 9999
205 20.6 20.7 20.8 20.9 21.0 21.1 21.2 21.3 205206 207 208 209 21.0 214 212 313
carv2p4 DM~ - carvepd DM =
[Valeurs . - Piéce : 17; Données caract ristiques © 5i TPage 171
Valeurs dessinées i " Valeurs
Moyenne folérance  20.85 .
Tl 20.50 [Xemin — 20, S
TS 21.20 Xmax i . :
Tolérance 0.70 - ; X :
 ~ n<T> § . E X
N>tg ; ] - r
— : Nt P X %
T Pt : : . Nett 1
“““ T Modéle de distribution ' oM ®_
Transformation ) g(x)
Méthode de calfzle i Percentile (0.135%-%-99.865%) (1)
Indice de capabilité P 1.06
Indice de capabilité - K 0.82
Capabilité Process non confirmée | “

— T T ebAsy o —

Marquardt GmbH
28/10/00 gs-STAT V3.1 pc 01 n rq m AACARV2P4.DFQ
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L - r r r
) Capabilité Procédé Page 1 /1
Q-0 A S
Usine Dept./Achat./Prod. < [ Nom NN Date 28/10/00
Piece N° Descr. Pigce | Pt Ctrl. n
Descr.Mach. Descr. Caraztrv2p6 Val. Nom@0.85 035 (TS 2120
_________ o __ .
Mach.No. Carc. N° 2500 Unité -0.35 | TI 20.50
Type Carac. variable Classe de Caracsignificatif Taille d'écharg. ! Résolution 2
Descr. Type Prod. Grp. d'Instruments Descrip. Instrument
Type de production Instrument N° Résol. instrurfient
Evaluation de 01/01/70 /00:00:00 a 28/10/00 /12:28:48
Rem.
X - 99.73%[ n=5; [I1; 511
—~ LCS
20.95
20.90
20.859 M
20.804
20.757
[820.70° ; — : — : =Ll
Z 5 10 15 20 25 30
5 020 T ; 7 T T — s
0.15]
0.104 _IM
0.05
0.00 LCI
: s - 99.73%[ n=5; 51 ]
-3s +3s -3s 3s
g 1 i !
25 Ti ? TS Tl )]Z TS 0.001
! T Tles || 9999 ] ‘ t
| 1 | 99.9 " | I 0.1
120 | ;| feod sot=t— ' = 1
[
> = 95.]- 5
= F250 4 - |
Sasf | ! ~ D2 e - 20 -
@ 1 ] ! 2002 50 ' o I 50 =
e | | Oln | Pl | a
& 10 B F155 20 ' S — ; 80
3 g ¥ . . 1
o | | o 5 f X f 95
= = ' ] ! 99
i || ks 0.1 < . | 99.9
] 99.99
0 = v ary 0 0.001L—1 } L.
20.5 20.6 20.7 20.8 20.9 21.0 214 212 205 206 207 208 209 210 211 212
carv2p6 DN — carv2p6 DN —
aleurs Piece : 17; Données caractéristiques : 1/ 2500/ 1; Page 171
Valeurs dessinées Valeurs saisies tatistiques
{Moyenne folérance  20.85 X 20.8402
T 20.50 Xenin 20.60 K-35 20,5472
TS 21.20 Xrmax 21.06 X +3s 21.1332
‘Tolérance 0.70 R 0.46 6-s 0.5860
T N> 150 Ner> 99.96371 %
» n>1s 0 P >T1s 0.01150 %
f N <11 0 P < 0.02479 %
T T Mot 150 et 150
= """Modéle de distribution DN " Distr. Norm.
Transformation g(x)
Méthode de calcul Percentile (0.135%-X-99.865%) (1)
Indice de capabilité Py 1.19
Indice de capabilité Ppk ~ 1.16
S— Capabilité Process non confirmée |
,,,, —_—————— Q-DAS 1
28/10/00 qs-STAT V3.1 pe_01_n Marquardt GmbH A\CARV2P6.DFQ
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Proof of Lemma 2:

Notice that
yUSL' —r,
USL —C"’

the general expression 8fC'D M is proved by induction.

NCDMP = NCDM®1

Forp = 2 the desirability index is given by

USL” 4+ USL (—ry —r3) + 1172

NCDM? =
¢ (USL' — C)?

it is supposed that fgr quality characteristics the desirability index is given by

p—1 , ] - p—itlp—it2 p—i+l p 1, 1. 1, 1,
S(USLHYP= (1) S S ... Y ... > rj“m?“k”m i P
i=1 =1 k=2 m=l '<k<q:<pfl< -
NCDM? = Sk ame
(USL —C)p

USL? + (—1)PIT%_, 7y
(USL —C)r
In what follows it will be checked whether this expression is still truesferl quality characteristics.

(p) USLI — I'p+1

NCDMPY = NCDM
¢ ¢ USL —C

/(p—2)

(USL — )PP INCDM®P) = (USL — 1y )[USL” —USL" " (ry +r94...+1,) + USL

(rirg + 717 4 oo T+ s ATy A TyaTy) .+ USL (—=1)®7Y

(7"17’27’3...7’1071+7"17’27“4...7'p+...—|—7"27'3...7“p)—F(—l)pr:lTi]

/(p+1)

(USL — YO NCDM®P) = USL™ —r, \USL” —USL"(r1 + 719+ ... +7,)

1 USLY " (it A1) +USL"

T1ratTITs . AT g Tt T Ty )
+(—1)Tp+1USL,(—1)(p_1)(7“1’/"27“3 e Tp1 Ty Ty Ty Ty)

+USL (—1)PI_ s + (—1)rp (—1)PIE 7
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(USL — )P ONCDMPH) = USL'™" 4 (= 1)@y, — USL'™ (ry + 19 + . 41 + 7541

+usLe Y (rirg+mrs 4. ..+ rrp+rirpe Frars 4. Frer, Frarpi o T 1 T pr1)

!
+.. . FUSL (—1)P(rirars .. .7paTp+11Tars . o Tp1Tp1 + 11707 . TpTpp1 + . FT2rs o T pt)

(USL — C)PINCDME) = USL™" + (1),

P p i+2 p—i+3 p+1—i+l p+1
1— i) Bi2 L 1;,
—i—E (USL (p+ 2 E E E E rj”rk”...rm“...rq .
=1 j=1 k=2

q=p
j<k<..<m<...<q

The expression is confirmed fpr+ 1 quality characteristics O
Proof of Lemma 3:

Notice that the joint nonconformity ratio faruncorrelated quality characteristics is given by

R,=1—[1=r)(1—=r9)...(1 —7rp_1)(1 —1,)]
Ry, =1—[(1—Rp-1)(1—1p)]

The general expression 6f R,) is obtained by induction.

p=4:
—R4 = —T1—To—T3—T4 +7’17’2 +7’17”3 +T1T4 +T‘27”3 +T27’4 —|—T37’4 — T3 — 11Ty —ToT3Ty +7‘17”2T3T4
It is supposed that fgr quality characteristic6—R,,) is written as follows

p— p
Liny i Lin Lip—1
R, = E E E g E sz”rk”]...rm”...rq P (= 1)PIT_ 7

q=p—1
j<k<..<m<..<q

In what follows it will be checked whether this expression is still truesferl quality characteristics.
Ry =1—[(1-Rp)(1 —rp1)]

Rpiy=1-[(1—=r—ro—...—rp+mro+rrs+...+rirp +rors+ ...+ rer, + ...+ 1rparyp
oA ()P (rrgrg oy sy s 1) A (= D)PTIE_ ) (1= Tpyn)]
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—R(p+1) =-—Tr1—To— ... =Ty —Tpp1 +Tro+"r1r3+ ... 71Ty +7T1Tpp1 +72rs+ ...+ T2y +72Tp 1

+o ety i o ()P (rirers Ty T Ty e Tl T )

+ (=PI

p 1+2 p—i+3 p+1—i+l p+1

1, 1, 1, 1,

i,(1] .54, (2] aul i,[p]

R<p+1>—z 1 Z Z D P N
i=1 j=1 k=2

q=p
j<k<..<m<...<q

(—1)(p+1)H§iJ{1)T¢

The expression is confirmed fpr+ 1 quality characteristics O
Proof of Lemma 4:

From Lemma 2 the general expressiom\af’ D M is given by

p—1 , ) p—i+1p—i+2 p—i+l P L ir . " )
SOSOICTE S S N A
i=1 m=l o a=p-1
NCDMP = J<k<..<m<..<q
(USL —C)»

USL” + (—1)PIIE_,r;
(USL' — C)

This means that
(USL = CYNCDM? = USL" + (=1)PI_r; — USL' " (ry + ra 4 ...+ 1yt + 1)

+usL”? (riro+rirs+ .oy iy Frars o T Terp Tyl Tpo1Ty)
+ . AUSL (=1)P Y (ryryrs .. Tp—aTp1+T1ITeTs . Tp_ol T 1Ty o Ty 1T pF. . T2l Tp1Tp)
NCDM could be written as follows
(USL' —C)PNCDM? = USL" +(=1)"II"_ 7+ USL"" " (=ry —ro—. . .—1p_y —rp+ 1m0+ 1175+
AT ol BT ol DY T oI, ol Y SIS B ol Y 0 I, ol DY S T ol A | S SR
+(=1)P Y ryrors . Tp—oTp1 + P12y o Tp1Tp + ..+ Tors .. Tp1Tp) + (—1)PIE_ 7
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—(7“17"2 +rirs+ . Ty Ty T3+ Ty Ty Ty 0T T Ty

p

—17i))

(=1 (rrars . Ty oty F T Ty AT+ o Ty Ty 1Ty + (= 1)PIT

+...+ USL/(—l)p_l(—rl — Ty — ... =Ty —Tp+TiTe T3+ Ty T, F T L
+rory_1+Torp . Tyl F T 1Tyt (=1)P(ryrors . . Tp—aTp—1+T1T2 g o Ty T+ ...
+rorg ... rpo1rp) + (=1)PIE_yry — (=1 — g — oo =1y — T e F T3 o T 1Ty
Frors 4+ ...+ Ty + T+ Ty ol Ty Ty
+(=1)P"2(ryrgrs . . Tp—3Tp—g + 11T g o Tp_oTp1 + ...+ T3Tg ... Tp17p) + (—1)PIIE_ 7))

Using the expression of the joint nonconformity ratio in Lemma 3, the expressidiCdb M is then

given by
(USL —C)’NCDM? = USL" + (—=1)PT_yr;+ USL'" " (=R, — (rira+rirs+. . .+ 11rp 1 +717,

+7’2T3 + ...+ rorp—1 + raTp + ...+ Tp—2Tp—1 + Tp—1Tp + ...+ <—1)p_1<7“17’27"3 < Tp—2lp—1

H(rirery . TpaTp) + .o F Ty Tp1y) + (—1)PIT_ 1)

+ ... —i—USLI(—l)p_l(—Rp —(=ri—ro— .. =Ty =T+ Ty F Ty T Ty 1T

BRI it 1Y P B ol (Y e PP ol DY (I B el P i S

(=1 2 (riror3 . Ty 3Ty o F TITA s Ty Ty 1 e T3y Ty 7)) + (= 1)PIEE_ 7))

(USL' — CYYNCDMP = USL" + (—1)PII’_,r;

p—1 p—1 p—u+1p—u+t2 p—u+l p

(=) u Lu1), Lu, (2] Loy, (1) L, [p-1]
E USL™ " (—( (—1)Y] E E E E T A T s 1)
i=1 u=1y2; j=1 k=2 m=l g=p—1

j<k<..<m<..<q

—(=DME_r — Ry).
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Proof of Lemma 5

In Lemma 4 it is proved that

(USL' — C)P NCDMP = USL" + (—1)PII”_,7;

p u+1 p—u+2 p—u+l

— (p—1) < . Lo 1 1 1
p— w,[1] ).~ (2] u,[1] u,[p—1]
+ E USL" (—( E E g E E T A T )
] 1 k=2

=1 u= 1u;ﬁz g=p—1
J<k<..<m<...<q

—(= 1)pHp 17 — Rp)~

This means that
(USL' — CYYNCDMP = USL"” + (—1)PII’_,r;

p—1 , p—1 p utlp—ut2  p—u+tl P ) ) . .
+ Z USL (IH)(—( (-1 Z Z Z Z Tju,mrku,[z] e e
=1 u:lu?gi ] 1 k=2 q=p—1
j<k<..<m<..<q
p—1 _
—(=1)PI_yr;) — R, > USL™™.
i=1
Hence,
p-l : p—1 v
R,y USL"" = —NCDMP(USL — Cy +USL" +>_ USL""
=1 i=1
p—1 P u+1p—u+2 p—u-+l p . ) )
310 S SETEND S R

Uzlu;ﬁi ] 1 k=2 q=p—1
j<k<...<m<...<q

_(_1)pﬂf:17"i) + (_1)pH§:1Ti~

Proof of Theorem 1

Theorem 1 concerns two components, the desirability index and the joint nonconformity ratio for un-
correlated quality characteristics. The general expression of both components is proved by inductiol
in Lemmas 2-4.

Following Lemma 5, the joint nonconformity ratio for uncorrelated quality characteristics is expressed

as follows:
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p—1 -1
R, USL™" = -NCDMP(USL' — O + USL" + 3 USL"™"
=1

i=1
p—1 p—u+1p—u+2 p—u+l D X ., . X
(—=( > (=1 D e O B A )
u=1y+; j=1 k=2 m=l g=p—1

j<k<..<m<..<q

_(_1)pr=17"i) + (_1)pr=17’i-

However, the capability is confirmed only i, < USL’ and this means that the capability is con-

firmed if
p—1 _ p—1 p—u+1p—u+2 p—u-+l p
(USL' = CPNCDM? > > USL” " (—( Y (1) > Y
i=1 u=1y; j=1 k=2 m=l q=p—1

j<k<..<m<..<q

r;-l“’[l]r,]i“’m e .r]ql“’[p_”]) — (=D)PIP_,r; — USL) + USL" + (—1)PII"_, r;.
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